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Abstract
The alternating direction method of multipliers (ADMM) is being widely used in a
variety of areas; its different variants tailored for different application scenarios have
also been deeply researched in the literature. Among them, the linearized ADMM has
received particularly wide attention in many areas because of its efficiency and easy
implementation. To theoretically guarantee convergence of the linearized ADMM,
the step size for the linearized subproblems, or the reciprocal of the linearization
parameter, should be sufficiently small. On the other hand, small step sizes decelerate
the convergence numerically. Hence, it is interesting to probe the optimal (largest)
value of the step size that guarantees convergence of the linearized ADMM. This
analysis is lacked in the literature. In this paper, we provide a rigorous mathematical
analysis for finding this optimal step size of the linearized ADMM and accordingly set
up the optimal version of the linearized ADMM in the convex programming context.
The global convergence and worst-case convergence rate measured by the iteration
complexity of the optimal version of linearized ADMM are proved as well.
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1 Introduction

We consider the convex minimization problemwith linear constraints and an objective
function in form of the sum of two functions without coupled variables

min{θ1(x)+ θ2(y) | Ax + By = b, x ∈ X , y ∈ Y}, (1.1)

where θ1(x) : ℜn1 → ℜ and θ2(y) : ℜn2 → ℜ are convex (but not necessarily
smooth) functions, A ∈ ℜm×n1 and B ∈ ℜm×n2 , b ∈ ℜm , X ⊂ ℜn1 and Y ⊂ ℜn2

are given closed convex sets. The model (1.1) is general enough to capture a variety
of applications; a particular case arising often in many scientific computing areas is
where one function in its objective represents a data fidelity term while the other is a
regularization term. Throughout, the solution set of (1.1) is assumed to be nonempty.

Let the augmented Lagrangian function of (1.1) be

Lβ(x, y, λ) = θ1(x)+ θ2(y) − λT (Ax + By − b)+ β

2
∥Ax + By − b∥2, (1.2)

with λ ∈ ℜm the Lagrange multiplier and β > 0 a penalty parameter. Then, a bench-
mark solver for (1.1) is the alternating direction method of multipliers (ADMM) that
was originally proposed in [11]. With a given iterate (yk, λk), the ADMM generates
a new iterate wk+1 = (xk+1, yk+1, λk+1) via the scheme

(ADMM)

⎧
⎪⎨

⎪⎩

xk+1 = argmin
{
Lβ(x, yk, λk)

∣∣ x ∈ X
}
, (1.3a)

yk+1 = argmin
{
Lβ(xk+1, y, λk)

∣∣ y ∈ Y
}
, (1.3b)

λk+1 = λk − β(Axk+1 + Byk+1 − b). (1.3c)

A meaningful advantage of the ADMM is that the functions θ1 and θ2 are treated
individually in its iterations and the subproblems in (1.3) are usually much easier than
the original problem (1.1). We refer the reader to, e.g. [3,9,10,12,14], for some earlier
study on the ADMM in the partial differential equations community. Recently, the
ADMM has found successful applications in a broad spectrum of application domains
such as image processing, statistical learning, computer vision, wireless network, and
so on. We refer to [2,6,13] for some review papers of the ADMM. For simplicity, the
penalty parameter β is fixed throughout our discussion.

Among various research spotlights of the ADMM in the literature, a particular one
is the investigation of how to solve the subproblems of ADMM [i.e., the problems
(1.3a) and (1.3b)] more efficiently for different scenarios where the functions θ1 and
θ2, and/or the coefficient matrices A and B may have some special properties or
structures that can help us better design specific application-tailored algorithms based
on the prototype ADMM scheme (1.3); while theoretically the convergence should
be still guaranteed. This principle accounts for the importance of how to effectively
apply the ADMM to many specific applications arising in various areas. To further
elaborate, let us take a closer look at the subproblem (1.3b) that can be written as
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yk+1 = argmin
{
θ2(y)+

β

2
∥By + (Axk+1 − b − 1

β
λk)∥2 | y ∈ Y}. (1.4)

Certainly, how to solve this subproblem depends on the the function θ2(y), the matrix
B and the set Y . We refer to, e.g., [5,17,28], for some detailed discussions on the
generic case where the function and matrix are general and a solution of (1.4) can
only be approximated by certain iterative processes. On the other hand, for concrete
applications, the function, matrix and set in the subproblem (1.4) may be special
enough for considering more efficient ways to tackle it. When B is not an identity
matrix and Y = ℜn2 , the subproblem (1.4) is specified as

yk+1 = argmin
{
θ2(y)+

β

2
∥By + (Axk+1 − b − 1

β
λk)∥2 | y ∈ ℜn2}. (1.5)

We can further linearize the quadratic term ∥By+ (Axk+1 − b− 1
β λk)∥2 in (1.5) and

alleviate the subproblem (1.5) as an easier one

yk+1 = argmin
{
θ2(y)+

r
2
∥y − (yk + 1

r
qk)∥2 | y ∈ ℜn2}, (1.6)

where

qk = BT [λk − β(Axk+1 + Byk − b)] (1.7)

is a constant vector and r > 0 is a scalar. That is, the linearized subproblem (1.6)
amounts to estimating the proximity operator of θ2(y), which is defined as

proxγ θ2
(y) := argmin

z

{
θ2(z)+

1
2γ

∥z − y∥2
}
, (1.8)

with γ > 0. A representative case is θ2(y) = ∥y∥1 which arises often in sparsity-
driven problems such as compressive sensing, total variational image restoration and
variable selection for high-dimensional data. For this case, the proximity operator of
∥y∥1 has a closed-form which is given by the so-called shrinkage operator defined as

Tβ(y)i := (|yi | − β)+sign(yi ).

Hence, replacing the original subproblem (1.3b)with its linearized surrogate,weobtain
the linearized version of ADMM:

(Linearized ADMM)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xk+1 = argmin
{
Lβ(x, yk, λk)

∣∣ x ∈ X
}
, (1.9a)

yk+1 = argmin
{
θ2(y)+

r
2
∥y − (yk + 1

r
qk)∥2

∣∣y ∈ Y
}
,

(1.9b)

λk+1 = λk − β(Axk+1 + Byk+1 − b), (1.9c)
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where qk is given in (1.7). The scheme (1.9) has been widely used in areas; we refer
to , e.g. [27,31–33], for a few.

The linearized ADMM (1.9) can be explained via the proximal regularization
perspective. Ignoring some constants in the objective function, we can rewrite the
linearized subproblem (1.9b) as

yk+1 = argmin
{
Lβ(xk+1, y, λk)+ 1

2
∥y − yk∥2D | y ∈ Y}. (1.10)

with D ∈ ℜn2×n2 = r In2 − βBT B; and the term 1
2∥y − yk∥2D serves as a proximal

regularization term. We call r the linearization parameter of the linearized ADMM
(1.9), because as explained, the specific form of D linearizes the quadratic term ∥By+
(Axk+1−b− 1

β λk)∥2 when B is not an identitymatrix. Accordingly, the reciprocal of r
is referred to as the step size for solving the y-subproblem (1.9b). In the literature (see,
e.g., [27,31–33]), r > β∥BT B∥ is required to ensure the positive definiteness of the
matrix D and eventually the convergence of the linearized ADMM (1.9). Therefore,
the linearized ADMM (1.9) is just a special case of the following proximal version of
ADMM (1.11)

(Proximal ADMM)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xk+1 = argmin
{
Lβ(x, yk, λk)

∣∣ x ∈ X
}
, (1.11a)

yk+1 = argmin
{
Lβ(xk+1, y, λk)+ 1

2
∥y − yk∥2D

∣∣ y ∈ Y
}
,

(1.11b)

λk+1 = λk − β(Axk+1 + Byk+1 − b). (1.11c)

with the particular choice of

D = r In2 − βBT B and r > β∥BT B∥. (1.12)

As well shown in the literature, the positive definiteness of the proximal matrix D
plays an essential role in ensuring the convergence of the proximalADMM(1.11). This
can also be easily observed by our analysis in Sect. 4. For the case where ∥BT B∥ is
large (see [15] for such an application in image processing), the linearization parameter
r in (1.12) is forced to be large and thus tiny step sizes inevitably occur for solving the
subproblem (1.9b). The overall convergence speed of the linearized ADMM (1.9) thus
may be substantially decelerated. The proximal term in (1.11b) with a large value of
r can be regarded as an over-regularization because the proximal term has a too high
weight in the objective function and thus it deviates the original objective function
in (1.3b) too much. A practical strategy for implementing the proximal version of
ADMM is to choose a value larger than but very close to the lower bound β∥BT B∥,
as empirically used in, e.g., [7,20]. Therefore, there is a dilemma that theoretically
the constant r should be large enough to ensure the convergence while numerically
smaller values of r are preferred.

