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Abstract. The alternating directions method (ADM) is an effective method for solving a class of variational
inequalities (VI) when the proximal and penalty parameters in sub-VI problems are properly selected. In this
paper, we propose a new ADM method which needs to solve two strongly monotone sub-VI problems in each
iteration approximately and allows the parameters to vary from iteration to iteration. The convergence of the
proposed ADM method is proved under quite mild assumptions and flexible parameter conditions.
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1. Introduction

A variational inequality problem is to find a vector u∗ ∈ � such that

(u − u∗)T F(u∗) ≥ 0, ∀u ∈ �, (1.1)

where � is a nonempty closed convex subset of Rn , and F is a mapping fromRn into
itself. In this paper, we consider the VI problem with the following structure:

u =
(

x
y

)
, F(u) =

(
f(x)

g(y)

)
, (1.2)

� = {(x, y)|x ∈ X , y ∈ Y, Ax + By = b}, (1.3)

where X and Y are given nonempty closed convex subsets ofRn andRm , respectively,
A ∈ Rl×n and B ∈ Rl×m are given matrices, b ∈ Rl is a given vector, f : X → Rn and
g : Y → Rm are given monotone operators. Problem (1.2)–(1.3) is a special case of the
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general VI problem, it has numerous important applications, especially in economics and
transportation equilibrium problems [1,4,9,11,21–23]. For solving structured problem
(1.2)–(1.3), a number of decomposition methods have been suggested in the literature,
such as [3,8,9,11,14,15,27,28].

By attaching a Lagrange multiplier vector λ∈Rl to the linear constraint Ax+By=b,
one obtains an equivalent form of problem (1.2)–(1.3):

z∗ ∈ Z, (z − z∗)T Q(z∗) ≥ 0, ∀z ∈ Z, (1.4)

where

z =

 x

y
λ


 , Q(z) =


 f(x)− AT λ

g(y)− BT λ

Ax + By − b


 , Z = X × Y ×Rl. (1.5)

In the following, we denote VI problem (1.4)–(1.5) by MVI(Z, Q). For MVI(Z, Q)

problem, Gabay [12] and Gabay and Mercier [13] proposed the following ADM method
(alternating directions method of multipliers). In their method, the new iterate z̃ =
(x̃, ỹ, λ̃) ∈ X × Y ×Rl is generated from a given triplet z = (x, y, λ) ∈ X × Y ×Rl

via the following procedure:

Given (x, y, λ) ∈ Z , find x̃ ∈ X such that

(x′ − x̃)T { f(x̃)− AT [λ− β(Ax̃ + By − b)]} ≥ 0, ∀x′ ∈ X , (1.6)

and then find ỹ ∈ Y such that

(y′ − ỹ)T {g(ỹ)− BT [λ− β(Ax̃ + Bỹ − b)]} ≥ 0, ∀y′ ∈ Y, (1.7)

finally, update λ via

λ̃ = λ− β(Ax̃ + Bỹ − b), (1.8)

where β > 0 is a given constant penalty parameter of the linear constraint.

The ADM method has been studied extensively in the theoretical frameworks of
both Lagrangian functions [10] and maximal monotone operators [8,12]. Most of the
existing ADM methods in the literature require that the sub-VI problems (6)–(7) can be
solved exactly in each iteration. Eckstein and Bertsekas [8] first constructed an ADM
method which allows the inexact computation for sub-VI problems, and then Chen
and Teboulle [3] introduced another inexact one. Since the efficiency of the method is
dependent on the penalty parameter, most recently, He and Yang [19] extended the basic
ADM method (1.6)–(1.8) by allowing the penalty parameter β to vary monotonically
(non-increasingly or non-decreasingly). In [20], Kontogiorgis and Meyer gave another
form of ADM methods which allows the penalty parameter to be a positive matrix and
vary non-increasingly.

Note that the basic ADM method (1.6)–(1.8) has to solve two monotone sub-VI
problems in each iteration. In many cases, solving these problems are quite difficult.
In [3], Chen and Teboulle gave an ADM method which solves the original VI problem
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via solving a series of strongly monotone sub-VI problems. That is, for given triplet
z = (x, y, λ) ∈ X × Y × Rl , they obtained the new (x̃, ỹ) ∈ X × Y via solving the
following two strongly monotone sub-VI problems:

(x′ − x̃)T
{

1

β
(x̃ − x)+ f(x̃)− AT [λ− β(Ax + By− b)]

}
≥ 0, ∀ x′ ∈ X , (1.9)

(y′ − ỹ)T
{

1

β
(ỹ − y)+ g(ỹ)− BT [λ− β(Ax + By − b)]

}
≥ 0, ∀ y′ ∈ Y. (1.10)

Then the same update for λ is adopted

λ̃ = λ− β(Ax̃ + Bỹ − b). (1.11)

