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Abstract. In this paper, we focus on the application of the Peaceman—Rachford splitting
method (PRSM) to a convex minimization model with linear constraints and a separable objective
function. Compared to the Douglas—Rachford splitting method (DRSM), another splitting method
from which the alternating direction method of multipliers originates, PRSM requires more restrictive
assumptions to ensure its convergence, while it is always faster whenever it is convergent. We first
illustrate that the reason for this difference is that the iterative sequence generated by DRSM is
strictly contractive, while that generated by PRSM is only contractive with respect to the solution
set of the model. With only the convexity assumption on the objective function of the model under
consideration, the convergence of PRSM is not guaranteed. But for this case, we show that the first
t iterations of PRSM still enable us to find an approximate solution with an accuracy of O(1/t).
A worst-case O(1/t) convergence rate of PRSM in the ergodic sense is thus established under mild
assumptions. After that, we suggest attaching an underdetermined relaxation factor with PRSM
to guarantee the strict contraction of its iterative sequence and thus propose a strictly contractive
PRSM. A worst-case O(1/t) convergence rate of this strictly contractive PRSM in a nonergodic
sense is established. We show the numerical efficiency of the strictly contractive PRSM by some
applications in statistical learning and image processing.
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1. Introduction. We consider the following convex minimization model with
linear constraints and a separable objective function:

(1.1) min{6,(z) + 02(y) | Ar+ By =b, x € X,y € V},

where A € RM>*™ B e RMm*"2 p e R™ X C R and Y C R™ are closed convex
sets, and 61 : X — R and 0 : Y — R are convex functions. Note that both #; and
02 could be nonsmooth functions. Throughout, the solution set of (1.1) (denoted by
S*) is assumed to be nonempty.

When A=1,,, B=—1,,b=0, X =R and Y = %™, the model (1.1) reduces
to

(1.2) min{0, (z) + 02(z) | = € R™},
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where 61 and 6 can be explained, respectively, as data-fidelity and regularization
terms for some ill-posed inverse problems arising widely in statistical learning and
image processing areas. Because of the separable structure in its objective function,
the majority of efficient solvers for (1.1) in the literature belong to the category of
the splitting method, which is effective for taking advantage of the properties of the
functions #; and 0, individually in the algorithmic design. The resulting subproblems
are usually easy enough to have closed-form solutions or can be solved easily up
to high precisions; therefore, the implementation of such an algorithm is extremely
easy and its convergence is fast. A benchmark is the alternating direction method of
multipliers (ADMM) proposed in [24] (see also [9, 21]), which has received tremendous
attention from a number of areas recently (see, e.g., [6, 17, 22] for review papers).
As analyzed in [20], ADMM is just an application of the Douglas-Rachford splitting
method (DRSM) in [15, 39] to the dual problem of (1.1), and its iterative scheme
reads as

(1.3)
gh+l = argmin{6;(z) — (\*)T(Az + By* — b) + 2| Az + By* —b||? | 2 € &},
y*+! = argmin {f(y) — (\*)T (A2t + By — b) + 5|| 42" + By — b2 |y eV},
/\chrl _ /\k —ﬂ(A{EkJrl + B k+1

A

Yy - b)7

where A € R™ is the Lagrange multiplier associated with the linear constraints in
(1.1) and S > 0 is a penalty parameter.

In this paper, we focus on the application of the Peaceman—Rachford splitting
method (PRSM) in [39, 46] to (1.1). As elaborated on in [20], applying PRSM to the
dual of (1.1), we obtain the iterative scheme of PRSM for (1.1),

(1.4)
x’”ll = argmin{ 6 (z) — (\*)7 (Az + By* — b) + 5|| Az + By" — b|]? |z e X},
Ntz = \F — ﬁ(Axk'H —|—Byk _ b),
y** = argmin {0a(y) — (\**2)7 (Az"*! + By — b) + 2| Az + By — b | y € V},
AL \k+E B(Az* 1 4 Byktl —p),

where A € R and S have the same meaning as (1.3). As analyzed in [20], the PRSM
scheme (1.4) differs from ADMM “only through the addition of the intermediate
update of the multipliers (i.e., )\’”%); it thus offers the same set of advantages.” The
PRSM scheme (1.4), however, according to [20] again (see also [23]), “is less ‘robust’
in that it converges under more restrictive assumptions than ADMM.” Also, it was
remarked in [20] that the PRSM scheme (1.4) with optimal parameters converges
on the linear rate if Lipschitz continuity and coercivity of 965 (where 65 denotes
the conjugate function of 65) are assumed. We refer the reader to [3, 25] for some
numerical verification of the efficiency of PRSM.

We first show that the difference between DRSM and PRSM in convergence can
be illustrated by the contraction property of their iterative sequences.! More specif-
ically, the iterative sequence generated by DRSM is strictly contractive with respect
to the solution set of (1.1), as proved in [29], while this does not hold for the iter-
ative sequence generated by PRSM (see (3.20)). This difference is also the reason
a worst-case O(1/t) convergence rate of ADMM for (1.1) in a nonergodic sense can
be established in [32], while we can only establish the same convergence rate in the

IFort the definition of a contractive sequence we refer the reader to [5].
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ergodic sense for the PRSM scheme (1.4);? see Theorem 4.1. Also inspired by the
failure of strict contraction of PRSM’s iterative sequence, we find that when an un-
derdetermined relaxation factor o € (0,1) is attached to the penalty parameter 8 in
the steps of Lagrange multiplier updating in (1.4), the resulting sequence becomes
strictly contractive with respect to the solution set of (1.1). This strict contraction
property makes it possible to establish a worst-case O(1/t) convergence rate in a non-
ergodic sense for the PRSM (1.4) with an underdetermined relaxation factor, which
will be named as a strictly contractive PRSM from now on. Let us specify the iterative
scheme of the strictly contractive PRSM for (1.1):
(1.5)
2"+ = argmin{ 0y (v) — (\))T (Az + By* — b) + £ Az + By* — b2 |z e X},
Mot = AP — qB(Az* ! 4 Byk —b),
Ykt = argmin{ﬁg(y) — ()\kJr%)T(Axk*l + By —b) + gHAgck“ + By — b||? ‘ y € y},
AL = AR5 f(AahH! + Byt —b),

where o € (0,1). Note that we follow the standard terminology in numerical linear
algebra and call @ € (0,1) an underdetermined relaxation factor; see also [18, 26].
As we shall show, the consideration of an additional relaxation factor in the PRSM
scheme (1.5) ensures the sequence generated by (1.5) to be strictly contractive with
respect to the solution set of (1.1). Thus we can establish some worst-case convergence
rates for (1.5) without any further assumption on the model (1.1). Numerically, we
can simply choose « close to 1.

The rest of this paper is organized as follows. In section 2, we summarize some
useful preliminary results and prove some simple assertions for further analysis. Then,
we prove some properties for the sequence generated by the strictly contractive PRSM
(1.5) in section 3. In section 4, we establish a worst-case O(1/t) convergence rate
in the ergodic sense for the PRSM scheme (1.4); and in section 5, we establish a
worst-case O(1/t) convergence rate in a nonergodic sense for the strictly contractive
PRSM scheme (1.5). Then, we show the numerical efficiency of the strictly contractive
PRSM in section 6 by some applications to statistical learning and image processing.
Some comparisons with existing efficient methods are also reported. Finally, some
conclusions are drawn in section 7.

2. Preliminaries. In this section, we summarize some useful preliminaries known
in the literature and prove some simple conclusions for further analysis.

2.1. Variational reformulation of (1.1). First, as in the work [31, 32] for
analyzing the convergence rate of ADMM, we need a variational inequality (VI) re-
formulation of the model (1.1) and a characterization of its solution set. More specif-
ically, solving (1.1) is equivalent to finding w* = (z*,y*, \*) € Q := X x Y x R™ such
that

(2.1a) VI(Q, F,0) : O(u) — 0(u*) + (w — w*)TF(w*) >0 YweQ,

2We follow [42, 43] and many others to measure the worst-case convergence rate in terms of the
iteration complexity. That is, a worst-case O(1/t) convergence rate means the accuracy of a solution
under certain criteria is of the order O(1/t) after ¢ iterations of an iterative scheme; or, equivalently,
it requires at most O(1/¢) iterations to achieve an approximate solution with an accuracy of e.
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where

(2.1b)
. x —AT)

u= ( > ,w= |y |, Flw)= —-BT ) , and O(u) = 61(z) + 02(y).
Y A Az + By —b

Since the mapping F(w) defined in (2.1b) is affine with a skew-symmetric matrix, it
is monotone. We denote by Q* the solution set of VI(2, F, ), and it is not nonempty
under our nonempty assumption onto S*.

According to Theorem 2.3.5 in [19], a very useful characterization of Q* can be
summarized in the following theorem. Its proof can be found in [19, 31].

THEOREM 2.1. The solution set of VI(Q, F,0) is closed and convez, and it can
be characterized as

(2.2) O = () {@eQ:0(u)—0(@) + (w— )" F(w) > 0}.

weN

Theorem 2.1 thus implies that @ € € is an approximate solution of VI(£2, F, 0)
with an accuracy of O(1/t) if it satisfies

(2.3) itel%{ﬁ(ﬁ) —0(u) + (0 —w)"F(w)} <e,

with € = O(1/t) and D C Q a compact set.> In fact, this characterization makes
it possible to analyze the convergence rate of ADMM and other splitting methods
via the VI approach rather than the conventional approach based on the functional
values in the literature. In the following, we shall show that either sequence (1.4) or
sequence (1.5) enables us to find an approximate solution of (1.1) in the sense of (2.3)
after t iterations.