An important question is thus how to optimally relax the positive-definiteness
requirement of the proximal matrix D in (1.12) and thus yield the largest step size for
solving the linearized subproblems, while the convergence of the linearized ADMM

123

Author's personal copy



Optimally linearizing the alternating direction method… 365

(1.9) can be theoretically still ensured. The main purpose of this paper is answering
this question. More specifically, instead of (1.12), we shall show that the convergence
of the linearized ADMM (1.9) can be ensured by

D0 = τr I − βBT B with r > β∥BT B∥ and τ ∈ (0.75, 1). (1.13)

That is, the linearization parameter r of the linearized ADMM (1.9) can be reduced
by at most 25%. With this choice of τ , the matrix D0 in (1.13) is positive indefinite;
hence it is not necessary to require the positive definiteness or semi-definiteness for
the matrix D as existing work in the literature. We shall also show that this is the
optimal choice for τ because any value smaller than 0.75 can yield divergence of
the linearized ADMM; hence it is not possible to guarantee the convergence of the
linearized ADMM (1.9) with τ smaller than 0.75.

Overall, we propose the optimal linearized ADMM as following:

(OLADMM)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xk+1 = argmin
{
Lβ(x, yk, λk)

∣∣ x ∈ X
}
, (1.14a)

yk+1 = argmin
{
Lβ(xk+1, y, λk)+ 1

2
∥y − yk∥2D0

∣∣ y ∈ Y
}
,

(1.14b)

λk+1 = λk − β(Axk+1 + Byk+1 − b). (1.14c)

where D0 is given by (1.13). In this case, ignoring some constants, the y-subproblem
(1.14b) can be written as

yk+1 = argmin
{
θ2(y)+

τr
2

∥y − (yk + 1
τr

qk)∥2 | y ∈ Y},

with qk given in (1.7). Note that the y-subproblem (1.14b) is still alleviated as estimat-
ing the proximity operator of θ2(y) for some applications; hence the main feature of
the linearized ADMM is kept by the OLADMM (1.14). Also, the subproblem (1.14b)
is still convex even though the proximal matrix D0 is positive indefinite. We slightly
abuse the notation ∥y∥2D0

:= yT D0y when D0 is not positive definite.
Note that for many applications, it suffices to linearize one subproblem for the

ADMM (1.3). Without loss of generality, we just discuss the case where only the
y-subproblem is linearized/proximally regularized in (1.14). Technically, it is still
possible to consider the case where both the subproblems are linearized or proximally
regularized, see, e.g., [17]. Also, there are some works in the literature discussing how
to relax the restriction on D as positive semi-definiteness (i.e., r = β∥BT B∥) while
posing more assumptions on the model (1.1) per se. Our analysis here indeed allows
positive indefiniteness of D (i.e., r < β∥BT B∥) without any additional assumptions
on the model (1.1).

The rest of this paper is organized as follows.We first summarize some preliminary
results in Sect. 2. Thenwe reformulate theOLADMM(1.14) in a prediction-correction
framework in Sect. 3 and discuss how to determine the value of τ in Sect. 4. In Sect.
5, the convergence of the OLADMM (1.14) is proved with τ ∈ (0.75, 1). Then, in
Sect. 6, we show by an example that any value of τ in (0, 0.75) does not guarantee the
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convergence of the OLADMM (1.14) and thus illustrate that 0.75 is optimal for the
linearization parameter. The worst-case convergence rate measured by the iteration
complexity is established for the OLADMM (1.14) in Sect. 7. Some preliminary
numerical results are reported in Sect. 8 to verify the acceleration of τ = 0.75; and
finally some conclusions are drawn in Sect. 9.

2 Preliminaries

In this section, we recall some preliminaries and state some simple results that will be
used in our analysis.

Let the Lagrangian function of (1.1) defined on X × Y × ℜm be

L(x, y, λ) = θ1(x)+ θ2(y) − λT (Ax + By − b).

A pair ((x∗, y∗), λ∗) is called a saddle point of the Lagrangian function if it satisfies

Lλ∈ℜm (x∗, y∗, λ) ≤ L(x∗, y∗, λ∗) ≤ Lx∈X ,y∈Y (x, y, λ∗).

We can rewrite them as the variational inequalities:

⎧
⎨

⎩

x∗ ∈ X , θ1(x) − θ1(x∗)+ (x − x∗)T (−AT λ∗) ≥ 0, ∀ x ∈ X ,

y∗ ∈ Y, θ2(y) − θ2(y∗)+ (y − y∗)T (−BT λ∗) ≥ 0, ∀ y ∈ Y,

λ∗ ∈ ℜm, (λ − λ∗)T (Ax∗ + By∗ − b) ≥ 0, ∀ λ ∈ ℜm,

(2.1)

or in the more compact form:

w∗ ∈ &, θ(u) − θ(u∗)+ (w − w∗)T F(w∗) ≥ 0, ∀w ∈ &, (2.2a)

where

u =
(
x
y

)
, θ(u) = θ1(x)+ θ2(y), w =

⎛

⎝
x
y
λ

⎞

⎠ , F(w) =

⎛

⎝
−AT λ

−BT λ

Ax + By − b

⎞

⎠

(2.2b)

and

& = X × Y × ℜm .

We denote by &∗ the solution set of (2.2). Note that the operator F in (2.2b) is affine
with a skew-symmetric matrix. Thus we have

(w − w̄)T (F(w) − F(w̄)) = 0, ∀w, w̄. (2.3)

The following lemma will be frequently used later. Its proof can be found in the
literature, see, e.g., Theorem 3.72 in [1].
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Lemma 2.1 Let X ⊂ ℜn be a closed convex set, θ(x) and f (x) be convex func-
tions. Assume that f is differentiable and the solution set of the problem min{θ(x)+
f (x) | x ∈ X } is nonempty. Then we have

x∗ ∈ argmin{θ(x)+ f (x) | x ∈ X }, (2.4a)

if and only if

x∗ ∈ X , θ(x) − θ(x∗)+ (x − x∗)T∇ f (x∗) ≥ 0, ∀ x ∈ X . (2.4b)

3 A prediction-correction reformulation of the OLADMM (1.14)

In this section, we revisit the OLADMM (1.14) from the variational inequality per-
spective and show that the scheme (1.14) can be rewritten as a prediction-correction
framework. The prediction-correction reformulation helps us discern the main diffi-
culty in the convergence proof and plays a pivotal role in our analysis.