It is clear that the original alternating directions method (1.6)–(1.8) adopts the new
information in the iteration whenever possible. The sub-VI problems (1.9) and (1.10)
in the method of Chen and Teboulle [3] are uniformly strongly monotone and easier
to be solved than sub-VI problems (1.6) and (1.7). Combining the advantages of both
methods, a new method, which generates the new triplet z̃ = (x̃, ỹ, λ̃) from z = (x, y, λ)

can be given by

(x′ − x̃)T {r(x̃ − x)+ f(x̃)− AT [λ− β(Ax̃ + By − b)]} ≥ 0, ∀ x′ ∈ X , (1.12)

(y′ − ỹ)T {s(ỹ − y)+ g(ỹ)− BT [λ− β(Ax̃ + Bỹ − b)]} ≥ 0, ∀ y′ ∈ Y, (1.13)

and

λ̃ = λ− β(Ax̃ + Bỹ − b), (1.14)

where β, r, s are given positive constants. The algorithm of [7] is in fact only a special
case of this method, but its extension to (1.12)–(1.14) is straightforward. The method
(1.12)–(1.14) can be viewed as a proximal point algorithm to the alternating directions
method of Gabay [12] and Gabay and Mercier [13] or a decomposition method to the
proximal point method of augmented Lagrange function [24]. Further properties of this
method can be found in [2,25].

Some applications [11,20] of method (1.6)–(1.8) have shown that the solution time
is significantly dependent on the choice of penalty parameter β. Besides, the choice of
proximal parameters r and s could improve the condition of Problem (1.12) and (1.13).
Herefore, to enhance the efficiency of method (1.12)–(1.14), in this paper, we present
a modified one that allows the penalty and proximal parameters to vary from iteration
to iteration. Namely, the constant penalty parameter β and the proximal parameters r
and s are replaced by some sequences of positive definite matrices {Hk}, {Rk} and {Sk},
respectively.

This paper is organized as follows. Some preliminaries of variational inequalities
are provided in Sect. 2. In Sect. 3, we present a new proximal ADM method and analyze
the main convergence properties of the method under certain flexible conditions on
the variable parameters. In Sect. 4, an inexact proximal ADM method is derived from
the new proximal ADM method. The convergence of the new inexact proximal ADM
method is proved. Finally, some concluding remarks are drawn in Sect. 5.
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2. Preliminaries

In this section, we summarize some basic properties and related definitions which will
be used in the following discussions.

First, we denote ‖x‖ = √xT x as the Euclidean-norm and ‖A‖ as the matrix norm
of A. Let � be a nonempty closed convex subset ofRl and let P�(·) denote the projection
mapping fromRl onto �. A basic property of the projection mapping P�(·) is

(v− P�(v))T (u − P�(v)) ≤ 0, ∀v ∈ Rl, ∀u ∈ �. (2.1)

For any α > 0, it is well known [6] that the VI problem (1.1) is equivalent to the
projection equation

u = P�[u − αF(u)].
Let

E[�,αF](u) := u − P�[u − αF(u)]
denote the residual function of the equation, then the VI problem (1.1) is equivalent to
finding a zero point of E[�,F](u). Setting v := u − αF(u) in (2.1) we get

α(E[�,αF](u))T F(u) ≥ ‖E[�,αF](u)‖2, ∀u ∈ �. (2.2)

Definitions. a). F is said to be monotone if

(u − v)T (F(u)− F(v)) ≥ 0, ∀u, v ∈ �.

b). F is strongly monotone if there exists a constant µ > 0 such that

(u − v)T (F(u)− F(v)) ≥ µ‖u − v‖2, ∀u, v ∈ �.

The following Lemma 1 can be viewed as a corollary of Proposition 3.4 in [26].

Lemma 1. Let F be strongly monotone on � with modulus µ > 0 and u∗ be the unique
solution of the strongly monotone VI problem (1.1). Then we have

2α(E[�,αF](u))T F(u)− ‖E[�,αF](u)‖2 ≥ ‖u − u∗‖2, ∀u ∈ � and α ≥ µ−1.

(2.3)

Proof. For any fixed u ∈ � and α > 0, we define

h(u, v, α) := α2‖F(u)‖2 − ‖u − αF(u)− v‖2 = 2α(u − v)T F(u)− ‖u − v‖2

and it follows that

h(u, P�[u − αF(u)], α) = max{h(u, v, α) | v ∈ �}.
Since u∗ ∈ � we have

h(u, P�[u − αF(u)], α) ≥ h(u, u∗, α),

and this yields

2α(E[�,αF](u))T F(u)− ‖E[�,αF](u)‖2 ≥ 2α(u − u∗)T F(u)− ‖u − u∗‖2. (2.4)
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On the other hand, since u∗ is the solution and u ∈ �, we have (u − u∗)T F(u∗) ≥ 0
and consequently

