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Abstract. The alternating direction method of multipliers (ADMM), also well known as a special split Bregman

algorithm in imaging, is being popularly used in many areas including the image processing field.

One useful modification is the symmetric version of the original ADMM, which updates the Lagrange

multiplier twice at each iteration and thus the variables are treated in a symmetric manner. The

symmetric version of ADMM, however, is not necessarily convergent. It was recently found that

the convergence of symmetric ADMM can be sufficiently ensured if both the step sizes for updating

the Lagrange multiplier are shrunk conservatively. Despite the theoretical significance in ensuring

convergence, however, smaller step sizes should be strongly avoided in practice. On the contrary,

we actually have the desire of seeking larger step sizes whenever possible in order to accelerate the

numerical performance. Another technique leading to numerical acceleration of ADMM is enlarging

its step size by a constant originally proposed by Fortin and Glowinski. These two numerically

favorable techniques are commonly but usually separately used in ADMM literature, and intuitively

they seem to be incompatible in combination with the symmetric ADMM due to the conflict between

the theoretical role in ensuring the convergence with smaller step sizes and the empirical necessity

in accelerating numerical performance with larger step sizes. It is thus open whether the ADMM

scheme in combination with these two techniques simultaneously is convergent. We answer this

question affirmatively in this paper and rigorously show the convergence of the symmetric version

of ADMM with step sizes that can be enlarged by Fortin and Glowinski’s constant. We thus move

forward to the counterintuitive understanding that shrinking both the step sizes is not necessary for

the symmetric ADMM. We conduct the convergence analysis by specifying a step size domain that

can ensure the convergence of symmetric ADMM; some known results in the ADMM literature turn

out to be special cases of our discussion. Since the step sizes can be enlarged by constants that are

problem-independent and the strategy is applicable to the general iterative scheme when the generic

setting of the model is considered, our theoretical study provides an easily implementable strategy

to accelerate the ADMM numerically which can be immediately applied to a variety of applications

including some standard image processing tasks.
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1468 BINGSHENG HE, FENG MA, AND XIAOMING YUAN

1. Introduction. Our discussion starts with the canonical convex minimization model

with separable structure in the generic setting:

(1.1) min{θ1(x) + θ2(y) | Ax+By = b, x ∈ X , y ∈ Y},

where A ∈ <m×n1 , B ∈ <m×n2 , b ∈ <m, X ⊂ <n1 , and Y ⊂ <n2 are closed convex sets, and

θ1 : <n1 → < and θ2 : <n2 → < are convex (not necessarily smooth) functions. Throughout,

the solution set of (1.1) is assumed to be nonempty, and the sets X and Y are assumed to be

simple.

The augmented Lagrangian function of (1.1) can be written as

(1.2) Lβ(x, y, λ) = θ1(x) + θ2(y)− λT (Ax+By − b) +
β

2
‖Ax+By − b‖2,

where λ is the Lagrange multiplier and β > 0 is a penalty parameter for the linear constraints.

Thus, applying directly the augmented Lagrangian method in [34, 39] to (1.1), we obtain the

iterative scheme {
(xk+1, yk+1) = arg min{Lβ(x, y, λk) |x ∈ X , y ∈ Y},(1.3a)

λk+1 = λk − β(Axk+1 +Byk+1 − b).(1.3b)

We are interested in only the case where the functions θ1 and θ2 may have their own

properties/structures and it is worth taking advantage of them individually in algorithmic

implementation. For this case, solving the (x, y)-minimization problem in (1.3) may not be

efficient and we prefer splitting the (x, y)-subproblem into two easier ones, each involving only

one function θi in its objective. This idea can be realized by the classical alternating direction

method of multipliers (ADMM) (see [7, 25]). Starting with an initial iterate (y0, λ0) ∈ Y×<m,

the ADMM generates its sequence via the scheme
xk+1 = arg min{Lβ(x, yk, λk) |x ∈ X},(1.4a)

yk+1 = arg min{Lβ(xk+1, y, λk) | y ∈ Y},(1.4b)

λk+1 = λk − β(Axk+1 +Byk+1 − b).(1.4c)

We refer to, e.g., [5, 15, 22] for some reviews on ADMM.

The split Bregman algorithm (SBA) was proposed in [27] and it has received much atten-

tion in various image processing domains; see, e.g., [1, 2, 6, 16, 28, 29, 44], to mention just

a few. Now, we elaborate on the relationship between the SBA and ADMM schemes. The

iterative scheme of SBA for (1.1) can be written as


Perform the following two minimization problems for N rounds:

xk+1 ← arg min{Lβ(x, yk, λk) |x ∈ X},

yk+1 ← arg min{Lβ(xk+1, y, λk) | y ∈ Y},
(1.5a)

λk+1 = λk − β(Axk+1 +Byk+1 − b),(1.5b)D
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where N > 0 is an integer. Clearly, if N is chosen as 1 in (1.5), i.e., the (x, y)-subproblem

in (1.3a) is approximated by one Gauss–Seidel pass of the block-minimization approach, then

the SBA (1.5) reduces to the ADMM scheme (1.4). It is interesting to notice the comment in

[27]: for many applications optimal efficiency is obtained when only one iteration of the inner

loop is performed (i.e., N = 1 in the above algorithm). We refer to, e.g., [16, 41, 42], for more

elaborations on the relationship between the SBA and ADMM schemes.

As reported in [21], Fortin and Glowinski suggested, in [18, 19], attaching a relaxation

factor to the Lagrange-multiplier-updating step in (1.4). This results in the scheme
xk+1 = arg min{Lβ(x, yk, λk) |x ∈ X},(1.6a)

yk+1 = arg min{Lβ(xk+1, y, λk) | y ∈ Y},(1.6b)

λk+1 = λk − sβ(Axk+1 +Byk+1 − b),(1.6c)

where the parameter s can be chosen in the interval
(
0, 1+

√
5

2

)
and thus it becomes possible

to enlarge the step size for updating the Lagrange multiplier. An advantage of this larger

step size in (1.6) is that it can numerically lead to faster convergence empirically; see some

numerical results in [21] and more in, e.g., [8, 32]. Moreover, the parameter s for conver-

gence acceleration is just a constant and it can be chosen without additional computation.

We see that the scheme (1.6) differs from the original ADMM scheme (1.4) only in the fact

that the step size for updating the Lagrange multiplier can be larger than 1. But, as com-

mented in [15], technically they are “actually two distinct families of ADMM algorithms,

one derived from the operator-splitting framework and the other derived from Lagrangian

splitting.” Thus, despite the similarity in notation, the ADMM scheme (1.6) with Fortin and

Glowinski’s larger step size and the original ADMM scheme (1.4) are completely different in

nature.

As analyzed in [13, 20], the ADMM scheme (1.4) is an application of the Douglas–Rachford

splitting method (DRSM) in [11, 37] to the dual of (1.1). If the Peaceman–Rachford splitting

method (PRSM), which was originally proposed in [37, 38] and is equally important as the

DRSM in PDE literature, is applied to the dual of (1.1), it was shown in [24] that we can

obtain the following scheme:

xk+1 = arg min{Lβ(x, yk, λk) |x ∈ X},(1.7a)

λk+ 1
2 = λk − β(Axk+1 +Byk − b),(1.7b)

yk+1 = arg min{Lβ(xk+1, y, λk+ 1
2 ) | y ∈ Y},(1.7c)

λk+1 = λk+ 1
2 − β(Axk+1 +Byk+1 − b).(1.7d)

In the context of (1.1), the applications of PRSM and DRSM (i.e., (1.7) and (1.4), respectively)

have the only difference that the Lagrange multiplier is updated twice at each iteration in (1.7).

In [24], it was commented that the scheme (1.7) “is always faster than DRSM whenever it is

convergent”; its numerical efficiency can be found in [3, 23]. Alternatively, the scheme (1.7)D
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1470 BINGSHENG HE, FENG MA, AND XIAOMING YUAN

can be regarded as a symmetric version of the ADMM scheme (1.4) in the sense that the

variables x and y are treated equally, each of which is followed consequently by an update of

the Lagrange multiplier. Analytically, however, these two schemes are of significant difference

because of their different roots respectively in DRSM and PRSM. One more explanation can

be found in [31], showing that the sequence generated by the symmetric ADMM (1.7) is not

necessarily strictly contractive with respect to the solution set of (1.1) while this property

can be ensured by the sequence generated by the ADMM (1.4). Counterexamples showing

the divergence of (1.7) can also be found in [10, 12]. Once again, despite the similarity in

notation (only when the specific model (1.1) is considered), the symmetric ADMM (1.7) and

the original ADMM scheme (1.4) are completely different in nature.

To summarize, the ADMM scheme (1.6) with larger step sizes and the symmetric ADMM

(1.7) with an equal treatment on both variables are of different natures from the original

ADMM scheme (ADMM); but they are two commonly used techniques to accelerate the

original ADMM scheme (1.4). These two numerically favorable techniques, however, are

usually used separately; thus it is natural to ask if we can combine them together and thus

propose an symmetric version of ADMM but with larger step sizes. Before answering this

question, let us briefly recall the work [31], which seems to provide a puzzling clue to this

question. In [31], to overcome the difficulty of the lack of strict contraction, we suggested

updating the Lagrange multiplier in (1.7) more conservatively and obtained the symmetric

ADMM scheme with smaller step sizes:

xk+1 = arg min{Lβ(x, yk, λk) |x ∈ X},(1.8a)

λk+ 1
2 = λk − αβ(Axk+1 +Byk − b),(1.8b)

yk+1 = arg min{Lβ(xk+1, y, λk+ 1
2 ) | y ∈ Y},(1.8c)

λk+1 = λk+ 1
2 − αβ(Axk+1 +Byk+1 − b),(1.8d)

where the parameter α ∈ (0, 1) is for shrinking the step sizes in (1.7). It was shown in [31]

that the sequence generated by (1.8) is strictly contractive with respect to the solution set of

(1.1). Thus, in [31] we also called the symmetric ADMM (1.8) the strictly contractive PRSM.

