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Alternating Direction Method with

Self-Adaptive Penalty Parameters for

Monotone Variational Inequalities1

B. S. HE,2 H. YANG,3 AND S. L. WANG
4

Communicated by R. Glowinski

Abstract. The alternating direction method is one of the attractive
approaches for solving linearly constrained separate monotone vari-
ational inequalities. Experience on applications has shown that the
number of iterations depends significantly on the penalty parameter for
the system of linear constraint equations. While the penalty parameter
is a constant in the original method, in this paper we present a modified
alternating direction method that adjusts the penalty parameter per iter-
ation based on the iterate message. Preliminary numerical tests show
that the self-adaptive adjustment technique is effective in practice.
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1. Introduction

Variational inequality problem consists of finding a vector u*∈Ω such
that

(VI(Ω, F )) (uAu*)TF (u*)¤0, ∀u∈Ω, (1)

where Ω is a nonempty closed convex subset of R
l and F is a continuous map-

ping from R
l to itself. In practice, many VI problems have the following
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separable structure (e.g., Ref. 1):

uG3x

y4 , F (u)G3 f (x)

g( y)4 , (2)

ΩG{(x, y) ux∈X , y∈Y , AxCByGb}, (3)

where X ⊂R
n and Y ⊂R

m are given closed convex sets, f: X →R
n and

g: Y →R
m are given monotone operators, A∈R

rBn and B∈R
rBm are

given matrices, and b is a given vector in R
r.

By attaching a Lagrange multiplier vector λ∈R
r to the linear con-

straints AxCByGb, the problem under consideration can be treated as a
mixed variational inequality (VI with equality restriction AxCByGb and
unrestricted variable λ ): Find w*∈W, such that

(MVI(W , Q)) (wAw*)TQ(w*)¤0, ∀w∈W, (4)

where

wG3
x

y

λ
4 , Q(w)G3

f (x)AATλ
g( y)ABTλ
AxCByAb

4 , W GX BY BR
r. (5)

Problem (4)–(5) will be considered in this paper.
Typically, problems in applications [for example, network economics

(Ref. 1) and nonlinear mechanics (Refs. 2–4)] are quite large and are often
solved by alternating direction methods. The alternating direction method,
originally proposed by Gabay (Ref. 5) and by Gabay and Mercier (Ref. 6),
is used frequently in the literature (Refs. 2–3). At each iteration of this
method, the new iterate

wkC1G(xkC1, ykC1, λ kC1)∈X BY BR
r

is generated from a given triple

wkG(xk, yk, λk )∈X BY BR
r

by the following procedure: First, with yk and λk held fixed, xkC1 is obtained
by solving

(x′AxkC1)T{ f (xkC1)AAT [λkAβ (AxkC1CBykAb)]}¤0,

∀x′∈X ; (6)

then, with xkC1 and λk held fixed, ykC1 is produced by solving

( y′AykC1)T{g( ykC1)ABT [λkAβ (AxkC1CBykC1Ab)]}¤0,

∀y′∈Y . (7)
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Finally, the multipliers are updated by

λ kC1GλkAγ β (AxkC1CBykC1Ab), (8)

where γ ∈(0, (1C15)y2) and βH0 are given constants: γ is the relaxation
factor and β is a penalty parameter for the linearly constrained equation
AxCByAbG0. This method is referred to as a method of multipliers in the
literature (Ref. 5), and the convergence proof can be found in Refs. 3, 6 for
BGI and in Refs. 7–8 for general B. Further studies and applications of
such methods can be found in Glowinski (Ref. 3), Glowinski and Le Tallec
(Ref. 4), and Eckstein and Fukushima (Ref. 9).

Experience on applications (Refs. 2, 10, 11) has shown that, if the fixed
penalty β is chosen too small or too large, the solution time can increase
significantly. In order to improve such methods, some researchers suggested
to use methods that replace the constant β in (6)–(8) by a variable penalty
sequence {βk}. For example, Nagurney et al. (Ref. 1) utilized the method
in which {βk} is monotonically increasing. In a more recent paper (Ref. 11),
instead of the sequence {βk}, Kontogiorgis and Meyer took a sequence of
penalty symmetric positive-definite matrices {Hk}. The convergence was
proved under the assumption that γ ≡ 1, the eigenvalues of {Hk} are uni-
formly bounded from below away from zero, and with finitely many excep-
tions, the eigenvalues of HkAHkC1 are nonnegative. Most recently, He and
Yang (Ref. 12) studied some convergence properties of the alternating direc-
tion method. The convergence was proved for the cases that
γ ∈(0, (15C1)y2) is fixed and the positive sequence {βk} is either monotone
decreasing bounded from below away from zero or monotone increasing
(Ref. 12).

