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Abstract This note provides a simple proof of a worst-case convergence rate mea-
sured by the iteration complexity for the Douglas–Rachford operator splitting method
for finding a root of the sum of two maximal monotone set-valued operators. The
accuracy of an iterate to the solution set is measured by the residual of a characteri-
zation of the original problem, which is different from conventional measures such as
the distance to the solution set.
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1 Introduction

We consider the problem
0 ∈ A(u) + B(u), (1.1)
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where A and B are continuous maximal monotone set-valued operators in �n . As in
[17], throughout the solution set of (1.1) is assumed to be nonempty. That is, there
exists u ∈ �n, a ∈ A(u) and b ∈ B(u) such that a + b = 0.

A fundamental method for solving (1.1) is the proximal point algorithm (PPA),
which dates back to [18,20,22]. The iterative scheme of PPA for (1.1) is

0 ∈ A
(
uk+1

)
+ B

(
uk+1

)
+ 1

λ

(
uk+1 − uk

)
, (1.2)

where λ > 0 is the proximal parameter. For a monotone set-valued operator (say T )
and a positive scalar λ, T ’s resolvent operator is defined as Jλ

T := (I +λT )−1. Recall
that the resolvent operator of a monotone set-valued operator is single-valued. We
refer to, e.g. [1,3,19], for the definition and more properties of resolvent operators.
According to (1.2), applying PPA to (1.1) requires computing the resolvent operator of
A+ B exactly. This task, however, could be as hard as the original problem (1.1). This
difficulty thus has inspired many operator splitting methods in the literature, whose
common idea is to alleviate the computation of Jλ

A+B to individual computation of
Jλ
A and Jλ

B , see [9,13,17] to mention a few earlier articles.
This short note only discusses the Douglas–Rachford operator splitting method

discussed in [17]. For the special case of (1.1) where both A and B are single-valued
linear operators, the following schemewas proposed in [7] for solving heat conduction
problems:
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)
+ B

(
uk+1

) − B
(
uk

) = 0.
(1.3)

Eliminating uk+ 1
2 in the above scheme yields

(
Jλ
B

)−1
uk+1 =

(
Jλ
A(2Jλ

B − I ) + (I − Jλ
B)

) (
Jλ
B

)−1
(
uk

)
. (1.4)

Therefore, defining zk = (Jλ
B)−1uk which equivalently means uk = (Jλ

B)(zk), the
scheme (1.4) can be written as

zk+1 = Jλ
A

(
2Jλ

B − I
)
zk + (

I − Jλ
B

)
zk . (1.5)

In [17], Lions and Mercier extended the scheme (1.5) to the generic case where both
A and B are set-valued nonlinear operators in (1.1). As elaborated in [17], when
A and B are set-valued nonlinear operators, the scheme (1.5) should be understood in
this way: Starting from an arbitrary iterate u0 in the domain of B, choosing b0 ∈ B(u0)
and setting z0 = u0 + λb0, then u0 = Jλ

B(z0) (the existence of the pair (u0, z0) is
unique by the Representation Lemma, see Corollary 2.3 in [9]). Thus a sequence {zk}
is generated by the Douglas–Rachford scheme (1.5); and consequently a sequence
{uk := Jλ

B(zk)} converging to a solution point of (1.1) can be generated (see Theorem
3.15 in [8]). We refer to [6] for the precise connection between (1.5) and the original
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Douglas–Rachford scheme in [7] for heat conduction problems. It turns out that the
scheme (1.5) is the root of a number of celebrated methods such as the alternating
direction method of multipliers (ADMM) in [11,12] (see the analysis in [5]) and a
primal Douglas–Rachford scheme in [10].

We focus on analyzing the convergence rate of the Douglas–Rachford scheme
(1.5). An important reference is [9], where the Douglas–Rachford operator splitting
method in [17] is shown to be a special application of the PPA. For some special
cases of (1.1) such as the variational inequality problem where the mapping B is
the normal cone of a nonempty closed convex set in �n , and the convex minimiza-
tion problem where the mapping B is zero and A is the subdifferential of a convex
function, a worst-case convergence rate of the PPA has been analyzed in the litera-
ture, see. e.g. [14,21]. In [16], a worst-case convergence rate measured by the itera-
tion complexity was established for ADMM, a special case of the Douglas–Rachford
scheme (1.5) in the context of convex optimization with a separable objective func-
tion. We also refer to [2,4] for some relevant convergence rate results for projection
methods.

The purpose of this note is to provide a novel and very simple proof to derive a
worst-case O(1/

√
k) convergence rate for the Douglas–Rachford scheme (1.5). Here,

a worst-case O(1/
√
k) convergence rate means the accuracy (measured by a certain

criterion) to a solution is of order O(1/
√
k) after k iterations of an iterative scheme; or

equivalently, it requires at most O(1/ε2) iterations to achieve an approximate solution
with an accuracy of ε. Note that we analyze the generic case of (1.1) without any
assumption on the structure of A and B.