2.2. Some notation. As mentioned in [6] for ADMM, the variable = is an
intermediate variable during the PRSM iteration since it essentially requires only
(y*,A\*) in (1.4) or (1.5) to generate the (k + 1)th iterate. For this reason, we define
the notation v* = (y*, \¥), V =Y x R™,

it suffices to analyze the convergence rate of the sequence {v*} to the set V* in order
to study the convergence rate of the sequence {w*} generated by (1.4) or (1.5). Note
that V* is also closed and convex.

Then, we define some matrices in order to present our analysis in a compact way.
Let

B I, 0
(24) M = ( —afB  2al,, >
and
0 0
(2.5) Qo= | BBTB —aBT
—B %Im

3As in [44], the compact set D can be chosen as Dy (@) = {w € W | |lw — @[ < 1}.
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In (2.5), “0” is a matrix with all zero entries in appropriate dimensionality. We further
define

BTB —aBT
(2.6) Q= ( s ;Im )

as the submatrix of Qg excluding all the first zero rows. The matrices @y and @ are
associated with the analysis for the sequences {w*} and {v"*}, respectively. Last, for
a € (0,1] we define a symmetric matrix

1 2 —-a)BBTB BT

Below we prove some assertions regarding the matrices just defined. These asser-
tions will be used in our theoretical analysis about the convergence rate of (1.4) and
(1.5); their role is to make our proof presentable in compact notation.

LEMMA 2.2. The matriz H defined in (2.7) is positive definite (if B is a full
column rank matriz) for « € (0,1) and positive semidefinite for o = 1.

Proof. We have

1 \/BBT 0 (2 - a)Im —In \/BB 0
=3 (0 ) ) OV )

[e3

(557 %)

is positive definite if o € (0,1) and positive semidefinite if & = 1. The assertion of
this lemma is thus proved. 0

LEMMA 2.3. The matrices M, Q, and H defined, respectively, in (2.4), (2.6),
and (2.7) have the following relationships:

Note that the matrix

(2.8) HM =Q
and

T T (1-a) 1
(2.9) Q" +Q—M"HM » mM HM.

Proof. Using the definitions of the matrices M, @, and H, by a simple manipu-
lation, we obtain

HMZ}((Z—@)BBTB —BT>< In, 0 )

2 —-B a51m —afB  2al,
_1(28B"B —2aBT \ _
=3\ B 21, )7

The first assertion is proved. Consequently, we get

MTHM _ MTQ _ ( I’I’L2 —aﬂBT > < ﬁBTB —O[BT >

0 2al,, -B %Im
([ 1+a)BB"™B —2aBT
B —2aB %‘"Im ’
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Using (2.6) and the above equation, we have

(210) @+ -atmi=a-a (P20 )
E m
Note that

BB —BT . ([ (1+a)BB™B —2BT
(2.11) 2(1—|—O¢) ( _B %Im —M"HM = _9B 4+52a1m .

Because

14+a) -2
( -2 44 2a z0 Vaz0,

the right-hand side of (2.11) is positive semidefinite. Thus, it follows that

< sBTB —BT > . 1

—— MTHM.

(2.12)

Substituting (2.12) into (2.10), we obtain (2.9), and the lemma is proved. O

Remark 2.1. When a = 1, the matrices H defined in (2.7) and QT +Q - MTHM
are both positive semidefinite. However, in the following analysis we still use ||v— || g
and [[v — 9||(@r4+q—mTHM) to denote, respectively,

v —dllg = (v — ) H(v— f}))l/Q

and
- - S\ 1/2
lo=5ll@rsq-mrmm = (0 =97 (QT +Q - MTHM)(v - )"/
for v, © € Y x R™. This slight abuse of notation will simplify the notation in our
analysis greatly.

3. Contraction analysis. In this section, we analyze the contraction property
for the sequence {v*} generated by the PRSM scheme (1.4) or the strictly contractive
PRSM scheme (1.5) with respect to the set V*. The convergence rate analysis for
(1.4) and (1.5) to be presented is based on this analysis of contraction property. Since
(1.4) can be included by the strictly contractive PRSM scheme (1.5) if we extend the
value of & = 1 and if the algebra of convergence analysis for these two schemes are
of the same framework, below we only present the contraction analysis for (1.5); the
analysis for (1.4) is readily obtained by taking e = 1 in our analysis.

First, to further simplify the notation in our analysis, we need to define an aux-
iliary sequence {@w"*} as

jk 13k+1
(3.1) "= g | = yk+l :
AE Ao — B(Az*+L + Byk —b)

where (zF+1, y**+1) is generated by (1.4) or (1.5). Note that with the notation of @w",
we immediately have

(3.2) okt = gk Yt =gk, and ARt =\ a(AF — XF),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/28/14 to 158.182.168.57. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

A STRICTLY CONTRACTIVE PRSM FOR CONVEX PROGRAMMING 1017
The strictly contractive PRSM (1.5) can be written as

i* = argmin {61 (z) — (\*)T Az + 8)|Az + By* —b|)? |ze X},
3.3 -
(3:3) §" = arg min {Hg(y)— A — a(\F = AM)]" By + 5| A" + By — b||? |y e y}.

Then, based on (1.5) and (3.2), we immediately get

AL = \kF3 _ 0 B(AFF + Bj* —b)
— N —a(\F = 3F) — a[B(AF* + By* —b) — BB(yF — )]
=\ —a(AF = 3k — a[(AF = XF) — BB(yF — §¥)]
(3.4) =¥ — [2a(\* = NF) — aBB(y* — §M)].

k+1

Furthermore, together with y = §*, we have the relationship

YN (VN I 0 vt =g
AL T \R —aBB  2al,, Mo\ )

which can be rewritten in a compact form by using the notation of v* and o*:
(3.5) P = ok — M(F — o),

where M is as defined in (2.4).

Now, we start to prove some properties for the sequence {@w*} defined in (3.1).
Recall that our primary purpose is to analyze the convergence rate for the sequences
(1.4) and (1.5) based on the solution characterization (2.2), and the accuracy of
an approximate solution w € €2 is measured by an upper bound of the quantity
of (@) — O(u) + (0 — w)T F(w) for all w € Q (see (2.3)). Hence, we are interested
in estimating how accurate the point @w* defined in (3.1) is to a solution point of
VI(Q, F, 0). The main result is proved in Theorem 3.4. But before that, we first show
some lemmas. The first lemma presents an upper bound of 6(@) —6(u) + (@ —w)T F(w)
for all w € Q in terms of a quadratic term involving the matrix Q.

LEMMA 3.1. For given vF € Y x R™, let wFt! be generated by the strictly
contractive PRSM scheme (1.5), and let @* be as defined in (3.1). Then, we have
Wk € Q and

(3.6) O(u) — 0(i*) + (w — ") TF(@*) > (v —F)TQ* — %) VweQ,

where the matriz Q) is as defined in (2.6).
Proof. Since 2**! = #* by deriving the first-order optimality condition of the
z-minimization problem in (3.3), we have

(3.7)  O1(2) — 01(&%) + (x — ) T{AT[B(AZ* + By* —b) — N\F]} >0 VzeX.
According to the definition (3.1), we have

(3.8) M= \F — B(AF* + By* —b).

Using (3.8), the inequality (3.7) can be written as

(3.9) 01(z) — 01(i%) + (x — ) T{-ATIN} >0 Vzex.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Similarly, by deriving the first-order optimality condition of the y-minimization prob-
lem in (3.3), we get

(3.10) O2(y)—02(5")+(y—5")" BT {B(AZ" +Bg*~b) = [\ ~a(\* =)} = 0¥y € V.
Again, using (3.8), we have

B(AZF + Bj* —b) — [N\F — a(AF — \F)]
= —(A" = \¥) + BB(" — yF) — [\ — a(AF — 3F)]
= N g ﬁB(gk — yk) — 04(5\]C — /\k).

Consequently, it follows from (3.10) that
(3.11) ) )
02(y) = 02(5") + (y — ) {=B"M + BBTB(G* —¢*) —aBT(\ =N )} > 0vy e Y.

In addition, based on (3.1) we have

(3.12) (AzZ* + Bj* — b) — B(§* — y*) + %(X’f -\ =o.

Combining (3.9), (3.11), and (3.12), we get w* = (Z*, 7% \¥) € Q; and for any
w = (x,y,\) € Q, it holds that

e—ik \ " —AT )k 0
0(u)—0(a*)+ ( y— g~ > {( — BTk > + ( BBTB(j" — y*) — aBT (\F = \F) )} >0.
A — Ak Ak + Bgk —b —B(i" =) + 5(\F = AF)
The assertion (3.6) is only a compact form of the above inequality by using the
notation of @ in (2.6), w and F in (2.1b), and v. The proof is complete. d

Based on the optimality condition (2.1) and Lemma 3.1, we can prove the follow-
ing lemma, which makes it possible to measure the accuracy of @* to a solution point
in W* by the quantity ||v* —v¥¥1||2,. This is also an important assertion to establish
a nonergodic convergence rate for the proposed strictly contractive PRSM in section
5.

