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Abstract Alternating direction method of multipliers has been well studied in the
context of linearly constrained convex optimization. In the last few years, we have
witnessed a number of novel applications arising from image processing, compres-
sive sensing and statistics, etc., where the approach is surprisingly efficient. In the
early applications, the objective function of the linearly constrained convex optimiza-
tion problem is separable into two parts. Recently, the alternating direction method
of multipliers has been extended to the case where the number of the separable parts
in the objective function is finite. However, in each iteration, the subproblems are
required to be solved exactly. In this paper, by introducing some reasonable inexact-
ness criteria, we propose two inexact alternating-direction-based contraction meth-
ods, which substantially broaden the applicable scope of the approach. The con-
vergence and complexity results for both methods are derived in the framework of
variational inequalities.
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1 Introduction

Because of its significant efficiency and easy implementation, the alternating direc-
tion method of multipliers (ADMM) has attracted wide attention in various areas
[1, 2]. In particular, some novel and attractive applications of the ADMM have been
discovered very recently; e.g., total-variation regularization problems in image pro-
cessing [3], �1-norm minimization in compressive sensing [4], semidefinite optimiza-
tion problems [5], the covariance selection problem and semidefinite least squares
problem in statistics [6, 7], the sparse and low-rank recovery problem in engineering
[8], etc.

The paper is organized as follows. As a preparation, in the next section, we give
a brief review of ADMM, which serves as a motivation of our inexact alternating-
direction-based contraction methods. Some basic properties of the projection map-
pings and variational inequalities are recalled as well. Then, in Sect. 3 we present
two contraction methods, which are based on two descent directions generated from
an inexact alternating minimization of LA defined in (4). The rationale of the two
descent search directions follows in Sect. 4, and the convergence and complexity re-
sults are proved in Sects. 5 and 6, respectively. Finally, some conclusions are drawn
in Sect. 7.

2 Preliminaries

Before introducing the ADMM, we briefly review the augmented Lagrangian method
(ALM), for which we consider the following linearly constrained convex optimiza-
tion problem:

min
{
θ(x) | Ax = b, x ∈X

}
. (1)

Here θ(x) : Rn → R is a convex function (not necessarily smooth), A ∈ R
m×n, b ∈

R
m, and X ⊆ R

n is a closed and convex set. For solving problem (1), the classical
ALM generates a sequence of iterates via the following scheme:

{
xk+1 = arg min{θ(x) − 〈λk,Ax − b〉 + 1

2‖Ax − b‖2
H | x ∈ X },

λk+1 = λk − H(Axk+1 − b),

where H ∈ R
m×m is a positive definite scaling matrix penalizing the violation of the

linear constraints, and λk ∈ R
m is the associated Lagrange multiplier; see, e.g., [9,

10] for more details.
An important special scenario of (1), which captures concrete applications in many

fields [6, 11–13], is the following case, where the objective function is separable into
two parts:

min
{
θ1(x1) + θ2(x2) | A1x1 + A2x2 = b, xi ∈Xi , i = 1,2

}
. (2)

Here n1 + n2 = n, and, for i = 1,2, θi : Rni →R are convex functions (not necessar-
ily smooth), Ai ∈ R

m×ni , and Xi ⊆ R
ni are closed and convex sets. For solving (2),

the ADMM, which dates back to [14] and is closely related to the Douglas–Rachford
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operator splitting method [15], is perhaps one of the most popular methods. Given
(xk

2 , λk), the ADMM generates (xk+1
1 , xk+1

2 , λk+1) via the following scheme:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xk+1
1 = arg min{θ1(x1) − 〈λk,A1x1 + A2x

k
2 − b〉 + 1

2‖A1x1 + A2x
k
2 − b‖2

H |
x1 ∈X1},

xk+1
2 = arg min{θ2(x2) − 〈λk,A1x

k+1
1 + A2x2 − b〉 + 1

2‖A1x
k+1
1 + A2x2 − b‖2

H |
x2 ∈X2},

λk+1 = λk − H(A1x
k+1
1 + A2x

k+1
2 − b).

Therefore, ADMM can be viewed as a practical and structure-exploiting variant (in
a split or relaxed form) of the classical ALM for solving the separable problem (2),
with the adaptation of minimizing the involved separable variables separately in an
alternating order.

In this paper, we consider a more general separable case of (1) in the sense that
the objective function is separable into finitely many parts:

min

{
N∑

i=1

θi(xi)

∣
∣∣

N∑

i=1

Aixi = b, xi ∈ Xi , i = 1, . . . ,N

}

, (3)

where
∑N

i=1 ni = n, and, for i = 1, . . . ,N , θi : Rni → R are convex functions (not
necessarily smooth), Ai ∈ R

m×ni , b ∈ R
m, and Xi ⊆ R

ni are closed and convex sets.
Without loss of generality, we assume that the solution set of (3) is nonempty. Re-
cently, the ADMM was extended to handle (3) by He et al. [16]. For convenience, we
denote the augmented Lagrangian function of (3) by