(u − u∗)T F(u) ≥ (u − u∗)T (F(u)− F(u∗)) ≥ µ‖u − u∗‖2. (2.5)

Then the assertion follows from (2.4) and (2.5) directly.
��

For MVI(Z, Q) problem (1.4)–(1.5) considered in this paper, the equivalent task is
to find a zero point of

E[Z,Q](z) :=

 x − PX {x − [ f(x)− AT λ]}

y − PY {y − [g(y)− BT λ]}
Ax + By − b


 . (2.6)

We make the following standard assumptions:

Assumption A. A1. X andY are nonempty and closed convex sets. f(x) is continuous
and monotone with respect toX and g(y) is continuous and monotone with respect
to Y .

A2. The solution set of MVI(Z, Q), denoted by Z∗, is nonempty.

Because f and g are monotone and X and Y are closed convex, the solution set Z∗
of MVI(Z, Q) is closed and convex. For any z ∈ Z , we let

dist(z,Z∗) := min{‖z − z∗‖ | z∗ ∈ Z∗}
denote the Euclidean distance from z to Z∗. It is clear that

dist(z,Z∗) = 0 ⇐⇒ E[Z,Q](z) = 0.

In the literature, ‖E[Z,Q](z)‖ is referred to as the error bound that measures how much
z fails to be in Z∗. In this paper, our analysis is based on the error bound E[Z,Q](·) and
that the functions f and g must be continuous (and hence single-valued). Therefore,
our approach is different from the monotonicity-based analyses like [7,8,20,24,25] that
allow for set-valued monotone f and g, and provide stronger convergence guarantees.

3. A new ADM method and its main properties

Based on the discussion in Sect. 1, we now formally present our new proximal ADM
method.
The new proximal ADM method: Starting with an initial arbitrary triplet (x0, y0, λ0) ∈
Rn × Rm ×Rl , a sequence {(xk, yk, λk)} ⊂ Rn ×Rm × Rl , k ≥ 0, is successively
generated by the following steps:

Step 1. Find xk+1 ∈ X such that

(x′ − xk+1)T fk(xk+1) ≥ 0, ∀x′ ∈ X . (3.1)
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Step 2. Find yk+1 ∈ Y such that

(y′ − yk+1)T gk(yk+1) ≥ 0, ∀y′ ∈ Y. (3.2)

Step 3. Update λk+1 via

λk+1 = λk − Hk(Axk+1 + Byk+1 − b). (3.3)

Here

fk(x) = f(x)− AT [λk − Hk(Ax + Byk − b)] + Rk(x − xk), (3.4)

gk(y) = g(y)− BT [λk − Hk(Axk+1 + By − b)] + Sk(y − yk), (3.5)

and {Hk}, {Rk} and {Sk} are sequences of both lower and upper bounded symmetric
positive definite matrices. We say that a sequence of positive definite matrices {Hk} is
both lower and upper bounded if

inf
k
{ξk | ξk is the smallest eigenvalue of matrix Hk} = ξmin > 0

and
sup

k
{ζk | ζk is the largest eigenvalue of matrix Hk} = ζmax < +∞.

The notation H ′ � (�)H means that H ′−H is positive definite (positive semi-definite).

Remark 1. If Rk = Sk ≡ 0 and Hk ≡ βI , then the new proximal ADM method reduces
to the basic ADM method (1.6)–(1.8). Since Rk � 0 (resp. Sk � 0), the operator
fk(x) (resp. gk(y)) is strongly monotone whenever f(x) (resp. g(y)) is monotone.
This guarantees that the sub-VI problems (3.1) and (3.2) are solvable and have unique
solutions. For such ‘easy’ VI problems, there are a number of solution methods, such
as projection methods [1,17] and Newton-type methods [16,26].

In the remaining of this section, let zk+1 = (xk+1, yk+1, λk+1) denote the triplet
generated by the new ADM method from a given (xk, yk, λk) ∈ Z . We now investigate
the main properties of the exact iterations. For convenience, we denote

u =
(

x
y

)
and Dk =

(
Rk 0

0 Sk

)
.

First, we have

Lemma 2. If Axk+1 + Byk − b = 0, xk+1 = xk and yk+1 = yk, then (xk, yk, λk) is
a solution of MVI(Z, Q).

Proof. From (3.1)–(3.3) and the assumptions of this lemma, it follows that

(x′ − xk+1)T { f(xk+1)− AT λk} ≥ 0, ∀x′ ∈ X ,

(y′ − yk+1)T {g(yk+1)− BT λk} ≥ 0, ∀y′ ∈ Y,

and
(xk+1, yk+1, λk+1) = (xk, yk, λk).