As mentioned in [2], for the ADMM schemes (1.3) and (1.14), only (yk, λk) is used
to generate the next iteration and xk is just in an “intermediate” role in the iteration.
This is also why the convergence result of ADMM is established in terms of only the
variables (y, λ) in the literature, see, e.g., [2,4,11,17,21,22]. Thus, the variables x and
(y, λ) are called intermediate and essential variables, respectively. To distinguish the
essential variables, we further denote the following notation

v =
(
y
λ

)
, V = Y × ℜm, and V∗ = {(y∗, λ∗) | (x∗, y∗, λ∗) ∈ &∗}. (3.1)

First, from the optimality conditions of the subproblems (1.14a) and (1.14b), we
respectively have

xk+1 ∈ X , θ1(x) − θ1(xk+1)+ (x − xk+1)T {−AT λk + βAT (Axk+1 + Byk − b)}
≥ 0, ∀x ∈ X , (3.2)

and

yk+1 ∈ Y, θ2(y) − θ2(yk+1)+ (y − yk+1)T
(−BT λk + βBT (Axk+1 + Byk+1 − b)

+D0(yk+1 − yk)

)

≥ 0, ∀y ∈ Y. (3.3)

Recall that D0 = τr I −βBT B [see (1.13)]. The inequality (3.3) can be further written
as

yk+1 ∈ Y, θ2(y) − θ2(yk+1)+ (y − yk+1)T
(−BT λk + βBT (Axk+1 + Byk − b)

+τr(yk+1 − yk)

)

≥ 0, ∀y ∈ Y. (3.4)
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With the given (yk, λk), let (xk+1, yk+1) be the output of the scheme (1.14). If
we rename them as x̃ k = xk+1 and ỹk = yk+1, respectively, and further define an
auxiliary variable

λ̃k := λk − β(Axk+1 + Byk − b), (3.5)

then accordingly we have w̃k = (x̃ k, ỹk, λ̃k) given by

x̃ k = xk+1, ỹk = yk+1, λ̃k = λk − β(Axk+1 + Byk − b), (3.6)

and ṽk = (ỹk, λ̃k). Therefore, the inequalities (3.2) and (3.4) can be rewritten respec-
tively as

x̃ k ∈ X , θ1(x) − θ1(x̃ k)+ (x − x̃ k)T (−AT λ̃k) ≥ 0, ∀ x ∈ X , (3.7a)

and

ỹk ∈ Y, θ2(y) − θ2(ỹk)+ (y − ỹk)T
(
−BT λ̃k + τr(ỹk − yk)

)
≥ 0, ∀ y ∈ Y .

(3.7b)

Note that λ̃k defined in (3.5) can be also written as the variational inequality

λ̃k ∈ ℜm, (λ − λ̃k)T {(Ax̃k + B ỹk − b) − B(ỹk − yk)+ 1
β
(λ̃k − λk)}

≥ 0, ∀λ ∈ ℜm . (3.7c)

Thus, using the notation of (2.2), we can rewrite the inequalities (3.7a)–(3.7c) as the
variational inequality:

w̃k ∈ &, θ(u) − θ(ũk)+ (w − w̃k)T F(w̃k) ≥ (v − ṽk)T Q(vk − ṽk), ∀w ∈ &,

(3.8a)

where

Q =
(

τr I 0
−B 1

β Im

)
. (3.8b)

Then, using the notation (3.6), we further have

(Axk+1 + Byk+1 − b) = −B(yk − yk+1)+ (Axk+1 + Byk − b)

= −B(yk − ỹk)+ 1
β
(λk − λ̃k).

and

λk+1 = λk − β(Axk+1 + Byk+1 − b) = λk − [−βB(yk − ỹk)+ (λk − λ̃k)].
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Optimally linearizing the alternating direction method… 369

Recall yk+1 = ỹk and the notation in (3.1). The essential variables updated by the
OLADMM (1.14) are given by

vk+1 = vk − M(vk − ṽk), (3.9a)

where

M =
(

I 0
−βB Im

)
. (3.9b)

Overall, the new iterate of the OLADMM (1.14) can be explained by a two-stage
manner, first generating a predictor satisfying the variational inequality (3.8) and then
correcting it via the correction step (3.9). We would emphasize that this prediction-
correction reformulation only serves for the theoretical analysis and there is no need to
decompose the iterative scheme into these two stages separately when implementing
the OLADMM (1.14). Indeed, according to (2.2), we see that w̃k satisfying (3.8) is not
a solution point of the variational inequality (2.2) unless it ensures (v − ṽk)T Q(vk −
ṽk) = 0 for all w ∈ & and this fact inspires us to intensively analyze the term
(v − ṽk)T Q(vk − ṽk) in convergence analysis.

4 How to determine !

In this section, we focus on the predictor w̃k in (3.8) and conduct a more elaborated
analysis; some inequalities regarding w̃k will be derived. These inequalities are also
essential for the convergence analysis of the scheme (1.14). Thus, the results in this
section are also the preparation of the main convergence result in the next sections. In
our analysis, how to choose τ becomes clear.

First of all, recall that we choose the matrix D0 by (1.13) for the OLADMM (1.14).
We can further rewrite D0 as

D0 = τD − (1 − τ )βBT B, (4.1)

where D is given by (1.12). In addition, for any given positive constants τ , r and β,
we define a matrix

H =
(

τr I 0
0 1

β Im

)
. (4.2)

Obviously, H is positive definite. For the matrices Q and M defined respectively in
(3.8) and (3.9), we have

HM = Q. (4.3)

Moreover, if we define

G = QT + Q − MT HM, (4.4)
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then we have the following proposition.

Proposition 4.1 For the matrices Q, M and H defined in (3.8), (3.9) and (4.2), respec-
tively, the matrix G defined in (4.4) may be non-positive definite when 0 < τ < 1 if
r > β∥BT B∥.

Proof. Because of HM = Q and MT HM = MT Q, it follows from (3.8b) that

MT HM =
(
I −βBT

0 Im

) (
τr I 0
−B 1

β Im

)
=

(
τr I + βBT B −BT

−B 1
β Im

)
.

Consequently, we have

G = (QT + Q) − MT HM =
(
2τr I −BT

−B 2
β Im

)
−

(
τr I + βBT B −BT

−B 1
β Im

)

=
(

τr I − βBT B 0
0 1

β Im

)
(1.13)=

(
D0 0
0 1

β Im

)
. (4.5)

Since D0 is not necessarily positive definite [see (4.1)], nor is G. ⊓⊔

Lemma 4.1 Let {wk} be the sequence generated by the OLADMM (1.14) for the prob-
lem (1.1) and w̃k be defined in (3.6). Then we have w̃k ∈ & and

θ(u) − θ(ũk)+ (w − w̃k)T F(w)

≥ 1
2

(
∥v − vk+1∥2H − ∥v − vk∥2H

)
+ 1

2
(vk − ṽk)T G(vk − ṽk), ∀w ∈ &,

(4.6)

where G is defined in (4.4).

Proof Using Q = HM [see (4.3)] and the relation (3.9a), we can rewrite the right-
hand side of (3.8a), i.e., (v − ṽk)T Q(vk − ṽk), as (v − ṽk)T H(vk − vk+1). Hence,
(3.8a) can be written as

w̃k ∈ &, θ(u) − θ(ũk)+ (w − w̃k)T F(w̃k) ≥ (v − ṽk)T H(vk − vk+1),∀w ∈ &.

(4.7)

Applying the identity

(a − b)T H(c − d) = 1
2
{∥a − d∥2H − ∥a − c∥2H } +

1
2
{∥c − b∥2H − ∥d − b∥2H }

to the right-hand side of (4.7) with a = v, b = ṽk , c = vk and d = vk+1, we obtain

(v − ṽk)T H(vk − vk+1) = 1
2

(
∥v − vk+1∥2H − ∥v − vk∥2H

)
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+1
2
(∥vk − ṽk∥2H − ∥vk+1 − ṽk∥2H ). (4.8)

For the last term of (4.8), we have

∥vk − ṽk∥2H − ∥vk+1 − ṽk∥2H
= ∥vk − ṽk∥2H − ∥(vk − ṽk) − (vk − vk+1)∥2H

(3.9a)= ∥vk − ṽk∥2H − ∥(vk − ṽk) − M(vk − ṽk)∥2H
= 2(vk − ṽk)T HM(vk − ṽk) − (vk − ṽk)T MT HM(vk − ṽk)

(4.3)= (vk − ṽk)T (QT + Q − MT HM)(vk − ṽk)

(4.4)= (vk − ṽk)T G(vk − ṽk). (4.9)

Substituting (4.9) into (4.8), we get

(v − ṽk)T H(vk − vk+1) = 1
2

(
∥v − vk+1∥2H − ∥v − vk∥2H

)

+1
2
(vk − ṽk)T G(vk − ṽk). (4.10)

It follows from (2.3) that

(w − w̃k)T F(w̃k) = (w − w̃k)T F(w).