LEMMA 3.2. Let {w*} be generated by the strictly contractive PRSM scheme
(1.5), and let {w*} be as defined in (3.1); let M, Q, and H be as defined in (2.4), (2.6),
and (2.7), respectively. Then, @ is a solution of VI(Q, F,0) if ||v* — v*+1||%, = 0.

Proof. By using Q = HM and M (vF — o%) = vF — v*+1 (see (2.8) and (3.5)), it
follows that

(3.13) (v —TQMWF — %) = (v — *)TH(WF — o).
Substituting this into (3.6), we get
(3.14)  B(u) — 8(@") + (w — )T F(@0F) > (v — T H@P — %) Vw e Q.

Note that @* € Q. Since H is positive semidefinite, in the case [[v¥ —v¥T1]|2, = 0, we
have H(v* — v*+1) =0, and thus

" € Q, Ou) - 0@@") + (w— ") F@*) >0 YweQ.

According to (2.1), @* is a solution of VI(Q, F,6). 0O
In the next lemma, we aim at further bounding the term (v — o%)TQ(v* — o)
found in Lemma 3.1 by the difference of two quadratic terms involving two consecutive

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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iterates of the sequence {v*} and a quadratic term involving v* and the auxiliary
iterate o*. This refined bound is convenient for the manipulation over the whole
sequence {v*} recursively and thus for establishing the convergence rate of {v*} in
either the ergodic or a nonergodic sense.

LeEMMA 3.3. Let {wk} be generated by the strictly contractive PRSM scheme
5), and let {W"} be as defined in (3.1); let M, Q, and H be as defined in (2.4),

1.5
2.6), and (2.7), respectively. Then we have
3.1

5)

(
(
(
(0 - 7)7TQUE ~ %) > S, - W 1z v e v,

k12
- +
”v v ”H) 4(1_|_ )

(||v—v

[\J|F—‘

Proof. For the vectors a, b, ¢, d in the same space and a matrix H with appropriate
dimensionality, we have the identity

1 1
(a=0)TH(c—d) = S{la—dlf = lla—cllfr} + S {lle = bllF — Id = blI73-

In this identity, we take

b ~k k k+1

a=w, =0%, c¢=2", and d=w

and substitute it into the right-hand side of (3.13). The resulting equation is
(3.16)

. ey 1 1 i .
(=37 Q" =5") = 5 (v ="M F = llv =" 17) + 5 (" = "I — 0" = 2" 7).

Now, we deal with the last term of the right-hand side of (3.16). By using (3.5) and
(2.8), we get
[ A [
= [l = oI — (" = o%) = (" =M
ot — 0" - ) - MEF -5
= 20 =M THM W — %) — (W% = *)YTMTHM (v* — o)

2.8) (0F — T (QT + Q — MTHM)(W" — %)

[

(

(2.9) (1-a) k _ ~k\NT agT kE =~k
> - 7 — M*HM —
20T a) (v ") (v o)
(3:5) (1_ )” k k+1H2
2(1+ «) A

Substituting into (3.16), we obtain the assertion (3.15). The proof is complete. O

Now we are ready to present an inequality where an upper bound of (") —6(u)+
(% —w)T F(w) is found for all w € Q. This inequality is also crucial for analyzing the
contraction property and the convergence rate for the iterative sequence generated by
either (1.4) or (1.5).

THEOREM 3.4. For given v* € Y x R™, let w1 be generated by the strictly
contractive PRSM scheme (1.5), and let w* be as defined in (3.1); let M and H be as
defined in (2.4) and (2.7), respectively. Then, we have w* € Q and

11—«
(v = "% = flo - Uk”%{) + m””k — " Vwe Q.
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Proof. First, because of the monotonicity of F(w), we have
(w—w)"(F(w) — F(@)) >0 Yw, @ € Q.

Then, using the above inequality and replacing the right-hand side term in (3.6) with

the inequality (3.15), we obtain the assertion (3.17). The proof is complete. O
The assertion (3.17) also enables us to study the contraction property of the

sequence {v*} generated by (1.4) or (1.5). In fact, setting w = w* in (3.17) where w*

is an arbitrary solution point in Q*, we get

(3.18)

¥~ =~ > =

2(1+a) [~ |3 +2{0(a") ~0(w*) +(@" —w") T F (w*)}.
Recall the optimality in (2.1). We thus have

1—-«
21+ «)

Therefore, when a = 1, i.e., for the PRSM scheme (1.4), we have

(3.19) [ A e l* — " ot e V.

(3.20) [ A S 2

which means the sequence {v*} generated by (1.4) is contractive, but not strictly, to
the set V*. In fact, it is possible that the sequence {v*} stays away from the solution
set with a constant distance (i.e., the equivalence in (3.20) holds for any k); hence no
convergence of (1.4) is guaranteed under our assumption on (1.1). In [12] and [16],
such an example was shown. On the other hand, when « € (0, 1), the inequality (3.19)
ensures a reduction of ﬁﬂvk — v*1|% to the set V* at the (k + 1)th iteration;
i.e., the strict contraction of {v*} is guaranteed for the sequence generated by (1.5).
Recall Lemma 3.2, which indicates that |[v¥ — v**1||%, # 0 whenever a solution is
not yet found. Thus, the inequality (3.19) implies that the sequence {v*} generated
by the proposed strictly contractive PRSM (1.5) converges to V* with a guaranteed
reduction of proximity to the solution set. As we have mentioned, the difference of
contraction between (3.19) and (3.20) is also the reason we can establish a nonergodic
convergence rate for the strictly contractive PRSM (1.5) in section 5 while only the
ergodic convergence rate can be established for the original PRSM (1.4) in section 4.

4. Convergence rate of (1.4) in the ergodic sense. In this section, we show
that although the original PRSM (1.4) might not be convergent to a solution point of
the model (1.1), it is still possible to find an approximate solution of VI(2, F, §) with
an accuracy of O(1/t) based on the first ¢ iterations of the PRSM scheme (1.4). This
estimate helps us better understand the convergence property of the original PRSM
(1.4).

THEOREM 4.1. Let {w*} be generated by PRSM (1.4) and {@*} be defined by
(3.1). Let ws be defined as

(4.1) Wy = th:uv’“.

t—|—1k:0

Then, for any integer number t > 0, w; € Q and

(4.2) () — O(u) + (0 —w)" F(w) <

0112
— % (S Q)
2(t 1)HU v HH w )
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where H is as defined in (2.7).

Proof. First, because of (3.1), it holds that @* € Q for all k > 0. Together with
the convexity of X and Y, (4.1) implies that w; € Q. Second, by taking o = 1 in
(3.17) we have

1 1
(4.3)  O(u) —0(@") + (w — )T F(w) + §Hv —oF||% > §||v —oF 3 v e Q.

Summing the inequality (4.3) over k =0, 1,...,t, we obtain

1
“|lo =% >0 Vwe .

(1 1)0(u) — 32 0) + ((t+ 1w - Zﬁ)k)TF(w) +3
k=

0 k=0

Using the notation of wy, it can be written as
t

(44)  —= 0@k) - 0(u) + (b — w)" F(w) <

1
t+14= ~2t+1)

lv— % Yw € Q.

Since 0(u) is convex and

we have that

Substituting this into (4.4), the assertion of this theorem follows directly. O

Let 00 = (y°, A\Y) be the initial iterate. For a given compact set D C Y x R™, let
d = sup{||v — v°||g |v € D}. Then, after ¢ iterations of the PRSM (1.4), the point
W € () defined in (4.1) satisfies

~ ~ d2
sup {6(@:) = 0(u) + (@ — w)"F(w)} < 3=,

which means @ is an approximate solution of VI(, F, ) with an accuracy of O(1/t)
(recall (2.3)).

Remark 4.1. In the proof of Theorem 4.1, we take a = 1 in (4.3). Obviously, the
proof is still valid if we take o € (0,1). Thus, a worst-case O(1/t) convergence rate
in the ergodic sense can be established easily for the strictly contractive PRSM (1.5).
As we shall show in section 5, this is less interesting because a nonergodic worst-case
O(1/t) convergence rate can be established for (1.5). We thus omit the details.

5. Convergence rate of (1.5) in a nonergodic sense. In this section, we
show that the sequence {v*} generated by the strictly contractive PRSM scheme
(1.5) is convergent to a point in V*, and its worst-case convergence rate is O(1/t) in
a nonergodic sense. Our starting point for the analysis is the inequality (3.19), and
a crucial property is the monotonicity of the sequence {||v* — v¥*1(|2,}. That is, we
will prove that

Hkarl —UkJFZH%[S ”,Uk_karlH%I VkZO.
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We first take a closer look at the assertion (3.6) in Lemma 3.1.

LEMMA 5.1. Let {w*} be the sequence generated by the strictly contractive PRSM
(1.5), let w* be as defined in (3.1), and let the matriz Q be as defined in (2.6). Then,
we have

(51) (f;k _ ﬁk—H)TQ{(’Uk _ f;k) _ (Uk+1 _ ﬁk—i—l)} > 0.
Proof. Setting w = w**! in (3.6), we have
(52) a(akJrl) _ 9(,&1@) + (warl _ ﬂ}k)TF(ﬂ}k) > (,[}kJrl _ ’lNJk)TQ(’Uk _ f;k).