It is worthwhile to mention that the restriction α ∈ (0, 1) makes the update of the Lagrange

multiplier more conservative with smaller step sizes, but it plays a crucial theoretical role

in ensuring the strict contraction for the sequence generated by (1.8) and hence sufficiently

ensuring the convergence of the symmetric ADMM (1.8). We also refer the reader to [35, 36]

for proximal versions of (1.8) which treat the subproblems more sophisticatedly, and some

applications to image processing are tested therein. Despite their significant theoretical role

in (1.8), smaller step sizes should be strongly avoided in practice, and on the contrary, we

have the desire to seek larger step sizes whenever possible in order to accelerate the numerical

performance. (Indeed it was recommended in [31] to take larger values close to 1 for α to lead

to better numerical performance.)

Hence, the theory in [31] for ensuring convergence of the symmetric ADMM (1.7) with

smaller step sizes seems to show that these two techniques (1.6) and (1.7) are incompatible inD
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s

r

(1, 1)

10

(1,−1)

1+
√

5
2

← r = 1 + s − s
2

← r = s
2
− s − 1

1

Figure 1. Step size domain D for the symmetric ADMM (1.9).

combination with the original ADMM scheme (1.4) due to the conflict between the theoretical

role in ensuring the convergence with smaller step sizes (e.g., (1.8)) and the empirical necessity

in accelerating numerical performance with larger step sizes. Indeed, given the already known

divergence of (1.7) and the fact that ensuring the convergence of an algorithm with larger

step sizes is usually more demanding to be analyzed, it is easy to have the intuition that the

combination of (1.7) with larger step sizes as in (1.6) is more likely to be divergent.

Our main purpose in this paper is, counterintuitively, to show the rigorous convergence

of the symmetric version of ADMM (1.7) with step sizes that could be enlarged by Fortin

and Glowinski’s constant in [18, 19, 21]. We conduct our convergence analysis by specifying

a domain for the constants to be attached to the step sizes in the symmetric ADMM (1.7).

To emphasize that we can take different step sizes for updating the Lagrange multiplier, we

assign two different constants to different step sizes in (1.7) and propose the following version

of the symmetric ADMM (1.8):

xk+1 = arg min{Lβ(x, yk, λk) |x ∈ X},(1.9a)

λk+ 1
2 = λk − rβ(Axk+1 +Byk − b),(1.9b)

yk+1 = arg min{Lβ(xk+1, y, λk+ 1
2 ) | y ∈ Y},(1.9c)

λk+1 = λk+ 1
2 − sβ(Axk+1 +Byk+1 − b),(1.9d)

in which r and s are independent constants that are restricted into the domain

(1.10) D =
{

(s, r) | s ∈
(
0, 1+

√
5

2

)
, r ∈ (−1, 1) & r + s > 0, |r| < 1 + s− s2

}
.

In Figure 1, we show the domain D for the convenience of discussion, and various ADMM-

like algorithms can be retrieved by choosing different values for r and s in the domain. Indeed,D
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1472 BINGSHENG HE, FENG MA, AND XIAOMING YUAN

it is easy to see that our discussion includes some known ADMM-based schemes as special

cases. For example, the original ADMM (1.4) corresponds to the point (s = 1, r = 0) in

Figure 1, the ADMM with Fortin and Glowinski’s larger step size (1.6) is the case where

s ∈ (0, 1+
√

5
2 ) and r = 0, the generalized ADMM scheme proposed in [13] is the case where

s = 1 and r ∈ (−1, 1) (see Remark 5.8 for elaboration), and the symmetric ADMM in [31] cor-

responds to the region where s ∈ (0, 1) and r ∈ (0, 1). Therefore, with the restriction of r and

s in D, we provide a comprehensive study on choosing the step sizes for the symmetric ADMM

(1.9). Indeed, it turns out that the proof is more demanding than those for the mentioned

special cases, mainly because one step size can be enlarged to the interval (0, 1+
√

5
2 ).

The rest of this paper is organized as follows. In section 2, we summarize some facts that

are useful for further analysis. In particular, the variational inequality characterization of

the model (1.1) is presented. Since the proof of convergence for (1.9) is highly nontrivial, we

prepare for the main convergence analysis step by step in sections 3–5. Then, the convergence

analysis is conducted in section 6. We report some preliminary numerical results in section 7

to support our theoretical assertions. Some conclusions are made in section 8.

Finally, we refer to [26] for further recent developments on the ADMM and SBA, especially

their applications to image processing and others in science and engineering.

2. Preliminaries.

2.1. Optimality condition in terms of variational inequality. In this section, we summa-

rize some preliminaries that will be used in later analysis. First, we show how to represent the

optimality condition of the model (1.1) in the variational inequality context, which is the basis

of the convergence analysis to be presented. This technique has been used in, e.g., [31, 33].

Let the Lagrangian function of the problem (1.1) be

(2.1) L(x, y, λ) = θ1(x) + θ2(y)− λT (Ax+By − b),

defined on X ×Y ×<m. In (2.1), (x, y) and λ are primal and dual variables, respectively. We

call
(
(x∗, y∗), λ∗

)
∈ X × Y × <m a saddle point of L(x, y, λ) if the following inequalities are

satisfied:

Lλ∈<m(x∗, y∗, λ) ≤ L(x∗, y∗, λ∗) ≤ Lx∈X ,y∈Y(x, y, λ∗).

Obviously, a saddle point
(
(x∗, y∗), λ∗

)
can be characterized by the system

(2.2)


x∗ = arg min{L(x, y∗, λ∗)|x ∈ X},
y∗ = arg min{L(x∗, y, λ∗)|y ∈ Y},
λ∗ = arg max{L(x∗, y∗, λ)|λ ∈ <m},

which can be rewritten as
x∗ ∈ X , L(x, y∗, λ∗)− L(x∗, y∗, λ∗) ≥ 0 ∀x ∈ X ,
y∗ ∈ Y, L(x∗, y, λ∗)− L(x∗, y∗, λ∗) ≥ 0 ∀ y ∈ Y,
λ∗ ∈ <m, L(x∗, y∗, λ∗)− L(x∗, y∗, λ) ≥ 0 ∀ λ ∈ <m.D
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Below we summarize how to characterize the optimality condition of an optimization

model by a variational inequality. The proof is obvious and is thus omitted.

Proposition 2.1. Let X ⊂ <n be a closed convex set and let θ(x) : <n → < and f(x) : <n →
< be convex functions. In addition, f(x) is differentiable. We assume that the solution set of

the minimization problem min{θ(x) + f(x) |x ∈ X} is nonempty. Then,

(2.3a) x∗ = arg min{θ(x) + f(x) |x ∈ X}

if and only if

(2.3b) x∗ ∈ X , θ(x)− θ(x∗) + (x− x∗)T∇f(x∗) ≥ 0 ∀x ∈ X .

Hence, using (2.1) and (2.3), we can rewrite the system (2.2) as

(2.4)


x∗ ∈ X , θ1(x)− θ1(x∗) + (x− x∗)T (−ATλ∗) ≥ 0 ∀x ∈ X ,
y∗ ∈ Y, θ2(y)− θ2(y∗) + (y − y∗)T (−BTλ∗) ≥ 0 ∀ y ∈ Y,
λ∗ ∈ <m, (λ− λ∗)T (Ax∗ +By∗ − b) ≥ 0 ∀ λ ∈ <m.

In other words, a saddle point
(
(x∗, y∗), λ∗

)
of the Lagrangian function (2.1) can be charac-

terized by a solution point of the following variational inequality:

(2.5a) VI(Ω, F, θ) w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0 ∀w ∈ Ω,

where

(2.5b)

w =

 x

y

λ

 , u =

(
x

y

)
, F (w) =

 −ATλ
−BTλ

Ax+By − b

 ,

θ(u) = θ1(x) + θ2(y), and Ω = X × Y × <m.

We denote by Ω∗ the solution set of VI(Ω, F, θ).

2.2. Characterization of a solution point of (1.1). The following theorem provides us

a criterion for judging if an iterate generated by the scheme (1.9) is an approximate solution

point of (1.1) with sufficient accuracy.

Theorem 2.2. For (xk+1, yk+1, λk+1) generated by the symmetric ADMM (1.9) from a

given iterate (yk, λk), if

(2.6) B(yk − yk+1) = 0 and Axk+1 +Byk+1 − b = 0,

then (xk+1, yk+1, λk+1) is a solution point of the variational inequality (2.5).

Proof. Because of (2.4), we need only show that
xk+1 ∈ X , θ1(x)− θ1(xk+1) + (x− xk+1)T {−ATλk+1} ≥ 0 ∀x ∈ X ,(2.7a)

yk+1 ∈ Y, θ2(y)− θ2(yk+1) + (y − yk+1)T {−BTλk+1} ≥ 0 ∀ y ∈ Y,(2.7b)

λk+1 ∈ <m, (λ− λk+1)T (Axk+1 +Byk+1 − b) ≥ 0 ∀λ ∈ <m.(2.7c)D
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1474 BINGSHENG HE, FENG MA, AND XIAOMING YUAN

First, it follows from (2.6) that

(2.8) Axk+1 +Byk − b = 0 and Axk+1 +Byk+1 − b = 0.

Consequently, together with (1.9b) and (1.9d), we get

(2.9) λk+ 1
2 = λk and λk+1 = λk.

On the other hand, using (2.3), the optimality conditions of the subproblems (1.9a) and (1.9c)

are

(2.10a)

xk+1 ∈ X , θ1(x)− θ1(xk+1) + (x− xk+1)T {−ATλk + βAT (Axk+1 +Byk − b)} ≥ 0 ∀x ∈ X

and

(2.10b)

yk+1 ∈ Y, θ2(y)−θ2(yk+1)+(y−yk+1)T {−BTλk+ 1
2 +βBT (Axk+1 +Byk+1− b)} ≥ 0 ∀ y ∈ Y,

respectively. Substituting (2.8) in (2.10) yields (2.7a) and (2.7b). Finally, notice that (2.7c)

can be specified as

Axk+1 +Byk+1 − b = 0.

The proof is complete.