Using this fact, the assertion of this lemma follows from (4.7) and (4.10) directly. ⊓⊔

In existing literature of the linearized ADMM such as [27,31–33], τ = 1 and
r > β∥BT B∥. Thus, the corresponding matrix G defined by (4.4) is ensured to be
positive definite and the inequality (4.6) essentially implies the convergence and its
worst-case convergence rate.We refer to, e.g., [18,24], formore details.A tutorial proof
can also be found in [16] (Sections 4.3 and 5 therein). Here, because we aim at smaller
values of τ and the matrix G given by (4.4) is not necessarily positive-definite, the
inequality (4.6) cannot be used directly to derive the convergence and convergence rate.
This difficultymakes the convergence analysis for the scheme (1.14) more challenging
than that for the proximal version of ADMM (1.11) with a positive definite matrix D.

In the following we try to bound the term (vk − ṽk)T G(vk − ṽk) as

(vk − ṽk)T G(vk − ṽk) ≥ ψ(vk, vk+1) − ψ(vk−1, vk)+ ϕ(vk, vk+1), (4.11)

where ψ(·, ·) and ϕ(·, ·) are both non-negative functions. The first two terms
ψ(vk, vk+1) − ψ(vk−1, vk) in the right-hand side of (4.11) can be easily manipu-
lated by consecutive iterates and the last term ϕ(vk, vk+1) should be such an error
bound that can measure how muchwk+1 fails to be a solution point of (2.2). If we find
such functions that guarantee the assertion (4.11), then we can substitute it into (4.6)
and obtain
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θ(u) − θ(ũk)+ (w − w̃k)T F(w)

≥ 1
2

(
∥v − vk+1∥2H + ψ(vk, vk+1)

)
− 1

2

(
∥v − vk∥2H + ψ(vk−1, vk)

)

+1
2
ϕ(vk, vk+1), ∀w ∈ &. (4.12)

As we shall show, the inequality (4.12) with all positive components in its right-
hand side is important for establishing the convergence and convergence rate of the
OLADMM (1.14). The following lemmas are for this purpose; and similar techniques
can be referred to [12,21].

Lemma 4.2 Let {wk} be the sequence generated by the OLADMM (1.14) for the prob-
lem (1.1) and w̃k be defined by (3.6). Then we have

(vk − ṽk)T G(vk − ṽk) = τr∥yk − yk+1∥2 + 1
β

∥λk − λk+1∥2

+2(λk − λk+1)T B(yk − yk+1). (4.13)

Proof First, it follows from (4.5) and ỹk = yk+1 that

(vk − ṽk)T G(vk − ṽk)

= τr∥yk − ỹk∥2 + 1
β

∥λk − λ̃k∥2 − β∥B(yk − ỹk)∥2

= τr∥yk − yk+1∥2 − β∥B(yk − yk+1)∥2 + 1
β

∥λk − λ̃k∥2. (4.14)

Because x̃ k = xk+1 and ỹk = yk+1, we have

λk − λ̃k = β(Axk+1 + Byk − b) and Axk+1 + Byk+1 − b = 1
β
(λk − λk+1),

and further

1
β

∥λk − λ̃k∥2 = β∥(Axk+1 + Byk+1 − b)+ B(yk − yk+1)∥2

= β∥ 1
β
(λk − λk+1)+ B(yk − yk+1)∥2

= 1
β

∥λk − λk+1∥2 + 2(λk − λk+1)T B(yk − yk+1)

+β∥B(yk − yk+1)∥2.

Substituting it into the right-hand side of (4.14), the assertion of this lemma follows
directly. ⊓⊔
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Recall that D = r I − βBT B and D is positive definite when r > β∥BT B∥. The
inequality (4.13) can be rewritten as

(vk − ṽk)T G(vk − ṽk) = τ∥yk − yk+1∥2D + τβ∥B(yk − yk+1)∥2 + 1
β

∥λk − λk+1∥2

+2(λk − λk+1)T B(yk − yk+1). (4.15)

Now, we treat the crossing term 2(λk −λk+1)T B(yk − yk+1) in the right-hand side
of (4.15) and estimate a lower-bound in the quadratic terms.

Lemma 4.3 Let {wk} be the sequence generated by the OLADMM (1.14) for the prob-
lem (1.1) and w̃k be defined by (3.6). Then we have

(λk − λk+1)T B(yk − yk+1)

≥
(τ

2
∥yk − yk+1∥2D + 1 − τ

2
β∥B(yk − yk+1)∥2

)

−
(τ

2
∥yk−1 − yk∥2D + 1 − τ

2
β∥B(yk−1 − yk)∥2

)

−2(1 − τ )β∥B(yk − yk+1)∥2. (4.16)

Proof First, it follows from the equation λk+1 = λk − β(Axk+1 + Byk+1 − b) that
(3.3) can be written as

yk+1 ∈ Y, θ2(y) − θ2(yk+1)+ (y − yk+1)T
(
−BT λk+1 + D0(yk+1 − yk)

)

≥ 0, ∀y ∈ Y . (4.17)

Analogously, for the previous iterate, we have

yk ∈ Y, θ2(y) − θ2(yk)+ (y − yk)T
(
−BT λk + D0(yk − yk−1)

)
≥ 0, ∀y ∈ Y .

(4.18)

Setting y = yk and y = yk+1 in (4.17) and (4.18), respectively, and adding them, we
get

(yk − yk+1)T
(
BT (λk − λk+1)+ D0

[
(yk+1 − yk) − (yk − yk−1)

])
≥ 0,

and thus

(yk − yk+1)T BT (λk − λk+1) ≥ (yk − yk+1)T D0
(
(yk − yk+1) − (yk−1 − yk)

)
.

Consequently, by using D0 = τD − (1 − τ )βBT B [see (4.1)] and Cauchy-Schwarz
inequality, it follows from the above inequality that

(yk − yk+1)T BT (λk − λk+1)
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≥ (yk − yk+1)T
[
τD − (1 − τ )βBT B

](
(yk − yk+1) − (yk−1 − yk)

)

≥ τ∥yk − yk+1∥2D − τ (yk − yk+1)D(yk−1 − yk)

−(1 − τ )β∥B(yk − yk+1)∥2 + (1 − τ )β(yk − yk+1)T
(
BT B

)
(yk−1 − yk)

≥ τ

2
∥yk − yk+1∥2D − τ

2
∥yk−1 − yk∥2D

−3
2
(1 − τ )β∥B(yk − yk+1)∥2 − 1

2
(1 − τ )β∥B(yk−1 − yk)∥2.

We get (4.16) from the above inequality immediately and the lemma is proved. ⊓⊔
Besides (4.16), we need to evaluate the term (λk − λk+1)T B(yk − yk+1) in an

another quadratic form as well.

Lemma 4.4 Let {wk} be the sequence generated by the OLADMM (1.14) for the prob-
lem (1.1) and w̃k be defined by (3.6). Then, for δ ∈ (0, 0.5), we have

(λk − λk+1)T B(yk − yk+1) ≥ −(
1
4
+ 1

2
δ)β∥B(yk − yk+1)∥2

−(1 − δ)
1
β

∥λk − λk+1∥2. (4.19)

Proof First, for δ ∈ (0, 1), by using the Cauchy–Schwarz inequality, we have

(λk − λk+1)T B(yk − yk+1)

≥ − 1
4(1 − δ)

β∥B(yk − yk+1)∥2 − (1 − δ)
1
β

∥λk − λk+1∥2.