2 Preliminaries

First, let us make clear how to measure the accuracy of an iterate of (1.5) to a solution
point of (1.1). Let

Rλ
T := 2Jλ

T − I

denote the nonexpansive “reflection” operator associated with a monotone set-valued
operator T , see e.g. [1,19]. In [9], the scheme (1.5) was explained as an application
of PPA to the maximal monotone operator Sλ,A,B which is defined as

Sλ,A,B := {(v + λb, u − v)|(u, b) ∈ B, (v, a) ∈ A, v + λa = u − λb}.

That is, the scheme (1.5) can be written as

zk+1 =
(
Jλ
A(2Jλ

B − I ) + (I − Jλ
B)

)
zk = (I + Sλ,A,B)−1zk = JSλ,A,B (zk).

Therefore, we have

Sλ,A,B(z∗) = 0 ⇔ z∗ = JSλ,A,B (z∗) ⇔ z∗ =
(
Jλ
A(2Jλ

B − I ) + (I − Jλ
B)

)
z∗ ⇔ z∗

= Rλ
A ◦ Rλ

B(z∗),
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where “◦” is the composition of two operators, see details in [1]. Moreover, according
to Theorem 5 in [9], for any given root z∗ of Sλ,A,B , Jλ

B(z∗) is a root of A+ B. Hence,
Jλ
B(z∗) is a solution point of (1.1) whenever z∗ satisfies

z∗ = Rλ
A ◦ Rλ

B(z∗). (2.1)

Thus, the accuracy of a vector z ∈ �n to a point satisfying (2.1) can be measured by
‖e(z, λ)‖ where

e(z, λ) := 1

2

(
z − Rλ

A ◦ Rλ
B(z)

)
(2.2)

and ‖ · ‖ is the Euclidean norm. Note that the measure (2.2) is different from con-
ventional measures such as the distance of an iterate to the solution set. Furthermore,
using the notation Rλ

T , the Douglas–Rachford scheme (1.5) can be written as

zk+1 = Jλ
A(2Jλ

B − I )zk + (I − Jλ
B)zk

= zk + 1

2

(
2Jλ

A(2Jλ
B(zk) − zk) − (2Jλ

B(zk) − zk) − zk
)

= zk + 1

2

(
Rλ
A ◦ Rλ

B(zk) − zk
)
. (2.3)

Hence, using the notation e(z, λ) in (2.2), we have

zk+1 = zk − e(zk, λ). (2.4)

In our discussion, inspired by [23] (see pp. 240) and [15] for the variational inequality
problem case of (1.1), our analysis will be conducted for a general version of (2.4):

zk+1 = zk − γ e(zk, λ), (2.5)

with γ ∈ (0, 2). Obviously, the original Douglas–Rachford scheme (2.4) is recovered
when γ = 1 in (2.5). In addition, if γ is allowed to vary by iterations, the scheme
(2.5) is exactly the generalized Douglas–Rachford scheme discussed in [9]. Since we
focus on the generic case of (1.1) where no specific structure of A and B is assumed,
we do not discuss how to solve the subproblem (2.5).

Then, we establish some preliminary results which are useful for further analysis.
Since the proof of Lemma 2.1 could be found easily in many literatures such as [1,19],
we omit it (see Figure 1 in [9] for an illustration).

Lemma 2.1 Let T be a monotone set-valued operator in �n. Then, T ′s reflection
operator Rλ

T is nonexpansive, i.e.,

‖Rλ
T (v) − Rλ

T (ṽ)‖ ≤ ‖v − ṽ‖, ∀ v, ṽ ∈ �n . (2.6)

The following lemma and its corollary are essential tools for establishing the main
result later.
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Lemma 2.2 Let e(z, λ) be defined in (2.2) with λ > 0. Then, e(z, λ) is firmly nonex-
pansive. That is,

(z − z̃)T
(
e(z, λ) − e(z̃, λ)

) ≥ ‖e(z, λ) − e(z̃, λ)‖2, ∀z, z̃ ∈ �n . (2.7)

Proof The proof can be regarded as a conclusion of Lemma 1 in [9]. It yields from
Lemma 2.1 that Rλ

AR
λ
B is nonexpansive, so is −Rλ

AR
λ
B , and hence e(·, λ) = 1

2 (I −
Rλ
A ◦ Rλ

B) must be firmly nonexpansive. The proof is complete. �
Corollary 2.1 For any z ∈ �n and z∗ satisfying (2.1), we have

(z − z∗)T e(z, λ) ≥ ‖e(z, λ)‖2. (2.8)

Proof By setting z̃ = z∗ and using e(z∗, λ) = 0, (2.8) is derived from (2.7) immedi-
ately. �

The proof of the next lemma is very simple, and it is relevant to Theorem 3 in [9].