Hence, (xk, yk, λk) satisfies Eqs.(1.4)–(1.5), and is a solution of MVI(Z, Q).
��
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Lemma 2 indicates that the proposed method will terminate if (‖uk+1 − uk‖2 +
‖Axk+1 + Byk − b‖2) = 0. Recall that solving problem MVI(Z, Q) is equivalent to
finding a zero point of E[Z,Q](z). Then, the following lemma implies that in order to
show the convergence of the new proximal ADM method, we only need to verify

lim
k→∞

(
‖uk+1 − uk‖2

Dk
+ ‖Axk+1 + Byk − b‖2

Hk

)
= 0.

Lemma 3. There exists a constant µ > 0 such that for all k ≥ 0,

µ
∥∥E[Z,Q](zk+1)

∥∥2 ≤
(
‖uk+1 − uk‖2

Dk
+ ‖Axk+1 + Byk − b‖2

Hk

)
. (3.6)

Proof. Note that

E[Z,Q](zk+1) =

 xk+1 − PX {xk+1 − [ f(xk+1)− AT λk+1]}

yk+1 − PY {yk+1 − [g(yk+1)− BT λk+1]}
Axk+1 + Byk+1 − b


 . (3.7)

Based on the equivalence of the solutions of the variational inequality and the projection
equation, the xk+1 in (3.1) and yk+1 in (3.2) satisfy

xk+1 = PX [xk+1 − fk(xk+1)]
and

yk+1 = PY [yk+1 − gk(yk+1)],
respectively. Replacing the first xk+1 in (3.7) by PX [xk+1− fk(xk+1)], yk+1 by PY [yk+1−
gk(yk+1)] and using ‖PZ (z)− PZ (z′)‖ ≤ ‖z − z′‖, we get

∥∥E[Z,Q](zk+1)
∥∥ =

∥∥∥∥∥∥
PX [xk+1 − fk(xk+1)] − PX {xk+1 − [ f(xk+1)− AT λk+1]}
PY [yk+1 − gk(yk+1)] − PY {yk+1 − [g(yk+1)− BT λk+1]}

Axk+1 + Byk+1 − b

∥∥∥∥∥∥
≤
∥∥∥∥∥∥
− fk(xk+1)+ f(xk+1)− AT λk+1

−gk(yk+1)+ g(yk+1)− BT λk+1

Axk+1 + Byk+1 − b

∥∥∥∥∥∥ .

Furthermore, using (3.4) and (3.5) and substituting λk = λk+1+Hk(Axk+1+Byk+1−b)

into the above inequality, we get

∥∥E[Z,Q](zk+1)
∥∥≤

∥∥∥∥∥∥
AT Hk B(yk+1 − yk)− Rk(xk+1 − xk)

−Sk(yk+1 − yk)

(Axk+1 + Byk − b)+ B(yk+1 − yk)

∥∥∥∥∥∥
≤ ‖Rk‖ · ‖xk+1 − xk‖ + (‖AT Hk B‖ + ‖Sk‖ + ‖B‖)·‖yk+1 − yk‖
+‖Axk+1 + Byk − b‖

≤ ck ·
(‖xk+1 − xk‖ + ‖yk+1 − yk‖ + ‖Axk+1 + Byk − b‖), (3.8)
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where ck = max(‖Rk‖, ‖AT Hk B‖ + ‖Sk‖ + ‖B‖, 1). Since {Hk}, {Rk} and {Sk} are
upper bounded, it follows from the above inequality that there exists a constant µ > 0
such that

µ
∥∥E[Z,Q](zk+1)

∥∥2 ≤
(
‖uk+1 − uk‖2

Dk
+ ‖Axk+1 + Byk − b‖2

Hk

)
.

��
Theorem 1. Let z∗ = (x∗, y∗, λ∗) ∈ Z∗ be any solution point of MVI(Z, Q). Then

‖uk+1 − u∗‖2
Dk
+ ‖λk+1 − λ∗‖2

H−1
k
+ ‖B(yk+1 − y∗)‖2

Hk

≤ ‖uk − u∗‖2
Dk
+ ‖λk − λ∗‖2

H−1
k
+ ‖B(yk − y∗)‖2

Hk

−(‖uk+1 − uk‖2
Dk
+ ‖Axk+1 + Byk − b‖2

Hk

)
. (3.9)

Theorem 1, which provides the fundamental result in the convergence analysis of
the new ADM method, is the main theorem of this paper. When Hk ≡ H and Dk ≡ D,
it yields from (3.9) that the sequence {‖uk−u∗‖2

D+‖λk−λ∗‖2
H−1 +‖B(yk− y∗)‖2

H } is

strictly monotonically decreasing and limk→∞(‖uk+1−uk‖2
D+‖Axk+1+Byk−b‖2

H)= 0,
and thus the convergence is a direct result of (3.9). For variable penalty and proximal
parameters, from (3.9) we can derive different conditions for sequences {Hk} and {Dk}
that should be obeyed to guarantee the convergence. The following lemma is devoted to
prove this theorem.