Remark 2.3. According to Theorem 2.2, it is obvious that we can use

max{‖B(yk − yk+1)‖2, ‖Axk+1 +Byk+1 − b‖2} ≤ ε

as a stopping criterion to implement the symmetric ADMM (1.9), in which ε > 0 is the

tolerance specified by the user.

2.3. Some notation. Like the original ADMM scheme (1.4), in (1.9) the variable x also

plays an intermediate role in the sense that xk is not involved in the iteration. Thus, as [5], we

still call x an intermediate variable and (y, λ) essential variables because they are essentially

needed in the iteration. Correspondingly, for w = (x, y, λ) and wk = (xk, yk, λk) generated by

(1.9), we use the notation

v =

(
y

λ

)
and vk =

(
yk

λk

)
to represent the essential variables in w and wk, respectively. Moreover, we use V∗ to denote

the set of v∗ for all subvectors of w∗ in Ω∗.

3. A prediction-correction interpretation. In this section, we show a prediction-correction

interpretation to the symmetric ADMM (1.9). Note that this is only for the convenience of

algebraically presenting the convergence proof with compact notation.

First, for the iterate (xk+1, yk+1, λk+1) generated by the symmetric ADMM (1.9), we

define an auxiliary vector w̃k = (x̃k, ỹk, λ̃k) as

(3.1a) x̃k = xk+1, ỹk = yk+1,D
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and

(3.1b) λ̃k = λk − β(Axk+1 +Byk − b).

Below we show the discrepancy between the auxiliary vector w̃k and a solution point of

VI(Ω, F, θ).

Lemma 3.1. For given vk = (yk, λk), let wk+1 be generated by the symmetric ADMM (1.9)

and w̃k be defined by (3.1). Then, we have

(3.2a) w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TQ(vk − ṽk) ∀w ∈ Ω,

where

(3.2b) Q =

(
βBTB −rBT

−B 1
β Im

)
.

Proof. Using the notation defined in (3.1), we can rewrite λk+ 1
2 in (1.9b) as

(3.3) λk+ 1
2 = λk − r(λk − λ̃k) = λ̃k + (r − 1)(λ̃k − λk).

Notice that the objective functions of the x- and y-subproblems in (1.9) are

(3.4a) Lβ(x, yk, λk) = θ1(x) + θ2(yk)− (λk)T (Ax+Byk − b) +
β

2
‖Ax+Byk − b‖2,

and

(3.4b) Lβ(xk+1, y, λk+ 1
2 ) = θ1(xk+1)+θ2(y)−(λk+ 1

2 )T (Axk+1+By−b)+
β

2
‖Axk+1+By−b‖2,

respectively. According to (2.3), the optimality condition of the x-subproblem of (1.9a) is

xk+1 ∈ X , θ1(x)− θ1(xk+1) + (x− xk+1)T {−ATλk + βAT (Axk+1 +Byk − b)} ≥ 0 ∀ x ∈ X ,

and it can be written as (by using the auxiliary vector w̃k defined in (3.1))

(3.5a) x̃k ∈ X , θ1(x)− θ1(x̃k) + (x− x̃k)T (−AT λ̃k) ≥ 0 ∀ x ∈ X .

Ignoring some constant terms in the objective function of the y-subproblem (1.9c) and using

(3.3), we have

ỹk = arg min

{
θ2(y)−

(
λ̃k + (r − 1)(λ̃k − λk)

)T
By +

β

2
‖Ax̃k +By − b‖2 | y ∈ Y

}
.

Consequently, using (2.3), we obtain

ỹk ∈ Y, θ2(y)−θ2(ỹk)+(y−ỹk)T
{
−BT

(
λ̃k+(r−1)(λ̃k−λk)

)
+βBT (Ax̃k+Bỹk−b)

}
≥ 0 ∀y ∈ Y.D
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1476 BINGSHENG HE, FENG MA, AND XIAOMING YUAN

Now, we treat the {·} term in the last inequality. Using β(Ax̃k +Byk − b) = −(λ̃k − λk) (see

(3.1b)), we obtain

−BT
(
λ̃k + (r − 1)(λ̃k − λk)

)
+ βBT (Ax̃k +Bỹk − b)

= −BT (λ̃k + (r − 1)(λ̃k − λk)) + βBTB(ỹk − yk) + βBT (Ax̃k +Byk − b)
= −BT λ̃k − (r − 1)BT (λ̃k − λk) + βBTB(ỹk − yk)−BT (λ̃k − λk)
= −BT λ̃k + βBTB(ỹk − yk)− rBT (λ̃k − λk).

Thus, the optimality condition of the y-subproblem can be written as

(3.5b)

ỹk ∈ Y, θ2(y)− θ2(ỹk) + (y − ỹk)T
{
−BT λ̃k + βBTB(ỹk − yk)− rBT (λ̃k − λk)

}
≥ 0 ∀y ∈ Y.

According to the definition of w̃k in (3.1), we have

(Ax̃k +Bỹk − b)−B(ỹk − yk) + (1/β)(λ̃k − λk) = 0,

and it can be written as

(3.5c) λ̃k ∈ <m, (λ− λ̃k)T
{

(Ax̃k +Bỹk − b)−B(ỹk − yk) + (1/β)(λ̃k −λk)
}
≥ 0 ∀λ ∈ <m.

Combining (3.5a), (3.5b), and (3.5c), and using the notation of (2.5), we prove the assertion

of this lemma.

Lemma 3.2. For given vk, let wk+1 be generated by (1.9) and w̃k be defined by (3.1). Then

we have

(3.6a) vk+1 = vk −M(vk − ṽk),

where

(3.6b) M =

(
I 0

−sβB (r + s)Im

)
.

Proof. It follows from (1.9) that

λk+1 = λk+ 1
2 −

[
−sβB(yk − ỹk) + sβ(Axk+1 +Byk − b)

]
= λk − r(λk − λ̃k)−

[
−sβB(yk − ỹk) + s(λk − λ̃k)

]
= λk −

[
−sβB(yk − ỹk) + (r + s)(λk − λ̃k)

]
.

Thus, together with yk+1 = ỹk, we have the following useful relationship:(
yk+1

λk+1

)
=

(
yk

λk

)
−
(

I 0

−sβB (r + s)Im

)(
yk − ỹk
λk − λ̃k

)
.

The proof is complete.

Therefore, based on the previous two lemmas, the scheme (1.9) can be interpreted as a

prediction-correction procedure which consists of the prediction step (3.2) and the correction

step (3.6). We thus also frequently call w̃k and wk+1 the predictor and corrector, respectively,

in our proof.D
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4. Main result. As mentioned, our main purpose is to prove the convergence for the

symmetric ADMM (1.9) with the parameters r and s restricted into the domain D defined

in (1.10). As we shall show, the technique of our analysis basically follows the convergence

analysis framework of contraction methods; see, e.g., in [4]. We thus need to investigate the

strict contraction property of the sequence {‖vk − v∗‖2H}, which is not obvious for some parts

of the domain D under discussion. In this section, we present a main theorem that is the basis

for the convergence proof; then the detailed proof of this main theorem will be provided in

the next section.

4.1. Contraction of the sequence {‖vk − v∗‖2H}. First, we investigate the contraction

of the sequence {‖vk − v∗‖2H} that plays a pivotal role in the convergence analysis. We know

from the monotonicity of F that

(w − w̃k)TF (w) ≥ (w − w̃k)TF (w̃k).

Substituting this inequality into (3.2a), we get

(4.1) w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w) ≥ (v − ṽk)TQ(vk − ṽk) ∀w ∈ Ω,

We notice that for the matrices Q defined in (3.2b) and M defined in (3.6b), if there

is a positive definite matrix H such that Q = HM , then using (3.6a), we can rewrite the

right-hand side of (4.1) as

(4.2) (v − ṽk)TQ(vk − ṽk) = (v − ṽk)TH(vk − vk+1).

For this purpose, we define

(4.3) H = QM−1

and prove a simple fact for the matrix H in the following lemma.

Lemma 4.1. The matrix H defined in (4.3) is positive definite for any (s, r) ∈ D when the

matrix B in (1.1) is full column rank.

Proof. For the matrix M given in (3.6b), we have

M−1 =

(
I 0

s
r+sβB

1
r+sIm

)
.

Thus, it follows from (4.3) and (3.2b) that

H = QM−1 =

(
βBTB −rBT

−B 1
β Im

)(
I 0

s
r+sβB

1
r+sIm

)

=

(
(1− rs

r+s)βB
TB − r

r+sB
T

− r
r+sB

1
(r+s)β Im

)
.(4.4)

D
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For any (s, r) ∈ D, we have r + s > 0. From (4.4), we know that

H =

(
(1− rs

r+s)βB
TB − r

r+sB
T

− r
r+sB

1
(r+s)β Im

)

=
1

r + s

(
BT 0

0 I

) β(r + s− rs)I −rI

−rI 1
β I

( B 0

0 I

)
.(4.5)

Because the matrix B in (1.1) is assumed to be full column rank, to check the positive

definiteness of H, we need only to show that the matrix(
β(r + s− rs) −r

−r 1
β

)

is positive definite. Indeed, for any r ∈ (−1, 1), s > 0, and s+ r > 0, we have

r + s− rs =

{
for r ∈ [0, 1) and s > 0

for r ∈ (−1, 0), s > 0 and s+ r > 0

}
=

{
r + s(1− r)
(r + s)− rs

}
> 0

and

det

 β(r + s− rs) −r

−r 1
β

 = (1− r)(r + s) > 0.

The positive definiteness of H follows immediately.

For the case where H is positive definite, we have HM = Q. Thus, substituting (4.2) into

(4.1), we obtain

(4.6) w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w) ≥ (v − ṽk)TH(vk − vk+1) ∀w ∈ Ω.

Applying the identity

(a− b)TH(c− d) =
1

2
{‖a− d‖2H − ‖a− c‖2H}+

1

2
{‖c− b‖2H − ‖d− b‖2H}

to the right-hand side in (4.6) with

a = v, b = ṽk, c = vk, and d = vk+1,

we obtain

(4.7) (v− ṽk)TH(vk−vk+1) =
1

2

(
‖v−vk+1‖2H−‖v−vk‖2H

)
+

1

2
(‖vk− ṽk‖2H−‖vk+1− ṽk‖2H).

