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Abstract Recently, the alternating direction method of multipliers (ADMM) has
received intensive attention from a broad spectrum of areas. The generalized ADMM
(GADMM) proposed by Eckstein and Bertsekas is an efficient and simple accel-
eration scheme of ADMM. In this paper, we take a deeper look at the linearized
version of GADMM where one of its subproblems is approximated by a lin-
earization strategy. This linearized version is particularly efficient for a number
of applications arising from different areas. Theoretically, we show the worst-
case O(1/k) convergence rate measured by the iteration complexity (k represents
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the iteration counter) in both the ergodic and a nonergodic senses for the lin-
earized version of GADMM. Numerically, we demonstrate the efficiency of this
linearized version of GADMM by some rather new and core applications in sta-
tistical learning. Code packages in Matlab for these applications are also devel-
oped.

Keywords Convex optimization · Alternating direction method of multipliers ·
Convergence rate · Variable selection · Discriminant analysis · Statistical learning

Mathematics Subject Classification 90C25 · 90C06 · 62J05

1 Introduction

A canonical convex optimization model with a separable objective function and linear
constraints is:

min { f1(x) + f2(y) | Ax + By = b, x ∈ X , y ∈ Y} , (1)

where A ∈ R
n×n1 , B ∈ R

n×n2 , b ∈ R
n , and X ⊂ R

n1 and Y ⊂ R
n2 are closed convex

nonempty sets, f1 : R
n1 → R and f2 : R

n2 → R are convex but not necessarily
smooth functions. Throughout our discussion, the solution set of (1) is assumed to be
nonempty, and the matrix B is assumed to have full column rank.

The motivation of discussing the particular model (1) with separable structures is
that each function fi might have its own properties, and we need to explore these
properties effectively in algorithmic design in order to develop efficient numerical
algorithms. A typical scenario is where one of the functions represents some data-
fidelity term, and the other is a certain regularization term—we can easily find such
an application in many areas such as inverse problem, statistical learning and image
processing. For example, the famous least absolute shrinkage and selection operator
(LASSO) model introduced in [44] is a special case of (1) where f1 is the �1-norm term
for promoting sparsity, f2 is a least-squares term multiplied by a trade-off parameter,
A = In×n , B = −In×n , b = 0, X = Y = R

n .
To solve (1), a benchmark is the alternating direction method of multipliers

(ADMM) proposed originally in [24] which is essentially a splitting version of the
augmented Lagrangian method in [34,42]. The iterative scheme of ADMM for solving
(1) reads as

xt+1 = argmin
x∈X

{
f1(x) − xT AT γ t + ρ

2
‖Ax + Byt − b‖2

}
,

yt+1 = argmin
y∈Y

{
f2(y) − yT BT γ t + ρ

2
‖Axt+1 + By − b‖2

}
, (2)

γ t+1 = γ t − ρ
(

Axt+1 + Byt+1 − b
)

,
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where γ ∈ R
n is the Lagrangian multiplier; ρ > 0 is a penalty parameter, and ‖ · ‖

is the Euclidean 2-norm. An important feature of ADMM is that the functions f1
and f2 are treated individually; thus the decomposed subproblems in (2) might be
significantly easier than the original problem (1). Recently, the ADMM has received
wide attention from a broad spectrum of areas because of its easy implementation and
impressive efficiency. We refer to [6,13,23] for excellent review papers for the history
and applications of ADMM.

In [21], the ADMM was explained as an application of the well-known Douglas-
Rachford splitting method (DRSM) in [36] to the dual of (1); and in [14], the DRSM
was further explained as an application of the proximal point algorithm (PPA) in [37].
Therefore, it was suggested in [14] to apply the acceleration scheme in [25] for the
PPA to accelerate the original ADMM (2). A generalized ADMM (GADMM for short)
was thus proposed:

xt+1 = argmin
x∈X

{
f1(x) − xT AT γ t + ρ

2
‖Ax + Byt − b‖2

}
,

yt+1 = argmin
y∈Y

{
f2(y) − yT BT γ t + ρ

2
‖αAxt+1 + (1 − α)(b − Byt ) + By − b‖2

}
,

γ t+1 = γ t − ρ
(
αAxt+1 + (1 − α)(b − Byt ) + Byt+1 − b

)
,

(3)
where the parameter α ∈ (0, 2) is a relaxation factor. Obviously, the generalized
scheme (3) reduces to the original ADMM scheme (2) when α = 1. Preserving the
main advantage of the original ADMM in treating the objective functions f1 and f2
individually, the GADMM (3) enjoys the same easiness in implementation while can
numerically accelerate (2) with some values of α, e.g., α ∈ (1, 2). We refer to [2,8,12]
for empirical studies of the acceleration performance of the GADMM.

It is necessary to discuss how to solve the decomposed subproblems in (2) and
(3). We refer to [41] for the ADMM’s generic case where no special property is
assumed for the functions f1 and f2, and thus the subproblems in (2) must be solved
approximately subject to certain inexactness criteria in order to ensure the convergence
for inexact versions of the ADMM. For some concrete applications such as those
arising in sparse or low-rank optimization models, one function (say, f1) is nonsmooth
but well-structured (More mathematically, the resolvent of ∂ f1 has a closed-form
representation), and the other function f2 is smooth and simple enough so that the
y-subproblem is easy (e.g., when f2 is the least-squares term). For such a case, instead
of discussing a generic strategy to solve the x-subproblem in (2) or (3) approximately,
we prefer to seek some particular strategies that can take advantage of the speciality of
f1 effectively. More accurately, when f1 is a special function such as the �1-norm or
nuclear-norm function arising often in applications, we prefer linearizing the quadratic
term of the x-subproblem in (2) or (3) so that the linearized x-subproblem has a closed-
form solution (amounting to estimating the resolvent of ∂ f1) and thus no inner iteration
is required. The efficiency of this linearization strategy for the ADMM has been well
illustrated in different literatures, see e.g., [52] for image reconstruction problems,
[48] for the Dantzig Selector model, and [50] for some low-rank optimization models.
Inspired by these applications, we thus consider the linearized version of the GADMM
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(“L-GADMM” for short) where the x-subproblem in (3) is linearized:

xt+1 = argmin
x∈X

{
f1(x) − xT AT γ t + ρ

2
‖Ax + Byt − b‖2 + 1

2
‖x − xt‖2

G

}
,

yt+1 = argmin
y∈Y

{
f2(y) − yT BT γ t + ρ

2
‖αAxt+1 + (1 − α)(b − Byt ) + By − b‖2

}
,

γ t+1 = γ t − ρ
(
αAxt+1 + (1 − α)(b − Byt ) + Byt+1 − b

)
,

(4)
where G ∈ R

n1×n1 is a symmetric positive definite matrix. Note that we use the
notation ‖x‖G to denote the quantity

√
xT Gx. Clearly, if X = R

n1 and we choose
G = τ In1 − ρAT A with the requirement τ > ρ‖AT A‖2, where ‖ · ‖2 denotes the
spectral norm of a matrix, the x-subproblem in (4) reduces to estimating the resolvent
of ∂ f1:

xt+1= argmin
x∈Rn1

{
f1(x)+ τ

2

∥∥∥x− 1

τ

(
(τ In1−ρAT A)xt −ρAT Byt +AT γ t +ρAT b)

)∥∥∥
2
}
,

which has a closed-form solution for some cases such as f1 = ‖x‖1. The scheme (4)
thus includes the linearized version of ADMM (see e.g. [48,50,52]) as a special case
with G = τ In1 − ρAT A and α = 1.

The convergence analysis of ADMM has appeared in earlier literatures, see e.g.,
[20,22,29,30]. Recently, it also becomes popular to estimate ADMM’s worst-case
convergence rate measured by the iteration complexity (see e.g., [39,40] for the ratio-
nale of measuring the convergence rate of an algorithm by means of its iteration
complexity). In [31], a worst-case O(1/k) convergence rate in the ergodic sense was
established for both the original ADMM scheme (2) and its linearized version (i.e.,
the special case of (4) with α = 1), and then a stronger result in a nonergodic sense
was proved in [32]. We also refer to [33] for an extension of the result in [32] to the
DRSM for the general problem of finding a zero point of the sum of two maximal
monotone operators, [11] for the linear convergence of the ADMM under additional
stronger assumptions, and [5,27] for the linear convergence of ADMM for the special
case of (1) where both f1 and f2 are quadratic functions.

This paper aims at further studying the L-GADMM (4) both theoretically and
numerically. Theoretically, we shall establish the worst-case O(1/k) convergence
rate in both the ergodic and a nonergodic senses for L-GADMM. This is the first
worst-case convergence rate for L-GADMM, and it includes the results in [8,32] as
special cases. Numerically, we apply the L-GADMM (4) to solve some rather new
and core applications arising in statistical learning. The acceleration effectiveness of
embedding the linearization technique with the GADMM is thus verified.

The rest of this paper is organized as follows. We summarize some preliminar-
ies which are useful for further analysis in Sect. 2. Then, we derive the worst-case
convergence rate for the L-GADMM (4) in the ergodic and a nonergodic senses in
Sects. 3 and 4, respectively. In Sect. 5, we apply the L-GADMM (4) to solve some
statistical learning applications and verify its numerical efficiency. Finally, we make
some conclusions in Sect. 6.
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2 Preliminaries

First, as well known in the literature (see, e.g. [30,31]), solving (1) is equivalent to solv-
ing the following variational inequality (VI) problem: Finding w∗ = (x∗, y∗, γ ∗) ∈
Ω := X × Y × R

n such that

f (u) − f (u∗) + (w − w∗)T F(w∗) ≥ 0, ∀w ∈ Ω, (5)

where f (u) = f1(x) + f2(y) and

u =
(

x
y

)
, w =

⎛
⎝

x
y
γ

⎞
⎠ , F(w) =

⎛
⎝

−AT γ

−BT γ

Ax + By − b

⎞
⎠ . (6)

We denote by VI(Ω, F, f ) the problem (5, 6). It is easy to see that the mapping F(w)

defined in (6) is affine with a skew-symmetric matrix; it is thus monotone:

(w1 − w2)
T (F(w1) − F(w2)

) ≥ 0, ∀w1, w2 ∈ X × Y × R
n .

This VI reformulation will provide significant convenience for theoretical analysis
later. The solution set of (5), denoted by Ω∗, is guaranteed to be nonempty under our
nonempty assumption on the solution set of (1).

Then, we define two auxiliary sequences for the convenience of analysis. More
specifically, for the sequence {wt } generated by the L-GADMM (4), let

w̃t =
⎛
⎝

x̃t

ỹt

γ̃ t

⎞
⎠ =
⎛
⎝

xt+1

yt+1

γ t − ρ(Axt+1 + Byt − b)

⎞
⎠ and ũt =

(̃
xt

ỹt

)
. (7)

Note that, by the definition of γ t+1 in (4), we get

γ t − γ t+1 = −ρB
(

yt − yt+1
)

+ ρα
(

Axt+1 + Byt − b
)

.