Notice that for δ ∈ (0, 0.5), we have

1
4(1 − δ)

<
1
4
+ 1

2
δ,

and thus the proof of this lemma is complete. ⊓⊔
We summarize the deduction in the following lemma.

Lemma 4.5 Let {wk} be the sequence generated by the OLADMM (1.14) for the prob-
lem (1.1) and w̃k be defined by (3.6). Then, for δ = 2(τ − 3

4 ), we have

(vk − ṽk)T G(vk − ṽk)

≥
(τ

2
∥yk − yk+1∥2D + 1 − τ

2
β∥B(yk − yk+1)∥2

)

−
(τ

2
∥yk−1 − yk∥2D + 1 − τ

2
β∥B(yk−1 − yk)∥2

)

+τ∥yk − yk+1∥2D + 2
(
τ − 3

4

)(
β∥B(yk − yk+1)∥2 + 1

β
∥λk − λk+1∥2

)
.

(4.20)

123

Author's personal copy



Optimally linearizing the alternating direction method… 375

Proof Since τ ∈ (0.75, 1) and δ = 2(τ − 3
4 ), it follows that δ ∈ (0, 0.5) and thus

(4.19) is valid. Using δ = 2(τ − 3
4 ) and adding (4.16) and (4.19), we get

2(λk − λk+1)T B(yk − yk+1)

≥
(τ

2
∥yk − yk+1∥2D + 1 − τ

2
β∥B(yk − yk+1)∥2

)

−
(τ

2
∥yk−1 − yk∥2D + 1 − τ

2
β∥B(yk−1 − yk)∥2

)

−2(1 − τ )β∥B(yk − yk+1)∥2 − (τ − 1
2
)β∥B(yk − yk+1)∥2

−
(
1 − 2(τ − 3

4
)
) 1
β

∥λk − λk+1∥2.

Substituting it into (4.15), we get

(vk − ṽk)T G(vk − ṽk)

≥ τ∥yk − yk+1∥2D + τβ∥B(yk − yk+1)∥2 + 1
β

∥λk − λk+1∥2

+
(τ

2
∥yk − yk+1∥2D + 1 − τ

2
β∥B(yk − yk+1)∥2

)

−
(τ

2
∥yk−1 − yk∥2D + 1 − τ

2
β∥B(yk−1 − yk)∥2

)

−2(1 − τ )β∥B(yk − yk+1)∥2 − (τ − 1
2
)β∥B(yk − yk+1)∥2

−
(
1 − 2(τ − 3

4
)
) 1
β

∥λk − λk+1∥2

=
(τ

2
∥yk − yk+1∥2D + 1 − τ

2
β∥B(yk − yk+1)∥2

)

−
(τ

2
∥yk−1 − yk∥2D + 1 − τ

2
β∥B(yk−1 − yk)∥2

)

+τ∥yk − yk+1∥2D + (2τ − 3
2
)β∥B(yk − yk+1)∥2 + 2(τ − 3

4
)
1
β

∥λk − λk+1∥2

=
(τ

2
∥yk − yk+1∥2D + 1 − τ

2
β∥B(yk − yk+1)∥2

)

−
(τ

2
∥yk−1 − yk∥2D + 1 − τ

2
β∥B(yk−1 − yk)∥2

)

+τ∥yk − yk+1∥2D + 2
(
τ − 3

4

)(
β∥B(yk − yk+1)∥2 + 1

β
∥λk − λk+1∥2

)
.

⊓⊔

We then obtain the following theorem immediately; its proof is trivial based on the
previous lemmas and propositions and thus omitted.
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Theorem 4.1 Let {wk} be the sequence generated by the OLADMM (1.14) for the
problem (1.1) and w̃k be defined by (3.6). Setting τ ∈ (0.75, 1) in (4.1), we have

θ(u) − θ(ũk)+ (w − w̃k)T F(w)

≥
(1
2
∥v − vk+1∥2H + 1

4

(
τ∥yk − yk+1∥2D + (1 − τ )β∥B(yk − yk+1)∥2

))

−
(1
2
∥v − vk∥2H + 1

4

(
τ∥yk−1 − yk∥2D + (1 − τ )β∥B(yk−1 − yk)∥2

))

+1
2
τ∥yk − yk+1∥2D +

(
τ − 3

4

)(
β∥B(yk − yk+1)∥2 + 1

β
∥λk − λk+1∥2

)
.

(4.21)

Note that this is a specific form of the inequality (4.12) with

ψ(vk, vk+1) = 1
2

(
τ∥yk − yk+1∥2D + (1 − τ )β∥B(yk − yk+1)∥2

)

and

ϕ(vk, vk+1) = τ∥yk − yk+1∥2D + 2
(
τ − 3

4

)(
β∥B(yk − yk+1)∥2 + 1

β
∥λk − λk+1∥2

)
.

5 Convergence

In this section, we explicitly prove the convergence of the OLADMM (1.14). With the
assertion in Theorem 4.1, the proof is subroutine.

Lemma 5.1 Let {wk} be the sequence generated by the OLADMM (1.14) for the prob-
lem (1.1). Then we have

∥vk+1 − v∗∥2H + 1
2

(
τ∥yk − yk+1∥2D + (1 − τ )β∥B(yk − yk+1)∥2

)

≤ ∥vk − v∗∥2H + 1
2

(
τ∥yk−1 − yk∥2D + (1 − τ )β∥B(yk−1 − yk)∥2

)

−
(
τ∥yk − yk+1∥2D + 2

(
τ − 3

4

)(
β∥B(yk − yk+1)∥2 + 1

β
∥λk − λk+1∥2

))
.

(5.1)

Proof Setting w = w∗ in (4.21) and performing simple manipulations, we get

(1
2
∥vk − v∗∥2H + 1

4

(
τ∥yk−1 − yk∥2D + (1 − τ )β∥B(yk−1 − yk)∥2

))

≥
(1
2
∥vk+1 − v∗∥2H + 1

4

(
τ∥yk − yk+1∥2D + (1 − τ )β∥B(yk − yk+1)∥2

))

+1
2
τ∥yk − yk+1∥2D +

(
τ − 3

4

)(
β∥B(yk − yk+1)∥2 + 1

β
∥λk − λk+1∥2

)
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+
(
θ(ũk) − θ(u∗)+ (w̃k − w∗)T F(w∗)

)
. (5.2)

For a solution point of (2.2), we have

θ(ũk) − θ(u∗)+ (w̃k − w∗)T F(w∗) ≥ 0.

Thus, the assertion (5.1) follows from (5.2) directly. ⊓⊔
Theorem 5.1 Let {wk} be the sequence generated by the OLADMM (1.14) for the
problem (1.1). Then the sequence {vk} converges to v∞ ∈ V∗.

Proof First, it follows from (5.1) that

τ∥yk − yk+1∥2D + 2
(
τ − 3

4

)(
β∥B(yk − yk+1)∥2 + 1

β
∥λk − λk+1∥2

)

≤
(
∥vk − v∗∥2H + 1

2

(
τ∥yk−1 − yk∥2D + (1 − τ )β∥B(yk−1 − yk)∥2

))

−
(
∥vk+1 − v∗∥2H + 1

2

(
τ∥yk − yk+1∥2D + (1 − τ )β∥B(yk − yk+1)∥2

))
.

(5.3)

Summarizing the last inequality over k = 1, 2, . . ., we obtain

∞∑

k=1

(
τ∥yk − yk+1∥2D + 2

(
τ − 3

4

)(
β∥B(yk − yk+1)∥2 + 1

β
∥λk − λk+1∥2

))

≤ ∥v1 − v∗∥2H + 1
2

(
τ∥y0 − y1∥2D + (1 − τ )β∥B(y0 − y1)∥2

)
.