In all the existing variants of the alternating direction method, the con-
vergence theorem was proved under a monotonicity assumption on the
sequence of the penalty parameters {βk} [resp. penalty matrices {Hk}]. For
such methods, it is necessary to choose a proper starting penalty parameter
β0 . In most cases, this is difficult to realize.

In this paper, we continue the research by relaxing some restrictions.
Namely, we give a modified method that allows the parameter βk to either
increase or decrease. In particular, we present some self-adaptive rules for
adjusting the penalty sequence {βk} and prove convergence under such
modifications.

The paper is organized as follows. In Section 2, we give the description
of the proposed method and discuss how to adjust the parameter βk which
satisfies the conditions and leads to fast convergence. The main theorem,
which allows us to vary the parameter β , is proved in Section 3. In Section
4, based on the main theorem, we give some restrictions on the sequence
{βk} and prove convergence under such conditions. Finally, in Section 5,
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we give results of preliminary numerical tests to demonstrate the advantage
of the proposed modified method.

The following notation is used in this paper. For any real matrix M
and vector v, we denote transposition by MT and vT, respectively.
Superscripts such as in vk refer to specific vectors and are usually iteration
indices. The Euclidean norm of the vector z will be denoted by uuzuu; i.e.,

uuzuuG1zTz.

2. Alternating Direction Method with Variable Penalty Parameter

It has been well known (e.g., see Refs. 1 and 13) that VI(Ω, F ) is equiv-
alent to the following projection equation:

(PE(Ω, F )) uGPΩ[uAF (u)],

where PΩ( · ) denotes the projection on Ω. The equivalence between VI(Ω, F )
and PE(Ω, F ) is a basic tool in our analysis. Hence, solving MVI(W , Q) is
equivalent to finding a zero point of

e(w)_wAPW [wAQ(w)]. (9)

Since the projection mapping is nonexpansive, and thus e(w) is continuous,
uue(w)uu can be viewed as a function measuring how much w fails to be a
solution of MVI(W, Q). We give the description of the method.

Alternating Direction Method with Variable Penalty Parameter.

Step 0. Given (H0, γ ∈(0, (1C15)y2), β1H0, y0∈Y , and λ0∈R
r, set

kG0.

Step 1. Find xkC1∈X such that

(x′AxkC1)T{ f (xkC1)AAT[λkAβkC1(AxkC1CBykAb)]}¤0,

∀x′∈X. (10)

Step 2. Find ykC1∈Y such that

( y′AykC1)T{g( ykC1)ABT [λkAβkC1(AxkC1CBykC1Ab)]}
¤0,

∀y′∈Y. (11)

Step 3. Update the multiplier,

λ kC1GλkAγ βkC1(AxkC1CBykC1Ab). (12)
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Step 4. Convergence verification: if uue(wkC1)uuSF(, stop.

Step 5. Adjust the penalty parameter βH0 (this will be specified
later); set k_kC1, and go to Step 1.

For convenience, we state the basic assumptions to guarantee that the
problem under consideration is solvable and the method is well defined.

Assumption A1. The solution set of MVI(W, Q), denoted by W *, is
nonempty.

Assumption A2. Problems (10) and (11) are solvable.

We focus our attention on only the framework of the alternating direc-
tion method with variable penalty parameter, rather than the subVIs (10)
and (11) for which a number of solution methods can be found for instance
in Ref. 13. Although the subVIs are solved numerically, we assume that the
exact solutions of the subVIs in each iteration can be obtained without
difficulty.

Now, we consider how to adjust the penalty parameter βk for fast con-
vergence. Recall that solving MVI(W , Q) is equivalent to finding a zero
point of e(w) and

e(w)G3
ex (w)

ey (w)

eλ (w)
4G3

xAPx{xA[ f (x)AATλ ]}

yAPY {yA[g( y)ABTλ ]}

AxCByAb
4 . (13)

For simplicity, let

wkG(xk, yk, λk )∈X BY BR
r

be generated from a given triple

wkA1G(xkA1, ykA1, λ kA1)∈X BY BR
r

by (10)–(12) with γ G1. Using the equivalence of the solutions of the vari-
ational inequality and the projection equation, we find that

ykGPY {ykA[g( yk )ABTλk ]},

and thus ey (w
k )G0. It follows that

uue(wk )uu2Guuex (wk )uu2Cuueλ (wk)uu2.

This consideration offers us a message on how to choose the penalty param-
eter β . For the sake of balance, we should adjust the penalty parameter β
such that uuex(w)uu≈ uueλ (w)uu. In other words, for an iterate wG(x, y, λ ), if
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uuex(w)uu[uueλ (w)uu, we should increase β in the next iteration; conversely, we
decrease β when uuex(w)uuZuueλ (w)uu. This is the basic idea in our modified
alternating direction method. In detail, we consider the following different
techniques for adjusting βk .