Plugging the identities ρ(Axt+1 + Byt − b) = γ t − γ̃ t and yt+1 = ỹt [see (7)] into
the above equation, it holds that

γ t − γ t+1 = −ρB
(
yt − ỹt)+ α

(
γ t − γ̃ t) . (8)

Then we have
wt − wt+1 = M

(
wt − w̃t) , (9)

where M is defined as

M =
⎛
⎜⎝

In1 0 0

0 In2 0

0 −ρB αIn

⎞
⎟⎠ . (10)

123



E. X. Fang et al.

For notational simplicity, we define two matrices that will be used later in the proofs:

H =
⎛
⎜⎝

G 0 0

0 ρ
α

BT B 1−α
α

BT

0 1−α
α

B 1
αρ

In

⎞
⎟⎠ and Q =

⎛
⎝

G 0 0
0 ρBT B (1 − α)BT

0 −B 1
ρ

In

⎞
⎠ . (11)

It is easy to verify that
Q = HM. (12)

3 A worst-case O(1/k) convergence rate in the ergodic sense

In this section, we establish a worst-case O(1/k) convergence rate in the ergodic sense
for the L-GADMM (4). This is a more general result than that in [8] which focuses
on the original GADMM (3) without linearization.

We first prove some lemmas. The first lemma is to characterize the accuracy of the
vector w̃t to a solution point of VI(Ω, F, f ).

Lemma 1 Let the sequence {wt } be generated by the L-GADMM (4) and the associ-
ated sequence {w̃t } be defined in (7). Then we have

f (u) − f
(̃
ut)+ (w − w̃t)T F

(
w̃t) ≥ (w − w̃t)T Q

(
wt − w̃t) , ∀w ∈ Ω, (13)

where Q is defined in (11).

Proof This lemma is proved by deriving the optimality conditions for the minimization
subproblems in (4) and performing some algebraic manipulation. By deriving the
optimality condition of the x-subproblem of (4), as shown in [31], we have

f1(x) − f1(xt+1) + (x − xt+1)T
(

− AT [γ t − ρ(Axt+1 + Byt − b)] − xt )
)

≥ 0,∀x ∈ X . (14)

Using x̃t and γ̃ t defined in (7, 14) can be rewritten as

f1(x) − f1(̃xt ) + (x − x̃t)T [−AT γ̃ t + G
(̃
xt − xt)] ≥ 0, ∀x ∈ X . (15)

Similarly, deriving the optimality condition for the y-subproblem in (4), we have

f2(y) − f2

(
yt+1
)

+
(

y − yt+1
)T (−BT γ t+1

)
≥ 0, ∀y ∈ Y . (16)

From (8), we get

γ t+1 = γ̃ t − ρB
(̃
yt − yt)− (1 − α)

(
γ̃ t − γ t) . (17)
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Substituting (17) into (16) and using the identity yt+1 = ỹt , we obtain that

f2(y) − f2
(̃
yt)+ (y − ỹt)T [− BT γ̃ t + ρBT B

(̃
yt − yt)+ (1 − α)BT (γ̃ t − γ t) ]

≥ 0,∀y ∈ Y . (18)

Meanwhile, the third row of (7) implies that

(
Ãxt + B̃yt − b

)− B
(̃
yt − yt)+ 1

ρ

(
γ̃ t − γ t) = 0. (19)

Combining (15, 18) and (19), we get

f (u) − f (̃ut ) +
⎛
⎝

x − x̃t

y − ỹt

γ − γ̃ t

⎞
⎠

T ⎧⎨
⎩

⎛
⎝

−AT γ̃ t

−BT γ̃ t

Ãxt + B̃yt − b

⎞
⎠

+
⎛
⎝

G(̃xt − xt )

ρBT B(̃yt − yt ) + (1 − α)BT (γ̃ t − γ t )

−B(̃yt − yt ) + 1
ρ
(γ̃ t − γ t )

⎞
⎠
⎫⎬
⎭ ≥ 0, ∀w ∈ Ω. (20)

By the definition of F in (6) and Q in (11, 20) can be written as

f (u) − f (̃ut ) + (w − w̃t)T [F(w̃t ) + Q
(
w̃t − wt)] ≥ 0, ∀w ∈ Ω.

The assertion (13) is proved. 
�
Recall the VI characterization (5, 6) of the model (1). Thus, according to (13),

the accuracy of w̃t to a solution of VI(Ω, F, f ) is measured by the quantity (w −
w̃t )T Q(wt − w̃t ). In the next lemma, we further explore this term and express it in
terms of some quadratic terms, with which it becomes more convenient to estimate
the accuracy of w̃t and thus to estimate the convergence rate for the scheme (4). Note
that the matrix B is of full column rank and the matrix G is positive definite. Thus,
the matrix H defined in (11) is positive definite for α ∈ (0, 2) and ρ > 0; and recall
that we use the notation

‖w − v‖H =
√

(w − v)T H(w − v)

for further analysis.

Lemma 2 Let the sequence {wt } be generated by the L-GADMM (4) and the associ-
ated sequence {w̃t } be defined in (7). Then for any w ∈ Ω , we have

(
w − w̃t)T Q

(
wt − w̃t)

= 1

2

(
‖w − wt+1‖2

H − ‖w − wt‖2
H

)
+ 1

2
‖xt − x̃t‖2

G + 2 − α

2ρ
‖γ t − γ̃ t‖2. (21)
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Proof Using Q = HM and M(wt − w̃t ) = (wt − wt+1) [see (9)], it follows that

(
w−w̃t)T Q

(
wt − w̃t)=(w− w̃t)T HM

(
wt − w̃t) = (w − w̃t)T H

(
wt − wt+1

)
.

(22)
For the vectors a, b, c, d in the same space and a matrix H with appropriate dimen-
sionality, we have the identity

(a − b)T H(c − d) = 1

2

(
‖a − d‖2

H − ‖a − c‖2
H

)
+ 1

2

(
‖c − b‖2

H − ‖d − b‖2
H

)
.

In this identity, we take

a = w, b = w̃t , c = wt and d = wt+1,

and plug them into the right-hand side of (22). The resulting equation is

(
w − w̃t)T H

(
wt − wt+1

)

= 1

2

(
‖w − wt+1‖2

H − ‖w − wt‖2
H

)
+ 1

2

(
‖wt − w̃t‖2

H − ‖wt+1 − w̃t‖2
H

)
.

The remaining task is to prove

‖wt − w̃t‖2
H − ‖wt+1 − w̃t‖2

H = ‖xt − x̃t‖2
G + 2 − α

ρ
‖γ t − γ̃ t‖2. (23)

By the definition of H given in (11), we have

‖wt − w̃t‖2
H = ‖xt − x̃t‖2

G + 1

αρ

(‖ρB(yt − ỹt )‖2 + ‖γ t − γ̃ t‖2

+2ρ(1 − α)(yt − ỹt )T BT (γ t − γ̃ t )
)

= ‖xt − x̃t‖2
G + 1

αρ
‖ρB(yt − ỹt ) + (1 − α)(γ t − γ̃ t )‖2

+2 − α

ρ
‖γ t − γ̃ t‖2. (24)

On the other hand, we have by (17) and the definition that ũt = ut+1,

‖wt+1 − w̃t‖2
H = 1

αρ
‖γ t+1 − γ̃ t‖2

= 1

αρ
‖ρB
(
yt − ỹt)+ (1 − α)

(
γ t − γ̃ t )

) ‖2. (25)

Subtracting (25) from (24), performing some algebra yields (23), and the proof is
completed. 
�
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Lemmas 1 and 2 actually reassemble a simple proof for the convergence of the
L-GADMM (4) from the perspectives of contraction type methods.

Theorem 1 The sequence {wt } generated by the L-GADMM (4) satisfies that for all
w∗ ∈ Ω∗

‖wt+1 − w∗‖2
H ≤ ‖wt − w∗‖2

H −
(

‖xt − xt+1‖2
G + 2 − α

α2 ‖vt − vt+1‖2
H0

)
, (26)

where

v =
(

y
γ

)
and H0 =

(
ρBT B 0

0 1
ρ

In

)
. (27)

Proof Set w = w∗ in the assertion of Lemma 2, we get

‖wt − w∗‖2
H − ‖wt+1 − w∗‖2

H

= ‖xt − x̃t‖2
G + 2 − α

ρ
‖γ t − γ̃ t‖2 + 2

(
w̃t − w∗)T HM

(
wt − w̃t) .

On the other hand, by using (13) and the monotonicity of F , we have

(
w̃t − w∗)T HM

(
wt − w̃t) ≥ f (̃ut ) − f (u∗) + (w̃t − w∗)T F(w̃t ) ≥ 0.

Consequently, we obtain

‖wt − w∗‖2
H − ‖wt+1 − w∗‖2

H ≥ ‖xt − x̃t‖2
G + 2 − α

ρ
‖γ t − γ̃ t‖2. (28)

Since ỹt = yt+1, it follows from (9) that

γ t − γ̃ t = 1

α

(
ρB(yt − yt+1) + (γ t − γ t+1)

)
.

Substituting it into (28), we obtain

‖wt − w∗‖2
H − ‖wt+1 − w∗‖2

H

≥ ‖xt − x̃t‖2
G + (2 − α)

α2ρ
‖ρB
(

yt − yt+1
)

+
(
γ t − γ t+1

)
‖2. (29)

Note that (16) is true for any integer t ≥ 0. Thus we have

f2(y) − f2(yt ) + (y − yt)T (−BT γ t
)

≥ 0, ∀ y ∈ Y . (30)

Setting y = yt and y = yt+1 in (16) and (30), respectively, we get

f2(yt ) − f2(yt+1) +
(

yt − yt+1
)T (−BT γ t+1

)
≥ 0

and
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f2(yt+1) − f2(yt ) +
(

yt+1 − yt
)T (−BT γ t

)
≥ 0.

Adding the above two inequalities yields

(
γ t − γ t+1

)T
B
(

yt − yt+1
)

≥ 0. (31)

Substituting it in (29) and using x̃t = xt+1, we obtain

‖wt − w∗‖2
H − ‖wt+1 − w∗‖2

H

≥ ‖xt − xt+1‖2
G + 2 − α

α2

(
ρ‖B
(

yt − yt+1
)

‖2 + 1

ρ
‖γ t − γ t+1‖2

)
,

and the assertion of this theorem follows directly. 
�
Remark 1 Since the matrix H defined in (11) is positive definite, the assertion (26)
implies that the sequence {wt } generated by the L-GADMM (4) is contractive with
respect to Ω∗ (according to the definition in [4]). Thus, the convergence of {wt } can
be trivially derived by applying the standard technique of contraction methods.