LA(x1, . . . , xN ,λ) :=
N∑

i=1

θi(xi) −
〈

λ,

N∑

i=1

Aixi − b

〉

+ 1

2

∥∥
∥∥∥

N∑

i=1

Aixi − b

∥∥
∥∥∥

2

H

, (4)

where H ∈ R
m×m is a symmetric positive definite scaling matrix, and λ ∈ R

m is the
Lagrangian multiplier. Given (xk

1 , . . . , xk
N ,λk), the algorithm in [16] generates the

next iterate (xk+1
1 , . . . , xk+1

N ,λk+1) in two steps. First, the algorithm produces a trial
point (x̃k

1 , . . . , x̃k
N , λ̃k) by the following alternating minimization scheme:

{
x̃k
i = arg min{LA(x̃k

1 , . . . , x̃k
i−1, xi, x

k
i+1, . . . , x

k
N ,λk) | xi ∈Xi}, i = 1, . . . ,N,

λ̃k = λk − H(
∑N

i=1 Aix̃
k
i − b).

(5)
Then, the next iterate (xk+1

1 , . . . , xk+1
N ,λk+1) is obtained from (xk

1 , . . . , xk
N ,λk) and

the trial point (x̃k
1 , . . . , x̃k

N , λ̃k). To the best of our knowledge, it is the first time that
tractable algorithms for (3) based on the full utilization of their separable structure
have been developed. As demonstrated in [16], the resulting method falls into the
frameworks of both the descent-like methods in the sense that the iterates generated
by the extended ADMM scheme (5) can be used to construct descent directions and
the contraction-type methods (according to the definition in [17]) as the distance be-
tween the iterates and the solution set of (3) is monotonically decreasing. Therefore,
the method is called the alternating-direction-based contraction method.
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From a practical point of view, however, in many cases, solving each subproblem
in (5) accurately is either expensive or even impossible. On the other hand, there
seems to be little justification of the effort required to calculate the accurate solutions
at each iteration. In this paper, we develop two inexact methods for solving problem
(3), in which the subproblems in (5) are solved inexactly. So, the methods presented
in this paper are named inexact alternating-direction-based contraction methods.

In the sequel, we briefly review some basic properties and related definitions
that will be used in the forthcoming analysis. We consider the generally separa-
ble linearly constrained convex optimization problem (3). For i = 1, . . . ,N , we let
fi(xi) ∈ ∂(θi(xi)), where ∂(θi(xi)) denotes the subdifferential of θi at xi . Moreover,
we let W := X1 × · · · × XN × R

m. Then, it is evident that the first-order optimal-
ity condition of (3) is equivalent to the following variational inequality for finding
(x∗

1 , . . . , x∗
N,λ∗) ∈ W :

{〈
xi − x∗

i , fi(x
∗
i ) − AT

i λ∗〉≥ 0, i = 1, . . . ,N,
〈
λ − λ∗,

∑N
i=1 Aix

∗
i − b

〉≥ 0,
∀(x1, . . . , xN ,λ) ∈ W . (6)

By defining

w :=

⎛

⎜⎜⎜
⎝

x1
...

xN

λ

⎞

⎟⎟⎟
⎠

and F(w) :=

⎛

⎜⎜⎜⎜
⎝

f1(x1) − AT
1 λ

...

fN(xN) − AT
Nλ

∑N
i=1 Aixi − b

⎞

⎟⎟⎟⎟
⎠

the problem (6) can be rewritten in a more compact form as

〈
w′ − w∗,F

(
w∗)〉≥ 0 ∀w′ ∈ W,

which we denote by VI(W,F ). Recall that F(w) is said to be monotone iff

〈
u − v,F (u) − F(v)

〉≥ 0 ∀u,v ∈ W .

One can easily verify that F(w) is monotone whenever all fi , i = 1, . . . ,N , are
monotone. Under the nonempty assumption of the solution set of (3), the solution
set, W∗, of VI(W,F ) is nonempty and convex.

Given a positive definite matrix G of size (n + m) × (n + m), we define the G-
norm of u ∈ R

n+m as ‖u‖G = √〈u,Gu〉. The projection onto W under the G-norm
is defined as

PW,G(v) := arg min
{‖v − w‖G | w ∈ W

}
.

From the above definition it follows that

〈
v − PW,G(v),G

(
w − PW,G(v)

)〉≤ 0 ∀v ∈R
n+m,∀w ∈ W . (7)

Consequently, we have
∥∥PW,G(u) − PW,G(v)

∥∥
G

≤ ‖u − v‖G ∀u,v ∈R
n+m



J Optim Theory Appl (2014) 163:105–129 109

and
∥∥PW,G(v) − w

∥∥2
G

≤ ‖v − w‖2
G − ∥∥v − PW,G(v)

∥∥2
G

∀v ∈R
n+m,∀w ∈ W . (8)

An important property of the projection is contained in the following lemma, for
which the omitted proof can be found in [18, pp. 267].

Lemma 2.1 Let W be a closed convex set in R
n+m, and let G be any (n + m) ×

(n + m) positive definite matrix. Then w∗ is a solution of VI(W,F ) if and only if

w∗ = PW,G

[
w∗ − αG−1F

(
w∗)] ∀α > 0.