The following theorem is useful for estimating the convergence rate for the sequence gen-

erated by (1.9).D
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Theorem 4.2. For the sequence {wk} generated by the symmetric ADMM (1.9), we have

θ(u)− θ(ũk) + (w − w̃k)TF (w)

≥ 1

2

(
‖v − vk+1‖2H − ‖v − vk‖2H

)
+

1

2
‖vk − ṽk‖2G ∀w ∈ Ω,(4.8)

where H is defined in (4.3) and

(4.9) G = QT +Q−MTHM.

Proof. Substituting (4.7) into the right-hand side of (4.6), we obtain

θ(u)− θ(ũk) + (w − w̃k)TF (w)

≥ 1

2

(
‖v − vk+1‖2H − ‖v − vk‖2H

)
+

1

2

(
‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H

)
∀w ∈ Ω.(4.10)

For the last term of the right-hand side of (4.10), we have

‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H
= ‖vk − ṽk‖2H − ‖(vk − ṽk)− (vk − vk+1)‖2H

(3.6a)
= ‖vk − ṽk‖2H − ‖(vk − ṽk)−M(vk − ṽk)‖2H
= 2(vk − ṽk)THM(vk − ṽk)− (vk − ṽk)TMTHM(vk − ṽk)

(4.3)
= (vk − ṽk)T (QT +Q−MTHM)(vk − ṽk).(4.11)

Substituting this equation into (4.10) and using the definition of the matrix G in (4.9), the

assertion of this theorem is proved.

The next theorem clearly shows the difficulty of proving the convergence for (1.9). The

significant difference in convergence proof between the general symmetric ADMM scheme (1.9)

and the special symmetric ADMM scheme (1.8) with shrunken step sizes is also reflected in

this theorem.

Theorem 4.3. For the sequence {wk} generated by the symmetric ADMM (1.9), we have

(4.12) ‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − ṽk‖2G ∀v∗ ∈ V∗.

Proof. Setting w = w∗ in (4.8), we get

(4.13) ‖vk − v∗‖2H − ‖vk+1 − v∗‖2H ≥ ‖vk − ṽk‖2G + 2{θ(ũk)− θ(u∗) + (w̃k − w∗)TF (w∗)}.

Since w̃k ∈ Ω, using the optimality of w∗ (see (2.5a)), we have

θ(ũk)− θ(u∗) + (w̃k − w∗)TF (w∗) ≥ 0

and thus

‖vk − v∗‖2H − ‖vk+1 − v∗‖2H ≥ ‖vk − ṽk‖2G.

The assertion (4.12) follows directly.D
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Obviously, if the matrix G defined in (4.9) is guaranteed to be positive definite, then

the inequality (4.12) indicates that the sequence {vk} is strictly contractive with respect

to the solution set V∗ and the convergence of the sequence generated by (1.9) can be easily

established. Now, let us investigate the positive definiteness for the matrix G. Since HM = Q

(see (4.3)), we have MTHM = MTQ. Note that

MTQ =

(
I −sβBT

0 (r + s)Im

)(
βBTB −rBT

−B 1
β Im

)
=

(
(1 + s)βBTB −(r + s)BT

−(r + s)B 1
β (r + s)Im

)
.

Using (3.2b) and the above equation, we have

G = (QT +Q)−MTHM

=

(
2βBTB −(1 + r)BT

−(1 + r)B 2
β Im

)
−

(
(1 + s)βBTB −(r + s)BT

−(r + s)B 1
β (r + s)Im

)

=

(
(1− s)βBTB −(1− s)BT

−(1− s)B 1
β (2− (r + s))Im

)
.(4.14)

Note that

G =

(
BT 0

0 I

)( β(1− s)I −(1− s)I

−(1− s)I 1
β

(
2− (r + s)

)
I

)(
B 0

0 I

)
.(4.15)

Thus, when the matrix B in (1.1) is assumed to be full column rank, the matrix G is positive

definite if and only if

G0 =

(
β(1− s)I −(1− s)I

−(1− s)I 1
β

(
2− (r + s)

)
I

)
is positive definite. Indeed, under the assumption r ∈ (−1, 1), to ensure

β(1− s) > 0 and det

(
β(1− s) −(1− s)
−(1− s) 1

β (2− r − s)

)
= (1− s)(1− r) > 0,

the parameter s must be in (0, 1). Obviously, when r = s ∈ (0, 1), the positive definiteness

of G is guaranteed; thus the symmetric ADMM (1.8) with shrunken step sizes is convergent,

as proved in [31]. However, for (s, r) ∈ D defined in (1.10) where s may be greater than 1,

G may not be positive definite. This is the main difficulty of proving the convergence for the

symmetric ADMM (1.9).

4.2. Main theorem. Now we present the main theorem that enables us to establish the

convergence for the symmetric ADMM (1.9) with the parameters r and s restricted into the

domain D defined in (1.10). As just mentioned, depending on the domain of (s, r), the matrix

G in (4.9) may not be positive definite, and thus the inequality (4.12) in Theorem 4.3 does not

necessarily imply the strict contraction for the sequence {‖vk − v∗‖2H}. This is also why weD
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need to further discuss the term ‖vk− ṽk‖2G in different subdomains of (s, r). More specifically,

we should split this discussion into five scenarios:

(4.16)



D1 =
{

(s, r) | s ∈ (0, 1), r ∈ (−1, 1), r + s > 0
}
,

D2 =
{

(s, r) | s = 1, r ∈ (−1, 1)
}
,

D3 =
{

(s, r) | s ∈
(
1, 1+

√
5

2

)
, r = 0

}
,

D4 =
{

(s, r) | s ∈
(
1, 1+

√
5

2

)
, r ∈ (0, 1) & r < 1 + s− s2

}
,

D5 =
{

(s, r) | s ∈
(
1, 1+

√
5

2

)
, r ∈ (−1, 0) & − r < 1 + s− s2

}
.

These five subdomains are displayed separately in Figure 2. Figure 1 is redisplayed in Figure 3,

in which the composition of these subdomains defined in (4.16) is clearly shown. It is clear

(see Figure 1) that

D =
5⋃

k=1

Dk and Di
⋂
Dj = ∅ ∀ i, j ∈ {1, 2, 3, 4, 5}, i 6= j.

In the following, we summarize the main theorem, which gives us a unified presentation of

how to bound the term ‖vk − ṽk‖2G in different subdomains of (s, r). Since the proof is highly

nontrivial, the detailed proof will be given in the next section.

Theorem 4.4. Let the sequence {wk} be generated by the symmetric ADMM (1.9) and w̃k

be defined by (3.1). We have the following:

1. For arbitrarily fixed (s, r) ∈ D1 ∪ D2, there exist constants C1, C2 > 0, such that

‖vk − ṽk‖2G ≥ C1β‖B(yk − yk+1)‖2 + C2β‖Axk+1 +Byk+1 − b‖2.(4.17a)

2. For arbitrarily fixed (s, r) ∈ D3 ∪ D4 ∪ D5, there exist constants C0, C1, C2 > 0, such

that

‖vk − ṽk‖2G ≥ C0β
(
‖Axk+1 +Byk+1 − b‖2 − ‖Axk +Byk − b‖2

)
+ C1β‖B(yk − yk+1)‖2 + C2β‖Axk+1 +Byk+1 − b‖2.(4.17b)

5. Proof of Theorem 4.4. In this section, we prove Theorem 4.4.

5.1. Further investigation of ‖vk− ṽk‖2G. Let us further investigate the term ‖vk− ṽk‖2G
and then show the assertions in Theorem 4.4.

Lemma 5.1. Let the sequence {wk} be generated by the symmetric ADMM (1.9) and w̃k

be defined by (3.1). Then we have

‖vk − ṽk‖2G = (1− r)β‖B(yk − yk+1)‖2 + (2− r − s)β‖Axk+1 +Byk+1 − b‖2

+ 2(1− r)β(Axk+1 +Byk+1 − b)TB(yk − yk+1).(5.1)D
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s

r

(1, 1)

10

(1,−1)

D1

s

r

(1, 1)

10

(1,−1)

←D2

s

r

10 1+
√
5

2

D3

↓
s

r

(1, 1)

10

(1,−1)

1+
√
5

2

← r = 1 + s − s
2

← r = s
2
− s − 1

1

D4

D5

Figure 2. Subdomains D1, D2, D3, D4, and D5.

Proof. Because G =
( (1− s)βBTB −(1− s)BT

−(1− s)B 2−(r+s)
β

I

)
(see (4.14)), v =

( y
λ

)
and ỹk = yk+1,

we have

‖vk − ṽk‖2G = (1− s)β‖B(yk − yk+1)‖2 − 2(1− s)(λk − λ̃k)TB(yk − yk+1)

+
2− (r + s)

β
‖λk − λ̃k‖2.(5.2)

Notice that (see (3.1))

λk − λ̃k = β(Axk+1 +Byk − b) = β
{

(Axk+1 +Byk+1 − b) +B(yk − yk+1)
}
.
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s

r

(1, 1)

10

(1,−1)

1+
√

5
2

← r = 1 + s − s
2

← r = s
2
− s − 1

1

Figure 3. D = D1 ∪ D2 ∪ D3 ∪ D4 ∪ D5.

Thus, we have

(λk − λ̃k)TB(yk − yk+1)

= β
(
(Axk+1 +Byk+1 − b) +B(yk − yk+1)

)T
B(yk − yk+1)

= β(Axk+1 +Byk+1 − b)TB(yk − yk+1) + β‖B(yk − yk+1)‖2(5.3)

and

‖λk − λ̃k‖2 = β2‖(Axk+1 +Byk+1 − b) +B(yk − yk+1)‖2

= β2‖Axk+1 +Byk+1 − b‖2 + 2β2(Axk+1 +Byk+1 − b)TB(yk − yk+1)

+ β2‖B(yk − yk+1)‖2.(5.4)

Substituting (5.3) and (5.4) into the right-hand side of (5.2), we obtain (5.1) immediately.