Remark 2 For the special case where α = 1, i.e., the L-GADMM (4) reduces to the
split inexact Uzawa method in [52,53], due to the structure of the matrix H [see (11)],
the inequality (26) is simplified to

‖wt+1 − w∗‖2
H ≤ ‖wt − w∗‖2

H − ‖wt − wt+1‖2
H, ∀ w∗ ∈ Ω∗.

Moreover, when α = 1 and G = 0, i.e., the L-GADMM (4) reduces to the ADMM
(2), the inequality (26) becomes

‖vt+1 − v∗‖2
H0

≤ ‖vt − v∗‖2
H0

− ‖vt − vt+1‖2
H0

, ∀ v∗ ∈ V∗,

where v and H0 are defined in (27). This is exactly the contraction property of the
ADMM (2) analyzed in the appendix of [6].

Now, we are ready to establish a worst-case O(1/k) convergence rate in the ergodic
sense for the L-GADMM (4). Lemma 2 plays an important role in the proof.

Theorem 2 Let H be given by (11) and {wt } be the sequence generated by the
L-GADMM (4). For any integer k > 0, let ŵk be defined by

ŵk = 1

k + 1

k∑
t=0

w̃t , (32)

where w̃t is defined in (7). Then, we have ŵk ∈ Ω and

f (̂uk) − f (u) + (ŵk − w)T F(w) ≤ 1

2(k + 1)
‖w − w0‖2

H, ∀w ∈ Ω.
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Proof First, because of (7) and wt ∈ Ω , it holds that w̃t ∈ Ω for all t ≥ 0. Thus,
together with the convexity of X and Y , (84) implies that ŵk ∈ Ω . Second, due to the
monotonicity, we have

(
w − w̃t)T F(w) ≥ (w − w̃t)T F

(
w̃t) , (33)

thus Lemmas 1 and 2 imply that for all w ∈ Ω ,

f (u) − f (̃ut ) + (w − w̃t )T F(w) + 1

2
‖w − wt‖2

H ≥ 1

2
‖w − wt+1‖2

H. (34)

Summing the inequality (34) over t = 0, 1, . . . , k, we obtain that for all w ∈ Ω

(k + 1) f (u) −
k∑

t=0

f (̃ut ) +
(

(k + 1)w −
k∑

t=0

w̃t

)T

F(w) + 1

2
‖w − w0‖2

H ≥ 0.

Using the notation of ŵt , it can be written as for all w ∈ Ω

1

k + 1

k∑
t=0

f (̃ut ) − f (u) + (ŵk − w)T F(w) ≤ 1

2(k + 1)
‖w − w0‖2

H. (35)

Since f (u) is convex and

ûk = 1

k + 1

k∑
t=0

ũt ,

we have that

f (̂uk) ≤ 1

k + 1

k∑
t=0

f (̃ut ).

Substituting it into (35), the assertion of this theorem follows directly. 
�
For an arbitrary substantial compact set D ⊂ Ω , we define

D = sup
{
‖w − w0‖H | w ∈ D

}
,

where w0 = (x0, y0, γ 0) is the initial point. After k iterations of the L-GADMM (4),
we can find a ŵk ∈ Ω such that

sup
w∈D

{
f (̂uk) − f (u) + (ŵk − w)T F(w)

}
≤ D2

2k
.

A worse-case O(1/k) convergence rate in the ergodic sense is thus proved for the
L-GADMM (4).
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4 A worst-case O(1/k) convergence rate in a nonergodic sense

In this section, we prove a worst-case O(1/k) convergence rate in a nonergodic sense
for the L-GADMM (4). The result includes the assertions in [32] for the ADMM and
its linearized version as special cases.

For the right-hand-side of the inequality (21) in Lemma 2, the first term 1
2 (‖w −

wt+1‖2
H −‖w−wt‖2

H) is already in the form of the difference to w of two consecutive
iterates, which is ideal for performing recursively algebraic reasoning in the proof of
convergence rate (see theorems later). Now we have to deal with the last two terms in
the right-hand side of (21) for the same purpose. In the following lemma, we find a
bound in the term of ‖wt − wt+1‖2

H for the sum of these two terms.

Lemma 3 Let the sequence {wt } be generated by the L-GADMM (4) and the associ-
ated sequence {w̃t } be defined in (7). Then we have

‖xt − x̃t‖2
G + 2 − α

ρ
‖γ t − γ̃ t‖2 ≥ cα‖wt − wt+1‖2

H, (36)

where

cα = min

{
2 − α

α
, 1

}
> 0. (37)

Proof Similar to (24), it follows from x̃t = xt+1 and the definition of H that

‖wt − wt+1‖2
H = ‖xt − x̃t‖2

G + 1

αρ

(
‖ρB
(

yt − yt+1
)

‖2 + ‖γ t − γ t+1‖2

+2(1 − α)ρ
(

yt − yt+1
)T

BT
(
γ t − γ t+1

))
. (38)

From (31, 8) and the assumption α ∈ (0, 2), we have

∥∥∥ρB
(

yt − yt+1
)∥∥∥

2 + ‖γ t − γ t+1‖2 + 2(1 − α)ρ
(

yt − yt+1
)T

BT
(
γ t − γ t+1

)

≤
∥∥∥ρB
(

yt − yt+1
)∥∥∥

2 + ‖γ t − γ t+1‖2 + 2ρ
(

yt − yt+1
)T

BT
(
γ t − γ t+1

)

=
∥∥∥ρB(yt − yt+1) +

(
γ t − γ t+1

)∥∥∥
2

= α2‖γ t − γ̃ t‖2. (39)

Using (38) and (39), we have

‖wt − wt+1‖2
H ≤ ‖xt − x̃t‖2

G + α

ρ
‖γ t − γ̃ t‖2.
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Since α ∈ (0, 2), we get (2 − α)/α > 0, 1 ≥ cα > 0 and

‖xt − x̃t‖2
G + 2 − α

ρ
‖γ t − γ̃ t‖2

≥ min

{
2 − α

α
, 1

}(
‖xt − x̃t‖2

G + α

ρ
‖γ t − γ̃ t‖2

)

≥ cα‖wt − wt+1‖2
H.

The proof is completed. 
�
With Lemmas 1, 2 and 3, we can find a bound of the accuracy of w̃t to a solution

point of VI(Ω, F, f ) in term of some quadratic terms. We show it in the next theorem.

Theorem 3 Let the sequence {wt } be generated by the L-GADMM (4) and the asso-
ciated sequence {w̃t } be defined in (7). Then for any w ∈ Ω , we have

f (u) − f (̃ut ) + (w − w̃t)T F(w)

≥ 1

2

(
‖w − wt+1‖2

H − ‖w − wt‖2
H

)
+ cα

2
‖wt − wt+1‖2

H, (40)

where H and cα > 0 are defined in (11) and (37), respectively.

Proof Using the monotonicity of F(w) [see (33)] and replacing the right-hand side
term in (13) with the equality (21), we obtain that

f (u) − f (̃ut ) + (w − w̃t)T F(w)

≥ 1

2

(
‖w − wt+1‖2

H − ‖w − wt‖2
H

)
+ 1

2

(
‖xt − x̃t‖2

G + 2 − α

ρ
‖γ t − γ̃ t‖2

)
.

The assertion (40) follows by plugging (36) into the above inequality immediately.

�

Now we show an important inequality for the scheme (4) by using Lemmas 1, 2
and 3. This inequality immediately shows the contraction of the sequence generated by
(4), and based on this inequality we can establish its worst-case O(1/k) convergence
rate in a nonergodic sense.

Theorem 4 The sequence {wt } generated by the L-GADMM (4) satisfies

‖wt+1 − w∗‖2
H ≤ ‖wt − w∗‖2

H − cα‖wt − wt+1‖2
H, ∀w∗ ∈ Ω∗, (41)

where H and cα > 0 are defined in (11) and (37), respectively.

Proof Setting w = w∗ in (40), we get

f (u∗) − f (̃ut ) + (w∗ − w̃t )T F(w∗)

≥ 1

2

(
‖w∗ − wt+1‖2

H − ‖w∗ − wt‖2
H

)
+ cα

2
‖wt − wt+1‖2

H.

123



E. X. Fang et al.

On the other hand, since w̃t ∈ Ω , and w∗ ∈ Ω∗, we have

0 ≥ f (u∗) − f (̃ut ) + (w∗ − w̃t)T F(w∗).

From the above two inequalities, the assertion (41) is proved. 
�
Remark 3 Theorem 4 also explains why the relaxation parameter α is restricted into
the interval (0, 2) for the L-GADMM (4). In fact, if α ≤ 0 or α ≥ 2, then the constant
cα defined in (37) is only non-positive and the inequality (41) does not suffice to ensure
the strict contraction of the sequence generated by (4); it is thus difficult to establish
its convergence. We will empirically verify the failure of convergence for the case of
(4) with α = 2 in Sect. 5.

To establish a worst-case O(1/k) convergence rate in a nonergodic sense for the
scheme (4), we first have to mention that the term ‖wt − wt+1‖2

H can be used to
measure the accuracy of an iterate. This result has been proved in some literatures
such as [32] for the original ADMM.

Lemma 4 For a given wt , let wt+1 be generated by the L-GADMM (4). When ‖wt −
wt+1‖2

H = 0, w̃t defined in (7) is a solution to (5).

Proof By Lemma 1 and (22), it implies that for all w ∈ Ω ,

f (u) − f
(̃
ut)+ (w − w̃t)T F

(
w̃t) ≥ (w − w̃t)T H

(
wt − wt+1

)
. (42)

As H is positive definite, the right-hand side of (42) vanishes if ‖wt+1 − wt‖2
H = 0,

since we have H(wt+1 − wt ) = 0 whenever ‖wt+1 − wt‖2
H = 0. The assertion is

proved. 
�
Now, we are ready to establish a worst-case O(1/k) convergence rate in a noner-

godic sense for the scheme (4). First, we prove some lemmas.

Lemma 5 Let the sequence {wt } be generated by the L-GADMM (4) and the associ-
ated {w̃t } be defined in (7); the matrix Q be defined in (11). Then, we have

(
w̃t − w̃t+1

)T
Q
[(

wt − wt+1
)

−
(

w̃t − w̃t+1
)]

≥ 0. (43)

Proof Setting w = w̃t+1 in (13), we have

f
(

ũt+1
)

− f (̃ut ) +
(

w̃t+1 − w̃t
)T

F
(
w̃t) ≥
(

w̃t+1 − w̃t
)T

Q
(
wt − w̃t) . (44)

Note that (13) is also true for t := t + 1 and thus for all w ∈ Ω ,

f (u) − f
(

ũt+1
)

+
(

w − w̃t+1
)T

F
(

w̃t+1
)

≥
(

w − w̃t+1
)T

Q
(

wt+1 − w̃t+1
)

.
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Setting w = w̃t in the above inequality, we obtain

f
(̃
ut)− f

(
ũt+1
)
+
(

w̃t − w̃t+1
)T

F
(

w̃t+1
)

≥
(

w̃t − w̃t+1
)T

Q
(

wt+1 − w̃t+1
)

.