Note that (3.6) is also true for k := k + 1, and thus

O(u) — (@) + (w — T F@@ 1) > (v — FHT QL — 57+1) Y € Q.
Setting w = @" in the above inequality, we obtain
(5.3)  O(a*) — O(@1) + (@F — T F(@F ) > (8 — g TQoR ! — k1,

Adding (5.2) and (5.3) and using the monotonicity of F', we get (5.1) immediately. O
LEMMA 5.2. Let {w*} be the sequence generated by the strictly contractive PRSM

(1.5); let the matrices M, Q, and H be as defined in (2.4), (2.6), and (2.7), respec-

tively. Then, we have

(5.4)

(Uk_,UkJrl)TH{(,Uk_karl)_(karl _vk+2)} > 3+«

ko k+1y_ (o k1 k+2
e Tepn | (GO IR

13-
Proof. Adding the equation
(0% = %) — (WFFT — FHINTQLF — 5%) — (oF+! — gF+1))
= Sk = ) = @ = )
to both sides of (5.1), we get
(5.5) (vF —oF DT QL (vF —5F)— (k1 —gh+1)} > %H(Uk_ﬁk)_(vk+l_f}k—i—l)”%QTJrQ).
By using Q = HM and M (v* —o%) = v% —vF+1 (see (2.8) and (3.5)) in the left-hand

side of (5.5), we obtain
(5.6)

1 - -
(Uk _ ,UkJrl)TH{(vk _ ,UkJrl) _ (UkJrl _ vk+2)} > 5 ”(,Ulc _ ’Uk) _ (U]C+1 _ vk+1)||%QT+Q)'
Due to (2.9) we have
3+ )
Ty BT gy

AR Ti
Substituting this into the right-hand side of (5.6) and using M (v* — oF) = v¥ — pF+1
again, we obtain (5.4), and the lemma is proved. O

Now, we are ready to prove the monotonicity of the sequence {||v* — vF+1]|2,1.

THEOREM 5.3. Let {wF} be the sequence generated by the strictly contractive
PRSM (1.5), let @ be as defined in (3.1), and let the matriv H be as defined in
(2.7). Then, we have

11—«

(5.7) oM — " F2(F < Jlof — M| - M +a)

H(Uk _ UkJrl) o (vk+1 o vk+2)|‘%{'
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Proof. Setting a = (v* — v**1) and b = (v**! — v**+2) in the identity
lallF — 1% = 20" H(a —b) — [la — 0|3,
we obtain

k _ Uk+1 o ||Uk+1 _ ,Uk+2H%{

[[v [
_ 2(’Uk o ,Uk+1)TH{(,Uk o ,Uk+1) o (,Uk+1 o ,Uk+2)} o ”(vk o ,Uk+1) o (,Uk+1 o ,Uk+2)H%{.

Inserting (5.4) into the first term of the right-hand side of the last equality, we obtain

1—«
o = o8y = o = ol 2 gy N =) = P = o .

The assertion (5.7) follows from the above inequality directly, and the proof is com-
plete. d

Now, we can establish a worst-case O(1/t) convergence rate in a nonergodic sense
for the strictly contractive PRSM scheme (1.5).

THEOREM 5.4. Let {w'} be the sequence generated by the strictly contractive
PRSM scheme (1.5). For any v* € V*, we have

21+«
t_ 2 o 0 2
Proof. First, it follows from (3.19) that
(59) ii”vk_karlHZ < ”,UO_,U*HZ Vot e P*
' 2(1+a) & = " '

According to Theorem 5.3, the sequence {|[v* — v**1]|2} is monotonically non-
increasing. Therefore, we have

t
(5.10) (¢ -+ Dllo" = v HIF < D Ik — ot
k=0

The assertion (5.8) follows from (5.9) and (5.10) immediately. The proof is com-
plete. d

Notice that V* is convex and closed. Let v? = (y°, \%) be the initial iterate and
d := inf{||v® — v*||g |v* € V*}. Then, for any given ¢ > 0, Theorem 5.4 shows that

the strictly contractive PRSM scheme (1.5) needs at most k = L%J iterations
to ensure that ||v* —v*+1||2, < e. Tt follows from Lemma 3.2 that w**1 is a solution of
VI(Q, F, 0) if ||o* —vkT1]|2, = 0. A worst-case O(1/t) convergence rate in a nonergodic
sense for the strictly contractive PRSM scheme (1.5) is thus established in Theorem
5.4.

6. Numerical results. In this section, we verify the theoretical assertions ana-
lyzed in previous sections by some numerical experiments. We focus on some applica-
tions of the abstract model (1.1) in statistical learning and image processing, including
the least absolute shrinkage and selection operator (LASSO) model, the group LASSO
model, the sparse logistic regression model, the image deblurring problem, the image
inpainting problem, and the magnetic resonance imaging (MRI) problem. We shall
verify the following assertions.
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(1) The original PRSM (1.4) is indeed fast if it is convergent; the assertions in
[20, 23] are thus further backed up.

(2) For some scenarios of (1.1), the original PRSM (1.4) might fail to converge
while the proposed strictly contractive PRSM (1.5) is convergent; the theo-
retical significance of the underdetermined relaxation factor « is thus verified.

(3) For the proposed strictly contractive PRSM (1.5), the underdetermined re-
laxation factor a can be easily determined. In fact, empirically, o € [0.8,0.9]
is preferred for all tested cases.

(4) The proposed strictly contractive PRSM (1.5) converges quickly for a wide
range of applications, and it numerically outperforms some efficient methods
in the literature.

We shall use the previously mentioned statistical leaning models to illustrate the first
three assertions, and the last assertion will be verified by the previously mentioned
imaging models. Our code was written by MATLAB 2012a, and all the numerical
experiments were conducted on a laptop computer with a 2.9GHz i7 processor and
an 8GB memory.

6.1. Statistical learning problems. In this subsection, we test some popular
sparse learning models in the area of statistical learning. As we have mentioned,
via these models our purpose is to justify the advantages of the proposed strictly
contractive PRSM (1.5) itself. We thus choose the ADMM (1.3) as the only benchmark
for numerical comparison in this subsection. Note that the ADMM (1.3) has been
shown to be a widely applicable efficient solver for some popular statistical learning
problems; see, e.g., [6] for a review.

6.1.1. Models and iterative schemes. We first introduce the sparse learning
models to be studied.
(1) The LASSO model proposed in [51],

1
(6.1) min{§||Dx—7“|%+’Y||x|1 | xe%d},

where 7 € R” is the response vector, D € R"*¢ is the design matrix, n is the
number of data points, d is the number of features, v > 0 is a regularization
parameter, and [|z||; = Y., |z;|. The LASSO model provides a sparse
estimation of # when there are more features than data points (i.e., d > n),
and it has been very influential in several areas (e.g., bioinformatics [53, 40,
41], econometrics [7], and climate analysis [10]).

(2) The group LASSO model proposed in [55],

N
.1 v
(6.2) mln{§||Dx — 7347 ;:1 lzill2 | z € RY, 25 € 3%@}7

where Zf\il d; = d, N represents the number of disjointed groups partitioned
among the variable z, and all other settings are the same as in (6.1). The
model (6.2) promotes selecting the grouped variables (factors), which are
common in multifactor analysis-of-variance (ANOVA) problems or additive
models with polynomial or nonparametric components. In these problems,
important factors are groups of variables rather than the individual derived
variables. Group LASSO reduces to LASSO when d; = 1, which means each
group contains only one variable.
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(3) The sparse logistic regression model in [45, 34, 35],
1 n
(6.3) min{g Zlog (1+exp (—ri(DZTx—Fxo)))-F’YHxHh |z e Rz € 3%},
i=1

where z € R? is the coefficient vector, zy € R is the intercept scalar, D; € R?
(i = 1,2,...,n) are training data points, r; € {—1,1} (: = 1,2,...,n) are
corresponding labels, n is the number of data points, d is the dimension of
data, and v > 0 is a regularization parameter. After obtaining the coefficient
x and z in (6.3), we can predict a binomial categorical label rpreq With the
given input Dy, € R? by

. 1
Tpred = Slgn<—1 n e*(woJrD?;w) )

Now we illustrate how to implement the ADMM (1.3), the PRSM (1.4), and the
strictly contractive PRSM (1.5) for solving these statistical learning models. First,
for the LASSO model (6.1), by introducing an auxiliary variable y € R¢, the model
(6.1) can be reformulated as

1
00 win{gI0s el ol |2 -y = 0o, yent),

which is a special case of (1.1) where f(z) = é”Dw—rH%, 9(v) =vllyll1, n1 = ne =d,
A=1;,B=—1;,b=0, X =R and Y = R?. Therefore, the iterative scheme of the
ADMM (1.3) for (6.4) is

ah = (DTD + B~ (DTr + By* + AF),
(6.5) yk+1 _ S'y/ﬁ(fkarl _ )\k/ﬂ),
AL — \k+E B(xh+l — ykt1y.

Moreover, the iterative schemes of the PRSM (1.4) and the strictly contractive PRSM
(1.5) for (6.4) read, respectively, as

okt = (DTD + BI)~Y(DTr + By* + \F),
A+t — 2k — ﬁ(karl _ yk)’

(6.6) yhtl = Sv/ﬁ($k+1 _ )\k+%/ ),

AL — \kt+E B(xk+l — ykt1)
and

ahth = (DTD + BI)~H(DTr + By + AF),
67) Aotz — 2k aB(zF Tt — yk),

yk+1 _ S'y/ﬁ(fkarl _ )\k+%/ﬁ)7
AL — 2\ktE aﬁ(xk+1 _ yk+1).