In the following, we treat the crossing term in the right-hand side of (5.1), namely,

(Axk+1 +Byk+1 − b)TB(yk − yk+1),

and find a lower bound for it.

Lemma 5.2. Let the sequence {wk} be generated by the symmetric ADMM (1.9). Then we

have

(Axk+1 +Byk+1 − b)TB(yk − yk+1)

≥ 1− s
1 + r

(Axk +Byk − b)TB(yk − yk+1)− r

1 + r
‖B(yk − yk+1)‖2.(5.5)
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Proof. By ignoring the constant terms, the y-subproblem in (1.9) can be written as

yk+1 = arg min{Lβ(xk+1, y, λk+ 1
2 ) | y ∈ Y}

= arg min

{
θ1(xk+1) + θ2(y)− (λk+ 1

2 )T (Axk+1 +By− b) +
β

2
‖Axk+1 +By− b‖2 | y ∈Y

}
= arg min

{
θ2(y)− (λk+ 1

2 )TBy +
β

2
‖Axk+1 +By − b‖2 | y ∈ Y

}
.

Thus, according to (3.4b), the optimality condition of the y-subproblem (1.9c) is

(5.6)

yk+1 ∈ Y, θ2(y)−θ2(yk+1)+(y−yk+1)T {−BTλk+ 1
2 +βBT (Axk+1 +Byk+1−b)} ≥ 0 ∀y ∈ Y.

Analogously, for the previous iteration, we have

(5.7) yk ∈ Y, θ2(y)− θ2(yk) + (y − yk)T {−BTλk−
1
2 + βBT (Axk +Byk − b)} ≥ 0 ∀y ∈ Y.

Setting y = yk and y = yk+1 in (5.6) and (5.7), respectively, and then adding them, we get

(5.8) (yk − yk+1)TBT {(λk−
1
2 − λk+ 1

2 )− β(Axk +Byk − b) + β(Axk+1 +Byk+1 − b)} ≥ 0.

Note that in the kth iteration (see (1.9b)), we have

(5.9) λk+ 1
2 = λk − rβ(Axk+1 +Byk − b),

and in the previous iteration (see (1.9d)),

(5.10) λk = λk−
1
2 − sβ(Axk +Byk − b).

It follows from (5.10) and (5.9) that

λk−
1
2 − λk+ 1

2 = rβ(Axk+1 +Byk − b) + sβ(Axk +Byk − b)
= rβ(Axk+1 +Byk+1 − b) + rβB(yk − yk+1) + sβ(Axk +Byk − b).(5.11)

Substituting (5.11) into (5.8) and with a simple manipulation, we have

(yk − yk+1)TBT
{

(1 + r)β(Axk+1 +Byk+1 − b)

−(1− s)β(Axk +Byk − b) + rβB(yk − yk+1)
}
≥ 0

and obtain (5.5) directly from the last inequality. This lemma is proved.

Consequently, we get the following theorem, which is important for the proof of the main

theorem in the next section.

Theorem 5.3. Let the sequence {wk} be generated by the symmetric ADMM (1.9) and w̃k

be defined by (3.1). Then we have

‖vk − ṽk‖2G ≥
(1− r)2

1 + r
β‖B(yk − yk+1)‖2 + (2− r − s)β‖Axk+1 +Byk+1 − b‖2

+
2(1− r)(1− s)

1 + r
β(Axk +Byk − b)TB(yk − yk+1).(5.12)

Proof. Substituting (5.5) into (5.1), we obtain the assertion (5.12) immediately.D
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5.2. Proofs for different subdomains. Now, we are at the stage to prove Theorem 4.4

for the subdomains defined in (4.16) one by one.

5.2.1. (s, r) in the subdomain D1.

Lemma 5.4. For arbitrarily fixed (s, r) ∈ D1, there are constants C1, C2 > 0 such that the

inequality (4.17a) holds and Theorem 4.4 is true for (s, r) ∈ D1.

Proof. Recall that D1 =
{

(s, r) | s ∈ (0, 1), r ∈ (−1, 1), r+s > 0
}

(see (4.16)). According

to (4.15), we have

‖vk − ṽk‖2G =

∥∥∥∥ B(yk − ỹk)
λk − λ̃k

∥∥∥∥2

G0

,

where

G0 =

(
β(1− s)I −(1− s)I

−(1− s)I 1
β

(
2− (r + s)

)
I

)
� 0 ∀ (s, r) ∈ D1.

On the other hand, according to (3.1), we have(
B(yk − ỹk)
λk − λ̃k

)
=

(
B(yk − yk+1)

β(Axk+1 +Byk − b)

)

=

(
B(yk − yk+1)

βB(yk − yk+1) + β(Axk+1 +Byk+1 − b)

)

=

(
I 0

βI βI

)(
B(yk − yk+1)

Axk+1 +Byk+1 − b

)
.

Consequently, we obtain

(5.13) ‖vk − ṽk‖2G =

∥∥∥∥ B(yk − ỹk)
λk − λ̃k

∥∥∥∥2

G0

=

∥∥∥∥∥ B(yk − yk+1)

Axk+1 +Byk+1 − b

∥∥∥∥∥
2

G̃0

,

where

G̃0 = LTG0L and L =

(
I 0

βI βI

)
.

Due to the positive definiteness of G0 and nonsingularity of L, G̃0 is positive definite. Finally,

the assertion follows from (5.13) and the positive definiteness of G̃0.

Remark 5.5. The symmetric ADMM (1.8) with shrunken step sizes is a special case of

(1.9) with r = s ∈ (0, 1). In this case (see (4.5)),

H =
1

2r

(
BT 0

0 I

)(
r(2− r)βI −rI
−rI 1

β I

)(
B 0

0 I

)
and (see (4.15))

G = (1− r)
(
BT 0

0 I

)(
βI −I
−I 2

β I

)(
B 0

0 I

)
.
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5.2.2. (s, r) in the subdomain D2. Theorem 5.3 is crucial for proving the convergence

of (1.9) with s ≥ 1. Now, we use it to show that Theorem 4.4 is true for (s, r) ∈ D2.

Lemma 5.6. For any (s, r) ∈ D2, the inequality (4.17a) holds with

C1 =
(1− r)2

1 + r
> 0 and C2 = 1− r > 0.

Proof. Notice that D2 =
{

(s, r) | s = 1, r ∈ (−1, 1)
}

(see (4.16)). Setting s = 1 in (5.12),

we obtain

(5.14) ‖vk − ṽk‖2G ≥
(1− r)2

1 + r
β‖B(yk − yk+1)‖2 + (1− r)β‖Axk+1 +Byk+1 − b‖2.

The lemma is proved.

Remark 5.7. Recall that the original ADMM (1.4) is a special case of (1.9) with r = 0

and s = 1. In this special case, the matrix H has the form (see (4.4))

(5.15) H =

(
βBTB 0

0 1
β I

)
.

Notice that in this special case, we have

λk+1 = λk − β(Axk+1 +Byk+1 − b).

Thus, setting r = 0 in (5.14), we get

‖vk − ṽk‖2G ≥ β‖B(yk − yk+1)‖2 + β‖Axk+1 +Byk+1 − b‖2

= β‖B(yk − yk+1)‖2 +
1

β
‖λk − λk+1‖2.

Using the special matrix H in (5.15), we get

(5.16) ‖vk − ṽk‖2G ≥ ‖vk − vk+1‖2H .

Remark 5.8. Indeed, the generalized ADMM in [13] is a special case of (1.9) with (s, r) ∈
D2. Let us elaborate on the detail, which is not straightforward. In [13], only the special case

of (1.1) with B = −I and b = 0 was discussed. But it is trivial (see, e.g., [14, 15, 17]) to

extend the generalized ADMM in [13] to the model (1.1). The resulting iterative scheme can

be written as 

xk+1 = arg min{θ1(x)− xTATλk +
β

2
‖Ax+Byk − b‖2 |x ∈ X},(5.17a)

yk+1 = arg min{θ2(y)− yTBTλk(5.17b)

+
β

2
‖[αAxk+1−(1− α)(Byk− b)] +By − b‖2|y ∈ Y},

λk+1 = λk − β{[αAxk+1 − (1− α)(Byk − b)] +Byk+1 − b},(5.17c)D
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where the parameter α ∈ (0, 2) is a relaxation factor. To see why (5.17) is a special case of

(1.9), let us choose r = α− 1. Then, the y-subproblem in (5.17b) can be written as

yk+1 = arg min

{
θ2(y)− yTBTλk +

β

2
‖(Axk+1 +By − b) + r(Axk+1 +Byk − b)‖2| y ∈ Y

}
.

Ignoring some constant terms in the objective function, we further rewrite it as

yk+1 = arg min

{
θ2(y)− yTBT [λk − rβ(Axk+1 +Byk − b)] +

β

2
‖Axk+1 +By − b‖2| y ∈ Y

}
.

Recall (1.9b). We have

(5.18) λk+ 1
2 = λk − rβ(Axk+1 +Byk − b),

which enables us to rewrite the y-subproblem as

(5.19) yk+1 = arg min

{
θ2(y)− yTBTλk+ 1

2 +
β

2
‖Axk+1 +By − b‖2| y ∈ Y

}
.

Analogously, since α = 1 + r, the step (5.17c) can be rewritten as

λk+1 = λk − rβ(Axk+1 +Byk − b)− β(Axk+1 +Byk+1 − b),

which, together with (5.18), yields

(5.20) λk+1 = λk+ 1
2 − β(Axk+1 +Byk+1 − b).

Combining (5.17a), (5.18), (5.19), and (5.20), we now can rewrite the generalized ADMM

(5.17) as 

xk+1 = arg min

{
θ1(x)− xTATλk +

β

2
‖Ax+Byk − b‖2 |x ∈ X

}
,(5.21a)

λk+ 1
2 = λk − rβ(Axk+1 +Byk − b),(5.21b)

yk+1 = arg min

{
θ2(y)− yTBTλk+ 1

2 +
β

2
‖Axk+1 +By − b‖2| y ∈ Y

}
,(5.21c)

λk+1 = λk+ 1
2 − β(Axk+1 +Byk+1 − b),(5.21d)

where r ∈ (−1, 1). Thus, the generalized ADMM (5.17) is a special case of the symmetric

ADMM scheme (1.9) with the restriction (s, r) ∈ D2.