(45)
Adding (44) and (45) and using the monotonicity of F , we get (43) immediately. The
proof is completed. 
�
Lemma 6 Let the sequence {wt } be generated by the L-GADMM (4) and the asso-
ciated {w̃t } be defined in (7); the matrices M, H and Q be defined in (10) and (11).
Then, we have

(
wt − w̃t)T MT HM

[(
wt − w̃t)−

(
wt+1 − w̃t+1

)]

≥ 1

2

∥∥∥(wt − w̃t)−
(

wt+1 − w̃t+1
)∥∥∥

2

(QT +Q)
.

(46)

Proof Adding the equation

[(
wt − wt+1

)
−
(

w̃t − w̃t+1
)]T

Q
[(

wt − wt+1
)

−
(

w̃t − w̃t+1
)]

= 1

2

∥∥∥(wt − w̃t)−
(

wt+1 − w̃t+1
)∥∥∥

2

(QT +Q)

to both sides of (43), we get

(
wt − wt+1

)T
Q
[(

wt − wt+1
)

−
(

w̃t − w̃t+1
)]

≥ 1

2

∥∥∥(wt − w̃t)−
(

wt+1 − w̃t+1
)∥∥∥

2

(QT +Q)
. (47)

Using [see (9)]

wt − wt+1 = M
(
wt − w̃t) and Q = HM,

to the term wt − wt+1 in the left-hand side of (47), we obtain

(
wt − w̃t)T MT HM

[(
wt − wt+1

)
−
(

w̃t − w̃t+1
)]

≥ 1

2

∥∥∥(wt − w̃t)−
(

wt+1 − w̃t+1
)∥∥∥

2

(QT +Q)
,

and the lemma is proved. 
�
We then prove that the sequence {‖wt −wt+1‖H} is monotonically non-increasing.
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Theorem 5 Let the sequence {wt } be generated by the L-GADMM (4) and the matrix
H be defined in (11). Then, we have

‖wt+1 − wt+2‖2
H ≤ ‖wt − wt+1‖2

H. (48)

Proof Setting a = M(wt − w̃t ) and b = M(wt+1 − w̃t+1) in the identity

‖a‖2
H − ‖b‖2

H = 2aT H(a − b) − ‖a − b‖2
H,

we obtain that

‖M
(
wt − w̃t) ‖2

H −
∥∥∥M
(

wt+1 − w̃t+1
)∥∥∥

2

H

= 2
(
wt − w̃t)MT HM

[(
wt − w̃t)−

(
wt+1 − w̃t+1

)]

−
∥∥∥M[ (wt − w̃t)−

(
wt+1 − w̃t+1

) ]∥∥∥
2

H
. (49)

Inserting (46) into the first term of the right-hand side of (49), we obtain that

‖M
(
wt − w̃t) ‖2

H − ‖M
(

wt+1 − w̃t+1
)

‖2
H

≥
∥∥∥(wt−w̃t)−

(
wt+1 − w̃t+1

)∥∥∥
2

(QT +Q)

−
∥∥∥M
[
(wt − w̃t ) −

(
wt+1 − w̃t+1

)]∥∥∥
2

H

=
∥∥∥(wt − w̃t)−

(
wt+1 − w̃t+1

)∥∥∥
2

(QT +Q)−MT HM

≥ 0, (50)

where the last inequality is by the fact that (QT + Q) − MT HM is positive definite.
This is derived from the following calculation:

(
QT + Q

)
− MT HM =

(
QT + Q

)
− MT Q

=
⎛
⎝

2G 0 0
0 2ρBT B −αBT

0 −αB 2
ρ

In

⎞
⎠−
⎛
⎝

In1 0 0
0 In2 −ρBT

0 0 αIn

⎞
⎠
⎛
⎝

G 0 0
0 ρBT B (1 − α)BT

0 −B 1
ρ

In

⎞
⎠

=
⎛
⎝

2G 0 0
0 2ρBT B −αBT

0 −αB 2
ρ

In

⎞
⎠−
⎛
⎝

G 0 0
0 2ρBT B −αBT

0 −αB α
ρ

In

⎞
⎠

=
⎛
⎝

G 0 0
0 0 0
0 0 2−α

ρ
In

⎞
⎠ .
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As we have assumed that G is positive definite. It is clear that (QT + Q) − MT HM
is positive definite. By (50), we have shown that

∥∥∥M
(

wt+1 − w̃t+1
)∥∥∥

2

H
≤ ‖M
(
wt − w̃t) ‖2

H.

Recall the fact that wt −wt+1 = M(wt −w̃t ). The assertion (48) follows immediately.

�

We now prove the worst-case O(1/k) convergence rate in a nonergodic sense for
the L-GADMM (4).

Theorem 6 Let {wt } be the sequence generated by the L-GADMM (4) with α ∈ (0, 2).
Then we have

‖wk − wk+1‖2
H ≤ 1

(k + 1)cα

‖w0 − w∗‖2
H, ∀k ≥ 0, w∗ ∈ Ω∗, (51)

where H and cα > 0 are defined in (11) and (37), respectively.

Proof It follows from (41) that

cα

k∑
t=0

‖wt − wt+1‖2
H ≤ ‖w0 − w∗‖2

H, ∀w∗ ∈ Ω∗. (52)

As shown in Theorem 5, {‖wt − wt+1‖2
H} is non-increasing. Therefore, we have

(k + 1)‖wk − wk+1‖2
H ≤

k∑
t=0

‖wt − wt+1‖2
H. (53)

The assertion (51) follows from (52) and (53) immediately. 
�
Notice that Ω∗ is convex and closed. Let w0 be the initial iterate and d := inf{‖w0−

w∗‖H | w∗ ∈ Ω∗}. Then, for any given ε > 0, Theorem 6 shows that the L-GADMM
(4) needs at most 
d2/(cαε) − 1� iterations to ensure that ‖wk − wk+1‖2

H ≤ ε. It
follows from Lemma 4 that w̃k is a solution of VI(Ω, F, f ) if ‖wk − wk+1‖2

H = 0. A
worst-case O(1/k) convergence rate in a nonergodic sense for the L-GADMM (4) is
thus established in Theorem 6.

5 Numerical experiments

In the literature, the efficiency of both the original ADMM (2) and its linearized
version has been very well illustrated. The emphasis of this section is to further verify
the acceleration performance of the L-GADMM (4) over the linearized version of the
original ADMM. That is, we want to further show that for the scheme (4), the general
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case with α ∈ (1, 2) could lead to better numerical result than the special case with
α = 1. The examples we will test include some rather new and core applications in
statistical learning area. All codes were written in Matlab 2012a, and all experiments
were run on a Macbook Pro with an Intel 2.9 GHz i7 Processor and 16 GB Memory.

5.1 Sparse linear discriminant analysis

In this and the upcoming subsection, we apply the scheme (4) to solve two rather new
and challenging statistical learning models, i.e. the linear programming discriminant
rule in [7] and the constrained LASSO model in [35]. The efficiency of the scheme
(4) will be verified. In particular, the acceleration performance of (4) with α ∈ (1, 2)

will be demonstrated.
We consider the problem of binary classification. Let {(xi , yi ), i = 1, ..., n} be n

samples drawn from a joint distribution of (X, Y ) ∈ R
d × {0, 1}. Given a new data

x ∈ R
d , the goal of the problem is to determine the associated value of Y . A common

way to solve this problem is the linear discriminant analysis (LDA), see e.g. [1].
Assuming Gaussian conditional distributions with a common covariance matrix, i.e.,
(X|Y = 0) ∼ N (μ0,�) and (X|Y = 1) ∼ N (μ1,�), let the prior probabilities be
π0 = P(Y = 0) and π1 = P(Y = 1). Denote � = �−1 as the precision matrix;
μa = (μ0 + μ1)/2 and μd = μ1 − μ0. Under the normality assumption and when
π0 = π1 = 0.5, by Bayes’ rule, we have a linear classifier

�(x;μ0,μ1,�) :=
{

1 if (x − μa)T �μd > 0,

0 otherwise.
(54)

As the covariance matrix � and the means μ0, μ1 are unknown, given n0 samples
of (X|Y = 0) and n1 samples of (X|Y = 1) respectively, a natural way to build
a linear classifier is plugging sample means μ̂0, μ̂1 and sample inverse covariance

matrix �̂
−1

into (54) to have �(x; μ̂0, μ̂1, �̂). However, in the high-dimensional case,
where d > n, plug-in rule does not work as �̂ is not of full rank.

To resolve this problem, we consider the linear programming discriminant (LPD)
rule proposed in [7] which assumes the sparsity directly on the discriminant direction
β = �μd instead of μd or �, which is formulated as following: We first estimate
sample mean and sample covariance matrix μ̂0, �̂0 of (X|Y = 0) and μ̂1, �̂1 of
(X|Y = 1) respectively. Let �̂ = n0

n �̂0 + n1
n �̂1, where n0, n1 are the sample sizes of

(X|Y = 0) and (X|Y = 1) respectively, and n = n0 + n1. The LPD model proposed
in [7] is

min‖β‖1

s.t. ‖�̂β − μ̂d‖∞ ≤ λ,
(55)

where λ is a tuning parameter; μ̂d = μ̂1 − μ̂0, and ‖ · ‖1 and ‖ · ‖∞ are the �1 and �∞
norms in Euclidean space, respectively.