Lemma 4. For any z∗ = (x∗, y∗, λ∗) ∈ Z∗, it holds

(uk+1 − u∗)T Dk(u
k+1 − uk)+ (λk+1 − λ∗)T H−1

k (λk+1 − λk)

≤ (Axk+1 − Ax∗)T Hk(Byk+1 − Byk).

Proof. Since z∗ is a solution of MVI(Z, Q) and xk+1 ∈ X , yk+1 ∈ Y , we have

(xk+1 − x∗)T { f(x∗)− AT λ∗} ≥ 0 (3.10)

and

(yk+1 − y∗)T {g(y∗)− BT λ∗} ≥ 0. (3.11)

On the other hand, from (3.1)–(3.2), x∗ ∈ X and y∗ ∈ Y , it follows that

(x∗ − xk+1)T{ f(xk+1)− AT λk+1 + Rk(xk+1 − xk)+ AT Hk(Byk − Byk+1)
} ≥ 0,

(3.12)

and

(y∗ − yk+1)T{g(yk+1)− BT λk+1 + Sk(yk+1 − yk)
} ≥ 0. (3.13)

Adding Eqs. (3.10) and (3.12) and using the monotonicity of f , we have

(xk+1 − x∗)T Rk(xk+1 − xk)+ (Axk+1 − Ax∗)T (λ∗ − λk+1)

≤ (Axk+1 − Ax∗)T Hk(Byk+1 − Byk). (3.14)
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In a similar way, adding Eqs. (3.11) and (3.13) and using the monotonicity of g, we have

(yk+1 − y∗)T Sk(yk+1 − yk)+ (Byk+1 − By∗)T (λ∗ − λk+1) ≤ 0. (3.15)

Adding (3.14) and (3.15) and using Ax∗ + By∗ = b, it follows that

(uk+1 − u∗)T Dk(uk+1 − uk)+ (Axk+1 + Byk+1 − b)T (λ∗ − λk+1)

≤ (Axk+1 − Ax∗)T Hk(Byk+1 − Byk).

Using (Axk+1 + Byk+1 − b) = H−1
k (λk − λk+1), the assertion of this lemma follows

directly.
��

Proof of Theorem 1. Using identity

‖a + b‖2 = ‖a‖2 − ‖b‖2 + 2(a+ b)T b,

we get

‖uk+1 − u∗‖2
Dk
+ ‖λk+1 − λ∗‖2

H−1
k
+ ‖B(yk+1 − y∗)‖2

Hk

= ‖uk − u∗‖2
Dk
+ ‖λk − λ∗‖2

H−1
k
+ ‖B(yk − y∗)‖2

Hk

−
(
‖uk+1 − uk‖2

Dk
+ ‖λk+1 − λk‖2

H−1
k
+ ‖B(yk+1 − yk)‖2

Hk

)
+2(uk+1 − u∗)T Dk(u

k+1 − uk)+ 2(λk+1 − λ∗)T H−1
k (λk+1 − λk)

+2(Byk+1 − By∗)T Hk(Byk+1 − Byk). (3.16)

Now we deal with the crossing terms in (3.16).

2(uk+1 − u∗)T Dk(u
k+1 − uk)+ 2(λk+1 − λ∗)T H−1

k (λk+1 − λk)

+2(Byk+1 − By∗)T Hk(Byk+1 − Byk) (use Lemma 4)

≤ 2(Axk+1 − Ax∗)T Hk(Byk+1 − Byk)

+2(Byk+1 − By∗)T Hk(Byk+1 − Byk) (use Ax∗ + By∗ = b)

= 2(Axk+1 + Byk+1 − b)T Hk(Byk+1 − Byk) (use (3.3))

= −2(λk+1 − λk)T (Byk+1 − Byk). (3.17)

It follows from (3.16) and (3.17) that

‖uk+1 − u∗‖2
Dk
+ ‖λk+1 − λ∗‖2

H−1
k
+ ‖B(yk+1 − y∗)‖2

Hk

≤ ‖uk − u∗‖2
Dk
+ ‖λk − λ∗‖2

H−1
k
+ ‖B(yk − y∗)‖2

Hk

−
(
‖uk+1 − uk‖2

Dk
+ ‖λk+1 − λk + Hk B(yk+1 − yk)‖2

H−1
k

)
. (3.18)

Note that (see (3.3))

λk+1 − λk + Hk B(yk+1 − yk) = Hk(Axk+1 + Byk − b). (3.19)

Substituting (3.19) into (3.18), we get the assertion of this theorem.
��
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Theorem 1 may lead to many ways to change the penalty and proximal parameters
from iteration to iteration. In the following, we propose one flexible condition which is
not monotone on {Hk} and {Dk}.
Condition C. Let {ηk}∞0 be a non-negative sequence with

∑∞
k=0 ηk < +∞. The se-

quences {Hk} and {Dk} satisfy the following conditions.

i) H0 � 0, 1
1+ηk

Hk � Hk+1 � (1+ ηk)Hk, for all k ≥ 0,
ii) D � 0, D � Dk+1 � (1+ ηk)Dk, for all k ≥ 0.