Given µ∈(0, 1) and a nonnegative sequence {τk} that satisfies

∑
S

kG0

τkFS, (14)

we consider three strategies below.

Strategy S1. {βk} is monotonically increasing,

βkC1G5βk(1Cτk ),

βk ,

if uuxkAPX [xkA( f (xk)AATλk)]uuFµuuAxkCBykAbuu,
otherwise.

Strategy S2. {βk} is monotonically decreasing,

βkC1G5βky(1Cτk),

βk ,

if µuuxkAPX [xkA( f (xk)AATλk)]uuHuuAxkCBykAbuu,
otherwise.

Strategy S3. {βk} is a self-adaptive variable,

βkC1G5
βk(1Cτk),

βky(1Cτk),

βk,

if uuxkAPX [xkA( f (xk)AATλk)]uuFµuuAxkCBykAbuu,
if µuuxkAPX [xkA( f (xk)AATλk )]uuHuuAxkCBykAbuu,
otherwise.

In any cases, if βkC1≠βk , then

βkC1G(1Cτk )βk or βkC1Gβky(1Cτk ).

Under condition (14), we have

∏
S

iG1

(1Cτ i )FCS.

Hence, the sequence {βk} is both upper bounded and bounded below away
from zero; that is, we have

BL_ inf
k

{βk}H0, BU_sup
k

{βk}FCS. (15)

3. Main Theorem

The task of this section is to establish a theorem that ensures the con-
vergence of the proposed method with the different strategies for adjusting
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the penalty parameters mentioned in the last section. To start our dis-
cussion, let us observe the difference between uuλkAλ*uu2 and uuλ kC1Aλ*uu2.
From [see (12)]

λkGλ kC1Cγ βkC1(AxkC1CBykC1Ab),

uuλkAλ*uu2Guuλ kC1Aλ*uu2AuuλkAλ kC1uu2C2(λkAλ*)T(λkAλ kC1),

we get

uuλkAλ*uu2Guuλ kC1Aλ*uu2Aγ 2β2
kC1uuAxkC1CBykC1Abuu2

C2γ βkC1(λkAλ*)T(AxkC1CBykC1Ab). (16)

The following lemma provides a desirable property of the last term of (16).

Lemma 3.1. For any w*G(x*, y*, λ*)∈W *, we have

(λkAλ*)T(AxkC1CBykC1Ab)

¤βkC1uuAxkC1CBykC1Abuu2

CβkC1(AxkC1AAx*)T(BykABykC1). (17)

Proof. Since w*∈W *, xkC1∈X , and ykC1∈Y , we have

(xkC1Ax*)T[ f (x*)AATλ*]¤0, (18)

( ykC1Ay*)T [g( y*)ABTλ*]¤0, (19)

Ax*CBy*AbG0. (20)

On the other hand, from (10) and (11), it follows that

(x*AxkC1)T{ f (xkC1)AAT [λkAβkC1(AxkC1CBykAb)]}¤0, (21)

( y*AykC1)T{g( ykC1)ABT [λkAβkC1(AxkC1CBykC1Ab)]}¤0. (22)

Adding (18) and (21), and using the monotonicity of the operator f, we get

(xkC1Ax*)T{AT [(λkAλ*)AβkC1(AxkC1CBykAb)]}¤0. (23)

Similarly, adding (19) and (22), and using the monotonicity of the operator
g, it follows that

( ykC1Ay*)T{BT [(λkAλ*)AβkC1(AxkC1CBykC1Ab)]}¤0. (24)

Now combining (23) and (24) and using (20), we get the assertion of this
lemma. h
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From the result of Lemma 3.1, equation (16) becomes

uuλkAλ*uu2Guuλ kC1Aλ*uu2Cγ (2Aγ )β2
kC1uuAxkC1CBykC1Abuu2

C2γ β2
kC1(AxkC1AAx*)T [B ( ykAykC1)]. (25)

In addition, we notice that

uuB ( ykAy*)uu2GuuB ( ykC1Ay*)uu2CuuB ( ykAykC1)uu2

C2[B ( ykC1Ay*)]T [B ( ykAykC1)]. (26)

It would be useful in the following discussion to observe the difference
between

uuλkAλ*uu2Cγ β2
kC1uuB ( ykAy*)uu2,

uuλ kC1Aλ*uu2Cγ β2
kC1uuB ( ykC1Ay*)uu2.

In fact, using Ax*CBy*Gb, it follows from (25) and (26) that

uuλkAλ*uu2Cγ β2
kC1uuB ( ykAy*)uu2

¤ uuλ kC1Aλ*uu2Cγ β2
kC1uuB ( ykC1Ay*)uu2

Cγ (2Aγ )β2
kC1uuAxkC1CBykC1Abuu2Cγ β2

kC1uuB ( ykAykC1)uu2

C2γ β2
kC1(AxkC1CBykC1Ab)TB ( ykAykC1). (27)

Now, we observe the last term in (27).