In other words, we have

w∗ = PW,G

[
w∗ − αG−1F

(
w∗)] ⇔ w∗ ∈ W,

〈
w − w∗,F

(
w∗)〉≥ 0

∀w ∈W . (9)

3 Two Contraction Methods

In this section, we present two algorithms, each of which consists of a search di-
rection and a step length. The search directions are based on the inexact alternating
minimization of LA, while both algorithms use the same step length.

3.1 Search Directions

For given wk = (xk
1 , . . . , xk

N ,λk), the alternating direction scheme of the kth iteration
generates a trial point w̃k = (x̃k

1 , . . . , x̃k
N , λ̃k) via the following procedure:

For i = 1, . . . ,N , x̃k
i is computed as

x̃k
i = PXi

{

x̃k
i −

[

fi

(
x̃k
i

)− AT
i λk + AT

i H

(
i∑

j=1

Aj x̃
k
j +

N∑

j=i+1

Ajx
k
j − b

)

+ ξk
i

]}

,

(10)
where

‖ξk
i ‖ ≤ ∥∥Ai

(
xk
i − x̃k

i

)∥∥
H

and
∣
∣〈xk

i − x̃k
i , ξ k

i

〉∣∣≤ 1

4

∥
∥Ai

(
xk
i − x̃k

i

)∥∥2
H

. (11)

Then, we set

λ̃k = λk − H

(
N∑

j=1

Aj x̃
k
j − b

)

. (12)

We claim that the above approximation scheme is appropriate for inexactly solving
the minimization subproblems, i.e.,

min
{
LA

(
x̃k

1 , . . . , x̃k
i−1, xi, x

k
i+1, . . . , x

k
N ,λk

) | xi ∈Xi

}
. (13)
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Assume that x̄k
i is an optimal solution of (13). By the definition of LA in (4), the

first-order optimality condition of (13) reduces to finding x̄k
i ∈ Xi such that

〈

x′
i − x̄k

i , fi

(
x̄k
i

)−AT
i

[

λk −H

(
i−1∑

j=1

Aj x̃
k
j +Aix̄

k
i +

N∑

j=i+1

Ajx
k
j −b

)]〉

≥ 0 ∀x′
i ∈Xi

where fi(x̄
k
i ) is a subgradient of θi(xi) at x̄k

i , i.e., fi(x̄
k
i ) ∈ ∂(θi(x̄

k
i )). According to

Lemma 2.1, the above variational inequality is equivalent to

x̄k
i = PXi

{

x̄k
i −

[

fi

(
x̄k
i

)− AT
i λk + AT

i H

(
i−1∑

j=1

Aj x̃
k
j + Aix̄

k
i +

N∑

j=i+1

Ajx
k
j − b

)]}

.

If x̃k
i is an optimal solution of (13), then by setting ξk

i = 0 in (10) the approximation
conditions in (11) are satisfied. In fact, if ‖Ai(x

k
i − x̄k

i )‖H = 0, then the approxi-
mation conditions in (11) require that the corresponding subproblem (10) be solved
exactly. Thus, without loss of generality, we may assume that

∥∥Ai

(
xk
i − x̄k

i

)∥∥
H

�= 0.

Suppose that x̂k
i is an approximate solution of (13), i.e.,

x̂k
i ≈ PXi

{

x̂k
i −

[

fi

(
x̂k
i

)− AT
i λk + AT

i H

(
i−1∑

j=1

Aj x̃
k
j + Aix̂

k
i +

N∑

j=i+1

Ajx
k
j − b

)]}

.

By setting

x̃k
i = PXi

{

x̂k
i −

[

fi

(
x̂k
i

)− AT
i λk + AT

i H

(
i−1∑

j=1

Aj x̃
k
j + Aix̂

k
i +

N∑

j=i+1

Ajx
k
j − b

)]}

simple manipulation shows that (10) holds with

ξk
i = (x̃k

i − x̂k
i

)− (f (x̃k
i

)− f
(
x̂k
i

))− AT
i HAi

(
x̃k
i − x̂k

i

)
.

When x̂k
i is sufficiently close to the exact solution x̄k

i , the relations between x̄k
i , x̂k

i ,
and x̃k

i ensure that

x̂k
i ≈ x̃k

i and
∥∥Ai

(
xk
i − x̃k

i

)∥∥
H

≈ ∥∥Ai

(
xk
i − x̄k

i

)∥∥
H

.

Therefore, for a suitable approximate solution x̂k
i , we can define an x̃k

i such that the
inexactness conditions (10) and (11) are satisfied.
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Instead of accepting w̃k as a new iterate, we use it to generate descent search
directions. In the sequel, we define the matrix M and the vector ξk as

M :=

⎛

⎜
⎜⎜⎜⎜⎜
⎝

AT
1 HA1 0 · · · 0 0

AT
2 HA1 AT

2 HA2
. . .

...
...

...
...

. . . 0 0
AT

NHA1 AT
NHA2 · · · AT

NHAN 0
0 0 · · · 0 H−1

⎞

⎟
⎟⎟⎟⎟⎟
⎠

and ξk :=

⎛

⎜
⎜⎜⎜⎜⎜
⎝

ξk
1

ξk
2
...