Because D is positive definite, it follows from the above inequality that

lim
k→∞

∥vk − vk+1∥ = 0. (5.4)

For an arbitrarily fixed v∗ ∈ V∗, it follows from (5.1) that

∥vk+1 − v∗∥2H ≤ ∥vk − v∗∥2H + 1
2

(
τ∥yk−1 − yk∥2D + (1 − τ )β∥B(yk−1 − yk)∥2

)

≤ ∥v1 − v∗∥2H + 1
2

(
τ∥y0−y1∥2D

+(1 − τ )β∥B(y0 − y1)∥2
)
, ∀k ≥ 1, (5.5)

and thus the sequence {vk} is bounded. Because M is non-singular, according to (3.9),
{ṽk} is also bounded. Let v∞ be a cluster point of {ṽk} and {ṽk j } be the subsequence
converging to v∞. Let x∞ be the vector accompanied with (y∞, λ∞) ∈ V . Then, it
follows from (4.7) and (5.4) that

w∞ ∈ &, θ(u) − θ(u∞)+ (w − w∞)T F(w∞) ≥ 0, ∀w ∈ &,
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which means thatw∞ is a solution point of (2.2) and its essential part v∞ ∈ V∗. Since
v∞ ∈ V∗, it follows from (5.5) that

∥vk+1 − v∞∥2H ≤ ∥vk − v∞∥2H+
1
2

(
τ∥yk−1−yk∥2D + (1 − τ )β∥B(yk−1 − yk)∥2

)
.

(5.6)

Note that v∞ is also the limit point of {vk j }. Together with (5.4), this fact means that
it is impossible that the sequence {vk} has more than one cluster point. Therefore, the
sequence {vk} converges to v∞ and the proof is complete. ⊓⊔

6 Optimality of !

In Sect. 5, we show that τ ∈ (0.75, 1) is sufficient to ensure the convergence of the
OLADMM (1.14). In this section, we show by an extremely simple example that the
convergence of (1.14) is not guaranteed for any τ ∈ (0, 0.75). Hence, 0.75 is the
optimal value for the linearization parameter τ of the OLADMM (1.14).

Let us consider the simplest equation y = 0 in ℜ; and show that the OLADMM
(1.14) is not necessarily convergent when τ ∈ (0, 0.75). Obviously, y = 0 is a special
case of the model (1.1) as:

min{0 · x + 0 · y | 0 · x + y = 0, x ∈ {0}, y ∈ ℜ}. (6.1)

Without loss of generality, we take β = 1 and thus the augmented Lagrangian function
of the problem (6.1) is

L1(x, y, λ) = −λy + 1
2
∥y∥2.

The iterative scheme of the OLADMM (1.14) for (6.1) is

(OLADMM)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xk+1 = argmin
{
L1(x, yk, λk)

∣∣ x ∈ {0}
}
, (6.2a)

yk+1 = argmin
{
−yλk + 1

2
∥y∥2 + 1

2
∥y − yk∥2D0

∣∣ y ∈ ℜ
}
,

(6.2b)

λk+1 = λk − yk+1. (6.2c)

Since β = 1 and BT B = 1, it follows from (4.1) and (1.12) that

D0 = τD − (1 − τ ) and D = r − 1 > 0.

We thus have

D0 = τr − 1, ∀r > 1,
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and the recursion (6.2) becomes

⎧
⎨

⎩

xk+1 = 0,
−λk + yk+1 + (τr − 1)(yk+1 − yk) = 0,
λk+1 = λk − yk+1.

(6.3)

For any k > 0, we have xk = 0. We thus just need to study the iterative sequence
{vk = (yk, λk)}. For any given τ < 0.75, there exists r > 1 such that τr < 0.75
holds. Setting α = τr , the iterative scheme for v = (y, λ) can be written as

{
αyk+1 = λk + (α − 1)yk,
λk+1 = λk − yk+1.

(6.4)

With elementary manipulations, we get

⎧
⎪⎨

⎪⎩

yk+1 = α − 1
α

yk + 1
α

λk,

λk+1 = 1 − α

α
yk + α − 1

α
λk,

(6.5)

which can be written as

vk+1 = P(α)vk with P(α) = 1
α

(
α − 1 1
1 − α α − 1

)
. (6.6)

Let f1(α) and f2(α) be the two eigenvalues of the matrix P(α). Then we have

f1(α) =
(α − 1)+ √

1 − α

α
, and f2(α) =

(α − 1) − √
1 − α

α
.

For the function f2(α), we have f2
(
0.75

)
= −1 and

f ′
2(α) =

1
α2

((
1 − −1

2
√
1 − α

)
α −

(
(α − 1) −

√
1 − α

))

= 1
α2

((
α + α

2
√
1 − α

)
+ (1 − α)+

√
1 − α

)
> 0, ∀α ∈

(
0, 0.75

)
.

Therefore, we have

f2(α) =
(α − 1) − √

1 − α

α
< −1, ∀α ∈

(
0, 0.75

)
.

That is, for any α ∈
(
0, 0.75

)
, the matrix P(α) in (6.6) has an eigenvalue less than

−1. Hence, the iterative scheme (6.5), i.e., the application of the OLADMM (1.14) to
the problem (6.1), is not necessarily convergent for any τ ∈ (0, 0.75).
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7 Convergence rate

In this section, we establish the worst-case O(1/t) convergence rate measured by
the iteration complexity for the OLADMM (1.14), where t is the iteration counter.
Recall that the worst-case O(1/t) convergence rate for the original ADMM (1.3) and
its positive-definite linearized version (1.11)–(1.12) (actually, the matrix D in (1.11)
could be positive semidefinite) has been established in [23].

We first elaborate on how to define an approximate solution of the variational
inequality (2.2). According to (2.2), if w̃ satisfies

w̃ ∈ &, θ(u) − θ(ũ)+ (w − w̃)T F(w̃) ≥ 0, ∀w ∈ &,

then w̃ is a solution point of (2.2). By using (w − w̃)T F(w̃) = (w − w̃)T F(w) [see
(2.3)], the solution point w̃ can be also characterized by

w̃ ∈ &, θ(u) − θ(ũ)+ (w − w̃)T F(w) ≥ 0, ∀w ∈ &.

Hence, we can use this characterization to define an approximate solution of the
variational inequality (2.2). More specifically, for given ϵ > 0, w̃ ∈ & is called an
ϵ-approximate solution of the variational inequality (2.2) if it satisfies

w̃ ∈ &, θ(u) − θ(ũ)+ (w − w̃)T F(w) ≥ −ϵ, ∀ w ∈ D(w̃),

where

D(w̃) = {w ∈ & | ∥w − w̃∥ ≤ 1}.

We refer to [8] for more details of this definition. Below, we show that after t iterations
of the OLADMM (1.14), we can find w̃ ∈ & such that

w̃ ∈ & and sup
w∈D(w̃)

{
θ(ũ) − θ(u)+ (w̃ − w)T F(w)

}
≤ ϵ = O(

1
t
). (7.1)

Theorem 4.1 is again the starting point of the analysis.

Theorem 7.1 Let {wk} be the sequence generated by the OLADMM (1.14) for the
problem (1.1) and w̃k be defined by (3.6). Then, for any integer t andw ∈ &, we have

θ(ũt ) − θ(u)+ (w̃t − w)T F(w)

≤ 1
2t

(
∥v − v1∥2H + 1

2

(
τ∥y0 − y1∥2D + (1 − τ )β∥B(y0 − y1)∥2

))
. (7.2)

where

w̃t =
1
t

( t∑

k=1

w̃k). (7.3)
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Proof First, it follows from (4.21) that

θ(u) − θ(ũk)+ (w − w̃k)T F(w)

≥
(1
2
∥v − vk+1∥2H + 1

4

(
τ∥yk − yk+1∥2D + (1 − τ )β∥B(yk − yk+1)∥2

))

−
(1
2
∥v − vk∥2H + 1

4

(
τ∥yk−1 − yk∥2D + (1 − τ )β∥B(yk−1 − yk)∥2

))
.

