Back to Home

 

 1. S.L. Wang, H. Yang, and B.S. He, Solving a class of asymmetric variational inequalities by a new alternating direction method,

    Computer and Mathematics with Applications, 40: 927--937 (2000).

 

 2.  B.S. He, H. Yang, and S.L. Wang, Alternating directions method with self-adaptive penalty parameters for monotone variational inequalities,

    JOTA, 106: 349--368 (2000).

 

 3.  B.S. He, and H. Yang, A neural network model for monotone asymmetric linear variational inequalities,

    IEEE Transactions on Neural Networks〗, 11: 3--1(2000).

 

 4.  B.S. He, Solving  trust region problem in large scale optimization, Journal of Computational Mathematics〗, 18: 1--12 (2000).

 

 5.  B.S. He, and J. Zhou, A modified alternating direction method for convex quadratic minimization problems,

    Applied Mathematics Letters, 13: 123--130 (2000).

 

 6.  Y. Cui, and B.S. He, A class of projection and contraction methods for asymmetric linear variational inequalities and

      their relations to Fukushima's descent method,  Com. Mathe. App. , 38: 151--164 (1999).

 

 7.  B.S. He, L.Z. Liao, and H. Yang,  Decomposition method for a class of monotone variational inequality problems,

    J. Optimization Theory and applications, 103: 603--622 (1999).

 

 8.  B.S. He, Inexact implicit methods for monotone general variational inequalities,

    Mathematical Programming〗, 86: 199--217 (1999).

 

 9.  B.S. He, A Goldstein's Type Projection Method for a Class of Variant Variational Inequalities,

    Journal of Computational Mathematics〗, 17: 425--434 (1999).

 

 10.  B.S. He, and H. Yang, Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities,

     Operations Research Letters〗, 23: 151--161 (1998).

 

 11.  Q.M. Han, and B.S. He, A predict-correct method for a variant monotone variational inequality problems,

      Chinese Science Bulletin, (1998).

 

 12.  B.S. He, A Class of implicit methods for monotone variational inequalities,Chinese J. Num. Math. & Appl.〗, 21: 1--8 (1999).

 

 13.  B.S. He, A Projective Method of the Approximate Center for Semidefinite Programming,Chinese J. Num. Math. & Appl.〗, 20: 34--46 (1999)

 

 14.  B.S. He, A class of projection and contraction methods for monotone variational inequalities, Appl. Math.  Optimization, 35: 69--76 (1997).

 

 15.  B.S. He, E. de Klerk, C. Roos, and T. Terlaky, Methods of approximate centers for semi-definite programming,

      Optimization Methods and Software, 7: 291—309 (1997).

 

 16.  B.S. He, Solution and applications of a class of general linear variational inequalities, Science in China, Series A, 39: 395--404 (1996).

 

 17.  何炳生, 论求解变分不等式的一些投影收缩算法, 〖计算数学〗, 18: 54--60 (1996).

 

 18.  B.S. He, A modified projection and contraction method for a class of linear complementarity problems

      Journal of Computational Mathematics〗, 14: 54--63 (1996).

 

 19.  B.S. He, A new method for a class of linear variational inequalities,Mathematical Programming, 66: 137--144 (1994).

 

 20.  B.S. He, Solving a class of linear projection equations, Numerische Mathematik, 68: 71--80(1994).

 

 21.  B.S. He, Further developments in an iterative projection and contraction method for linear programming,

      Journal of Computational Mathematics〗, 11: 350--364 (1993).

 

 22.  B.S. He, On a Class of Iterative Projection and Contraction Methods for Linear Programming,

       Journal of Optimization Theory and Applications, 78: 247--266 (1993).

 

 23.  B.S. He, and J. Stoer, Solution of projection problems over polytopes, Numerische Mathematik〗, 61: 73--90, (1992).

 

 24.  B.S. He, A projection and contraction method for a class of linear complementarity problems and its application

         in convex quadratic programming, Applied Mathe. and Opt., 25: 247--262, (1992).

 

Last Update: Nov. 3, 2011