Clearly, the model (55) is essentially a linear programming problem, thus interior
point methods are applicable. See e.g., [7] for a primal-dual interior point method.
However, it is well known that interior point methods are not efficient for large-scale
problems because the involved systems of equations which are solved by Newton type
methods are too computationally demanding for large-scale cases.
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Here, we apply the L-GADMM (4) to solve (55). To use (4), we first reformulate
(55) as

min‖β‖1

s.t. �̂β − μ̂d = y,

y ∈ Y := {y : ‖y‖∞ ≤ λ},
(56)

which is a special case of the model (1), and thus the scheme (4) is applicable.
We then elaborate on the resulting subproblems when (4) is applied to (56). First,

let us see the application of the original GADMM scheme (3) without linearization to
(56):

β t+1 = argmin
β∈Rd

{
‖β‖1 + ρ

2

∥∥∥∥�̂β − μ̂d − yt − γ t

ρ

∥∥∥∥
2
}

, (57)

yt+1 = argmin
y∈Y

{
ρ

2

∥∥∥∥y − (α�̂β t+1 + (1 − α)
(
μ̂d + yt)− μ̂d

)+ γ t

ρ

∥∥∥∥
2
}

, (58)

γ t+1 = γ t − ρ
(
α�̂β t+1 + (1 − α)(yt + μ̂d) − μ̂d − yt+1

)
. (59)

For the β-subproblem (57), since �̂ is not a full rank matrix in the model (55) (in
high-dimensional setting, the rank of �̂ is much smaller than d), it has no closed-form

solution. As described in (4), we choose G = τ Id −ρ�̂
T
�̂ and consider the following

linearized version of the β-subproblem (57):

β t+1 = argmin
β∈Rd

{
‖β‖1 + ρ(β − β t )T vt + τ

2
‖β − β t‖2)}, (60)

where vt := �̂
T (

�̂β t − μ̂d − yt − γ t

ρ

)
is the gradient of the quadratic term 1

2‖�̂β −
μ̂d − yt − γ t

ρ
‖2 at β = β t . It is seen that (60) is equivalent to

β t+1 = argmin
β∈Rd

{
‖β‖1 + ρτ

4

∥∥∥∥β −
(

β t − 2

τ
vt
)∥∥∥∥

2
}

. (61)

Let shrinkage(u, η) := sign(u) ·max
(
0, |u|−η

)
be the soft shrinkage operater, where

sign(·) is the sign function. The closed-form solution of (61) is given by

β t+1 = shrinkage
(
β t − 2

τ
vt ,

2

ρτ

)
. (62)

For the y-subproblem (58), by simple calculation, we get its solution is

yt+1 = min

(
max

(
α�̂β t+1 + (1 − α)(yt + μ̂d) − μ̂d − γ t

ρ
,−λ

)
, λ

)
. (63)

Overall, the application of the L-GADMM (4) to the model (55) is summarized in
Algorithm 1.
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Algorithm 1 Solving sparse LPD (55) by the L-GADMM (4)

Initialize β0, y0, γ 0, τ , ρ.
while Stopping criterion is not satisfied. do

Compute βt+1 by (62).
Compute yt+1 by (63).
Update γ t+1 by (59)

end while

To implement Algorithm 1, we use the stopping criterion described in [6]: Let the
primal residual at the t-th iteration be r t = ‖�̂β t − μ̂d − yt‖ and the dual residual
be st = ‖ρ�̂(yk − yk−1)‖; let the tolerance of the primal and dual residual at the t-th
iteration be ε pri = √

dε + ε max
(‖�̂β t‖, ‖yt‖, ‖μ̂d‖) and εdua = √

dε + ε‖�̂γ t‖,
respectively, where ε is chosen differently for different applications; then the iteration
is stopped when r t < ε pri and st < εdua .

5.1.1 Simulated data

We first test some synthetic dataset. Following the settings in [7], we consider three
schemes and for each scheme, we take n0 = n1 = 150, d = 400 and set μ0 = 0,
μ1 = (1, ..., 1, 0, ..., 0)T , λ = 0.15 for Scheme 1, and λ = 0.1 for Schemes 2 and 3,
where the number of 1’s in μ1 is s = 10. The details of the schemes to be tested is
listed below:

– [Scheme 1]: � = �−1 where � j j = 1 for 1 ≤ j ≤ d and � jk = 0.5 for j �= k.
– [Scheme 2]: � = �−1, where � jk = 0.6| j−k| for 1 ≤ j, k ≤ d.
– [Scheme 3]: � = (B + δI)/(1 + δ), where B = (b jk)d×d with independent

b jk = bkj = 0.5 × Ber(0.2) for 1 ≤ j, k ≤ s, i �= j ; b jk = bkj = 0.5 for
s + 1 ≤ j < k ≤ d; b j j = 1 for 1 ≤ j ≤ d, where Ber(0.2) is a Bernoulli
random variable whose value is taken as 1 with the probability 0.2 and 0 with
the probability 0.8, and δ = max(−Λmin(B), 0) + 0.05, where Λmin(W) is the
smallest eigenvalue of the matrix W, to ensure the positive definiteness of �.

For Algorithm 1, we set the parameters ρ = 0.05 and τ = 2.1‖�̂T
�̂‖2. These

values are tuned via experiments. The starting points are that β0 = 0, y0 = 0 and
γ 0 = 1. We set ε = 5 × 10−4 for the stopping criterion. Note that, as described by
[7], we add δId to the sample covariance matrix to avoid the ill conditionness, where
δ = 10−12.

Since synthetic dataset is considered, we repeat each scheme ten times and report the
averaged numerical performance. In particular, we plot the evolutions of the number
of iterations and computing time in seconds with respect to different values of α in the
interval [1.0, 1.9] with an equal distance of 0.1, and we further choose finer grids in the
interval [1.91, 1.98] with an equal distance of 0.01 in Fig. 1.1 To see the performance
of Algorithm 1 with α ∈ [1, 2) clearly, for the last simulation case of Scheme 2, we
plot the evolutions of objective function value, primal residual and dual residual with

1 As well known in [2,8,14,25], α ∈ (1, 2) usually results in acceleration for the GADMM. We thus do
not report the numerical result when α ∈ (0, 1).

123



Generalized alternating direction method

1 1.2 1.4 1.6 1.8 2
1

2

3

4

5

6

7
x 104

α

LP
D

 N
um

be
r o

f I
te

ra
tio

ns
Iterations

Scheme 1
Scheme 2
Scheme 3

1 1.2 1.4 1.6 1.8 2

50

100

150

200

α

Ti
m

e(
s)

LPD Running Time

Scheme 1
Scheme 2
Scheme 3

Fig. 1 Algorithm 1: evolution of number of iterations and computing time in seconds w.r.t. different values
of α′ for synthetic dataset.
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Fig. 2 Algorithm 1: evolution of objective value, primal residual and dual residual w.r.t. some values of α

for Scheme 2

respect to iterations for different values of α in Fig. 2. The acceleration performance
of the relaxation factor α ∈ [1, 2), especially when α is close to 2, over the case where
α = 1 is clearly demonstrated. Also, we see that when α is close to 2 (e.g., α = 1.9),
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the objective value and the primal residual decrease faster than the cases where α is
close to 1.

As we have mentioned, the β-subproblem (57) has no closed-form solution; and
Algorithm 1 solves it by linearizing its quadratic term and thus only solves the β-
subproblem by one iteration because the linearized β-subproblem has a closed-form
solution. This is actually very important to ensure the efficiency of ADMM-like method
for some particular cases of (1), as emphasized in [48]. One may be curious in compar-
ing with the case where the β-subproblem (57) is solved iteratively by a generic, rather
than the special linearization strategy. Note that the β-subproblem (57) is a standard
�1-�2 model, and we can simply apply the ADMM scheme (2) to solve it iteratively
by introducing an auxiliary variable v = β and thus reformulating it as a special
case of (1). This case is denoted by “ADM M2” when we report numerical results
because the ADMM is used both externally and internally. As analyzed in [14,41], to
ensure the convergence of ADM M2, the accuracy of solving the β-subproblem (57)
should keep increasing. Thus, in the implementation of ADMM for the subproblem
(57), we gradually decrease the tolerance for the inner problem from ε = 5 × 10−2 to
ε = 5 × 10−4. Specifically, we take ε = 5 × 10−2 when min(r t/ε pri , st/εdua) > 50;
ε = 5 × 10−3 when 10 < max(r t/ε pri , st/εdua) < 50; and ε = 5 × 10−4 when
max(r t/ε pri , st/εdua) < 10. We further set the maximal iteration numbers as 1,000
and 40,000 for the inner and outer loops executed by the ADM M2, respectively.

We compare Algorithm 1 and ADM M2 for their averaged performances. In Table 1,
we list the averaged computing time in seconds and the objective function values for
Algorithm 1 with α = 1 and 1.9, and ADM M2. Recall Algorithm 1 with α = 1 is
the linearized version of the original ADMM (2) and ADM M2 is the case where the
β-subproblem (57) is solved iteratively by the original ADMM scheme. The data in
this table shows that achieving the same level of objective function values, Algorithm 1
with α = 1.9 is faster than Algorithm 1 with α = 1 (thus, the acceleration performance
of the GADMM with α ∈ (1, 2) is illustrated); and Algorithm 1 with either α = 1
or α = 1.9 is much faster than ADM M2 (thus the necessity of linearization for

Table 1 Numerical comparison
between the averaged
performance of Algorithm 1 and
ADM M2

Alg. 1 (α = 1) Alg. 1 (α = 1.9) ADM M2

Scheme 1

CPU time(s) 100.54 72.25 141.86

Objective value 2.1826 2.1998 2.2018

Violations 0.0081 0.0073 0.0182

Scheme 2

CPU time(s) 54.70 28.33 481.44

Objective value 14.3276 14.3345 14.2787

Violations 0.0099 0.0098 0.0183

Scheme 3

CPU time(s) 49.67 27.94 223.15

Objective value 2.4569 2.4537 2.4912

Violations 0.0078 0.0080 0.0176
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Table 2 Numerical comparison
between Algorithm 1 and
ADM M2 for microarray dataset

Alg. 1 (α = 1) Alg. 1 (α = 1.9) ADM M2

Training error 1/60 1/60 1/60

Testing error 3/60 3/60 3/60

CPU time(s) 201.17 167.61 501.95

Objective value 24.67 24.85 24.81

Violation 0.0121 0.0121 0.0241

the β-subproblem (57) is clearly demonstrated). We also list the averaged primal
feasibility violations of the solutions generated by the algorithms in the table. The
violation is defined as ‖�̂β̂ − μ̂d − w‖, where β̂ is the output solution and w =
min
(

max
(
�̂β̂ − μ̂d ,−λ), λ

) ∈ R
d . It is clearly seen in the table that Algorithm 1

achieves better feasibility than ADM M2.

5.1.2 Real dataset

In this section, we compare Algorithm 1 with ADM M2 on a real dataset of microarray
dataset in [38]. The dataset contains 13,182 microarray samples from Affymetrixs
HGU133a platform. The raw data contains 2,711 tissue types (e.g., lung cancers,
brain tumors, Ewing tumor etc.). In particular, we select 60 healthy samples and 60
samples from those with breast cancer. We use the first 1,000 genes to conduct the
experiments.

It is believed that different tissues are associated with different sets of genes and
microarray data have been heavily adopted to classify tissues, see e.g. [28,47]. Our aim
is to classify those tissues of breast cancer from those healthy tissues. We randomly
select 60 samples from each group to be our training set and use another 60 samples
from each group as testing set. The tuning parameter λ is chosen by five-fold cross
validation as described in [7].

We set ρ = 1 and τ = 2‖�̂T
�̂‖2 for Algorithm 1; and take the tolerance ε = 10−3

in the stopping criterion of Algorithm 1. The starting points are β0 = 0, z0 = 0 and
γ 0 = 0. The comparison among Algorithm 1 with α = 1 and α = 1.9 and ADM M2 is
shown in Table 2; where the pair “a/b” means there are “a” errors out of “b” samples
when iteration is terminated. It is seen that Algorithm 1 outperforms ADM M2 in both
accuracy and efficiency; also the case where α = 1.9 accelerates Algorithm 1 with
α = 1.

5.2 Constrained lasso

In this subsection, we apply the L-GADMM (4) to the constrained LASSO model
proposed recently in [35].