In (6.5)—(6.7), Sk (a) is the soft-thresholding operator defined as
(Sk(a))i= 1 —r/|ai)+-a;, i=1,...,d,

for K > 0 and a € RY; see, e.g., [14].
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Similarly, by introducing y; = z; fort = 1,2, ..., N, we can reformulate the group
LASSO model (6.2) as
(6.8)

N
.1 . : :
mm{§|Da:—7’||§+72||yi||2 |2 —y;i=0,i=1,2,...,N; 2, € RY, y; € 9‘%‘11},

i=1

for which the ADMM (1.3), the PRSM (1.4), and the strictly contractive PRSM (1.5)
are implementable. The resulting iterative schemes are, respectively, as follows:

2" = (DTD + BI)~H(DTr + Byt + AY),
(6.9) it = Sy/p(w e _gAEY i=1,...,N,
/\k+1 /\k+2 _ ﬁ(l‘k—H yk+1)

a:k“l = (DTD + ﬁI)_l(DTr + Byk + AF),

(6.10) PR A

' yit =S, st VA NN S N

/\k+1 /\k+2 _ B( /k+1 yk—k—l)’

and
2" = (DTD + BI)H(Dr 4 By* +AF),
/\k+§ — )\ _ af(z k41 _ k)’

(6.11) k+ k+1 kt3
Y, SW( BN, i=1,...,N,
/\k+1 /\k+2 _ Oéﬁ( k+1 yk—k—l).

Finally, the sparse logistic regression model (6.3) can be reformulated as
(6.12)

1 n
min{g Zlog(l—&-exp(—m(D?w—i—xo))—|—7Hy|\1) |z—y=0, 20 €N,z €Ny € %d},
i=1

where y € R¢ is an auxiliary variable. Therefore, the ADMM (1.3), the PRSM (1.4),
and the strictly contractive PRSM (1.5) are all applicable to (6.12). For succinctness,
we list only the iterative scheme of the strictly contractive PRSM (1.5) in detail:
(6.13)

P4 = argming & 50 log(1 + exp(—ra(DF e + 20))) + e — o — M5B,

Aets — 2k af(zh 1 — k)7

P = 8 @ = AR, =1, N,

)\k+l )\k+2 _ aﬂ(kaJrl _ yk+1).

Note that in (6.13) the z-subproblem has no closed-form solutions. We implement
Newton’s method (coded by MATLAB) to solve this subproblem with a tolerance of
10~ and a maximum iteration number of 10.

6.1.2. Implementation details. Now we specify the setting for the sparse
learning models to be tested. For the LASSO model (6.1), we set n = 2000 and
d = 4000; each entry of D is drawn from A(0,1), and then all columns of D are
normalized; we generate a random sparse vector in R4°°° with 100 nonzero entries
from N (0, 1) as x; the noise vector € ~ N'(0,1073]) and the vector r = Dz + ¢; the
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regularization parameter is set as v = 0.1||DTr|/». For the group LASSO model
(6.2), we set n = 1500; D is also drawn from N(0,1) and normalized; the noise

vector € ~ N(0,1073]) and the vector r = Dz + ¢; we generate N = 200 blocks

with size n; uniformly distributed between 1 and 50, d = Zfil n;. Among all the

blocks, 5% have entries drawn from the standard Gaussian distribution, and the
other blocks have entries all equal to zero; the regularization parameter ~ is set
as v = 0.1max{||Dfr|a,...,|[|DLr|2}, where {D1, Ds,..., Dy} with D; € Rnxd
is a disjointed partition of D’s columns in correspondence with the partition of
{x1,z2,...,2n}. For the sparse logistic regression model (6.3), we set n = 50 and
d = 500; each vector D; € R°% has 10 nonzero entries from N(0,1); the vectors r;
are generated by r; = sign(DT z+ x¢ +¢;), where ¢; is the noise drawn from N(0,0.1);
the vector x € R? contains 100 nonzero entries drawn from N(0, 1); the intercept xo
is also from N(0,1), and ~ is set according to [34]: v = 0.1Vmax, Where Ymax is the
maximum regularization parameter above which the solution x has all zero entries.

Then, we provide some details to implement the methods to be tested. Our code
was constructed based on the code available at http://www.stanford.edu/~boyd/
papers/admm/. Hence, the ADMM (1.3) can be implemented directly by this code
package, while the implementation of the PRSM (1.4) and the strictly contractive
PRSM (1.5) require only a slight modification on the Lagrange multiplier to this
package. It is worth mentioning that in (6.5)—(6.11), we need to compute (D7D +
BI)~1 and DTr, which is quite time consuming if N and d are large. However, since
these two terms are invariant in each iteration, we need only compute it once before
all iterations. We define the stopping criterion as

1
(6.14) max{ﬁnyk N - WHZ} < Vi,

where Sy* — y*|o and §[|A¥ — A**1[]; measure the primal and dual residuals,
respectively, and € > 0 is a tolerance; see, e.g., [6, 30, 56]. Note that because of
Lemma 3.2 it is also reasonable to use this stopping criterion for the PRSM (1.4) and
the strictly contractive PRSM (1.5). For LASSO (6.1) and group LASSO (6.2), we set
€ = 10~%; and for the sparse logistic regression model (6.3), we set ¢ = 1072 since its
xz-subproblem is solved approximately at each iteration. For the penalty parameter
5, we set it as 1 for all methods; and we set @ = 0.9 for the strictly contractive PRSM
(1.4) (the reason will be explained later).

6.1.3. Results. In Table 1, we report the computing time in seconds (“time
(s)”) and the number of iterations when the ADMM (1.3), the PRSM (1.4), and the
strictly contractive PRSM (1.5) are applied to solve the above-mentioned statistical
learning models. According to this table, we see that the original PRSM (1.4) is
convergent only for the group LASSO model (6.2). For this case, the original PRSM
(1.4) is really faster than the ADMM (1.3), and it is almost as efficient as the strictly
contractive PRSM (1.4). The assertions in [20, 23] are thus verified again. For the
other two models, however, the convergence of PRSM is not witnessed. But the
proposed strictly contractive PRSM (1.4) still performs well—faster than ADMM.

To further observe the convergence of the ADMM and the strictly contractive
PRSM, in Figures 1-3 we visualize the evolution of convergence when these two
methods are applied to solve these three sparse learning models. The evolution of the
objective function value, the reduction of primal and dual residuals, and |[o®) —v*|| g
with respect to the iterations are plotted. Plots in Figure 1 show that the strictly
contractive PRSM and ADMM reach the primal tolerance at almost the same time,
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but the former reaches the dual tolerance faster than the latter. Plots in Figure 2
indicate that the strictly contractive PRSM reaches both the primal and dual tol-
erances faster than ADMM. Last, plots in Figure 3 reveal that ADMM reaches the
primal tolerance faster (but possibly jumps back to above the tolerance again), while
the strictly contractive PRSM reaches the dual tolerance much faster than ADMM.
The lower right plots in Figure 1-3 illustrate that the sequence |[v*) —v*|| ;7 decreases
monotonically, which further back up our theoretical results in (3.19).

TABLE 1
Quantitative comparison among the strictly contractive PRSM, the original PRSM, and the
ADMM for statistical learning models.

LASSO Group LASSO Sparse logistic regression
Algorithm time(s)  # iterations time(s) # iterations time(s)  # iterations
Strictly con-
tractive PRSM 1.27 53 0.53 21 2.14 41
ADMM 2.13 89 0.96 36 3.75 72
PRSM - - 0.53 23 - -

“” means that the stopping criterion max{3|y* — v**+1|2, %H)\k — AetL5} < V/de is not satisfied
after 10,000 iterations.

Objective function 0 Primal residue
10 g
% ——Strictly Contractive PRSM ——Strictly Contractive PRSM
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102 Dual residue Convergence of ||v(k)—v*||H
——Strictly Contractive PRSM 10% | - -
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0
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-2 é> _
10 r S = 10 2
-4 -4
10 ‘ ‘ ‘ 10 ‘ : ‘
0 20 40 60 80 100 0 20 40 60
iter (k) iter (k)

Fic. 1. LASSO model (6.1): Ewvolution of the objective function value, primal residual, and
dual residual, and ||[v*) —v*|| g for ADMM and the strictly contractive PRSM.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/28/14 to 158.182.168.57. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

A STRICTLY CONTRACTIVE PRSM FOR CONVEX PROGRAMMING 1029

Objective function ; Primal residue
10
——Strictly Contractive PRSM
N —-ADMM
10° 1 s, |---Primal Tolerance
=107
/ 107
10} ——Strictly Contractive PRSM
—-ADMM 107
0 10 20 30 0 10 20 30 40
iter (k) iter (k)
100 Dual residue Convergence of ||v(k)—v*||H
——Strictly Contractive PRSM 10" - -
—— ADMM \*Strlctly Contractive PRSM\
---Dual Tolerance 0
10° 10
T
o N
) 710"
107} =
107
-10 . . ) -3 . . . )
10 0 10 20 30 40 10 0 5 10 15 20
iter (k) iter (k)

Fic. 2. Group LASSO model (6.2): Evolution of the objective function, primal residual, and
dual residual, and ||[v*) —v*||g for ADMM and the strictly contractive PRSM.