Thus, we have

θ(ũk) − θ(u)+ (w̃k − w)T F(w)

+
(1
2
∥v − vk+1∥2H + 1

4

(
τ∥yk − yk+1∥2D + (1 − τ )β∥B(yk − yk+1)∥2

))

≤
(1
2
∥v − vk∥2H + 1

4

(
τ∥yk−1 − yk∥2D + (1 − τ )β∥B(yk−1 − yk)∥2

))
. (7.4)

Summarizing the inequality(7.4) over k = 1, 2, . . . , t , we obtain

t∑

k=1

θ(ũk) − tθ(u)+ (

t∑

k=1

w̃k − tw)T F(w)

≤ 1
2
∥v − v1∥2H + 1

4

(
τ∥y0 − y1∥2D + (1 − τ )β∥B(y0 − y1)∥2

)
.

and thus

1
t

( t∑

k=1

θ(ũk)
)
− θ(u)+ (w̃t − w)T F(w)

≤ 1
2t

(
∥v − v1∥2H + 1

2

(
τ∥y0 − y1∥2D + (1 − τ )β∥B(y0 − y1)∥2

))
. (7.5)

Since θ(u) is convex and

ũt =
1
t

( t∑

k=1

ũk
)
,

we have that

θ(ũt ) ≤ 1
t

( t∑

k=1

θ(ũk)
)
.

Substituting it into (7.5), the assertion of this theorem follows directly. ⊓⊔
For a given compact set D(w̃) ⊂ &, let

d := sup
{
∥v − v1∥2H + 1

2

(
τ∥y0 − y1∥2D + (1 − τ )β∥B(y0 − y1)∥2

)
|w ∈ D(w̃)

}
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where v0 = (y0, λ0) and v1 = (y1, λ1) are the initial point and the first computed
iterate, respectively. Then, after t iterations of the OLADMM (1.14), the point w̃t
defined in (7.3) satisfies

w̃ ∈ & and sup
w∈D(w̃)

{
θ(ũ) − θ(u)+ (w̃ − w)T F(w)

}
≤ d

2t
= O(

1
t
),

which means w̃t is an approximate solution of the variational inequality (2.2) with an
accuracy of O(1/t) (recall (7.1)). Since w̃t is defined in (7.3), the worst-case O(1/t)
convergence rate in Theorem 7.1 is in the ergodic sense.

8 Numerical Experiments

Though the exclusive emphasis of this paper is theoretically probing the optimal choice
of the parameter τ in (1.14) and hence rationally defining the OLADMM (1.14), for
completeness, we numerically show the acceleration of τ = 0.75 over the benchmark
case where τ = 1, i.e., the widely used LADMM (1.9), by some standard application
models which have been well tested in the literature. These preliminary numerical
results affirmatively verify the acceleration of τ = 0.75 for the OLADMM (1.14).
Our codes were written in MATLAB R2015b and implemented in a Lenovo personal
computer with a 2.8GHz Intel Core i7 CPU and 8GB memory.

8.1 LASSO

We first test the least absolute shrinkage and selection operator (LASSO) problem
(see, e.g., [30]):

min{1
2
∥Ay − b∥2 + σ∥y∥1 | y ∈ ℜn}, (8.1)

where A ∈ ℜm×n with m ≪ n, ∥y∥1 = ∑n
i=1 |yi |, b ∈ ℜm and σ > 0 is a regular-

ization parameter. This model may be interpreted as choosing main features among n
give ones and there are m data points; and b is understood as labels.

To solve the model (8.1) by various ADMM-based schemes, one way is introducing
an auxiliary variable x and the constraint x = Ay, and then rewriting (8.1) into the
form of (1.1):

min
x,y

{1
2
∥x − b∥2 + σ∥y∥1 | x − Ay = 0, x ∈ ℜm, y ∈ ℜn}. (8.2)

Then, both the LADMM(1.9) andOLADMM(1.14) are applicable.More specifically,
at each iteration, the implementation of the OLADMM (1.14) requires computing the
variables x and y, respectively, by the following two schemes:
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xk+1 = 1
1+ β

(b + λk + βAyk). (8.3)

and

yk+1 = Tσ/τr

(
yk − AT [λk − β(xk+1 − Ayk)]/τr

)
, (8.4)

where Tδ(t) is the soft thresholding operator defined by

Tδ(t)i := (|ti | − δ)+sign(ti ), i = 1, 2, · · · , n. (8.5)

For succinctness, we only consider the optimal case of the OLADMM (1.14) where
τ = 0.75. The implementation of the LADMM (1.9) differs only in that τ = 1 in
(8.4).

We follow the same data generation process as in [2]; first choose Ai j ∼ N (0, 1)
and then standardize the columns to have unit l2 norm. The true value ytrue is generated
with a density of 100/n non-zero entries, each sampled from an N (0, 1) distribution.
We generate the labels b as b = Aytrue + ε, where ε is a random noise with ε ∼
N (0, 10−3 I ).We set the regularizationparameterσ = 0.1σmax withσmax = ∥AT b∥∞,
and set the penalty parameter β = 1 and r = ∥AT A∥. The stopping criterion is

∥pk∥ = ∥xk+1 − Ayk+1∥ ≤ ϵpri and ∥qk∥ = ∥βA(yk+1 − yk)∥ ≤ ϵdual, (8.6)

where

ϵpri = √
nϵabs + ϵrel max{∥xk+1∥, ∥Ayk+1∥}, ϵdual = √

nϵabs + ϵrel∥yk+1∥,

with ϵabs and ϵrel as 10−5 and 10−3, respectively. The initial points (y0, λ0) is set as
zero.

In Table 1, we list the comparison between the optimal choice of τ = 0.75 in the
OLADMM(1.14) and the benchmarkLADMM(1.9)which corresponds to the scheme
(1.14) but with τ = 1. The number of iterations (“It.”), computing time in seconds
(“CPU”), the primal and dual residuals (“∥pk∥, ∥qk∥”) are compared. According
to this table, the acceleration of the OLADMM (1.14) with the optimal choice of
τ = 0.75 is clearly shown. Note that the acceleration must be modest because of the
only difference in a constant. In Figure 1, we also plot the primal and dual residuals
produced by the two algorithms for the case m = 2000, n = 5000, from which we
can see the advantage of the OLADMM (1.14) with τ = 0.75 more visually.

8.2 Nuclear norm regularized least squares problem

We further test the following nuclear norm regularized least squares problem:

min{1
2
∥A(Y ) − b∥2 + σ∥Y∥∗}, (8.7)
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Table 1 Comparsion between OLADMM and LADMM for (8.2)

n × n matrix LADMM OLADMM (τ = 0.75)

m n It. CPU ∥pk∥ ∥qk∥ It. CPU ∥pk∥ ∥qk∥

1000 3000 56 3.13 3.17e-03 3.17e-03 44 2.49 3.17e-03 3.17e-03

1500 3000 42 3.54 2.89e-03 2.89e-03 33 2.84 2.86e-03 2.86e-03

2000 3000 34 3.91 3.23e-03 3.23e-03 27 3.10 3.01e-03 3.01e-03

1000 5000 77 7.29 3.66e-03 3.66e-03 62 5.84 3.50e-03 3.50e-03

2000 5000 43 7.99 3.56e-03 3.56e-03 34 6.46 3.50e-03 3.50e-03

3000 5000 35 10.47 3.52e-03 3.52e-03 28 8.27 3.12e-03 3.12e-03

1000 10000 157 30.36 3.67e-03 3.67e-03 127 24.10 3.66e-03 3.66e-03

2000 10000 64 24.15 3.80e-03 3.80e-03 51 19.26 3.59e-03 3.59e-03

3000 10000 47 27.28 3.78e-03 3.78e-03 37 21.10 3.87e-03 3.87e-03

3000 15000 56 49.91 4.30e-03 4.30e-03 45 42.38 4.01e-03 4.01e-03

5000 15000 41 72.73 4.56e-03 4.56e-03 33 54.22 4.09e-03 4.09e-03

10000 15000 29 103.55 4.60e-03 4.60e-03 23 77.87 4.33e-03 4.33e-03

(a) (b)

Fig. 1 Comparison of the residuals produced by OLADMM and LADMM for (1) with randomly generated
data

where A : ℜm×n → ℜp is a linear operator, b ∈ ℜp is a vector, σ > 0 is a
regularization parameter, and ∥Y∥∗ is the nuclear norm defined as the sum of absolute
values of all singular values of Y . This model can be regarded as an extension of the
LASSO model (8.1) and it finds wide applications in areas such as machine learning,
system identification, see, e.g. [29].