5.2.3. (s, r) in the subdomain D3. Now, we turn to verify Theorem 4.4 for the subdo-

main D3. First, let us define

(5.22a) S := 1 + s− s2.D
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Because

1 + s− s2 = −
(
s− 1−

√
5

2

)(
s− 1 +

√
5

2

)
,

we have

(5.22b) S > 0 ∀ s ∈
(

1,
1 +
√

5

2

)
.

The result in Theorem 5.3 is the basis for the proof in this section.

Recall that D3 =
{

(s, r) | s ∈
(
1, 1+

√
5

2

)
, r = 0} (see (4.16)). Since r = 0, it follows from

Theorem 5.3 that

‖vk − ṽk‖2G ≥ β‖B(yk − yk+1)‖2 + (2− s)β‖Axk+1 +Byk+1 − b‖2

+ 2(1− s)β(Axk +Byk − b)TB(yk − yk+1).(5.23)

Now, we define a constant T1 as

(5.24) T1 :=
1

3
(s2 − s+ 5),

and thus we have

(5.25) T1 − s =
1

3
(s2 − 4s+ 5) =

1

3
[(s− 2)2 + 1] >

1

3
.

Using the Cauchy–Schwarz inequality to the crossing term in the right-hand side of (5.23)

and because of T1 − s > 0, we have

2(1− s)β(Axk +Byk − b)TB(yk − yk+1)

≥ −
(
T1 − s

)
β‖Axk +Byk − b‖2 − (1− s)2

T1 − s
β‖B(yk − yk+1)‖2.(5.26)

Lemma 5.9. For any (s, r) ∈ D3, the inequality (4.17b) holds with

C0 = T1 − s >
1

3
, C1 =

2(1 + s− s2)

1 + (s− 2)2 > 0, and C2 =
1

3
S > 0.

Proof. Substituting (5.26) into (5.23), we obtain

‖vk − ṽk‖2G ≥
(
T1 − s

)
β
(
‖Axk+1 +Byk+1 − b‖2 − ‖Axk +Byk − b‖2

)
+
(

1− (1− s)2

T1 − s

)
β‖B(yk − yk+1)‖2 + (2− T1)β‖Axk+1 +Byk+1 − b‖2.(5.27)

According to (4.17b), we set

C0 = T1 − s, C1 = 1− (1− s)2

T1 − s
, and C2 = 2− T1.D
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It follows from (5.25) that C0 ≥ 1
3 . Then, using (5.24), we obtain

C1 = 1− (1− s)2

T1 − s
=

(s2 − 4s+ 5)− 3(1− s)2

s2 − 4s+ 5
=

2(1 + s− s2)

1 + (s− 2)2
.

Because 1 + (s− 2)2 < 2 for all s ∈
(
1, 1+

√
5

2

)
, it follows that

(5.28) C1 =
2(1 + s− s2)

1 + (s− 2)2
≥ 1 + s− s2 = S.

Finally,

(5.29) C2 = 2− T1 = 2− 1

3
(s2 − s+ 5) =

1

3
(1 + s− s2) =

1

3
S.

The assertion of this lemma is proved

5.2.4. (s, r) in the subdomain D4. Recall that D4 =
{

(s, r) | s ∈
(
1, 1+

√
5

2

)
, r ∈

(0, 1) & r < 1 + s − s2
}

(see (4.16)). We say r < 1 + s − s2 is an additional restriction

in D4 and define

(5.30) T2 = r + s+ (1− s)2.

Notice that T2 − (r + s) = (1 − s)2 > 0 for all s ∈
(
1, 1+

√
5

2

)
. For the crossing term in the

right-hand side of (5.12), using the Cauchy–Schwarz inequality, we obtain

2(1− r)(1− s)
1 + r

β(Axk +Byk − b)TB(yk − yk+1)

≥ −[T2 − (r + s)]β‖Axk +Byk − b‖2 − (1− r)2(1− s)2

(1 + r)2[T2 − (r + s)]
β‖B(yk − yk+1)‖2.(5.31)

Lemma 5.10. For any (s, r) ∈ D4, the inequality (4.17b) holds with

C0 = (1− s)2 > 0, C1 = r
(1− r)2

(1 + r)2
> 0, and C2 = 2− T2 > 0,

where T2 is defined in (5.30).

Proof. Substituting (5.31) into (5.12) yields

‖vk − ṽk‖2G ≥ [T2 − (r + s)]β
(
‖Axk+1 +Byk+1 − b‖2 − ‖Axk +Byk − b‖2

)
+
((1− r)2

1 + r
− (1− r)2(1− s)2

(1 + r)2[T2 − (r + s)]

)
β‖B(yk − yk+1)‖2

+(2− T2)β‖Axk+1 +Byk+1 − b‖2.(5.32)

According to (4.17b), we set

C0 = T2 − (r + s), C1 =
(1− r)2

1 + r
− (1− r)2(1− s)2

(1 + r)2[T2 − (r + s)]
, and C2 = 2− T2.
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In the following, we show that C0, C1, C2 > 0. First, it follows from (5.30) that C0 = (1−s)2 >

0 for all s ∈
(
1, 1+

√
5

2

)
. Indeed, using (5.30), we have

C1 =
(1− r)2

1 + r
− (1− r)2(1− s)2

(1 + r)2[T2 − (r + s)]
=

(1− r)2

1 + r
− (1− r)2

(1 + r)2
= r

(1− r)2

(1 + r)2
.

Since r ∈ (0, 1) in D4, we have C1 > 0. Adding the term 1 − s + s2 to both sides of the

additional restriction

r < 1 + s− s2,

we obtain

r + s+ (1− s)2 < 2.

According to the definition (5.30), the left-hand side of the last inequality is T2 and thus

C2 = 2− T2 > 0. The lemma is proved.

5.2.5. (s, r) in the subdomain D5. Recall that D5 =
{

(s, r) | s ∈
(
1, 1+

√
5

2

)
, r ∈

(−1, 0) & − r < 1 + s− s2
}

(see (4.16)). We say s2 − s− 1 < r is an additional restriction in

D5 and define

(5.33) T3 = r + s+
(s2 − s)(2− s)

1 + r
.

Notice that T3−(r+s) = (s2−s)(2−s)
1+r > 0 for all s ∈

(
1, 1+

√
5

2

)
and r ∈ (−1, 0). For the crossing

term in the right-hand side of (5.12), using the Cauchy–Schwarz inequality, we obtain

2(1− r)(1− s)
1 + r

β(Axk +Byk − b)TB(yk − yk+1)

≥ −[T3 − (r + s)]β‖Axk +Byk − b‖2 − (1− r)2(1− s)2

(1 + r)2[T3 − (r + s)]
β‖B(yk − yk+1)‖2.(5.34)

Lemma 5.11. For any (s, r) ∈ D5, the inequality (4.17b) holds with

C0 =
(s2 − s)(2− s)

1 + r
> 0, C1 =

(1− r)2(1 + s− s2)

s(1 + r)(2− s)
> 0, and C2 = 2− T3 > 0,

where T3 is defined in (5.33).

Proof. Substituting (5.34) into (5.12) yields

‖vk − ṽk‖2G ≥ [T3 − (r + s)]β
(
‖Axk+1 +Byk+1 − b‖2 − ‖Axk +Byk − b‖2

)
+
((1− r)2

1 + r
− (1− r)2(1− s)2

(1 + r)2[T3 − (r + s)]

)
β‖B(yk − yk+1)‖2

+ (2− T3)β‖Axk+1 +Byk+1 − b‖2.(5.35)

According to (4.17b), we set

C0 = T3 − (r + s), C1 =
(1− r)2

1 + r
− (1− r)2(1− s)2

(1 + r)2[T3 − (r + s)]
, and C2 = 2− T3.
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In the following, we show that C0, C1, C2 > 0. First, it follows from (5.33) that C0 =
(s2−s)(2−s)

r+1 > 0 for all s ∈
(
1, 1+

√
5

2

)
and r ∈ (−1, 0). Indeed, using (5.33), we have

C1 =
(1− r)2

1 + r
− (1− r)2(1− s)2

(1 + r)2[T3 − (r + s)]
=

(1− r)2

1 + r
− (1− r)2(1− s)2

(1 + r)(s2 − s)(2− s)

=
(1− r)2

1 + r
+

(1− r)2(1− s)
s(1 + r)(2− s)

=
(1− r)2(1 + s− s2)

s(1 + r)(2− s)
.

Since r ∈ (−1, 0) and s ∈
(
1, 1+

√
5

2

)
in D5 and 1 + s − s2 > 0 (see (5.22)), we have C1 > 0.

From the restriction in D5, namely, s2 − s− 1 < r, we obtain

s2 − s < 1 + r.

Notice that s ∈
(
1, 1+

√
5

2

)
, we also have s2 − s > 0, and thus

s2 − s
1 + r

< 1.

Substituting the last inequality into (5.33), we get

(5.36) T3 = r + s+
(s2 − s

1 + r

)
(2− s) < r + s+ (2− s) = 2 + r,

which, together with r < 0, implies C2 = 2− T3 > 0. The lemma is proved.

Since we have proved Lemmas 5.4, 5.6, 5.9, 5.10, and 5.11, the proof for Theorem 4.4 is

complete. In the next section, we will prove the convergence and convergence rate.

6. Convergence analysis. In this section, we establish the global convergence and esti-

mate the convergence rate in terms of the iteration complexity for the symmetric ADMM

(1.9).

6.1. Some corollaries. First, we show two immediate corollaries of the main result in

Theorem 4.4, whose proofs are omitted. The first one is based on (4.12) and Theorem 4.4.