Note that the assumption
∑∞

k=1 ηk < +∞ yields
∏∞

k=1(1+ ηk) < +∞. We denote

CS :=
∞∑

k=1

ηk and CP :=
∞∏

k=1

(1+ ηk)

and consequently have

C−1
P H0 � Hk � CP H0, ∀ k ≥ 0

and
D � Dk � CP D0, ∀ k ≥ 0.

In other words, the two positive sequences are lower and upper bounded.

Now, we discuss the property of our new ADM method under Condition C.

Theorem 2. Let {Hk} and {Dk} be the sequences satisfying Condition C and let zk+1 =
(xk+1, yk+1, λk+1) be the triplet generated by the exact iteration from a given zk =
(xk, yk, λk). Denote

Gk :=

Dk 0 0

0 H−1
k 0

0 0 Hk


 and w :=


 u

λ

By


 . (3.20)

Then we have

‖wk+1 −w∗‖2
Gk+1

≤ (1+ ηk)‖wk −w∗‖2
Gk

(3.21)

− (‖uk+1 − uk‖2
Dk
+ ‖Axk+1 + Byk − b‖2

Hk

)
.

Proof. Condition C implies that

0 ≺ Gk+1 � (1+ ηk)Gk

and thus

‖wk+1 −w∗‖2
Gk+1

≤ (1+ ηk)‖wk+1 −w∗‖2
Gk

. (3.22)

On the other hand, using the notation in (3.20), the result in Theorem 1 (see (3.9)) can
be written as

‖wk+1 −w∗‖2
Gk
≤ ‖wk −w∗‖2

Gk
− (‖uk+1 − uk‖2

Dk
+ ‖Axk+1 + Byk − b‖2

Hk

)
.

(3.23)

The assertion of this theorem follows from (3.22) and (3.23) immediately.
��
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The result in Theorem 2 is obtained under the assumption that sub-VI problems
(3.1) and (3.2) are solved exactly (the method marked as an exact alternating directions
method). However, we are interested in the convergence when problems (3.1) and
(3.2) are solved inexactly. For the desirable convergence limk→∞ dist(zk,Z∗) = 0,
we postpone the discussion until Theorem 4 which is true for both exact and inexact
methods in the next section.

4. An inexact method and its convergence

In many cases, solving sub-VI problems (3.1) and (3.2) exactly is either impossible
or expensive. On the other hand, there seems to be little justification on the effort of
obtaining the accurate solutions of the sub-VI problems in each iteration. In fact, many
inexact methods and approximate rules have been proposed in proximal point algorithms
and other fields [3,8,18]. Inspired by these results, we extend our proximal ADM method
to an inexact one, which solves the sub-VI problems approximately. Namely, instead
of Step 1 and Step 2 in the exact method, we adopt the following inexact Step 1’ and
Step 2’, respectively.

The approximation rule in the new proximal ADM method:

Step 1’. Find xk+1 ∈ X such that

‖xk+1 − x̃k+1‖ ≤ νk. (4.1)

Step 2’. Find yk+1 ∈ Y such that

‖yk+1 − ỹk+1‖ ≤ νk, (4.2)

where {νk} is a non-negative sequence satisfying
∑∞

k=1 νk < +∞, and x̃k+1 and ỹk+1

are the exact solutions of (3.1) and (3.2), respectively.

Remark 2. The requirements of (4.1) and (4.2) are achievable. These can be justified
as follows. Since fk(x) is strongly monotone, say with modulus rk > 0, according to
Lemma 1, we have

‖xk+1 − x̃k+1‖2 ≤ 2α
(
E[X ,α fk](xk+1)

)T
fk(xk+1)− ∥∥E[X ,α fk](xk+1)

∥∥2
, ∀ α ≥ r−1

k

where
E[X ,α fk](x) = x − PX [x − α fk(x)].

Recall that

E[X ,α fk](x̃k+1) = 0, α
(
E[X ,α fk](x̃k+1)

)T
fk(x̃k+1)− ∥∥E[X ,α fk](x̃k+1)

∥∥2 = 0

and (see 2.2))

2α
(
E[X ,α fk](xk+1)

)T
fk(xk+1)− ∥∥E[X ,α fk](xk+1)

∥∥2 ≥ ∥∥E[X ,α fk](xk+1)
∥∥2

.
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We can take an α ≥ r−1
k and find an xk+1 such that

2α
(
E[X ,α fk](xk+1)

)T
fk(xk+1)− ∥∥E[X ,α fk](xk+1)

∥∥2 ≤ ν2
k . (4.3)

This guarantees that ‖xk+1− x̃k+1‖ ≤ νk . Note that there is no x̃k+1 in (4.3). Inequality
(4.3) provides a practical and achievable condition of satisfying (4.1). Following the
same discussion, a similar condition of satisfying (4.2) can be established.