Similar as for (8.2), by introducing an auxiliary variable x ∈ ℜp and a constraint
x = A(Y ) − b, we can rewrite (8.7) into the form of (1.1) but with matrix variables:

min
x,Y

{ 1
2σ

∥x∥2 + ∥Y∥∗ | A(Y ) − b = x, x ∈ ℜp, Y ∈ ℜm×n}, (8.8)
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Then, both the LADMM (1.9) and the OLADMM (1.14) are applicable to (8.8). At
each iteration, the implementation of the OLADMM (1.14) requires computing the x-
and Y -subproblems, respectively, by the following schemes:

xk+1 = βσ

1+ βσ
(A(Y k) − b − λk

β
), (8.9)

and

Y k+1 = D1/τr

(
Y k − β

τr
AT (A(Y k) − b − xk+1 − λk

β
)

)
, (8.10)

where Dδ(t) is the singular value thresholding operator defined by

Dδ(Z) = U (. − δ I )+V , (8.11)

in which Z = U.V is the singular value decomposition of Z and (a)+ = max(a, 0).
The implementation of the LADMM (1.9) differs only in τ = 1 in (8.10). In our
experiments, we implement the PROPACK library [25] for the computation of singular
values. Again, for succinctness, we only test the optimal choice of τ = 0.75 for the
OLADMM (1.14).

To generate the data, we first choose an m × n matrix with rank ra by Y ∗ =
M1M2, where M1 ∈ ℜm×r and M2 ∈ ℜr×n are both random matrices with all entries
being independent standard Gaussian variables. The linear operatorA is set as a two-
dimensional partial DCT (discrete cosine transform) operator. In this case, we have
∥ATA∥ = 1. Then we set b = A(X∗)+ ε, where ε is the zero-mean Gaussian white
noise with standard deviation 10−3. We set σ = 10−4 in (8.7). As in [32], we set the
penalty parameter β = 2.5/min(m, n) and r = β. The stopping criterion is

RelChg = ∥Y k − Y k−1∥F
∥Y k−1∥F

< 10−5. (8.12)

For each case tested, we use ra to denote the rank of Y ∗ and p the number of mea-
surements. The sampling ratio (denoted by “SR” ) is used to define the ratio between
the numbers of samples and entries in the matrix, i.e., SR=p/mn. The oversampling
ratio of a matrix, denoted by “OR”, is defined as p/ra(m+ n − ra), where ra the rank
of this matrix.

In Table 2, we list the comparison between the OLADMM (1.14) with the optimal
choice τ = 0.75 and the LADMM (1.11). The number of iterations (“It.”), computing
time in seconds (“CPU”) and relative error (“RErr”) defined as

RErr = ∥Y k − Y ∗∥F
∥Y ∗∥F

, (8.13)

are compared. According to this table, the (modest) acceleration of the OLADMM
(1.14) with the optimal choice τ = 0.75 over the LADMM (1.9) is shown again.
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Table 2 Comparsion of LADMM and OLADMM for (8.7)

m × n matrix LADMM OLADMM (τ = 0.75)

(m, n) ra OR SR It. CPU RErr It. CPU RErr

(500, 500) 10 5.05 0.20 58 19.84 1.80e-04 45 14.64 4.09e-04

(500, 500) 10 10.10 0.40 34 13.36 1.09e-04 24 9.00 1.07e-04

(500, 500) 10 15.15 0.60 20 8.77 1.06e-04 14 6.23 8.86e-05

(500, 1000) 10 6.71 0.20 58 29.17 1.72e-04 45 21.31 1.73e-04

(500, 1000) 10 13.42 0.40 33 18.11 9.96e-05 24 13.17 9.59e-05

(500, 1000) 10 20.13 0.60 22 12.61 7.56e-05 15 8.42 7.88e-05

(1000, 1000) 20 5.05 0.20 58 60.34 1.51e-04 45 39.67 1.99e-04

(1000, 1000) 20 10.10 0.40 34 37.91 8.26e-05 24 25.33 7.85e-05

(1000, 1000) 20 15.15 0.60 21 24.80 6.60e-05 14 17.59 6.34e-05

(1000, 2000) 20 6.71 0.20 58 104.20 1.56e-04 45 76.81 1.53e-04

(1000, 2000) 20 13.42 0.40 34 66.98 7.74e-05 25 47.56 6.84e-05

(1000, 2000) 20 20.13 0.60 22 46.61 5.67e-05 15 32.19 5.70e-05

(2000, 2000) 50 4.05 0.20 56 280.36 1.15e-04 44 217.98 2.78e-04

(2000, 2000) 50 8.10 0.40 33 171.45 6.51e-05 23 118.95 8.08e-05

(2000, 2000) 50 12.15 0.60 21 124.63 5.47e-05 15 89.23 4.57e-05

(2000, 4000) 50 5.38 0.20 57 609.00 1.02e-04 44 406.70 1.04e-04

(2000, 4000) 50 10.76 0.40 33 309.75 6.70e-05 24 224.39 6.22e-05

(2000, 4000) 50 16.13 0.60 22 220.61 4.79e-05 15 149.41 5.25e-05

9 Conclusions

In this paper, we found the optimal step size, or linearization parameter, for the lin-
earized version of alternating direction method of multipliers (ADMM) in the convex
programming context. In the context of ADMM with proximal regularization, our
optimal step size means it is not necessary to ensure the positive definiteness or
semidefiniteness of the proximal regularization term. Without any additional assump-
tions on the model per se, the proposed optimal linearized ADMM allows larger step
sizes for subproblems, theoretically keeps the convergence and convergence rate, and
inherit the main feature of the original linearized ADMMwhich is tailored for applica-
tions as well. This work can be regarded as a more extensive analysis of [19] in which
the optimal step size is shown for the proximal version of the augmented Lagrangian
method. The efficiency of the optimal linearized ADMM can be immediately verified
by various examples such as the sparse and low-rank models in [32]; only a very slight
modification of multiplying the value of r by a coefficient of 0.75 in our own code
can immediately yield about 20− 30% acceleration. We believe such an acceleration
can be easily found by other well-studied applications of the linearized ADMM in the
literature.

Finally, wewouldmention that, to expose themain ideamore clearly, our discussion
only focuses on the original prototype ADMM scheme (1.3) with a constant parameter
β; and only one subproblem is proximally regularized. Our discussion can be further
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extended to many other variants of the ADMM such as the strictly contractive version
of the symmetric ADMM (also known as the Peaceman-Rachford splitting method)
in [18], the case with dynamically-adjusted penalty parameters in [22], the case where
both the subproblems are proximally regularized in [17], the case where the proximal
matrix can be dynamically adjusted in [17], and even some more complicated cases
where the mentioned variants are merged such as [26,27]. But the discussion in our
setting still represents the simplest yet most fundamental case for finding the optimal
step size of the linearized ADMM; and it is the basis of possible discussions for other
more complicated cases.
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