ξ k
N

0

⎞

⎟
⎟⎟⎟⎟⎟
⎠

.

(14)
Then, our two search directions are, respectively, given by

d1
(
wk, w̃k, ξk

)= M
(
wk − w̃k

)− ξk (15)

and

d2
(
wk, w̃k, ξk

)= F
(
w̃k
)+

⎛

⎜⎜⎜
⎝

AT
1
...

AT
N

0

⎞

⎟⎟⎟
⎠

H

(
N∑

j=1

Aj

(
xk
j − x̃k

j

)
)

. (16)

Based on wk , w̃k , and ξk , we define

ϕ
(
wk, w̃k, ξk

)= 〈wk − w̃k, d1
(
wk, w̃k, ξk

)〉+
〈

λk − λ̃k,

N∑

j=1

Aj

(
xk
j − x̃k

j

)
〉

. (17)

The function ϕ(wk, w̃k, ξk) is a key component in analyzing the proposed methods.
In the subsequent section, we prove (in Theorem 4.1) that

{
ϕ(wk, w̃k, ξk) ≥ 1

4 (
∑N

j=1 ‖Aj(x
k
j − x̃k

j )‖2
H + ‖λk − λ̃k‖2

H−1),

ϕ(wk, w̃k, ξk) = 0 ⇔ w̃k ∈ W∗.
(18)

Hence, ϕ(wk, w̃k, ξk) can be viewed as an error measuring function, which mea-
sures how much wk fails to be in W∗. Furthermore, by utilizing ϕ(wk, w̃k, ξk)

we will prove in Theorems 4.2 and 4.3 that, for any given positive definite matrix
G ∈R

(n+m)×(n+m), both −G−1d1(w
k, w̃k, ξk) and −G−1d2(w

k, w̃k, ξk) are descent
directions with respect to the unknown distance function ‖w − w∗‖2

G.

3.2 The Step Length

In this subsection, we provide a step length for the search directions d1(w
k, w̃k, ξk)

and d2(w
k, w̃k, ξk). Later, we will justify the choice of the step length to be defined

and show that the step length has a positive lower bound.
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Given a positive definite matrix G ∈ R
(n+m)×(n+m), the new iterate wk+1 is gener-

ated as

wk+1 = wk − αkG
−1d1

(
wk, w̃k, ξk

)
(19)

or

wk+1 = PW,G

[
wk − αkG

−1d2
(
wk, w̃k, ξk

)]
, (20)

where

αk = γ α∗
k , α∗

k = ϕ(wk, w̃k, ξk)

‖G−1d1(wk, w̃k, ξk)‖2
G

, and γ ∈ (0,2). (21)

The sequence {wk} generated by (19) is not necessarily contained in W , while the se-
quence produced by (20) lies in W . Note that the step length αk in both (19) and (20)
depends merely on ϕ(wk, w̃k, ξk), d1(w

k, w̃k, ξk), and γ . The proposed methods uti-
lize different search directions but the same step length. According to our numerical
experiments in [19], the update form (20) usually outperforms (19), provided that the
projection onto W can easily be carried out.

We mention that the proposed inexact ADMMs (19) and (20) are different from
those in the literature [19, 20]. In fact, the inexact methods proposed in [19, 20]
belong to the proximal-type methods [21–24], while the ADMM subproblems in this
paper do not include proximal terms of any form.

4 Rationale of the Two Directions

To derive the convergence of the proposed methods, we use similar arguments as
those in the general framework proposed in [25]. By Lemma 2.1 the equality in (10)
is equivalent to

〈

x′
i − x̃k

i , fi

(
x̃k
i

)−AT
i

[

λk −H

(
i∑

j=1

Aj x̃
k
j +

N∑

j=i+1

Ajx
k
j −b

)]

+ξk
i

〉

≥ 0 ∀x′
i ∈Xi .

By substituting λ̃k given in (12), the above inequality can be rewritten as

〈

x′
i − x̃k

i , fi

(
x̃k
i

)−AT
i λ̃k +AT

i H

(
N∑

j=i+1

Aj

(
xk
j − x̃k

j

)
)

+ ξk
i

〉

≥ 0 ∀x′
i ∈Xi . (22)

According to the general framework [25], for the pair (wk, w̃k), the following condi-
tions are required to guarantee the convergence:

w̃k = PW
{
w̃k − [d2

(
wk, w̃k, ξk

)− d1
(
wk, w̃k, ξk

)]}
, (23)

〈
w̃k − w∗, d2

(
wk, w̃k, ξk

)〉≥ ϕ
(
wk, w̃k, ξk

)− 〈wk − w̃k, d1
(
wk, w̃k, ξk

)〉
, (24)

for which we give proofs in Lemmas 4.1 and 4.2, respectively.
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Lemma 4.1 Let w̃k = (x̃k
1 , . . . , x̃k

N , λ̃k) be generated by the inexact alternating di-
rection scheme (10)–(12) from the given vector wk = (xk

1 , . . . , xk
N ,λk). Then, we have

w̃k ∈ W and

〈
w′ − w̃k, d2

(
wk, w̃k, ξk

)− d1
(
wk, w̃k, ξk

)〉≥ 0 ∀w′ ∈W,

where d1(w
k, w̃k, ξk) and d2(w

k, w̃k, ξk) are defined in (15) and (16), respectively.