Consider the standard linear regression model

y = Xβ + ε,
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where X ∈ R
n×d is a design matrix; β ∈ R

d is a vector of regression coefficients;
y ∈ R

n is a vector of observations, and ε ∈ R
n is a vector of random noises. In

high-dimensional setting where the number of observations is much smaller than the
number of regression coefficients, n � d, the traditional least-squares method does not
perform well. To overcome this difficulty, just like the sparse LDA model (55), certain
sparsity conditions are assumed for the linear regression model. With the sparsity
assumption on the vector of regression coefficients β, we have the following model

min
β

1

2
‖y − Xβ‖2 + pλ(β),

where pλ(·) is a penalization function. Different penalization functions have been pro-
posed in the literature, such as the LASSO in [44] where pλ(β) = λ‖β‖1, the SCAD
[16], the adaptive LASSO [54], and the MCP [51]. Inspired by significant applications
such as portfolio selection [18] and monotone regression [35], the constrained LASSO
(CLASSO) model was proposed recently in [35]:

minβ
1
2‖y − Xβ‖2 + λ‖β‖1

s.t. Aβ ≤ b,
(64)

where A ∈ R
m×d and b ∈ R

m with m < d in some applications like portfolio selection
[18]. It is worth noting that many statistical problems such as the fused LASSO [45] and
the generalized LASSO [46] can be formulated as the form of (64). Thus it is important
to find efficient algorithms for solving (64). Although (64) is a quadratic programming
problem that can be solved by interior point methods theoretically, again for high-
dimensional cases the application of interior point methods is numerically inefficient
because of its extremely expensive computation. Note that existing algorithms for
LASSO can not be extended to solve (64) trivially.

In fact, introducing a slack variable to the inequality constraints in (64), we refor-
mulate (64) as

min
β,z∈Rd

1

2
‖y − Xβ‖2 + λ‖β‖1 s.t. Aβ − z = 0, z ≤ b, (65)

which is a special case of the model (1) and thus the L-GADMM (4) is applicable.
More specifically, the iterative scheme of (4) with G = τ Id − ρ(AT A) for solving
(65) reads as

β t+1 = argmin
β

{
1

2
‖y − Xβ‖2 + λ‖β‖1 + ρ(β − β t )T ut + τ

2
‖β − β t‖2

}
, (66)

zt+1 = argmin
z≤b

{
ρ

2

∥∥∥∥αAβ t+1 + (1 − α)zt − z − γ t

ρ

∥∥∥∥
2 }

, (67)

γ t+1 = γ t − ρ
(
αAβ t+1 + (1 − α)(b − zt ) + zt+1 − b

)
, (68)
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where ut = AT
(
Aβ t − zt − γ t

ρ

)
.

Now, we delineate the subproblems (66–68). First, the β-subproblem (66) is equiv-
alent to

β t+1 = argmin
β

{
1

2
βT
(

XT X + τ Id

)
β − βT wt + λ‖β‖1

}
, (69)

where wt = XT y + β t − ρut , and Id ∈ R
d×d is the identity matrix. Deriving the

optimality condition of (69), the solution of (69), β t+1 has to satisfy the following
equation:

Cβ t+1 = shrinkage
(
wt , λ
)
,

where C = (XT X + τ Id
)
. As XT X is positive semidefinite and Id is of full rank with

all positive eigenvalues, we have that C is invertible. We have a closed-form solution
for (66) that

β t+1 = C−1 × shrinkage
(
wt , λ
)
. (70)

Then, for the z-subproblem (67), its closed-form solution is given by

zt+1 = min
(

b, αAβ t+1 + (1 − α)zt − γ t

ρ

)
. (71)

Overall, the application of the L-GADMM (4) to the constrained CLASSO model (64)
is summarized in Algorithm 2.

We consider two schemes to test the efficiency of Algorithm 2.

– [Scheme 1]: We first generate an n × d matrix X with independent standard
Gaussian entries where n = 100 and d = 400, and we standardize the
columns of X to have unit norms. After that, we set the coefficient vector
β = (1, . . . , 1, 0, . . . 0)T with the first s = 5 entries to be 1 and the rest to
be 0. Next, we generate a m × d matrix A with independent standard Gaussian
entries where m = 100, and we generate b = Aβ + ε̂ where the entries of ε̂ are
independent random variables uniformly distributed in [0, σ ], and the vector of
observations y is generated by y = Xβ + ε with ε ∼ N (0, σ 2Id) where σ = 0.1.
We set λ = 1 in the model (64).

Algorithm 2 Solving Constrained LASSO (64) by the L-GADMM (4)

Initialize β0, z0, γ 0, τ , ρ.
while Stopping criterion is not satisfied. do

Compute βt+1 by (70).
Compute zt+1 by (71).
Update γ t+1 by (68).

end while

– [Scheme 2]: We follow the same procedures of Scheme 1, but we change σ to be
0.3
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Fig. 3 Algorithm 2: evolution of number of iterations and computing time in seconds w.r.t. different values
of α for synthetic dataset

To implement Algorithm 2, we use the stopping criterion proposed by [48]: Let the
primal and dual residual at the t-th iteration be pt = ‖Aβ t −zt‖ and dt = ‖γ t −γ t+1‖,
respectively; the tolerance of primal and dual residuals are set by the criterion described
in [6] where ε pri = √

dε + ε max
(‖Aβ t‖, ‖zt‖, ‖b‖) and εdua = √

mε + ε‖AT γ ‖;
then the iteration is stopped when pt < ε pri and dt < εdua . We choose ε = 10−4

for our experiments. We set ρ = 10−3 and τ = 20‖AT A‖2 and the starting iterate as
β0 = 0, z0 = 0 and γ 0 = 0.

Since synthetic dataset is considered, we repeat the simulation ten times and report
the averaged numerical performance of Algorithm 2. In Fig. 3, we plot the evolutions of
number of iterations and computing time in seconds with different values of α ∈ [1, 2]
for Algorithm 2 with α chosen the same way as we did in the previous subsection.
The acceleration performance when α ∈ (1, 2) over the case where α = 1 is clearly
shown by the curves in this figure. For example, the case where α = 1.9 is about 30 %
faster than the case where α = 1. We also see that when α = 2, Algorithm 2 does not
converge after 100,000 iterations. This coincides with the failure of strict contraction
of the sequence generated by Algorithm 2, as we have mentioned in Remark 3.

Like Sect. 5.1.1, we also compare the averaged performance of Algorithm 2 with
the application of the original ADMM (2) where the resulting β-subproblem is solved
iteratively by the ADMM. The penalty parameter is set as 1, and the ADMM is
implemented to solve the β-subproblem, whose tolerance ε is gradually decreased
from 10−2 to 10−4 obeying the same rule as that mentioned in Sect. 5.1.1. We further
set the maximal iteration numbers to be 1,000 and 10,000 for inner and outer loops
executed by ADM M2. Again, this case is denoted by “ADM M2”. In Table 3, we list
the computing time in seconds to achieve the same level of objective function values
for three cases: Algorithm 2 with α = 1, Algorithm 2 with α = 1.9, and ADM M2.
We see that Algorithm 2 with either α = 1 or α = 1.9 is much faster than ADM M2;
thus the necessity of linearization when ADMM-like methods are applied to solve the
constrained LASSO model (64) is illustrated. Also, the acceleration performance of
the GADMM with α ∈ (1, 2) is demonstrated as Algorithm 2 with α = 1.9 is faster
than Algorithm 2 with α = 1. We also report the averaged primal feasibility violations
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Table 3 Numerical comparison
of the averaged performance
between Algorithm 2 and
ADM M2

Alg. 2 (α = 1) Alg. 2 (α = 1.9) ADM M2

Scheme 1

CPU time(s) 88.03 71.01 166.17

Objective value 5.4679 5.4678 5.4823

Violations 0.0033 0.0031 0.2850

Scheme 2

CPU time(s) 97.19 82.49 165.90

Objective value 5.3861 5.3864 5.6364

Violations 0.0032 0.0032 0.1158

of the solutions generated by each algorithm. The violation is defined as ‖Aβ̂ − w‖,
where β̂ is the output solution and w = min

(
b, Aβ̂
) ∈ R

m , respectively. It is seen in
the table that Algorithm 2 achieves better feasibility than ADM M2.

5.3 Dantzig selector

Last, we test the Dantzig Selector model proposed in [9]. In [48], this model has been
suggested to be solved by the linearized version of ADMM which is a special case of
(4) with α = 1. We now test this example again to show the acceleration performance
of (4) with α ∈ (1, 2).

The Dantzig selector model in [9] deals with the case where the the number of
observations is much smaller than the number of regression coefficients, i.e. n � d.
In particular, the Dantzig selector model is

min ‖β‖1

s.t. ‖XT (Xβ − y)‖∞ ≤ δ,
(72)

where δ > 0 is a tuning parameter, and ‖ · ‖∞ is the infinity norm.
As elaborated in [48], the model (72) can be formulated as

min ‖β‖1

s.t. XT (Xβ − y) − x = 0,

β ∈ R
p, x ∈ Ω := {x : ‖x‖∞ ≤ δ},

(73)

where x ∈ R
d is an auxiliary variable. Obviously, (73) is a special case of (1)

and thus the L-GADMM (4) is applicable. In fact, applying (4) with G = Id −
τ‖(XT X)T (XT X)‖2 to (73), we obtain the subproblems as the following:

β t+1 = argmin
β∈Rp

{
‖β‖1 + ρ

2

(
2(vt )T (β − β t ) + τ

2
‖β − β t‖2

)}
, (74)
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xt+1 = argmin
x∈Ω

{
ρ

2

∥∥∥∥x − αXT (Xβ t+1 − y) − (1 − α)xt + γ t

ρ

∥∥∥∥
2
}

, (75)

γ t+1 = γ t − ρ(αXT (Xβ t+1 − y) + (1 − α)xt − xt+1), (76)

where vt := (XT X)T [XT (Xβ t − y) − xt − γ t

ρ
]. Note that τ ≥ 2‖(XXT )XT X‖2 is

required to ensure the convergence, see [48] for the detailed proof.
The β-subproblem (74) can be rewritten as

β t+1 = argmin
β∈Rp

{
‖β‖1 + ρτ

4

∥∥∥∥β −
(

β t − 2

τ
vt
)∥∥∥∥

2
}

,

whose closed-form solution is given by

β t+1 = shrinkage
(
β t − 2

τ
vt ,

2

ρτ

)
. (77)

Moreover, the solution of the x-subproblem (75) is given by

xt+1 = min

{
max

{
αXT (Xβ t+1 − y) + (1 − α)xt − γ t

ρ
,−δ

}
, δ

}
. (78)

Overall, the application of the L-GADMM (4) to the Dantzig Selector model (72)
is summarized in Algorithm 3.