6.1.4. Sensitivity to a. As we have analyzed, attaching an underdetermined
relaxation factor o € (0,1) to the original PRSM (1.4) can make the resulting iter-
ative sequence strictly contractive with respect to the solution set of (1.1). Thus, it
becomes possible to ensure the convergence and establish a worst-case O(1/t) conver-
gence rate in a nonergodic sense for the strictly contractive PRSM (1.5). Despite its
significant theoretical role, we would emphasize that this underdetermined relaxation
factor can be chosen easily to implement the strictly contractive PRSM (1.5). This
is an important convenience for the implementation of the strictly contractive PRSM
(1.5).

In this subsection, we take the LASSO model (6.1) to test the sensitivity of « for
the strictly contractive PRSM (1.5). We fix § = 1 and choose different values of « in
the interval [0.05,0.99]. (More specifically, we choose @ = {0.05,0.10,0.15,...,0.85,
0.90,0.91,0.92,...,0.98,0.99}.) The computing time and number of iterations re-
quired by the strictly contractive PRSM (1.5) are recorded for each choice of .
Then, we plot them in Figure 4. For comparison purposes, we also plot for ADMM
with 8 = 1. According to the curves in Figure 4, we see that the underdetermined
relaxation factor o works for a wide range of values; thus it can be chosen easily in
implementation. In particular, based on our experiments, some aggressive values close
to 1 (e.g., [0.8,0.9]) are preferred.

As is well known in the literature, the numerical performance of some augmented-
Lagrangian-based methods including the ADMM (1.3) is highly dependent on the
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Fic. 3. Sparse logistic regression model (6.3): FEwvolution of the objective function, primal
residual, and dual residual, and ||v(*) — v* || for ADMM and the strictly contractive PRSM.
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(a) a’s effect on the execution time. (b) a’s effect on the number of iterations.

F1c. 4. Sensitivity test on the underdetermined relazation factor o when g = 1.

penalty parameter 8. Theoretically, some strategies of adjusting this parameter au-
tomatically have been proposed; see, e.g., [29]. But for some concrete applications
(especially some large-scale problems or models with matrix variables), realizing this
kind of self-adaptive strategy might result in too much computation. Thus, a more
popular way to choose this parameter is to tune manually and then fix it as a tuned
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different a for group LASSO.

F1G. 5. Acceleration of « for the group LASSO model (6.2).

value throughout. To the best of our knowledge, it is not clear so far how to determine
an optimal value for §; it is highly possible that it is problem-dependent. This diffi-
cultly occurs also for the original PRSM (1.4). In this subsection, we test some fixed
values of S and empirically verify that when implementing the strictly contractive
PRSM (1.5), it is easy to choose « € (0,1) to accelerate the convergence.

We take the group LASSO model (6.2) to demonstrate the effectiveness of a for
a fixed . In our experiments, we test a set of value 5 = 0.25,0.5,1, 2,4, 8,16, 32. For
each f3, we choose different values of & = {0.05,0.10,0.15, ...,0.85,0.90,0.91,0.92, . . .,
0.98,0.99} and plot the computing time in seconds and number of iterations with
respect to different choices of « in Figure 5. According to the plots in Figure 5, it
seems that the original PRSM is very sensitive to the value of 8. In fact, for some
B such as 8 = 4,8,16,32, the original PRSM (1.4) (i.e., @ = 1) fails to satisfy the
stopping criterion within 10,000 iterations. This further emphasizes the importance
of choosing  when implementing the original PRSM (1.4). At the same time, we
see that for each of the tested 8, a € (0,0.9) tends to accelerate the convergence of
PRSM.

6.2. Image reconstruction models. In this subsection, we test some digital
image reconstruction models. Our aim is to further verify the efficiency of the proposed
strictly contractive PRSM (1.5) by comparing it numerically with four well-known
algorithms in the imaging literature: SALSA [1], TwIST [4], SpaRSA [52], FISTA [2],
and YALL1/TVALS3 [36, 37, 38, 54, 57].
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6.2.1. Models and iterative schemes. We first briefly review the background
of digital image reconstruction problems; for more details we refer the reader to [28,
47]. A fundamental task in many areas such as medical and astronomical imaging, film
restoration, image or video coding, and synthetic aperture radar (see, e.g., [49, 50, 33]),
the image reconstruction problem is to reconstruct the original image p € R" from
its degraded image p° € R". Note that we vectorize an N x M-pixel image P into
an n-dimensional vector p in lexicographical order with n = NM. The relationship
between p and p° is given by

(6.15) p’ = Dp +e,

where € € R is a noise corrupting the original image p, and D € R"*" is the matrix
representation of a distortion operator such as a blurring (convolution), vignetting,
inpainting, or zooming operator.

According to [13], we can classify image reconstruction models into two categories:
the synthesis approach and the analysis approach. The synthesis approach defines
x € R? as the vector of wavelet coefficients of the original image p under a wavelet
dictionary. Let W € R7*¢ be the matrix of a wavelet dictionary, e.g., a group of
orthogonal bases; we then have p = Waz. Since (6.15) is usually ill-posed, certain
regularization techniques are required. Note that the image p processes a sparse
representation under the wavelet dictionary W that is, = is sparse with many zero
entries. Therefore, it is natural to use ||z||1, the {3 norm of x, to regularize the
data-fidelity term. We thus have

1
(6.16) min {§||DW9C =13+l [z e md}

as the synthesis approach of an image reconstruction model. Note that we consider
only the case of additive nose. Thus the ls norm is used for the data-fidelity term in
(6.16). Other cases such as the impulsive or uniform noise can also be considered. On
the other hand, the analysis approach considers reconstructing the image directly and
not under a wavelet domain. Let the image be represented by a vector z € R*. Under
the consideration of additive noise in (6.15), the data-fidelity term is || Dz —p°||3. For
the regularization term, a very popular choice is the total variation (TV) regularization
proposed in the seminal work [48], which is well known to be capable of preserving
the edges of images. We thus have

1
(6.17) min {§||Dx |3 +~4TV(2) |z € §R"}

as the analysis approach of an image reconstruction model. In (6.17), TV(z) denotes
the nonsmooth isotropic TV norm [48]:

N—-1M-1 5 5 N—-1
TV(z) =) \/(ffm—xm,j) + (2 =mige1) + D T v—ziri,u]
i=1 j=1 i=1
M-—1
+ ) Xl
j=1

where x € R™ is the vectorized original N x M two-dimensional image in lexicographic
order with n = NM and z; ; denotes pixel value at the position (3, j).
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Now we show how to implement the proposed strictly contractive PRSM (1.5) to

solve the models (6.16) and (6.17). For (6.16), by introducing an auxiliary variable
y € R%, it can be reformulated as

1
(6.18) min {EHDWx P2+l |z —y=0, z e Ry € §Rd}.
Similarly, the model (6.17) can be reformulated as

1
(6.19) min {§|Dx P2 +9TV(y) |z —y=0, 2 €R", y € %"}

Therefore, when the strictly contractive PRSM (1.5) is applied to solve the models
(6.18) and (6.19), the iterative schemes read, respectively, as

"t = ((DW)T(DW) + BI) = ((DW)Tp° + By* 4+ AF),
A+t — 2k — aﬁ(karl _ yk)’

6.20 1
( ) yk+1 — Sv/ﬁ(l‘k—,—l _ /\k+§/6)’
AL — Nk aB(zh L — yktly
and
2 = (DTD + A1) (DT + Byt + A,
(6 21) )\k+§ — /\k _ Oéﬁ(l’kJrl _ yk)’

Y+ = argmin {yTV(y) + §[aFt1 = M3 /8 4 y|2 | y € Y},
ARHL — \ktg aﬁ(xk+1 _ yk+1).

Let us explain how to solve the subproblems in (6.20) and (6.21). For example,
the z-subproblem in (6.20) might be computationally expensive due to the high di-
mensionality of z. For example, for the analysis approach, 2 € 262144 for a 512 x 512-
pixel image. According to [1], the matrices D and W are of special structures (e.g.,
WTW = I); fast solvers such as the fast Fourier transform (FFT) are thus applicable.
For the y-subproblem in (6.21) whose closed-form solution does not exist, we adopt
the algorithm proposed in [8] to solve it.

We will test three scenarios for the models (6.16) and (6.17):

(1) The synthesis-based (6.16) image deblurring model where D is the matrix
representation of the blurring operator [27]. Here we use the 9 x 9 uniform
convolution kernel with every element being 1/81 as the blurring operator.

(2) The analysis-based (6.17) image inpainting model where D is the matrix
representation of the missing pixel operator [27]. Specifically, D is a highly
sparse matrix with only ones and zeros in the diagonal. The zeros in the
diagonal correspond to the missing pixels.

(3) The analysis-based (6.17) MRI image reconstruction model where D is matrix
representation of the 22-radial-line mask in the frequency domain, which is
visualized in Figure 11.