Proof Denote x̃k := (x̃k
1 , . . . , x̃k

N ) and X := X1 × · · · ×XN . It is clear from (10) that
x̃k ∈X . From (22), for all x′ ∈X , we have

⎛

⎜⎜⎜
⎜
⎝

x′
1 − x̃k

1

x′
2 − x̃k

2
...

x′
N − x̃k

N

⎞

⎟⎟⎟
⎟
⎠

T ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎜⎜
⎜
⎝

f1(x̃
k
1 ) − AT

1 λ̃k

f2(x̃
k
2 ) − AT

2 λ̃k

...

fN(x̃k
N ) − AT

Nλ̃k

⎞

⎟⎟⎟
⎟
⎠

+

⎛

⎜⎜⎜
⎜
⎝

AT
1 H(

∑N
j=2 Aj(x

k
j − x̃k

j ))

AT
2 H(

∑N
j=3 Aj(x

k
j − x̃k

j ))

...

0

⎞

⎟⎟⎟
⎟
⎠

+

⎛

⎜⎜⎜
⎜
⎝

ξk
1

ξk
2
...

ξ k
N

⎞

⎟⎟⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

≥ 0. (25)

By adding
⎛

⎜⎜⎜⎜
⎝

x′
1 − x̃k

1

x′
2 − x̃k

2
...

x′
N − x̃k

N

⎞

⎟⎟⎟⎟
⎠

T
⎛

⎜⎜⎜⎜⎜
⎝

AT
1 H(

∑1
j=1 Aj(x

k
j − x̃k

j ))

AT
2 H(

∑2
j=1 Aj(x

k
j − x̃k

j ))

...

AT
NH(

∑N
j=1 Aj(x

k
j − x̃k

j ))

⎞

⎟⎟⎟⎟⎟
⎠

to both sides of (25), we get

⎛

⎜⎜
⎜⎜
⎝

x′
1 − x̃k

1

x′
2 − x̃k

2
...

x′
N − x̃k

N

⎞

⎟⎟
⎟⎟
⎠

T
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜
⎜⎜
⎝

f1(x̃
k
1 ) − AT

1 λ̃k + AT
1 H(

∑N
j=1 Aj(x

k
j − x̃k

j ))

f2(x̃
k
2 ) − AT

2 λ̃k + AT
2 H(

∑N
j=1 Aj(x

k
j − x̃k

j ))

...

fN(x̃k
N ) − AT

N λ̃k + AT
NH(

∑N
j=1 Aj(x

k
j − x̃k

j ))

⎞

⎟⎟⎟
⎟⎟
⎠

+

⎛

⎜⎜
⎜⎜
⎝

ξk
1

ξk
2
...

ξ k
N

⎞

⎟⎟
⎟⎟
⎠

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

≥

⎛

⎜⎜⎜⎜
⎝

x′
1 − x̃k

1

x′
2 − x̃k

2
...

x′
N − x̃k

N

⎞

⎟⎟⎟⎟
⎠

T
⎛

⎜⎜⎜⎜⎜
⎝

AT
1 H(

∑1
j=1 Aj(x

k
j − x̃k

j ))

AT
2 H(

∑2
j=1 Aj(x

k
j − x̃k

j ))

...

AT
NH(

∑N
j=1 Aj(x

k
j − x̃k

j ))

⎞

⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎝

x′
1 − x̃k

1

x′
2 − x̃k

2
...

x′
N − x̃k

N

⎞

⎟⎟⎟⎟
⎠

T
⎛

⎜⎜⎜⎜⎜
⎝

AT
1 HA1 0 · · · 0

AT
2 HA1 AT

2 HA2
. . .

...

...
...

. . . 0

AT
NHA1 AT

NHA2 · · · AT
NHAN

⎞

⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎝

xk
1 − x̃k

1

xk
2 − x̃k

2
...

xk
N − x̃k

N

⎞

⎟⎟⎟⎟
⎠

(26)
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for all x′ ∈X . Since
∑N

i=1Aix̃
k
i − b = H−1(λk − λ̃k), by embedding the equality

〈

λ′ − λ̃k,

N∑

i=1

Aix̃
k
i − b

〉

= 〈λ′ − λ̃k,H−1(λk − λ̃k
)〉

into (26) we obtain w̃k ∈W and

⎛

⎜⎜⎜⎜⎜⎜
⎝

x′
1 − x̃k

1

x′
2 − x̃k

2
...

x′
N − x̃k

N

λ′ − λ̃k

⎞

⎟⎟⎟⎟⎟⎟
⎠

T
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

f1(x̃
k
1 ) − AT

1 λ̃k + AT
1 H(

∑N
j=1 Aj(x

k
j − x̃k

j ))

f2(x̃
k
2 ) − AT

2 λ̃k + AT
2 H(

∑N
j=1 Aj(x

k
j − x̃k

j ))

...

fN(x̃k
N ) − AT

N λ̃k + AT
NH(

∑N
j=1 Aj(x

k
j − x̃k

j ))
∑N

i=1 Aix̃
k
i − b

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

+

⎛

⎜⎜⎜⎜⎜⎜
⎝

ξk
1

ξk
2
...