Lemma 2.3 Let {zk} be the sequence generated by (2.5). For any z∗ satisfying (2.1),
we have

‖zk+1 − z∗‖2 ≤ ‖zk − z∗‖2 − γ (2 − γ )‖e(zk, λ)‖2. (2.9)

Proof Using (2.5), we get

‖zk+1 − z∗‖2 = ‖(zk − z∗) − γ e(zk, λ)‖2
= ‖zk − z∗‖2 − 2γ (zk − z∗)T e(zk, λ) + γ 2‖e(zk, λ)‖2. (2.10)

Substituting (2.8) into the right-hand side of (2.10), we obtain (2.9). The proof is
complete. �

Below we show that for the sequence {zk} generalized by (2.5), {‖e(zk, λ)‖} is
monotonically decreasing.

Lemma 2.4 Let {zk} be the sequence generated by (2.5). Then we have

‖e(zk+1, λ)‖2 ≤ ‖e(zk, λ)‖2 − 2 − γ

γ
‖e(zk, λ) − e(zk+1, λ)‖2. (2.11)

Proof Setting z = zk and z̃ = zk+1 in (2.7), we get

(zk − zk+1)T {e(zk, λ) − e(zk+1, λ)} ≥ ‖e(zk, λ) − e(zk+1, λ)‖2. (2.12)

Note that [(see (2.5)]

zk − zk+1 = γ e(zk, λ).

Hence, it follows that
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e(zk, λ)T {e(zk, λ) − e(zk+1, λ)} ≥ 1

γ
‖e(zk, λ) − e(zk+1, λ)‖2. (2.13)

On the other hand, we have the identity

‖e(zk+1, λ)‖2 = ‖e(zk, λ)‖2 − 2e(zk, λ)T {e(zk, λ) − e(zk+1, λ)}
+ ‖e(zk, λ) − e(zk+1, λ)‖2.

Replacing the second term of the right-hand side of this identity with (2.13), we obtain
the assertion (2.11). The proof is complete. �

3 Main result

In this section,we establish aworst-caseO(1/
√
k) convergence rate for the generalized

Douglas–Rachford scheme (2.5).

Theorem 3.1 Let {zk} be the sequence generated by (2.5). For any integer k >

0 and z∗ satisfying (2.1), we have

‖e(zk, λ)‖2 ≤ 1

γ (2 − γ )(k + 1)
‖z0 − z∗‖2. (3.1)

Proof First, it follows from (2.9) that

∞∑
i=0

γ (2 − γ )‖e(zi , λ)‖2 ≤ ‖z0 − z∗‖2 (3.2)

for any z∗ satisfying (2.1). In addition, it follows from (2.11) that the sequence
{‖e(zi , λ)‖2} is monotonically non-increasing. Therefore,we have

(k + 1)‖e(zk, λ)‖2 ≤
k∑

i=0

‖e(zi , λ)‖2. (3.3)

The assertion (3.1) follows from (3.2) and (3.3) directly. �
Since we use ‖e(z, λ)‖ to measure the accuracy of z ∈ �n to a point satisfying

(2.1) [see (2.2)], the assertion (3.1) indicates a worst-case O(1/
√
k) convergence rate

measured by the iteration complexity of the sequence {zk}. Also, recall uk := Jλ
B(zk).

It follows from Theorem 2 in [9] that an operator B is monotone if and only if its
resolvent Jλ

B is firmly nonexpansive. Thus, Jλ
B is nonexpansive (see also Lemma 1 in

[9]); and we have

‖Jλ
B(u1) − Jλ

B(u2)‖ ≤ ‖u1 − u2‖, ∀ u1, u2 ∈ �n .
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Therefore, together with (2.5) and the result in Theorem 3.1, we have

‖uk+1 − uk‖2 = ‖Jλ
B(zk+1) − Jλ

B(zk)‖2
≤ ‖zk+1 − zk‖2
= γ 2‖e(zk, λ)‖2
≤ γ

(2 − γ )(k + 1)
‖z0 − z∗‖2 (3.4)

for any z∗ satisfying (2.1). Sincewe are considering the space�n for (1.1), the sequence
{uk} generated by (1.5) converges (in fact, strongly) to a solution point of (1.1), see
e.g. Theorem 3.15 in [8]. The convergence of {uk} and the inequality (3.4) thus imply a
worst-case O(1/

√
k) convergence rate of {uk} generated by the generalized Douglas–

Rachford scheme (2.5).
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