Lemma 3.2. For k¤2, we have

βkC1(AxkC1CBykC1Ab)TB ( ykAykC1)

¤ (1Aγ )βk (AxkCBykAb)TB ( ykAykC1). (28)

Proof. By setting y′Gyk in (11), we get

( ykAykC1)T{g( ykC1)ABT [λkAβkC1(AxkC1CBykC1Ab)]}¤0. (29)

Similarly, taking k_kA1 and y′GykC1 in (11), we have

( ykC1Ayk )T{g( yk )ABT[λ kA1Aβk (AxkCBykAb)]}¤0. (30)

By adding (29) and (30) and using the monotonicity of the operator g, we
obtain

( ykC1Ayk )TBT{[λkAβkC1(AxkC1CBykC1Ab)]

A[λkA1Aβk(AxkCBykAb)]}¤0. (31)
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Substituting

λkGλ kA1Aγ βk(AxkCBykAb)

in (31), the assertion of this lemma follows immediately. h

Recall that, as in Glowinski Ref. 3, we restrict γ ∈(0, (1C15)y2), in
the method described. It is easy to verify that

1Cγ Aγ 2H0, ∀γ ∈(0, (1C15)y2).

Let

TG2A(1y2)(1Cγ Aγ 2); (32)

it follows that

TAγ G(1y2)(γ 2A3γ C3)G(1y2)[(γ A3y2)2C3y4]¤3y8.

Now, we are in the stage to prove the main theorem of this paper.

Theorem 3.1. Let w*G(x*, y*, λ*)∈W * be a solution point of
MVI(W , Q), let γ ∈(0, (1C15)y2), and let T be defined as in (32). Then, we
have

uuλ kC1Aλ*uu2Cγ β2
kC1uuB ( ykC1Ay*)uu2

Cγ (TAγ )β2
kC1uuAxkC1CBykC1Abuu2

⁄ uuλ kAλ*uu2Cγ β2
kC1uuB ( ykAy*)uu2

Cγ (TAγ )β2
k uuAxkCBykAbuu2A(1y3)(1Cγ Aγ 2)γ β2

kC1

B{uuAxkC1CBykC1Abuu2CuuB ( ykAykC1)uu2}. (33)

Proof. It follows from (27) and Lemma 3.2 that

uuλkAλ*uu2Cγ β2
kC1uuB ( ykAy*)uu2

¤ uuλ kC1Aλ*uu2Cγ β2
kC1uuB ( ykC1Ay*)uu2

Cγ (2Aγ )β2
kC1uuAxkC1CBykC1Abuu2Cγ β2

kC1uuB ( ykAykC1)uu2

C2βkβkC1γ (1Aγ )(AxkCBykAb)T(BykABykC1). (34)

Using the Cauchy–Schwarz inequality, we have

2βkβkC1 uγ (1Aγ )(AxkCBykAb)T(BykABykC1) u

¤Aγ (TAγ )β2
k uuAxkCBykAbuu2

A[(1Aγ )2y(TAγ )]γ β2
kC1uuB ( ykAykC1)uu2. (35)
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Substituting (35) in (34), we derive

uuλkAλ*uu2Cγ β2
kC1uuB ( ykAy*)uu2Cγ (TAγ )β2

k uuAxkCBykAbuu2

¤ uuλ kC1Aλ*uu2Cγ β2
kC1uuB ( ykC1Ay*)uu2

Cγ (TAγ )β2
kC1uuAxkC1CBykC1Abuu2

Cγ β2
kC1{(2AT )uuAxkC1CBykC1Abuu2

C[1A(1Aγ )2y(TAγ )]uuB ( ykAykC1)uu2}. (36)

Using (32), it follows that

1A(1Aγ )2y(TAγ )G(1Cγ Aγ 2)y(3A3γ Cγ 2).

For γ ∈(0, (1C15)y2), we have

3y4⁄γ 2A3γ C3G(γ A3y2)2C3y4⁄3,

and hence,

1A(1Aγ )2y(TAγ )¤ (1y3)(1Cγ Aγ 2). (37)

Substituting

2ATG(1y2)(1Cγ Aγ 2)

and (37) in (36), we get

uuλkAλ*uu2Cγ β2
kC1uuB ( ykAy*)uu2Cγ (TAγ )β2

kuuAxkCBykAbuu2

¤ uuλ kC1Aλ*uu2Cγ β2
kC1uuB ( ykC1Ay*)uu2

Cγ (TAγ )β2
kC1uuAxkC1CBykC1Abuu2C(1y3)(1Cγ Aγ 2)γ β2

kC1

B{uuAxkC1CBykC1Abuu2CuuB ( ykAykC1)uu2}. (38)