Corollary 6.1. Let the sequence {wk} be generated by the symmetric ADMM (1.9) and w̃k

be defined by (3.1). Then, we have the following assertions:

1. For any given (s, r) ∈ D1 ∪ D2, there are constants C1, C2 > 0 such that

(6.1a)

‖vk+1− v∗‖2H ≤ ‖vk − v∗‖2H −
(
C1β‖B(yk − yk+1)‖2 +C2β‖Axk+1 +Byk+1− b‖2

)
∀v∗ ∈ V∗.

2. For (s, r) ∈ D3 ∪ D4 ∪ D5, there are constants C0, C1, C2 > 0 such that

‖vk+1 − v∗‖2H + C0β‖Axk+1 +Byk+1 − b‖2

≤
(
‖vk − v∗‖2H + C0β‖Axk +Byk − b‖2

)
−
(
C1β‖B(yk − yk+1)‖2 + C2β‖Axk+1 +Byk+1 − b‖2

)
∀v∗ ∈ V∗.(6.1b)D
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The second one is based on (4.8) and Theorem 4.4.

Corollary 6.2. Let the sequence {wk} be generated by the symmetric ADMM (1.9) and w̃k

be defined by (3.1). Then, we have the following assertions:

1. For (s, r) ∈ D1 ∪ D2, it holds that

(6.2a) θ(u)− θ(ũk) + (w − w̃k)TF (w) +
1

2
‖v − vk‖2H ≥

1

2
‖v − vk+1‖2H ∀w ∈ Ω.

2. For (s, r) ∈ D3 ∪ D4 ∪ D5, we have

θ(u)− θ(ũk) + (w − w̃k)TF (w) +
1

2

(
‖v − vk‖2H + C0β‖Axk +Byk − b‖2

)
≥ 1

2

(
‖v − vk+1‖2H + C0β‖Axk+1 +Byk+1 − b‖2

)
∀w ∈ Ω.(6.2b)

These two corollaries will be used for the upcoming convergence analysis.

6.2. Global convergence. We summarize the global convergence of (1.9) in the following

theorem and its proof follows straightforwardly from Corollary 6.1.

Theorem 6.3. For the sequence {wk} generated by the symmetric ADMM (1.9), we have

(6.3) lim
k→∞

(
‖B(yk − yk+1)‖2 + ‖Axk+1 +Byk+1 − b‖2

)
= 0.

Moreover, if the matrix B is assumed to be full column rank, then the sequence {vk} converges

to a solution point v∞ ∈ V∗.

Proof. Let (y0, λ0) be the initial iterate. For (s, r) ∈ D1 ∪ D2, according to (6.1a) in

Corollary 6.1, there are constants C1, C2 > 0 such that

∞∑
k=0

(
C1‖B(yk − yk+1)‖2 + C2‖Axk+1 +Byk+1 − b‖2

)
≤ ‖v0 − v∗‖2H

and thus we obtain the assertion (6.3). For (s, r) ∈ D3 ∪ D4 ∪ D5, using (6.1b) in Corollary

6.1 (note that x1 is generated by the given (y0, λ0)), we have

∞∑
k=1

(
C1β‖B(yk − yk+1)‖2 + C2β‖Axk+1 +Byk+1 − b‖2

)
≤
(
‖v1 − v∗‖2H + C0β‖Ax1 +By1 − b‖2

)
,

and the assertion (6.3) is proved. The convergence of (1.9) is thus proved in sense of (6.3).

Furthermore, it follows from (6.1a) and (6.1b) that the sequence {vk} is in a compact set

and it has a subsequence {vkj} converging to a cluster point, say, v∞. Let x̃∞ be induced by

(1.9a) with given (y∞, λ∞). Recall the matrix B is assumed to be full column rank. Because

of (6.3), we have

B(y∞ − ỹ∞) = 0 and λ∞ − λ̃∞ = 0.D
ow

nl
oa

de
d 

09
/2

6/
16

 to
 1

16
.6

.4
9.

11
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVERGENCE STUDY ON SYMMETRIC ADMM 1493

Then, it follows from (3.2a) that

(6.4) w̃∞ ∈ Ω, θ(u)− θ(ũ∞) + (w − w̃∞)TF (w̃∞) ≥ 0 ∀w ∈ Ω,

and thus w̃∞ = w∞ is a solution point of (2.5). On the other hand, because (6.1a) (resp.,

(6.1b)) holds for any solution point of (2.5) and w∞ ∈ Ω∗, we have

‖vk+1 − v∞‖2H ≤ ‖vk − v∞‖2H(6.5a)

and

‖vk+1 − v∞‖2H + C0β‖Axk+1 +Byk+1 − b‖2 ≤ ‖vk − v∞‖2H + C0β‖Axk +Byk − b‖2,(6.5b)

respectively. Because limk→∞ ‖Axk +Byk − b‖2 = 0, the sequence {vk} cannot have another

cluster point and thus it converges to a solution point v∗ = v∞ ∈ V∗.

6.3. Convergence rate. To estimate the convergence rate in terms of the iteration com-

plexity, we need a characterization of the solution set of VI (2.5), which is described in the

following theorem. The proof can be found in [30, Theorem 2.3.5] or [33, Theorem 2.1].

Theorem 6.4. The solution set of VI(Ω, F, θ) is convex and it can be characterized as

(6.6) Ω∗ =
⋂
w∈Ω

{
w̃ ∈ Ω :

(
θ(u)− θ(ũ)

)
+ (w − w̃)TF (w) ≥ 0

}
.

Therefore, for a given accuracy ε > 0, w̃ ∈ Ω is called an ε-approximate solution point of

VI(Ω, F, θ) if it satisfies

θ(u)− θ(ũ) + (w − w̃)TF (w) ≥ −ε ∀ w ∈ D(w̃),

where

D(w̃) = {w ∈ Ω | ‖w − w̃‖ ≤ 1}.

To estimate the convergence rate in terms of the iteration complexity for a sequence {wk},
we need to show that for given ε > 0, after t iterations, this sequence can offer a point w̃ ∈ Ω

such that

(6.7) w̃ ∈ Ω and sup
w∈D(w̃)

{
θ(ũ)− θ(u) + (w̃ − w)TF (w)

}
≤ ε.

Now, using the results in Corollary 6.2, we prove the O(1/t) convergence rate theorem.

Theorem 6.5. Let the sequence {wk} be generated by the symmetric ADMM (1.9) and w̃k

be defined by (3.1). Then, for (s, r) ∈ D1 ∪ D2 and any integer t > 0, we have

(6.8a) θ(ũt)− θ(u) + (w̃t − w)TF (w) ≤ 1

2(t+ 1)
‖v − v0‖2H ∀w ∈ Ω,
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where

(6.8b) w̃t =
1

t+ 1

t∑
k=0

w̃k.

For (s, r) ∈ D3 ∪ D4 ∪ D5 and any integer number t > 0, we have

(6.9a) θ(ũt)− θ(u) + (w̃t − w)TF (w) ≤ 1

2t

(
‖v − v1‖2H + C0‖Ax1 +By1 − b‖2

)
∀w ∈ Ω,

where

(6.9b) w̃t =
1

t

t∑
k=1

w̃k.

Proof. Let us rewrite the results in Corollary 6.2 as

(6.10a) θ(ũk)− θ(u) + (w̃k − w)TF (w) +
1

2
‖v − vk+1‖2H ≤

1

2
‖v − vk‖2H ∀w ∈ Ω

and

θ(ũk)− θ(u) + (w̃k − w)TF (w) +
1

2

(
‖v − vk+1‖2H + C0β‖Axk+1 +Byk+1 − b‖2

)
≤ 1

2

(
‖v − vk‖2H + C0β‖Axk +Byk − b‖2

)
∀w ∈ Ω,(6.10b)

for (s, r) ∈ D1 ∪ D2 and (s, r) ∈ D3 ∪ D4 ∪ D5, respectively. Summarizing the inequalities

(6.10a) over k = 0, 1, . . . , t, we obtain

t∑
k=0

θ(ũk)− (t+ 1)θ(u) +
( t∑
k=0

w̃k − (t+ 1)w
)T
F (w) ≤ 1

2
‖v − v0‖2H ∀w ∈ Ω.

Then, using the notation of w̃t in (6.8b), we can rewrite the last inequality as

(6.11)
1

t+ 1

t∑
k=0

θ(ũk)− θ(u) + (w̃t − w)TF (w) ≤ 1

2(t+ 1)
‖v − v0‖2H ∀w ∈ Ω.

It follows from the definition of w̃t in (6.8b) that

ũt =
1

t+ 1

t∑
k=0

ũk.

Since θ(u) is convex, it follows that

θ(ũt) ≤
1

t+ 1

t∑
k=0

θ(ũk).

Substituting it into (6.11), the assertion (6.8) follows directly. The proof for the assertion

(6.9) is similar and omitted.

It follows from (6.7), (6.8), and (6.9) that the symmetric ADMM (1.9) is able to generate an

approximate solution point (i.e., w̃t defined in (6.8b) or (6.9b)) with an accuracy ofO(1/t) after

t iterations. That is, a worse-case O(1/t) convergence rate in the ergodic sense is established

for the symmetric ADMM (1.9).D
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7. Numerical results. In the literature, some special cases of the symmetric ADMM (1.9)

have been widely verified by many applications such as the original ADMM where r = 0 and

s = 1 and the ADMM with Fortin and Glowinski’s larger step size where r = 0 and s =
√

5+1
2 .

In this section, we supplement with some more numerical results to verify the efficiency of

the scheme (1.9) with other values of r and s. Given the well-verified efficiency of the original

ADMM, our emphasis is simply verifying that it is still possible to outperform the original

ADMM by choosing some other values of r and s in the symmetric ADMM scheme (1.9).

We test two fundamental models: the basis pursuit problem and total-variational image

deblurring problem. Using the original ADMM to solve these two models or some of their

variants has been well studied in the literature; thus we use the original ADMM as the

benchmark to show the efficiency of the symmetric ADMM (1.9) with some values of r and

s. All the codes were written in MATLAB R2015a and all experiments were performed on

a desktop with Windows 7 and an Intel Core i5-4590 CPU processor (3.30 GHz) with 8 GB

memory.