Algorithm 3 Solving Dantzig Selector (72) by the L-GADMM (4)
Given X, y, δ.
Initialize β0, x0, γ 0, τ , ρ.

while Stopping criteria is not satisfied. do
Compute βt+1 by (77).
Compute xt+1 by (78).
Update γ t+1 by (76).

end while

5.3.1 Synthetic dataset

We first test some synthetic dataset for the Dantizg Selector model (72). We follow
the simulation setup in [9] to generate the design matrix X whose columns all have
the unit norm. Then, we randomly choose a set S of cardinality s. β is generated by

β i =
{

ξi (1 + |ai |) if i ∈ S;
0 otherwise,

where ξ ∼ U (−1, 1)(i.e., the uniform distribution on the interval (−1, 1)) and ai ∼
N (0, 1). At last, y is generated by y = Xβ + ε with ε ∼ N (0, σ 2I).
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Fig. 4 Algorithm 3: evolution of number of iterations and computing time w.r.t. different values of α for
synthetic dataset

We consider four schemes as listed below:

– [Scheme 1]: (n, d, s) = (720, 2560, 80), σ = 0.03.
– [Scheme 2]: (n, d, s) = (720, 2560, 80), σ = 0.05.
– [Scheme 3]: (n, d, s) = (1440, 5120, 160), σ = 0.03.
– [Scheme 4]: (n, d, s) = (1440, 5120, 160), σ = 0.05.

We take δ = σ
√

2 log d .
To implement Algorithm 3, we set the penalty parameter ρ = 0.1 and τ =

2.5‖(XXT )XT X‖2 respectively. Again, we use the stopping criterion described in
[6]: Let the primal and dual residual at the t-th iteration be r t = ‖XT Xβ t −xt −XT y‖
and st = ‖ρXT X(γ t − γ t−1)‖, respectively; let the tolerance of the primal and dual
residual at the t-th iteration be ε pri = √

dε + ε max
(‖XT Xβ t‖, ‖xt‖, ‖XT y‖) and

εdua = √
nε + ε‖XT Xγ t‖, respectively; then the iteration is stopped when r t < ε pri

and st < εdua simultaneously. We choose ε = 10−4 for our experiments. We set the
starting points as β0 = 0, x0 = 0 and γ 0 = 0.

In Fig. 4, we plot the evolutions of number of iterations and computing time in sec-
onds with respect to different values of α ∈ [1, 2]. We choose the values of α ∈ [1, 2]
for Algorithm 3 with α chosen the same way as we did in the previous subsections.
The curves in Fig. 4 show the acceleration performance of Algorithm 3 with α ∈ (1, 2)

clearly. Also, if α = 2, Algorithm 3 does not converge after 10,000 iterations.
Like previous sections, we compare the averaged performance of our method with

ADM M2 which solves the β-subproblem iteratively by ADMM for all of the four
schemes. In the implementation of using ADMM to solve the β-subproblem, we use
the same stopping criterion as described in the previous sections, and the tolerance ε is
gradually decreased from 10−2 to 10−4 obeying the same rule as the rule in Sect. 5.1.1.
We further set the maximal iteration numbers to be 1,000 and 10,000 for inner and
outer loops executed by ADM M2, respectively. Also, we set the penalty parameter for
inner loop as 1. For the outer loop, we set the tolerance ε = 10−4 for both Algorithm 3
and ADM M2. In Table 4, we present the computing time in seconds to achieve the
same level of objective values for three cases: Algorithm 3 with α = 1, Algorithm 3
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Table 4 Numerical comparison
of the averaged performance
between Algorithm 3 and
ADM M2

Alg. 3 (α = 1) Alg. 3 (α = 1.9) ADM M2

Scheme 1

CPU time(s) 215.12 154.7 1,045.62

Objective value 60.6777 60.6821 60.8028

Violation 0.0048 0.0050 0.1464

Scheme 2

CPU time(s) 213.80 147.29 1,184.98

Objective value 54.7704 54.7729 54.7915

Violation 0.0049 0.0052 0.1773

Scheme 3

CPU time(s) 613.20 462.41 5,514.81

Objective value 124.0258 124.0208 124.2314

Violation 0.0072 0.0072 0.2361

Scheme 4

CPU time(s) 607.80 463.58 5,357.55

Objective value 111.8513 111.8489 112.0675

Violation 0.0072 0.0071 0.2137

Table 5 Numerical comparison
between Algorithm 3 and
ADM M2 for microarray dataset

Alg. 3 (α = 1) Alg. 3 (α = 1.9) ADM M2

Training error 0/45 0/45 0/45

Testing error 0/37 0/37 0/37

CPU time(s) 1,006.68 532.96 2,845.27

Objective value 17.596 17.579 17.771

Violation 0.0131 0.0131 0.0285

with α = 1.9, and ADM M2. It is seen that Algorithm 3 with either α = 1 or α = 1.9
is much faster than ADM M2, and Algorithm 3 with α = 1.9 is faster than Algorithm 3
with α = 1; we have thus demonstrated the necessity of linearization when ADMM-
like methods are applied to solve the Dantzig selector model (64) and the acceleration
performance of GADMM with α ∈ (1, 2). Also, we list the averaged primal feasibility
violation of each algorithm. The violation is defined as ‖XT (Xβ̂ − y) − w‖, where β̂

is the output solution and w = min
(

max
(
XT (Xβ̂ − y),−δ

)
, δ
) ∈ R

d . Algorithm 3
achieves better feasibility than ADM M2 as illustrated in the table.

5.3.2 Real dataset

Then, we test the Dantizg Selector model (72) for a real dataset. In particular, we test
the same dataset as in Sect. 5.1.2. We look at another disease: Ewing’s sarcoma which
has drawn much attention in the literature, see e.g. [26]. We have 27 samples diagnosed
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with Ewing’s sarcoma. Then, we randomly select 55 healthy samples. Next, we select
30 healthy samples and 15 samples diagnosed with Ewing’s sarcoma as training set,
and let the remaining 42 samples be the testing set. We use the first 2,000 genes to
conduct the analysis. Thus, this dataset corresponds to the model (72) with n = 45
and d = 2,000. In the implementation, the parameter δ in (72) is chosen by five-fold
cross validation, and we set ρ = 0.02 and τ = 9‖(XT X)T XT X‖2 for Algorithm 3,
and we use the same stopping criterion with ε = 4 × 10−4. The comparison between
Algorithm 3 and ADM M2 is listed in Table 5. From this table, we see that Algorithm 3
with either α = 1 or α = 1.9 outperforms ADM M2 significantly—it requires much
less computing time to achieve the same level of objective function values with similar
primal feasibility and attains the same level of training or testing error. In addition,
the acceleration performance of the case where α = 1.9 over the case where α = 1 is
again demonstrated for Algorithm 3.

6 Conclusion

In this paper, we take a deeper look at the linearized version of the generalized alter-
nating direction method of multiplier (ADMM) and establish its worst-case O(1/k)

convergence rate in both the ergodic and a nonergodic senses. This result subsumes
some existing results established for the original ADMM and generalized ADMM
schemes; and it provides accountable and novel theoretical support to the numeri-
cal efficiency of the generalized ADMM. Further, we apply the linearized version of
the generalized ADMM to solve some important statistical learning applications; and
enlarge the application range of the generalized ADMM. Finally we would mention
that the worst-case O(1/k) convergence rate established in this paper amounts to a
sublinear speed of convergence. If certain conditions are assumed (e.g., some error
bound conditions) or the model under consideration has some special properties, it is
possible to establish the linear convergence rate for the linearized version of the gen-
eralized ADMM by using similar techniques in, e.g., [5,11,27]. We omit the detail of
analysis and only focus on the convergence rate analysis from the iteration complexity
perspective in this paper.

7 Appendices

We show that our analysis in Sects. 3 and 4 can be extended to the case where both
the x- and y-subproblems in (3) are linearized. The resulting scheme, called doubly
linearized version of the GADMM (“DL-GADMM” for short), reads as

xt+1 = argmin
x∈X

{
f1(x) − xT AT γ t + ρ

2
‖Ax + Byt − b‖2 + 1

2
‖x − xt‖2

G1

}
,

yt+1 = argmin
y∈Y

{
f2(y) − yT BT γ t + ρ

2

∥∥∥αAxt+1

+ (1 − α)(b − Byt ) + By − b
∥∥∥

2 + 1

2
‖y − yt‖2

G2

}
,
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γ t+1 = γ t − ρ
(
αAxt+1 + (1 − α)(b − Byt ) + Byt+1 − b

)
, (79)

where the matrices G1 ∈ R
n1×n1 and G2 ∈ R

n2×n2 are both symmetric and positive
definite.

For further analysis, we define two matrices, which are analogous to H and Q in
(11), respectively, as

H2 =
⎛
⎜⎝

G1 0 0

0 ρ
α

BT B + G2
1−α
α

BT

0 1−α
α

B 1
αρ

In

⎞
⎟⎠ ,

Q2 =
⎛
⎜⎝

G1 0 0

0 ρBT B + G2 (1 − α)BT

0 −B 1
ρ

In

⎞
⎟⎠ .

(80)

Obviously, we have
Q2 = H2M, (81)

where M is defined in (10). Note that the equalities (8) and (9) still hold.

7.1 A worst-case O(1/k) convergence rate in the ergodic sense for (79)

We first establish a worst-case O(1/k) convergence rate in the ergodic sense for the
DL-GADMM (79). Indeed, using the relationship (81), the resulting proof is nearly the
same as that in Sect. 3 for the L-GADMM (4). We thus only list two lemmas (analogous
to Lemmas 1 and 2) and one theorem (analogous to Theorem 2) to demonstrate a worst-
case O(1/k) convergence rate in the ergodic sense for (79), and omit the details of
proofs.

Lemma 7 Let the sequence {wt } be generated by the DL-GADMM (79) with α ∈
(0, 2) and the associated sequence {w̃t } be defined in (7). Then we have

f (u) − f (̃ut ) + (w − w̃t)T F(w̃t ) ≥ (w − w̃t)T Q2
(
wt − w̃t) , ∀w ∈ Ω, (82)

where Q2 is defined in (80).

Lemma 8 Let the sequence {wt } be generated by the DL-GADMM (79) with α ∈
(0, 2) and the associated sequence {w̃t } be defined in (7). Then for any w ∈ Ω , we
have

(
w − w̃t)T Q2

(
wt − w̃t)

= 1

2

(
‖w − wt+1‖2

H2
− ‖w − wt‖2

H2

)
+ 1

2
‖xt − x̃t‖2

G1

+1

2
‖yt − ỹt‖2

G2
+ 2 − α

2ρ
‖γ t − γ̃ t‖2. (83)
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Theorem 7 Let H2 be given by (80) and {wt } be the sequence generated by the DL-
GADMM (79) with α ∈ (0, 2). For any integer k > 0, let ŵk be defined by

ŵk = 1

k + 1

k∑
t=0

w̃t , (84)

where w̃t is defined in (7). Then, ŵk ∈ Ω and

f (̂uk) − f (u) + (ŵk − w)T F(w) ≤ 1

2(k + 1)
‖w − w0‖2

H2
, ∀w ∈ Ω.