6.2.2. Implementation details. Among the methods to be compared, SALSA
in [1] and YALL1/TVAL3 in [38, 57] are ADMM-based algorithms (YALL1 is for Iy
norm regularized problems and TVAL3 is for TV norm regularized problems; thus we
implement YALLI1 to (6.16) and TVAL3 to (6.17)). The proposed strictly contractive
PRSM (1.5) thus can be easily coded based on the source code of SALSA, which is
publicly available. We followed the user guide [38, 57] to code YALL1/TVAL3 with
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tuned parameters. Codes for all other methods are downloaded from the respective
authors’ web pages. We terminate the iteration of the strictly contractive PRSM
when

|Objective,_ ; — Objective,| < 1074,

where “Objective,” represents the objective function value at the kth iterate for the
model under consideration. To compare, for all other methods, their iterations are
terminated when their objective functions are less than or equal to the objective
function value obtained by the strictly contractive PRSM (1.5). In other words, we
compare these methods subject to the criterion that they achieve the same objective
function value.

We measure the noise of an image by the signal-to-noise ratio in units of dB,

SNR := 101og,o(llpll3/[12° — plI3),

where p and p® are the clean image and the distorted image, respectively. The error
of reconstruction is measured by the mean squared error (MSE)

where p is the reconstructed image. We also define the improved signal-to-noise ratio
as

ISNR := 10log;o([lp° — pl3/llp — 513)

as a uniform measurement of the quality of reconstructed images. For different meth-
ods, we compare the speed in terms of computing time and number of iterations to
achieve the same quality of reconstruction which is measured by MSE or ISNR.

For the synthesis image deblurring application, we set v = 0.0075 and test the
256 x 256-pixel image of Lena. We choose the four-level redundant Haar wavelet
frame as W [11]. To generate the convolution operator D, we choose a 9 x 9 uniform
blur kernel in which every element equals 1/81 (with zero padding in the boundary).
For the corrupted image, its SNR value is 40dB. The Gaussian noise vector € is thus
generated by AN(0,0.449). We list the clean and blurred images in Figure 10. To
implement the strictly contractive PRSM (1.5), we set 5 = 0.0075 and « = 0.8.

For the analysis image inpainting application, we set v = 0.15 and test the 256 X
256-pixel image of Lena. The inpainting operator D contains 40% missing pixels
which are chosen randomly. The masked image is shown in Figure 10. For the
corrupted image, its SNR value is also 40dB, which means the noise is generated
from AN(0,0.529). To implement the strictly contractive PRSM (1.5), we set 8 = 0.05
and @ = 0.9. To solve the y-subproblem in (6.21) by the method in [8], we allow a
maximum of 20 for the inner iteration.

For the analysis MRI application, we set v = 0.0001 and test the 128 x 128-
pixel image of the Shepp-Logan phantom. The clean image is masked by 22 radial
lines on its discrete Fourier transform, and only the frequency components covered by
the radial lines are observed. We contaminate the frequency components using the
circular complex Gaussian noise with o2 = 0.5 x 1073; i.e., the real and imaginary
parts of the noise are independent Gaussian with the standard deviation o.. We list
the clean and masked images of the Shepp—Logan phantom in Figure 11. The SNR
value is 5.42. To implement the strictly contractive PRSM (1.5), we set § = 0.01
and o = 0.9. To solve the y-subproblem in (6.21) by the method in [8], we allow a
maximum of 40 for the inner iteration.
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6.2.3. Results. We first list the comparison of different methods for the imaging
construction models in Tables 2-4.* Then, we visualize the evolution of the objective
function when these methods are applied to solve these imaging models in Figures
6-8. The evolution of the MSE is also plotted in Figure 9. In Figure 12, we display
the clean, corrupted, and reconstructed images by the strictly contractive PRSM (1.5)
for the tested scenarios. These tables and figures clearly show the efficiency of the
proposed strictly contractive PRSM (1.5).

TABLE 2
Quantitative comparison on image deblurring model.

Image deblurring

Algorithm time(s)  #iterations MSE ISNR(dB)
Strictly contractive PRSM 2.60 15 97.8 6.60
SALSA 6.86 41 97.7 6.60
TwIST 7.87 60 97.5 6.61
FISTA 8.18 97 103 6.63
SpaRSA 9.40 86 107 6.21
YALL1 9.38 86 107 6.21
TABLE 3

Quantitative comparison on image inpainting model.

Image inpainting

Algorithm time(s)  #iterations MSE ISNR(dB)
Strictly contractive PRSM 3.86 28 88.9 17.5
SALSA 6.82 46 93.2 17.3
TwIST 14.4 83 89.7 17.4
FISTA 6.76 91 90.4 17.4
TVAL3 6.04 117 90.2 17.4
TABLE 4

Quantitative comparison on MRI model.

Algorithm time(s)  #iterations MSE ISNR(dB)
Strictly contractive PRSM 19.81 207 1.03652e-06 42.2073
SALSA 30.46 311 1.03435e-06 42.2164
TwIST 53.69 451 1.10616e-06 41.9673
FISTA 25.23 460 1.04220e-06 42.1836
SpaRSA 97.74 1001 1.09543e-06 41.9250
TVAL3 45.36 601 1.03762e-06 42.2027

7. Conclusions. As a classical operator splitting method in the literature, the
Peaceman—Rachford splitting method (PRSM) may fail to be convergent for solv-
ing a convex optimization problem with linear constraints and a separable objective
function. This paper shows that this failure can be illustrated by showing that its
iterative sequence is not strictly contractive with respect to the solution set of the
model under consideration. This understanding from a contraction perspective in-
spires us to tackle the deficiency of PRSM by embedding an underdetermined factor

4In our experiments, the open source code of SpaRSA does not work for the image inpainting
model under testing. Table 3 thus does not include any comparison with SpaRSA.
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Fia. 6. Visualization of the objective functions on image deblurring model.
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Fia. 7. Visualization of the objective functions on image inpainting model.

Objective function Objective function
——SpaRSA - TVAL3
TwIST ——SpaRSA
—~FISTA TwIST
—=-TVAL3 ~FISTA
—-+-SALSA —--SALSA
—— Strictly Contractive PRSM —— Strictly Contractive PRSM

!

!;?;‘fx’s;xgx_z,:nvu-w

|

|

|
40 60 80 100 120 0 5 10 15 20 25
seconds seconds

(a) The convergence of the objective functions. (b) The convergence of the objective functions.
(Zoom in on the first 25 seconds.)

Fic. 8. Visualization of the objective functions on MRI image reconstruction.
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Fic. 9. Visualization of MSE on MRI image reconstruction.

Original Blurred and noisy

E:

Fic. 10. The original, blurred, and masked (with 40% missing pizels) images of Lena.

Missing Samples — 40%

Original Image

Fic. 11. The original and masked images of the Shepp—Logan phantom.

into the iterative scheme of PRSM and to propose a strictly contractive PRSM. The
strictly contractive PRSM is as easy to implement as that of the alternating direc-
tion method of multipliers (ADMM), and it is numerically faster. We verify these
advantages by some applications in statistical learning and image processing. We also
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Estimated Image

Resorted Image

Deblurred Image

F1G. 12. The deblurred and reconstructed images of Lena, and the reconstructed Shepp—Logan
phantom image by strictly contractive PRSM. The SNRs for the reconstructed images are 46.6dB,
57.5dB, and 47.6dB, respectively.

study the convergence rate of the proposed strictly contractive PRSM, establishing
the worst-case O(1/t) convergence rate in both the ergodic and nonergodic senses.

REFERENCES

(1] M.V. Aronso, J.M. Bioucas-Dias, AND M.A.T. FIGUEIREDO, Fast image recovery using
variable splitting and constrained optimization, IEEE Trans. Imaging Process., 9 (2010),
pp. 2245-2256.

[2] A.BECK AND M. TEBOULLE, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SIAM J. Imaging Sci., 2 (2009), pp. 183-202.

(3] D.P. BERTSEKAS, Constrained Optimization and Lagrange Multiplier Methods, Academic Press,
New York, 1982.

[4] J.M. Bioucas-Dias AND M.A.T. FIGUEIREDO, A new TwIST: Two-step iterative shrink-
age/thresholding algorithms for image restoration, IEEE Trans. Imaging Process., 2 (2007),
pp. 2992-3004.

(5] E. BLum AND W. OETTLI, Mathematische Optimierung. Grundlagen und Verfahren,
Okonometrie und Unternehmensforschung, Springer-Verlag, Berlin, Heidelberg, New York,
1975.

[6] S. BoyD, N. PaRrIkH, E. CHU, B. PELEATO, AND J. ECKSTEIN, Distributed optimization and sta-
tistical learning via the alternating direction method of multipliers, Found. Trends Machine
Learning, 3 (2010), pp. 1-122.

[7] M. CANER, Lasso-type GMM estimator, Econometric Theory, 25 (2009), pp. 270-290.

8] A. CHAMBOLLE, An algorithm for total variation minimization and applications, J. Math.
Imaging Vis., 1 (2004), pp. 89-97.

[9] T.F. CHAN AND R. GLOWINSKI, Finite Element Approzimation and Iterative Solution of a Class
of Mildly Non-linear Elliptic Equations, Technical report, Stanford University, Stanford,
CA, 1978.

[10] S. CHATTERJEE, K. STEINHAEUSER, A. BANERJEE, S. CHATTERJEE, AND A. GANGULY, Sparse
group Lasso: Consistency and climate applications, in Proceedings of the STAM Interna-
tional Conference on Data Mining, SITAM, Philadelphia, 2012, pp. 47-58.

[11] C.K. CHuul, An introduction to wavelets, Academic Press Professional, New York, 1992.