The conclusion of this theorem is proved. h

4. Convergence

Let {wk}G{(xk, yk, λk )} be the sequence generated by the alternating
direction method in which the sequence {βk} satisfies condition (15). For
convergence analysis, we demonstrate that we need only focus on showing
that

lim
k→S

{uuAxkC1CBykC1Abuu2CuuB ( ykAykC1)uu2}G0.
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Note that, based on the equivalence of the solutions of the variational
inequality and the projection equation, xkC1 generated from (10) and ykC1

generated from (11) satisfy

xkC1GPX {xkC1A[ f (xkC1)AAT(λkAβkC1(AxkC1CBykAb))]}, (39)

ykC1GPY {ykC1A[g( ykC1)ABT(λkAβkC1(AxkC1CBykC1Ab))]}, (40)

respectively. Recall that

e(wkC1)G3
ex (wkC1)

ey (w
kC1)

eλ (wkC1)
4

G3
xkC1APX {xkC1A[ f (xkC1)AATλ kC1]}

ykC1APY {ykC1A[g( ykC1)ABTλ kC1]}

AxkC1CBykC1Ab
4 , (41)

and hence,

uue(wkC1)uu⁄ uuex(w
kC1)uuCuuey(w

kC1)uuCuueλ (wkC1)uu. (42)

Replacing the first xkC1 in ex (wkC1) by the right-hand side of (39) and using

uuPX (v)APX (v′ )uu⁄ uuvAv′ uu

and (12), we have

uuex(w
kC1)uu

⁄ uuAT[λkAλ kC1AβkC1(AxkC1CBykAb)]uu

GuuAT[λkAλ kC1AβkC1(AxkC1CBykC1Ab)]CβkC1A
TB ( ykAykC1)uu

⁄ uuβkC1A
T uu{uγ A1u · uuAxkC1CBykC1AbuuCuuB ( ykAykC1)uu}. (43)

Similarly, replacing the first ykC1 in ey (w
kC1) by the right-hand side of (40),

and using the non-expansion of PY ( · ) and (12), we obtain

uuey (w
kC1)uu⁄ uuBT[λkAλ kC1AβkC1(AxkC1CBykAb)]uu

⁄ uu(γ A1)βkC1B
T uu · uuAxkC1CBykC1Abuu. (44)

Combining (43) and (44), we get

uue(wkC1)uu⁄{1Cuγ A1 uβkC1(uuAT uuCuuBT uu)}uuAxkC1CBykC1Abuu

CβkC1uuAT uu · uuB ( ykAykC1)uu. (45)

Therefore, for bounded {βk}, there is a constant c0H0 such that

uue(wkC1)uu2⁄c0{uuAxkC1CBykC1Abuu2CuuB ( ykAykC1)uu2}. (46)
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Since solving MVI(W, Q) is equivalent to finding a zero point of e(w), we
need only prove that

lim
k→S

{uuAxkC1CBykC1Abuu2CuuB ( ykAykC1)uu2}G0.

In fact, it is easy to check from (10)–(12) that, if

AxkC1CBykC1AbG0 and B ( ykAykC1)G0,

then wkC1G(xkC1, ykC1, λ kC1) is a solution of MVI(W, Q).
Based on Theorem 3.1, we study convergence under the following

conditions.

Condition C1. inf {βk}
S
1 GBLH0 and ∑S

kG1 η2
kFCS, where

ηkG51(βkC1yβk)
2A1,

0,

if k∈KI ,

otherwise,
(47a)

KI_{k uβkC1Hβk}. (47b)

Condition C2. ∑S

kG1 θ2
kFCS, where

θkG511A(βkyβkC1)
2,

0,

if k∈KD ,

otherwise,
(48a)

KD_{k uβkC1Fβk}. (48b)

Theorem 4.1. Let {wk}G{(xk, yk, λk )} be the sequence generated by
the proposed method, and let w*G(x*, y*, λ*)∈W * be a solution. If the
sequences {βk} satisfies Condition C1 or Condition C2, then the method is
convergent.

Proof. First, we consider the case that the sequence {βk} satisfies
Condition C1. It follows from (47) that ∑S

kG0 η2
kFS and the product

∏S

kG0(1Cη2
k) is bounded. Denote

Cs_ ∑
S

iG1

η2
i , Cp_ ∏

S

iG1

(1Cη2
i ). (49)

Note that the result of Theorem 3.1 [see (33)] can be rewritten as

uuλ kC1Aλ*uu2Cγ β2
kC1uuB ( ykC1Ay*)uu2Cγ (TAγ )β2

kC1uuAxkC1CBykC1Abuu2

⁄ uuλ kAλ*uu2C(β2
kC1yβ2

k)γ β2
k uuB ( ykAy*)uu2Cγ (TAγ )β2

k uuAxkCBykAbuu2

A(1y3)(1Cγ Aγ 2)γ β2
kC1{uuAxkC1CBykC1Abuu2CuuB ( ykAykC1)uu2}. (50)
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Under the condition (47), we have

β2
kC1yβ2

k⁄1Cη2
k .