Since {Hk} and {Dk} are bounded and λk+1 − λ̃k+1 = Hk A(xk+1 − x̃k+1) +
Hk B(yk+1 − ỹk+1), according to the approximation rule in (4.1) and (4.2), there exists
a constant c > 0 such that

‖wk+1 − w̃k+1‖Gk+1 ≤ cνk. (4.4)

Theorem 3. Let {zk} = {(xk, yk, λk)} be the sequence generated from the inexact ADM
method and z̃k+1 = (x̃k+1, ỹk+1, λ̃k+1) be the triplet generated by the related exact
iteration from zk = (xk, yk, λk). Then we have

lim
k→∞

(
‖ũk+1 − uk‖2

Dk
+ ‖Ax̃k+1 + Byk − b‖2

Hk

)
= 0. (4.5)

Proof. Since {νk} is summable, so is {ν2
k }. Denote

E1 :=
∞∑

k=0

νk and E2 :=
∞∑

k=0

ν2
k

and recall

CS :=
∞∑

k=1

ηk and CP :=
∞∏

k=1

(1+ ηk).

According to Theorem 2 (in fact, replacing wk+1 in (3.21) by w̃k+1), we have

‖w̃k+1 −w∗‖2
Gk+1

≤ (1+ ηk)‖wk −w∗‖2
Gk

(4.6)

−
(
‖ũk+1 − uk‖2

Dk
+ ‖Ax̃k+1 + Byk − b‖2

Hk

)
.

It follows from (4.4) that

‖wk+1 −w∗‖Gk+1 ≤ ‖w̃k+1 −w∗‖Gk+1 + ‖wk+1 − w̃k+1‖Gk+1

≤ ‖w̃k+1 −w∗‖Gk+1 + cνk. (4.7)

From (4.6) and (4.7) we get

‖wk+1 −w∗‖Gk+1 ≤ (1+ ηk)
1
2 ‖wk −w∗‖Gk + cνk

and consequently for all k,

‖wk+1 −w∗‖Gk+1 ≤ (1+ ηk)
1
2
(
(1+ ηk−1)

1
2 ‖wk−1 −w∗‖Gk−1 + cνk−1

)+ cνk

≤ (�k
i=0(1+ ηi)

) 1
2 · ‖w0 −w∗‖G0 +

(
�k

i=1(1+ ηi)
) 1

2 cν0

+ · · · + (1+ ηk)
1
2 cνk−1 + cνk

≤ C1/2
P · (‖w0 −w∗‖G0 + cE1

) := Cw. (4.8)
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Therefore, the sequence is bounded. Furthermore

‖wk+1 − w∗‖2
Gk+1

= ‖w̃k+1 −w∗ + (wk+1 − w̃k+1)‖2
Gk+1

(Cauchy-Schwarz)

≤ ‖w̃k+1 −w∗‖2
Gk+1

+ 2‖w̃k+1 −w∗‖Gk+1 ·‖wk+1 − w̃k+1‖Gk+1

+‖wk+1 − w̃k+1‖2
Gk+1

(use (4.6) and (4.4))

≤ (1+ ηk)‖wk −w∗‖2
Gk
+ 2(1+ ηk)

1
2 ‖wk − w∗‖Gk · cνk + c2ν2

k

−(‖ũk+1 − uk‖2
Dk
+ ‖Ax̃k+1 + Byk − b‖2

Hk

)
(use (4.8))

≤ ‖wk −w∗‖2
Gk
+ C2

wηk + 2CPCwcνk + c2ν2
k

−(‖ũk+1 − uk‖2
Dk
+ ‖Ax̃k+1 + Byk − b‖2

Hk

)
.

It follows that for all k,

‖wk+1 −w∗‖2
Gk+1

≤ ‖w0 −w∗‖2
G0
+ C2

wCS + 2CPCwcE1 + c2 E2

−�k
i=0

(‖ũi+1 − ui‖2
Di
+ ‖Ax̃i+1 + Byi − b‖2

Hi

)
.

Let k →∞, we have

lim
k→∞

(‖ũk+1 − uk‖2
Dk
+ ‖Ax̃k+1 + Byk − b‖2

Hk

) = 0.

��
Theorem 4. Let {zk} be the sequence generated from the inexact ADM method. Then
the method is convergent in the sense

lim
k→∞ dist(zk,Z∗) = 0.