ξ k
N

0

⎞

⎟⎟⎟⎟⎟⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

≥

⎛

⎜⎜⎜⎜
⎜⎜
⎝

x′
1 − x̃k

1

x′
2 − x̃k

2
...

x′
N − x̃k

N

λ′ − λ̃k

⎞

⎟⎟⎟⎟
⎟⎟
⎠

T ⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

AT
1 HA1 0 · · · 0 0

AT
2 HA1 AT

2 HA2
. . .

...
...

...
...

. . . 0 0

AT
NHA1 AT

NHA2 · · · AT
NHAN 0

0 0 · · · 0 H−1

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎜⎜
⎝

xk
1 − x̃k

1

xk
2 − x̃k

2
...

xk
N − x̃k

N

λk − λ̃k

⎞

⎟⎟⎟⎟
⎟⎟
⎠

for all w′ ∈ W . Recalling the definitions of d2(w
k, w̃k, ξk) and M (see (16) and (14)),

the last inequality can be rewritten in the following compact form:

w̃k ∈W,
〈
w′ − w̃k, d2

(
wk, w̃k, ξk

)+ ξk
〉≥ 〈w′ − w̃k,M

(
wk − w̃k

)〉 ∀w′ ∈W .

The assertion of this lemma follows directly from the above inequality and the defi-
nition of d1(w

k, w̃k, ξk) in (15). �

According to (9), the assertion in Lemma 4.1 is equivalent to (23).

Lemma 4.2 Let w̃k = (x̃k
1 , . . . , x̃k

N , λ̃k) be generated by the inexact alternating di-
rection scheme (10)–(12) from the given vector wk = (xk

1 , . . . , xk
N ,λk). Then, we have

〈
w̃k −w∗, d2

(
wk, w̃k, ξk

)〉≥ ϕ
(
wk, w̃k, ξk

)− 〈wk −w̃k, d1
(
wk, w̃k, ξk

)〉 ∀w∗ ∈W∗
(27)

where d1(w
k, w̃k, ξk), d2(w

k, w̃k, ξk), and ϕ(wk, w̃k, ξk) are defined in (15), (16),
and (17).

Proof According to (16), we have
〈
w̃k − w∗, d2

(
wk, w̃k, ξk

)〉

= 〈w̃k − w∗,F
(
w̃k
)〉+

〈
N∑

j=1

Aj

(
x̃k
j − x∗

j

)
,H

(
N∑

j=1

Aj

(
xk
j − x̃k

j

)
)〉

. (28)
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From the monotonicity of F(w) and the fact that w̃k ∈W it follows that

〈
w̃k − w∗,F

(
w̃k
)〉≥ 〈w̃k − w∗,F

(
w∗)〉≥ 0.

Substituting the above inequality into (28), we obtain

〈
w̃k − w∗, d2

(
wk, w̃k, ξk

)〉≥
〈

N∑

j=1

Aj

(
x̃k
j − x∗

j

)
,H

(
N∑

j=1

Aj

(
xk
j − x̃k

j

)
)〉

.

Since
∑N

j=1Ajx
∗
j = b and H(

∑N
j=1Aj x̃

k
j − b) = λk − λ̃k , the above inequality be-

comes

〈
w̃k − w∗, d2

(
wk, w̃k, ξk

)〉≥
〈

λk − λ̃k,

N∑

j=1

Aj

(
xk
j − x̃k

j

)
〉

∀w∗ ∈W∗.

Inequality (27) follows immediately by further considering the definition of
ϕ(wk, w̃k, ξk). �

Lemma 4.3 Let w̃k = (x̃k
1 , . . . , x̃k

N , λ̃k) be generated by the inexact alternating di-
rection scheme (10)–(12) from the given vector wk = (xk

1 , . . . , xk
N ,λk). Then, we have

〈
wk − w̃k,M

(
wk − w̃k

)〉+
〈

λk − λ̃k,

N∑

j=1

Aj

(
xk
j − x̃k

j

)
〉

= 1

2

(
N∑

j=1

∥∥Aj

(
xk
j − x̃k

j

)∥∥2
H

+ ∥∥λk − λ̃k
∥∥2

H−1 +
∥∥∥∥∥

N∑

j=1

Ajx
k
j − b

∥∥∥∥∥

2

H

)

.

Proof From the definition of the matrix M in (14) we have

M
(
wk − w̃k

)=

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

AT
1 HA1 0 · · · 0 0

AT
2 HA1 AT

2 HA2
. . .

...
...

...
...

. . . 0 0
AT

NHA1 AT
NHA2 · · · AT

NHAN 0
0 0 · · · 0 H−1

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎜⎜
⎝

xk
1 − x̃k

1
xk

2 − x̃k
2

...

xk
N − x̃k

N

λk − λ̃k

⎞

⎟⎟⎟⎟
⎟⎟
⎠

,

from which we can easily verify the following equality:

〈
wk − w̃k,M

(
wk − w̃k

)〉

= 1

2

(
N∑

j=1

∥∥Aj

(
xk
j − x̃k

j

)∥∥2
H

+ ‖λk − λ̃k‖2
H−1

)
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+ 1

2

⎛

⎜⎜⎜⎜⎜⎜
⎝

A1(x
k
1 − x̃k

1)

A2(x
k
2 − x̃k

2)

...