7.1. Basis pursuit problem. We first test the basis pursuit model:

(7.1) min
x∈Rn

‖x‖1 +
1

2µ
‖Ax− b‖22,

where ‖x‖1 :=
∑n

i=1 |xi|, A ∈ Rm×n(m � n) is an encoding matrix (full row-rank), b ∈ Rm
represents a compressed signal, and µ > 0 is a parameter. We refer to, e.g., [9] for details.

The model (7.1) is a core problem in areas such as compressive sensing, variable selection,

and so on. It is well known that the model (7.1) can be reformulated as

(7.2) min

{
‖x‖1 +

1

2µ
‖Ay − b‖22 | x− y = 0, x ∈ Rn, y ∈ Rn

}
,

where y ∈ Rn is an auxiliary variable. Thus, (7.2) is a special case of (1.1) and the proposed

symmetric ADMM (1.9) is applicable.

In our experiments, A and b in (7.1) are generated in the same way as [43]: A ∈ Rm×n is a

random Gaussian matrix whose rows are orthonormalized by the QR factorization. The true

signal x∗ has p nonzero elements whose positions are determined randomly, and the nonzero

values are generated with the standard deviation as 1. The vector b has zero mean white

noise generated by MATLAB script: b = A*xstar + sigma*randn(m,1), where σ(sigma) is

the standard deviation of the additive Gaussian noise.

For succinctness, we report only the results for the scenarios of (m/n = 0.2, p/m = 0.2),

and (m/n = 0.2, p/m = 0.1) when σ = 10−3, n = 212, and µ = 10−4 are fixed in (7.1). To

implement (1.9) with different values of r and s, we fix β = m/‖b‖1 as in [43], and the initial

iterate is chosen as (y0, λ0) = (1,0). Below, we list some representative values of r and s such

that the general symmetric version of ADMM (1.9) is slightly faster than its specific choice

of r = 0 and s = 1, i.e., the original ADMM (1.4). Many other values close to the choices

in Table 1 generate similar results; thus their results are omitted. In Table 1, It., CPU, and

Obj represent the iteration numbers, computing time in seconds, and objective function valueD
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Table 1
Numerical results of (1.9) for (7.1) (n = 212, σ = 10−3, µ = 10−4).

.

m/n = 0.2, p/m = 0.2 m/n = 0.2, p/m = 0.1

It. CPU Obj It. CPU Obj

r = −0.3, s = 1.41 69 1.9 142.1 54 1.5 67.03

r = −0.2, s = 1.48 67 1.9 142.1 53 1.5 67.03

r = −0.2, s = 1.52 66 1.8 142.2 53 1.5 66.93

r = 0.1, s = 1.57 69 1.9 142.0 56 1.5 67.03

r = 0, s = 1 (ADMM (1.4)) 74 2.0 142.1 64 1.8 67.01

of current iteration, respectively. The efficiency of the general symmetric ADMM (1.9) with

these values of r and s is thus shown.

7.2. Total-variational image deblurring model. The original ADMM (1.4) has been

widely used in various image processing fields. In this subsection, we test the total-variational

image deblurring model whose discretized version can be written as

(7.3) min
y
‖Ay‖1 +

λ

2
‖By − z‖2,

where y ∈ Rn represents a digital clean image, z ∈ Rn is a corrupted input image, A :=

(∂1, ∂2) : Rn → Rn×Rn is the discrete gradient operator with ∂1 : Rn → Rn and ∂2 : Rn → Rn
the standard finite differences with periodic boundary conditions in the horizontal and vertical

directions, respectively (see details in [40]), B : Rn → Rn is the matrix representation of a

spatially invariant blurring operator, λ > 0 is a constant balancing the data-fidelity and

total-variational regularization terms, and ‖ · ‖1 defined on Rn ×Rn is given by

‖x‖1 :=
n∑

{i,j}=1

√
|x1
i,j |2 + |x2

i,j |2 ∀x = (x1, x2) ∈ Rn ×Rn.

This is a basic model for various more advanced image processing tasks and it has been studied

extensively in the literature. Introducing the auxiliary variable x, we can reformulate (7.3) as

min ‖x‖1 + λ
2‖By − z‖

2

s.t. x−Ay = 0,

which is a special case of the generic model (1.1) under our discussion and thus the symmetric

ADMM (1.9) is applicable.

We test the image of cameraman.png (256 × 256). The clean image is degraded by the

convolution generated via the scripts fspecial and imfilter in the MATLAB Image Processing

Toolbox with the “motion” and then added by the zero-mean Gaussian noise with standard

deviation σ = 10−3 via the script of imnoise. We set the angle parameter “theta” = 135 and

the motion distance parameter “len” = 91 for the “motion” blurring. The clean and corrupted

images are shown in (a) and (b) in Figure 4.D
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(a) (b) (c)

Figure 4. (a) Clean image. (b) Corrupted image. (c) Restored image by (1.9) with r = 0.8 and s = 1.17.

Table 2
Numerical results of (1.9) for (7.3).

.

The symmetric version of ADMM (1.9) It. CPU SNR

r = 0.7, s = 1.24 13 0.2 21.29

r = 0.7, s = 1.14 13 0.19 21.29

r = 0.8, s = 1.17 12 0.14 21.29

r = 0.8, s = 1.07 12 0.16 21.28

r = 0.9, s = 1.09 12 0.16 21.29

r = 0.9, s = 1 12 0.17 21.29

r = 0, s = 1 (i.e., original ADMM (1.4)) 19 0.28 21.26

r = 0, s = 1.61 20 0.27 21.26

For succinctness, we fix λ = 250 in (7.3) and β = 0.1 when implementing the symmetric

ADMM (1.9). We report the iteration number (It.) and computing time in seconds (CPU)

when comparing the performance of (1.9) with different values of r and s. The quality of

restored images is measured by the value of the SNR given by

(7.4) SNR: = 20 log10

‖y∗‖
‖yk − y∗‖

,

where yk is the restored image and y∗ is the ground truth.

In Table 2, we list several interior point cases of the domain D to show that they could

result in better numerical performance than the original ADMM (s = 1, r = 0) and the

point (s = 1.61, r = 0) that is very close to the corner point (s = 1+
√

5
2 ≈ 1.618, r = 0) which

corresponds to the ADMM with Fortin and Glowinski’s larger step size (1.6). We choose some

interior points in D for the comparison. For succinctness, we show only the image restored

by the case of (1.9) with r = 0.8 and s = 1.17; see (c) in Figure 4. It can be seen that interior

points in D may accelerate the convergence of the original ADMM (1.4); thus the necessity

of considering the general symmetric version of ADMM (1.9) is meaningful.

Note that the point (r = 0, s = 1.61) is already much better than some other corner points

such as (r = −1, s = 1) and (r = 0, s = 0). So we skip the comparison with other corner

points for succinctness. Also, a number of other scenarios (the same image but with different

parameters and/or blurring sizes, or other images) and many other standard total-variational

image restoration models can be tested, but they are omitted for succinctness.D
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8. Conclusions. In this paper, we conducted a convergence analysis for the symmetric

version of the ADMM with step sizes enlarged by Fortin and Glowinski’s constant and jus-

tified the rationale of combining the original ADMM with these two numerically favorable

techniques. Smaller step sizes are usually required to conservatively ensure convergence in

theory, while they should be avoided practically to avoid slow convergence. Thus, ensuring

the convergence of an algorithm with larger step sizes is usually more demanding to analyze.

On the other hand, the symmetric ADMM with nonenlarged step sizes is already known to

be not necessarily convergent despite its possible empirical efficiency. Thus, it seems not

promising to guarantee the convergence if the symmetric ADMM is combined with larger step

sizes. We provide a counterintuitive answer to this question and prove rigorously the con-

vergence of the symmetric ADMM with larger step size enlarged by Fortin and Glowinski’s

constant. Our analysis is conducted in the generic convex programming context, and it unifies

the convergence analysis for some ADMM-like algorithms, including some existing results in

the literature as special cases.

The rule for enlarging step sizes by Fortin and Glowinski’s constant is applicable to the

general iteration scheme of the symmetric ADMM when the generic setting of the model (1.1)

is considered, and it requires no additional computation (even though the “optimal” value of

the constants may still be problem-dependent). Thus, our theory well explains the justification

of the combination of two commonly used techniques in numerical implementation: using the

symmetric version of ADMM and enlarging step sizes by Fortin and Glowinski’s constants,

which conventionally are used separately in the ADMM literature to accelerate the numerical

efficiency for various applications. The proposed symmetric ADMM with larger step sizes is

ready to use, with rigorous convergence analysis, for immediately accelerating the speed of

solving a variety of applications by ADMM-like algorithms, including a wide range of imaging

processing applications as well demonstrated in the rich literature.

Because of the equal role of the parameters r and s in the symmetric ADMM scheme

(1.9), it is clear that the scheme (1.9) can be rewritten as



yk+1 = arg min{Lβ(xk, y, λk) | y ∈ Y},(8.1a)

λk+ 1
2 = λk − sβ(Axk +Byk+1 − b),(8.1b)

xk+1 = arg min{Lβ(x, yk+1, λk+ 1
2 ) |x ∈ X},(8.1c)

λk+1 = λk+ 1
2 − rβ(Axk+1 +Byk+1 − b).(8.1d)

Thus, we can easily extend our previous discussion from the domain D in Figure 1 to the

larger and symmetric domain defined as

(8.2) D =
{

(s, r) | r + s > 0, |r| < 1 + s− s2, |s| < 1 + r − r2
}
,

which is displayed in Figure 5. Essentially, discussing the convergence for the symmetric

ADMM (1.9) over the domain D defined in (1.10) is not easy, while its extension to the

symmetric domain in Figure 5 is trivial. Thus, for succinctness, we omit the detail of this

extension to the domain in Figure 5.D
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(1, 1)

10

(1,−1)

1+
√
5

2

← r = 1 + s − s
2

← r = s
2
− s − 1

1

← s = 1 + r − r
2

1+
√
5

2

1

s = r
2
− r − 1 →

s

r

1(−1, 1)

Figure 5. A symmetric step size domain with convergence for the symmetric ADMM (8.2).
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