Proof. Let z̃k+1 = (x̃k+1, ỹk+1, λ̃k+1) be the triplet generated from the related exact
iteration with a given zk = (xk, yk, λk). It follows from Theorem 3 and Lemma 3 that
we have

lim
k→∞

∥∥E[Z,Q](z̃k)
∥∥2 = 0.

From (4.8) we know that the sequence {wk} is bounded and so are {zk} and {z̃k}. Then
there exists a bounded closed set, say S(z0), such that {z̃k} ∈ S(z0). Since

lim
k→∞‖zk − z̃k‖ = 0,

limk→∞ dist(z̃k,Z∗) = 0 is an equivalent statement of this theorem. If we have

lim sup
k→∞

dist(z̃k,Z∗) = δ > 0,

then
{z̃k} ⊂ S = S(z0) ∩ {z | dist(z,Z∗) ≥ δ/2}.
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Since S ∩ Z∗ = ∅, then E[Z,Q](z) #= 0 for all z ∈ S. Because S is compact and
E[Z,Q](z) is continuous on S, we have

min
z∈S

{‖E[Z,Q](z)‖2} = ε > 0. (4.9)

This contradicts the fact

{z̃k} ⊂ S and lim
k→∞

∥∥E[Z,Q](z̃k)
∥∥2 = 0.

Therefore the proof is complete.
��

5. Concluding remarks

The proposed inexact ADM method in this paper extends the original one [7] by allowing
the penalty and proximal parameters to vary from iteration to iteration. In addition, it
enables us to take the flexible matrix sequences {Rk}, {Sk} and {Hk} for r, s and β,
respectively. However, how to choose and/or adjust such matrices is still an interesting
research topic. From our quantitative convergence analysis in this paper, the following
principles should be observed in adjusting these matrices.

The proximal term. The objective of introducing the proximal terms, Rk(x − xk) in
(3.4) and Sk(x − xk) in (3.5), is to improve the condition of sub-problems (3.1) and
(3.2), respectively. It should be noted that the trade-off between the cost per iteration
and the total number of iterations should be always balanced. In fact, large Rk � 0 (resp.
Sk � 0) will lead to an easy solution for sub-problem (3.1) (resp. sub-problem (3.2)),
but the number of outer-iterations will be increased. Therefore, for sub-problems which
are not extremely ill-posed, the proximal parameters should be small.

The penalty term. Recall that solving MVI(Z, Q) is equivalent to finding a zero point
of E[Z,Q](z) and

E[Z,Q](z) =

 ex(z)

ey(z)
eλ(z)


 =


 x − PX {x − [ f(x)− AT λ]}

y − PY{y − [g(y)− BT λ]}
Ax + By − b


 .

Notice that (see the first inequality in (3.8))

∥∥E[Z,Q](zk+1)
∥∥ =

∥∥∥∥∥∥
ex(zk+1)

ey(zk+1)

eλ(zk+1)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥

AT Hk B(yk+1 − yk)− Rk(xk+1 − xk)

−Sk(yk+1 − yk)

Axk+1 + Byk+1 − b

∥∥∥∥∥∥ , (5.1)

therefore for small Sk � 0,∥∥E[Z,Q](zk+1)
∥∥2 ≈ ‖ex(z

k+1)‖2 + ‖eλ(z
k+1)‖2.

For the sake of balance, we suggest to adjust the penalty parameter matrix Hk � 0 so
that ‖ex(z)‖ ≈ ‖eλ(z)‖. Based on (5.1), it seems that the following consideration is
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reasonable. For an iterate z = (x, y, λ) ∈ Z , if ‖ex(z)‖ % ‖eλ(z)‖, we should increase
H in the next iteration, conversely, we should decrease H when ‖ex(z)‖ & ‖eλ(z)‖.
For example, we can take Hk = βk I and adjust βk according to the following formulas:

βk+1 =



(1+ ηk)βk if ‖ex(zk)‖ < 1
4‖eλ(zk)‖,

βk/(1+ ηk) if ‖ex(zk)‖ > 4‖eλ(zk)‖,
βk otherwise,

(5.2)

where

ηk = min
{

1,
1

(max{1, k − l})2

}
=
{

1, 1, . . . , 1,
1

4
,

1

9
, . . .

}
and

l = dimension of λ.

Our preliminary numerical experiments indicate that the adjustment for βk > 0 (resp.
Hk � 0) is necessary. The method with a fixed penalty parameter β > 0 (resp. H � 0)
converges extremely slowly when the parameter is either too large or too small, even if
for some toy examples. The adjustment strategy (5.2) for the penalty parameter always
leads to some improvement.

Many optimization problems in real application can be converted into a MVI(Z, Q)

problem with special structures. To develop the parameter adjusting rules in the proposed
method for structured MVI(Z, Q) is one of our on-going research topics.
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