AN(xk
N − x̃k

N )

λk − λ̃k

⎞

⎟⎟⎟⎟⎟⎟
⎠

T ⎛

⎜⎜⎜⎜⎜
⎝

H H · · · H 0
H H · · · H 0
...

...
. . .

...
...

H H · · · H 0
0 0 · · · 0 H−1

⎞

⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜
⎝

A1(x
k
1 − x̃k

1 )

A2(x
k
2 − x̃k

2 )

...

AN(xk
N − x̃k

N )

λk − λ̃k

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

(29)

Simple calculations show that
〈

λk − λ̃k,

N∑

j=1

Aj

(
xk
j − x̃k

j

)
〉

= 1

2

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

A1(x
k
1 − x̃k

1 )

A2(x
k
2 − x̃k

2 )

...

AN(xk
N − x̃k

N )

λk − λ̃k

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

T ⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

0 0 · · · 0 I

0 0 · · · 0 I

...
...

. . .
...

...

0 0 · · · 0 I

I I . . . I 0

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

A1(x
k
1 − x̃k

1 )

A2(x
k
2 − x̃k

2 )

...

AN(xk
N − x̃k

N )

λk − λ̃k

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

. (30)

The addition of (29) and (30) yields

〈
wk − w̃k,M

(
wk − w̃k

)〉+
〈

λk − λ̃k,

N∑

j=1

Aj

(
xk
j − x̃k

j

)
〉

= 1

2

⎛

⎜⎜⎜⎜⎜⎜
⎜
⎝

A1(x
k
1 − x̃k

1 )

A2(x
k
2 − x̃k

2 )

...

AN(xk
N − x̃k

N )

λk − λ̃k

⎞

⎟⎟⎟⎟⎟⎟
⎟
⎠

T ⎛

⎜⎜⎜⎜⎜⎜
⎜
⎝

H H . . . H I

H H . . . H I

...
...

. . .
...

...

H H · · · H I

I I · · · I H−1

⎞

⎟⎟⎟⎟⎟⎟
⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜
⎜
⎝

A1(x
k
1 − x̃k

1 )

A2(x
k
2 − x̃k

2 )

...

AN(xk
N − x̃k

N )

λk − λ̃k

⎞

⎟⎟⎟⎟⎟⎟
⎟
⎠

+ 1

2

(
N∑

j=1

∥∥Aj

(
xk
j − x̃k

j

)∥∥2
H

+ ∥∥λk − λ̃k
∥∥2

H−1

)

= 1

2

∥∥∥∥∥

N∑

j=1

Aj

(
xk
j − x̃k

j

)+ H−1(λk − λ̃k
)
∥∥∥∥∥

2

H

+ 1

2

(
N∑

j=1

∥∥Aj

(
xk
j − x̃k

j

)∥∥2
H

+ ∥∥λk − λ̃k
∥∥2

H−1

)

= 1

2

∥∥∥∥∥

N∑

j=1

Ajx
k
j − b

∥∥∥∥∥

2

H

+ 1

2

(
N∑

j=1

∥∥Aj

(
xk
j − x̃k

j

)∥∥2
H

+ ∥∥λk − λ̃k
∥∥2

H−1

)

,

where the last equality follows from (12). The lemma is proved. �
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Now, we prove (18) and the descent properties of

−d1(w
k, w̃k, ξk) and − d2(w

k, w̃k, ξk).

Theorem 4.1 Let w̃k = (x̃k
1 , . . . , x̃k

N , λ̃k) be generated by the inexact alternating di-
rection scheme (10)–(12) from the given vector wk = (xk

1 , . . . , xk
N ,λk). If the inexact-

ness criteria (11) are satisfied, then

ϕ
(
wk, w̃k, ξk

)≥ 1

4

(
N∑

j=1

∥∥Aj

(
xk
j − x̃k

j

)∥∥2
H

+ ∥∥λk − λ̃k
∥∥2

H−1

)

. (31)

In addition, if ϕ(wk, w̃k, ξk) = 0, then w̃k ∈ W∗ is a solution of VI(W,F ).

Proof First, it follows from (15), (17), and Lemma 4.3 that

ϕ
(
wk, w̃k, ξk

) = 1

2

(
N∑

j=1

∥∥Aj

(
xk
j − x̃k

j

)∥∥2
H

+ ∥∥λk − λ̃k
∥∥2

H−1

)

+ 1

2

∥∥∥∥∥

N∑

j=1

Ajx
k
j − b

∥∥∥∥∥

2

H

− 〈wk − w̃k, ξk
〉
. (32)

From the inexactness criteria (11) we have

−〈wk − w̃k, ξk
〉≥ −1

4

N∑

j=1

∥∥Aj

(
xk
j − x̃k

j

)∥∥2
H

.

Substituting the above inequality into (32), the first part of the theorem follows im-
mediately. Consequently, if ϕ(wk, w̃k, ξk) = 0, it follows that

Aj

(
xk
j − x̃k

j

)= 0, j = 1, . . . ,N, and λk = λ̃k.