It follows that

uuλ kC1Aλ*uu2Cγ β2
kC1uuB ( ykC1Ay*)uu2Cγ (TAγ )β2

kC1uuAxkC1CBykC1Abuu2

⁄ (1Cη2
k){uuλkAλ*uu2Cγ β2

kuuB ( ykAy*)uu2Cγ (TAγ )β2
k uuAxkCBykAbuu2}

A(1y3)(1Cγ Aγ 2)γ β2
kC1{uuAxkC1CBykC1Abuu2CuuB ( ykAykC1)uu2}, (51)

and hence,

uuλ kC1Aλ*uu2Cγ β2
kC1uuB ( ykC1Ay*)uu2Cγ (TAγ )β2

kC1uuAxkC1CBykC1Abuu2

⁄ ∏
k

iG1

(1Cη2
i ){uuλ1Aλ*uu2Cγ β2

1uuB ( y1Ay*)uu2Cγ (TAγ )β2
1uuAx1CBy1Abuu2}

⁄Cp{uuλ1Aλ*uu2Cγ β2
1uuB ( y1Ay*)uu2Cγ (TAγ )β2

1uuAx1CBy1Abuu2}. (52)

Therefore, there exists a constant CH0, such that

uuλk−λ*uu2+γ β2
kuuB ( yk−y*)uu2+γ (TAγ )β2

kuuAxk+Byk−buu2⁄C, ∀k. (53)

From (51) amd (53), we get

∑
S

iG1

(1y3)(1Cγ Aγ 2)γ β2
iC1{uuAxiC1CByiC1Abuu2CuuB ( yiAyiC1)uu2}

⁄ uuλ1Aλ*uu2Cγ β2
1uuB ( y1Ay*)uu2Cγ (TAγ )β2

1uuAx1CBy1Abuu2

C ∑
S

iG1

η2
i {uuλ iAλ*uu2Cγ β2

i uuB ( yiAy*)uu2Cγ (TAγ )β2
i uuAxiCByiAbuu2}

⁄ (1CCs)C. (54)

Since inf{βk}
S
1 ¤BLH0, it follows from (54) that

lim
k→S

{uuAxkC1CBykC1Abuu2CuuB ( ykAykC1)uu2}G0.

Now, we turn to study the case that {βk} satisfies Condition C2. For
this purpose, we rewrite the result of Theorem 3.1 [see (33)] as

(1yβ2
kC1)uuλ kC1Aλ*uu2Cγ uuB ( ykC1Ay*)uu2

Cγ (TAγ )uuAxkC1CBykC1Abuu2

⁄ (β2
kyβ2

kC1)(1yβ2
k)uuλkAλ*uu2Cγ uuB ( ykAy*)uu2

C(β2
kyβ2

kC1)γ (TAγ )uuAxkCBykAbuu2A(1y3)(1Cγ Aγ 2)γ

B{uuAxkC1CBykC1Abuu2CuuB ( ykAykC1)uu2}. (55)
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Note that, under condition (48), we have

β2
kyβ2

kC1⁄ (1Cθ2
k).

We define

Ds_ ∑
S

iG0

θ2
i , Dp_ ∏

S

iG0

(1Cθ2
i ).

It follows from (55) and (48) that

(1yβ2
kC1)uuλ kC1Aλ*uu2Cγ uuB ( ykC1Ay*)uu2

Cγ (TAγ )uuAxkC1CBykC1Abuu2

⁄3 ∏
k

iG1

(1Cθ2
i )4{(1yβ2

1)uuλ1Aλ*uu2Cγ uuB ( y1Ay*)uu2

Cγ (TAγ )uuAx1CBy1Abuu2}

⁄Dp{(1yβ2
1)uuλ1Aλ*uu2Cγ uuB( y1Ay*)uu2

Cγ (TAγ )uuAx1CBy1Abuu2}; (56)

hence, there exists a constant DH0, such that

(1yβ2
k)uuλkAλ*uu2Cγ uuB ( ykAy*)uu2

Cγ (TAγ )uuAxkCBykAbuu2⁄D, ∀k. (57)

From (55) and (57), we get

∑
S

iG1

(1y3)(1Cγ Aγ 2)γ {uuAxiC1CByiC1Abuu2CuuB ( yiAyiC1)uu2}

⁄ (1yβ2
1)uuλ1Aλ*uu2Cγ uuB( y1Ay*)uu2Cγ (TAγ )uuAx1CBy1Abuu2

C ∑
S

iG1

θ2
i {(1yβ2

i )uuλ iAλ*uu2Cγ 2
i uuB ( yiAy*)uu2Cγ (TAγ ) uuAxiCByiAbuu2}

⁄ (1CDs)D, (58)

and therefore,

lim
k→S

{uuAxkC1CBykC1Abuu2CuuB ( ykAykC1)uu2}G0.