[12] E. CorMAN AND X.M. YUAN, A Generalized Proximal Point Algorithm and Its Convergence
Rate, manuscript, 2012.

[13] G. DEMOMENT, Image reconstruction and restoration: Overview of common estimation struc-
tures and problems, IEEE Trans. Acoust. Speech Signal Process., 37 (1989), pp. 2024-2036.

(14] D.L. DONOHO AND Y. TSAIG, Fast solution of l1 -norm minimization problems when the solution
may be sparse, IEEE Trans. Inform. Theory, 54 (2008), pp. 4789-4812.

[15] J. DouGLAS AND H.H. RACHFORD, On the numerical solution of the heat conduction problem
in 2 and 3 space variables, Trans. Amer. Math. Soc., 82 (1956), pp. 420-439.

[16] J. ECKSTEIN, Splitting Methods for Monotone Operators with Applications to Parallel Opti-
mization, Ph.D. Dissertation, MIT, Cambridge, MA, 1989.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/28/14 to 158.182.168.57. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

21]
22]

23]

[36]

[37]

[38]

[39]

[40]

A STRICTLY CONTRACTIVE PRSM FOR CONVEX PROGRAMMING 1039

J. ECKSTEIN, Augmented Lagrangian and Alternating Direction Methods for Convex Optimiza-
tion: A Tutorial and Some I[llustrative Computational Results, manuscript, 2012.

J. ECKSTEIN AND D.P. BERTSEKAS, On the Douglas-Rachford splitting method and the proximal
point algorithm for mazimal monotone operators, Math. Program., 55 (1992), pp. 293-318.

F. FACCHINEI AND J.S. PANG, Finite-Dimensional Variational Inequalities and Complementar-
ity Problems Vol. I, Springer Ser. Oper. Res., Springer-Verlag, New York, 2003.

D. GABAY, Applications of the method of multipliers to variational inequalities, in Augmented
Lagrange Methods: Applications to the Solution of Boundary-Valued Problems, M. Fortin
and R. Glowinski, eds., North—Holland, Amsterdam, 1983, pp. 299-331.

D. GABAY AND B. MERCIER, A dual algorithm for the solution of nonlinear variational problems
via finite-element approzimations, Comput. Math. Appl., 2 (1976), pp. 17-40.

R. Growinskl, On Alternating Direction Methods of Multipliers: A Historical Perspective,
manuscript, 2012.

R. GLowinskI, T. KARKKAINEN, AND K. MaAJAVA, On the convergence of operator-splitting
methods, in Proceedings of CIMNE 2003: Numerical Methods for Scientific Computing,
Variational Problems and Applications, Y. Kuznetsov, P. Neittanmaki, and O. Pironneau,
eds., Barcelona, Spain, 2003, pp. 67-79.

R. GLOWINSKI AND A. MARROCCO, Approrimation par éléments finis d’ordre un, et la
résolution, par pénalisation-dualité, d’une classe de problémes de Dirichlet non linéaires,
RAIRO Anal. Numér., 9 (1975), pp. 41-76.

R. GLOWINSKI AND P. LE TALLEC, Augmented Lagrangian and Operator Splitting Methods in
Nonlinear Mechanics, SIAM Stud. Appl. Math. 9, SIAM, Philadelphia, 1989.

E.G. GOL'SHTEIN AND N.V. TRET’YAKOV, Modified Lagrangian in convex programming and
their generalizations, Math. Program. Stud., 10 (1979), pp. 86-97.

R.C. GoNzALEZ AND R.E. WoobDs, Digital Image Processing, Addison-Wesley Longman, Har-
low, UK, 2002.

P.C. HaNsSEN, J.G. Nacy, aND D.P. O’LEARY, Deblurring Images: Matrices, Spectra, and
Filtering, Fund. Algorithms 3, STAM, Philadelphia, 2006.

B.S. HE, L.Z. Liao, D.R. HAN, AND H. YANG, A new inezxact alternating directions method
for monontone variational inequalities, Math. Program., 92 (2002), pp. 103-118.

B.S. HE AND H. YANG, Some convergence properties of a method of multipliers for linearly
constrained monotone variational inequalities, Oper. Res. Lett., 23 (1998), pp. 151-161.

B.S. HE AND X.M. YUAN, On the O(1/n) convergence rate of the Douglas—Rachford alternating
direction method, SIAM J. Numer. Anal., 50 (2012), pp. 700-709.

B.S. HE AND X.M. YUAN, On nonergodic convergence rate of Douglas-Rachford alternating
direction method of multipliers, Numer. Math., submitted, 2012.

G.T. HERMAN, Fundamentals of Computerized Tomography: Image Reconstruction from Pro-
jections, Springer, New York, 2009.

K. KoH, S.-J. KiMm, AND S. BoyD, An interior-point method for large-scale Iy -reqularized logistic
regression, J. Mach. Learn. Res., 8 (2007), pp. 1519-1555.

B. KRISHNAPURAM, L. CARIN, M.A. FIGUEIREDO, AND A.J. HARTEMINK, Sparse multinomial
logistic regression: Fast algorithms and generalization bounds, IEEE Trans. Pattern Anal.
Machine Intell., 27 (2005), pp. 957-968.

C. L1, Compressive Sensing for 3D Data Processing Tasks: Applications, Models and Algo-
rithms, Ph.D. thesis, Rice University, Houston, TX, 2011.

C. L1, W. YIN, H. JIANG, AND Y. ZHANG, An efficient augmented Lagrangian method with
applications to total variation minimization, Comput. Optim. Appl., 56 (2013), pp. 507
530.

C. L1, W. YIN, AND Y. ZHANG, User’s Guide for TVAL3: TV Minimization by Augmented La-
grangian and Alternating Direction Algorithms, Rice University CAAM Technical Report,
Rice University, Houston, TX, 2009.

P.L. LioNs AND B. MERCIER, Splitting algorithms for the sum of two nonlinear operators,
SIAM J. Numer. Anal., 16 (1979), pp. 964-979.

H. Liu, M. PALATUCCI, AND J. ZHANG, Blockwise coordinate descent procedures for the multi-
task lasso, with applications to neural semantic basis discovery, in Proceeding of the
26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 2009,
pp. 649-656.

S. Ma, X. SONG, AND J. HUANG, Supervised group Lasso with applications to microarray data
analysis, BMC Bioinformatics, 8 (2007), pp. 60-72.

A.S. NEMIROVSKY AND D.B. YUDIN, Problem Complexity and Method Efficiency in Optimiza-
tion, Wiley-Interscience Series in Discrete Mathematics, John Wiley and Sons, New York,
1983.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/28/14 to 158.182.168.57. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1040 B. HE, H. LIU, Z. WANG, AND X. YUAN

[43]

[44]

[45]
[46]
[47]

(48]

Y.E. NESTEROV, A method for solving the convex programming problem with convergence rate
O(1/k?), Dokl. Akad. Nauk SSSR, 269 (1983), pp. 543-547 (in Russian).

Y. NESTEROV, Gradient Methods for Minimizing Composite Objective Function, Core Discus-
sion Paper 2007/96, Center for Operations Research and Econometrics, Catholic University
of Louvain, Louvain-la-Neuve, Belgium, 2007.

M.Y. PARK AND T. HASTIE, L1-regularization path algorithm for generalized linear models, J.
R. Stat. Soc. Ser. B Methodol., 69 (2007), pp. 659-677.

D.W. PEACEMAN AND H.H. RACHFORD, JR., The numerical solution of parabolic and elliptic
differential equations, J. Soc. Indust. Appl. Math., 3 (1955), pp. 28—-41.

W.K. PratTT, Digital Image Processing: PIKS Inside, 3rd ed., John Wiley and Sons, New
York, 2001.

L. RUDIN, S. OSHER, AND E. FATEMI, Nonlinear total variation based noise removal algorithms,
Phys. D, 60 (1992), pp. 259-268.

M. SOUMEKH, Synthetic Aperture Radar Signal Processing, Wiley, New York, 1999.

B.P. SurTOoN, D.C. NOLL, AND J.A. FESSLER, Fast, iterative image reconstruction for MRI in
the presence of field inhomogeneities, IEEE Trans. Med. Imaging, 17 (2003), pp. 178-188.

R. TIBSHIRANI, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B,
32 (1996), pp. 267-288.

S.J. WRIGHT, R.D. Nowak, AND M.A.T. FIGUEIREDO, Sparse reconstruction by separable ap-
prozimation, IEEE Trans. Signal Process., 43 (2009), pp. 2479-2493.

T.T. Wu, Y.F. CHEN, T. HASTIE, E. SOBEL, AND K. LANGE, Genome-wide association analysis
by lasso penalized logistic regression, Bioinformatics, 19 (2009), pp. 714-720.

J. YANG AND Y. ZHANG, Alternating direction algorithms for £1-problems in compressive sens-
ing, STAM J. Sci. Comput., 33 (2011), pp. 250-278.

M. YUAN AND Y. LIN, Model selection and estimation in regression with grouped variables, J.
R. Stat. Soc. Ser. B Stat. Methodol., 68 (2006), pp. 49-67.

X.M. YUAN, Alternating direction methods for covariance selection models, J. Sci. Comput.,
51 (2012), pp. 261-273.

Y. ZHANG, User’s Guide for YALL1: Your Algorithms for L1 Optimization, Rice University
CAAM Technical Report TR09-17, Rice University, Houston, TX, 2009.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