7.2 A worst-case O(1/k) convergence rate in a nonergodic sense for (79)

Next, we prove a worst-case O(1/k) convergence rate in a nonergodic sense for the
DL-GADMM (79). Note that Lemma 4 still holds by replacing H with H2. That is, if
‖wt − wt+1‖2

H2
= 0, w̃t defined in (7) is an optimal solution point to (5). Thus, for

the sequence {wt } generated by the DL-GADMM (79), it is reasonable to measure the
accuracy of an iterate by ‖wt − wt+1‖2

H2
.

Proofs of the following two lemmas are analogous to those of Lemmas 5 and 6,
respectively. We thus omit them.

Lemma 9 Let the sequence {wt } be generated by the DL-GADMM (79) with α ∈
(0, 2) and the associated {w̃t } be defined in (7); the matrix Q2 be defined in (80).
Then, we have

(
w̃t − w̃t+1

)T
Q2

[(
wt − wt+1

)
−
(

w̃t − w̃t+1
)]

≥ 0.

Lemma 10 Let the sequence {wt } be generated by the DL-GADMM (79) with α ∈
(0, 2) and the associated {w̃t } be defined in (7); the matrices M, H2, Q2 be defined in
(10) and (80). Then, we have

(
wt − w̃t)T MT H2M

[(
wt − w̃t)−

(
wt+1 − w̃t+1

)]

≥ 1

2

∥∥∥(wt − w̃t)−
(

wt+1 − w̃t+1
)∥∥∥

2
(
QT

2 +Q2
) .

Based on the above two lemmas, we see that the sequence {‖wt − wt+1‖H2} is
monotonically non-increasing. That is, we have the following theorem.

Theorem 8 Let the sequence {wt } be generated by the DL-GADMM (79) and the
matrix H2 be defined in (80). Then, we have

‖wt+1 − wt+2‖2
H2

≤ ‖wt − wt+1‖2
H2

.

123



E. X. Fang et al.

Note that for the DL-GADMM (79), the y-subproblem is also proximally regular-
ized, and we can not extend the inequality (31) to this new case. This is indeed the
main difficulty for proving a worst-case O(1/k) convergence rate in a nonergodic
sense for the DL-GADMM (79). A more elaborated analysis is needed. Let us show
one lemma first to bound the left-hand side in (31).

Lemma 11 Let {yt } be the sequence generated by the DL-GADMM (79) with α ∈
(0, 2). Then, we have

(
yt − yt+1

)
BT
(
γ t − γ t+1

)
≥ 1

2
‖yt − yt+1‖2

G2
− 1

2
‖yt−1 − yt‖2

G2
. (85)

Proof It follows from the optimality condition of the y-subproblem in (79) that

f2(y)− f2(yt+1)+
(

y − yt+1
)T [−BT γ t+1 +G2(yt+1 −yt )

] ≥ 0, ∀y ∈ Y . (86)

Similarly, we also have,

f2(y) − f2(yt ) + (y − yt )T [− BT γ t + G2(yt − yt−1)
] ≥ 0, ∀y ∈ Y . (87)

Setting y = yt in (86) and y = yt+1 in (87), and summing them up, we have

(
yt − yt+1

)
BT
(
γ t − γ t+1

)
≥ (yt+1 − yt )G2(yt+1 − yt + yt−1 − yt )

≥ ‖yt−yt+1‖2
G2

−1

2
‖yt − yt+1‖2

G2
−1

2
‖yt−1 − yt‖2

G2

= 1

2
‖yt − yt+1‖2

G2
− 1

2
‖yt−1 − yt‖2

G2
,

where the second inequality holds by the fact that aT b ≥ − 1
2 (‖a‖2 + ‖b‖2). The

assertion (85) is proved. 
�

Two more lemmas should be proved in order to establish a worst-case O(1/k)

convergence rate in a nonergodic sense for the DL-GADMM (79).

Lemma 12 The sequence {wt } generated by the DL-GADMM (79) with α ∈ (0, 2)

and the associated {w̃t } be defined in (7), then we have

cα

(
‖xt − x̃t‖2

G1
+ ‖yt − ỹt‖2

G2
+ α

ρ
‖γ t − γ̃ t‖2

)
≤ ‖wt − w̃t‖2

QT
2 +Q2−MT H2M

(88)
where cα is defined in (37).
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Proof By the definition of Q2, M and H2, we have

‖wt − w̃t‖2
QT

2 +Q2−MT H2M

= ‖xt − x̃t‖2
G1

+ ‖yt − ỹt‖2
G2

+ 2 − α

ρ
‖γ t − γ̃ t‖2

≥ min

{
2 − α

α
, 1

}(
‖xt − x̃t‖2

G1
+ ‖yt − ỹt‖2

G2
+ α

ρ
‖γ t − γ̃ t‖2

)
,

which implies the assertion (88) immediately. 
�
In the next lemma, we refine the bound of (w − w̃t )T Q2(wt − w̃t ) in (82). The

refined bound consists of the terms ‖w − wt+1‖2
H2

recursively, which is favorable
for establishing a worst-case O(1/k) convergence rate in a nonergodic sense for the
DL-GADMM (79).

Lemma 13 Let {wt } be the sequence generated by the DL-GADMM (79) with α ∈
(0, 2). Then, w̃t ∈ Ω and

f (u) − f (ut ) + (w − w̃)T F(w) ≥ 1

2

(‖w − wt+1‖2
H2

− ‖w − wt‖2
H2

)

+ 1

2
‖wt − w̃t‖2

QT
2 +Q2−MT H2M

, ∀w ∈ Ω,

(89)
where M is defined in (10), and H2 and Q2 are defined in (80).

Proof By the identity Q2(wt − w̃t ) = H2(wt − wt+1), it holds that

(
w − w̃t)T Q2

(
wt − w̃t) = (w − w̃t)T H2

(
wt − wt+1

)
, ∀w ∈ Ω.

Setting a = w, b = w̃t , c = wt and d = wt+1 in the identity

(a − b)T H2(c − d)=1

2

(
‖a−d‖2

H2
− ‖a−c‖2

H2

)
+1

2

(
‖c−b‖2

H2
− ‖d − b‖2

H2

)
,

we have

2
(
w − w̃t)Q2

(
wt − w̃t)

= ‖w − wt+1‖2
H2

− ‖w − wt‖2
H2

+ ‖wt − w̃t‖2
H2

− ‖wt+1 − w̃t‖2
H2

.
(90)

Meanwhile, we have

‖wt − w̃t‖2
H2

− ‖wt+1 − w̃t‖2
H2

= ‖wt − w̃t‖2
H2

− ‖(wt − w̃t ) −
(

wt − wt+1
)

‖2
H2

= ‖wt − w̃t‖2
H2

− ‖(wt − w̃t ) − M(wt − w̃t )‖2
H2

= (wt − w̃t) (2H2M − MT HM)
(
wt − w̃t)

= (wt − w̃t) (QT
2 + Q2 − MT HM)

(
wt − w̃t) ,
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where the last equality comes from the identity Q2 = H2M.
Substituting the above identity into (90), we have, for all w ∈ Ω ,

2
(
w−w̃t)Q2

(
wt −w̃t)=‖w−wt+1‖2

H2
−‖w−wt‖2

H2
+‖wt −w̃t‖2

QT
2+Q2−MT H2M

Plugging this identity into (82), our claim follows immediately. 
�
Then, we show the boundedness of the sequence {wt } generated by the DL-

GADMM (79), which essentially implies the convergence of {wt }.
Theorem 9 Let {wt } be the sequence generated by the DL-GADMM (79) with α ∈
(0, 2). Then, it holds that

∞∑
t=0

‖wt − w̃t‖2
QT

2 +Q2−MT H2M
≤ ‖w0 − w∗‖2

H2
, (91)

where H2 is defined in (80).

Proof Setting w = w∗ in (89), we have

f (u∗) − f (ut ) + (w∗ − w̃t)T F(w∗) ≥ 1

2

(‖w∗ − wt+1‖2
H2

− ‖w∗ − wt‖2
H2

)

+ 1

2
‖wt − w̃t‖2

QT
2 +Q2−MT H2M

.

Then, recall (5), we have

‖wt − w̃t‖2
QT

2 +Q2−MT H2M
≤ ‖wt − w∗‖2

H2
− ‖wt+1 − w∗‖2

H2
.

It is easy to see that QT
2 + Q2 − MT H2M � 0. Thus, it holds

∞∑
t=0

‖wt − w̃t‖2
QT

2 +Q2−MT H2M
≤ ‖w0 − w∗‖2

H2
,

which completes the proof. 
�
Finally, we establish a worst-case O(1/k) convergence rate in a nonergodic sense

for the DL-GADMM (79).

Theorem 10 Let the sequence {wt } be generated by the scheme DL-GADMM (79)
with α ∈ (0, 2). It holds that

‖wk − wk+1‖2
H2

= O(1/k). (92)
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Proof By the definition of H2 in (80), we have

‖wt −wt+1‖2
H2

=‖xt −x̃t‖2
G1

+‖yt −ỹt‖2
G2

+ 1

αρ

(
‖ρB
(

yt −yt+1
)

‖2

+‖γ t −γ t+1‖2 +2(1 − α)ρ
(

yt − yt+1
)T

BT
(
γ t − γ t+1

))

= ‖xt − x̃t‖2
G1

+ ‖yt − ỹt‖2
G2

+ α

ρ
‖γ t − γ̃ t‖2

−2
(

yt − yt+1
)T

BT
(
γ t − γ t+1

)
. (93)

Using (85, 88, 91) and (93), we obtain

k∑
t=1

‖wt − wt+1‖2
H2

≤ 1

cα

k∑
t=1

‖wt − w̃t‖2
QT

2 +Q2−MT H2M

+
k∑

t=1

(
‖yt−1 − yt‖2

G2
− ‖yt − yt+1‖2

G2

)

≤ 1

cα

‖w0 − w∗‖2
H2

+ ‖y0 − y1‖2
G2

.

By Theorem 8, the sequence {‖wt − wt+1‖2
H2

} is non-increasing. Thus, we have

k‖wk − wk+1‖2
H2

≤
k∑

t=1

‖wt − wt+1‖2
H2

≤ 1

cα

‖w0 − w∗‖2
H2

+ ‖y0 − y1‖2
G2

,

and the assertion (92) is proved. 
�
Recall that for the sequence {wt } generated by the DL-GADMM (79), it is rea-

sonable to measure the accuracy of an iterate by ‖wt − wt+1‖2
H2

. Thus, Theorem 10
demonstrates a worst-case O(1/k) convergence rate in a nonergodic sense for the
DL-GADMM (79).
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