The theorem is proved. h

Remark 4.1. It is clear that, if the sequence {βk} is monotone decreas-
ing and bounded below away from zero, then ηk ≡ 0 and {βk} satisfies Con-
dition C1. Conversely, if the positive sequence {βk} is monotone increasing,
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then θk ≡ 0 and {βk} satisfies condition C2. Hence, the proposed method
using either parameter adjusting Strategy S1 or S2 in Section 2 is
convergent.

Remark 4.2. The sequence {βk} generated by adjusting Strategy S3 in
Section 2 satisfies both Conditions C1 and C2. Note that, for

k∈KIG{k uβkC1Hβk},

k∈KDG{k uβkC1Fβk},

we have

η2
kG2τkCτ2

k ,

θ2
kG2τkCτ2

k ,

respectively. It follows from (14) that

∑
S

kG1

η2
kFS and ∑

S

kG1

θ2
kFS.

Thus, the sequence {βk} satisfies both Conditions C1 and C2.

5. Numerical Experiments

In this section, we present the results of some numerical experiments.
Our main interest is in showing the efficiency of the alternating direction
method with self adaptive penalty parameters.

For this purpose, we consider the following problem:

min{cTx ux∈Ω1∩Ω2}, (59)

where

Ω1G{xu uuxuu⁄r1 , x∈Rn},

Ω2G{xu uuxAbuu⁄r2 , x∈Rn}.

We test the problems with dimension nG1000. In order to guarantee the
feasibility of the problem, we should have

uubuu⁄r1Cr2 .

The test problems of the form (59) are generated randomly. First, the com-
ponents of b are uniformally distributed in (0, 10). We take

r1G0.5uubuu and r2G0.6uubuu,



JOTA: VOL. 106, NO. 2, AUGUST 2000352

Table 1. Description of various methods.

Method F βk ≡ β1 .

Method 1, Strategy S1 βkC1G5βk ∗ 2,

βk ,

if uuex (wk )uuF0.1 ∗ uueλ (wk )uu and k⁄kmax,

otherwise.

Method 2, Strategy S2 βkC1G5βk ∗ 0.5,

βk ,

if 0.1 ∗ uuex(w
k)uuHuueλ (wk )uu and k⁄kmax,

otherwise.

Method 3, Strategy S3 βkC1G5
βk ∗ 2, if uuex(w

k )uuF0.1 ∗ uueλ (wk )uu and k⁄kmax,

βk ∗ 0.5, if 0.1 ∗ uuex(w
k )uuHuueλ (wk )uu and k⁄kmax,

βk , otherwise.

and thus the problem is well defined. The components of c are uniformly
distributed in (−K, K ). To cast (59) in a format suitable for the alternating
direction method, we introduce an auxiliary vector y and rewrite the prob-
lem as follows:

min cTx, (60a)

s.t. xCyAbG0, (60b)

x∈s· r1 , y∈s· r2 , (60c)

where s· r denotes a ball centered on zero point with radius r. For this
problem, by using the alternating direction method, the subVIs (10) and
(11) are equivalent to finding xkC1 and ykC1 such that

xkC1GPs· r1
{(1AβkC1)x

kC1CλkCβkC1(bAyk)Ac},

ykC1GPs· r2
{(1AβkC1)y

kC1CλkCβkC1(bAxkC1)},

respectively. Note that the solution of problem as

vGPs· r [(1Aβ )vCq]

can be given explicitly by

vG5qyβ ,

rqyuuquu,
if uuquu⁄βr,

otherwise.

Hence, for this test problem, we can solve the subVIs (10) and (11) in each
iteration exactly.

We test the problems by using the original alternating direction method
and the methods using different penalty parameter adjusting strategies. For
simplicity, we take the relaxation factor γ ≡ 1 and use the methods listed in
Table 1.
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Method F with fixed parameter is the original alternating direction
method as described in Refs. 2–5. Methods 1, 2, 3 belong to the modified
strategies of this paper, in which we use the penalty parameter adjusting
Strategies S1, S2, S3 as described in Section 2. Here, we take µG0.1, kmaxG

50, and

τkG51,

0,

if k⁄kmax ,

otherwise.

Hence, the sequence {τk} satisfies (14). As starting point, we take

y0G(0, . . . , 0)T and λ0G(0, . . . , 0)T.

The iteration was stopped as soon as

uue(wk )uuS⁄10−8.

All codes are written in Matlab and run on a P-II 400 Personal Computer.
Clearly, the CPU time used for solving a problem cannot be too precise,
but is still a useful quantity for comparison purposes.

5.1. First Set of Tests. In our first set of tests, problem (60) has fixed
KG10; i.e., the components of c∈R1000 are uniformly distributed in
(−10, 10). We tested the different methods with different starting penalty
parameters. The results are given in Table 2.

Table 2. Test results for the same problem with different starting penalties.

Method F Method 1 Method 2 Method 3

β1 Nit T [sec] Nit T [sec] Nit T [sec] Nit T [sec]

10−5 — — 51 0.33 — — 49 0.27
10−4 — — 47 0.28 — — 46 0.27
10−3 — — 44 0.22 — — 43 0.22
10−2 — — 39 0.22 — — 42 0.27
10−1 1136 5.82 36 0.20 1106 6.48 38 0.22
1 122 0.61 34 0.22 118 0.72 35 0.22

10 36 0.22 40 0.28 50 0.28 35 0.16
102 69 0.33 65 0.33 39 0.27 39 0.22
103 287 1.38 285 1.59 40 0.22 42 0.28
104 2525 11.81 2376 12.58 43 0.28 45 0.28
105 — — — — 46 0.28 46 0.27
106 — — — — 50 0.23 52 0.32
107 — — — — 57 0.27 57 0.33
108 — — — — 56 0.33 56 0.33

—means that the number of iteration is greater than 10,000 and the CPU time is in excess of
100 sec.
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In Method F, the penalty parameter βk is fixed. Indeed, the number of
iteration is dependent significantly on the parameter β . For this problem, it
seems that β≈10 is the best choice for the method. In general, we do not
have a priori knowledge on how to choose a fixed β for a particular
problem.

If we use Method 1, the penalty sequence {βk} is monotonically
increasing. For this method, the starting penalty parameter β1 should be
relatively small. Even if the starting penalty parameter is too small, using
Strategy S1, the method will find a proper parameter in a few iterations. As
demonstrated in Table 2 for this test problem, a large β1 (such as β1H1000)
may lead to a slow convergence or cause convergence to fail.

In Method 2, the penalty sequence {βk} is monotonically decreasing.
By using this method, the starting penalty parameter β1 should be relatively
large. The method will reduce the penalty parameter automatically when
the starting parameter is too large. A small β1 (such as β1F0.01) may cause
convergence to fail.

Method 3 belongs to the proposed method with Strategy S3. Compared
with the Methods 1 and 2, we find out that Method 3 is most effective and
flexible. The method converges quickly and the number of iterations is
almost independent of the starting penalty parameter β1 .

5.2. Second Set of Tests. Note that Problem (60) is invariant under
multiplication of c by a positive factor K. In our second set of tests, first we
let the components of c∈R1000 be uniformly distributed in (−1, 1); then, we
multiplied c by a positive factor K. We take β1G1 as the starting penalty
parameter in all test methods, and let K range from 0.00001 to 10,000. The
test results are depicted in Table 3.

Table 3. Test results for different problems with the same starting penalty.

Method F Method 1 Method 2 Method 3

K Nit T [sec] Nit T [sec] Nit T [sec] Nit T [sec]

10−5 — — — — 47 0.25 51 0.27
10−4 25701 117.49 24800 130.78 46 0.28 49 0.27
10−3 2506 11.42 2515 13.23 42 0.22 51 0.28
10−2 90 1.26 278 1.49 40 0.22 53 0.33
10−1 63 0.33 64 0.33 36 0.21 48 0.28
1 35 0.16 41 0.27 49 0.27 45 0.27

10 121 0.61 37 0.22 118 0.60 38 0.22
102 1136 5.65 38 0.22 1110 0.31 37 0.17
103 11164 55.87 52 0.33 11475 65.64 51 0.33
104 — — 43 0.27 — — 44 0.22

—means that the number of iteration is greater than 100,000 and the CPU time is in excess of
500 sec.
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For the same problem, the number of iterations of Method F is depen-
dent significantly on the individual magnitude of K. For KF0.01, the start-
ing penalty parameter β1G1 in Method 1 is too large. Conversely, for
KH10, β1G1 in Method 2 is too small. Again, using Method 3, the number
of iterations is almost independent of the range of K.

6. Conclusions

In this paper, we have proposed a modified alternating direction
method for solving separate monotone variational inequalities. The method
presented extends the original one by allowing the penalty parameter for
the system of constrained equations to be varied in each iteration. We have
suggested strategies for adjusting the penalty parameter and convergence
results have been established. The preliminary numerical tests show that the
proposed method is effective in practice.
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