Moreover, it follows from (11) that ξk
j = 0, j = 1, . . . ,N . By substituting the above

equations into (22) we get

x̃k
i ∈ Xi ,

〈
xi − x̃k

i , fi

(
x̃k
i

)− AT
i λ̃k

〉≥ 0 ∀xk
i ∈ Xi , i = 1, . . . ,N, (33)

and
N∑

j=1

Aj x̃
k
j − b = H−1(λk − λ̃k

)= 0. (34)

Combining (33) and (34), we get

w̃k ∈W,
〈
w − w̃k,F

(
w̃k
)〉≥ 0 ∀w ∈W,

and thus w̃k is a solution of VI(W,F ). �
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Theorem 4.2 Let w̃k = (x̃k
1 , . . . , x̃k

N , λ̃k) be generated by the inexact alternating di-
rection scheme (10)–(12) from the given vector wk = (xk

1 , . . . , xk
N ,λk). Then, we have

〈
wk − w∗, d1

(
wk, w̃k, ξk

)〉≥ ϕ
(
wk, w̃k, ξk

) ∀w∗ ∈ W∗, (35)

where d1(w
k, w̃k, ξk) and ϕ(wk, w̃k, ξk) are defined in (15) and (17), respectively.

Proof First, it follows from Lemma 4.1 that
〈
w̃k − w∗, d1

(
wk, w̃k, ξk

)〉≥ 〈w̃k − w∗, d2
(
wk, w̃k, ξk

)〉 ∀w∗ ∈ W .

Combining with Lemma 4.2, we have
〈
w̃k −w∗, d1

(
wk, w̃k, ξk

)〉≥ ϕ
(
wk, w̃k, ξk

)− 〈wk −w̃k, d1
(
wk, w̃k, ξk

)〉 ∀w∗ ∈W∗

which implies (35). �

Recall that the sequence {wk} generated by (19) is not necessarily contained in W .
Therefore, the wk in Theorem 4.2 must be allowed to be any point in R

m+n. In con-
trast, the sequence produced by (20) lies in W , and thus it is required in the next
theorem that wk belongs to W .

Theorem 4.3 Let w̃k = (x̃k
1 , . . . , x̃k

N , λ̃k) be generated by the inexact alternating di-
rections scheme (10)–(12) from the given vector wk = (xk

1 , . . . , xk
N ,λk). If wk ∈ W ,

then
〈
wk − w∗, d2

(
wk, w̃k, ξk

)〉≥ ϕ
(
wk, w̃k, ξk

) ∀w∗ ∈ W∗, (36)

where d2(w
k, w̃k, ξk) and ϕ(wk, w̃k, ξk) are defined in (16) and (17), respectively.

Proof Since wk ∈W , it follows from Lemma 4.1 that
〈
wk − w̃k, d2

(
wk, w̃k, ξk

)〉≥ 〈wk − w̃k, d1
(
wk, w̃k, ξk

)〉
. (37)

Then, the addition of (27) to both sides of (37) yields (36). �

5 Convergence

Using the directions d1(w
k, w̃k, ξk) and d2(w

k, w̃k, ξk) offered by (15) and (16), the
new iterate wk+1 is determined by the positive definite matrix G and the step length
αk , see (19) and (20). In order to explain how to determine the step length, we define
the new step-length-dependent iterate by

wk+1
1 (αk) = wk − αkG

−1d1
(
wk, w̃k, ξk

)
(38)

and

wk+1
2 (αk) = PW,G

[
wk − αkG

−1d2
(
wk, w̃k, ξk

)]
. (39)
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In this way,

ϑ1(αk) = ‖wk − w∗‖2
G − ∥∥wk+1

1 (αk) − w∗∥∥2
G

(40)

and
ϑ2(αk) = ‖wk − w∗‖2

G − ∥∥wk+1
2 (αk) − w∗∥∥2

G
(41)

measure the improvement in the kth iteration by using updating forms (38) and (39),
respectively. Since the optimal solution w∗ ∈ W∗ is unknown, it is generally infeasi-
ble to maximize the improvement directly. The following theorem introduces a tight
lower bound on ϑ1(αk) and ϑ2(αk), which does not depend on the unknown vec-
tor w∗.

Theorem 5.1 For any w∗ ∈W∗ and αk ≥ 0, we have

ϑ1(αk) ≥ q(αk) and ϑ2(αk) ≥ q(αk),

where

q(αk) = 2αkϕ
(
wk, w̃k, ξk

)− α2
k

∥∥G−1d1
(
wk, w̃k, ξk

)∥∥2
G
. (42)

Proof From (38) and (40) we have

ϑ1(αk) = ‖wk − w∗‖2
G − ∥∥wk − w∗ − αkG

−1d1
(
wk, w̃k, ξk

)∥∥2
G

= 2
〈
wk − w∗, αkd1

(
wk, w̃k, ξk

)〉− α2
k

∥∥G−1d1
(
wk, w̃k, ξk

)∥∥2
G

≥ 2αkϕ
(
wk, w̃k, ξk

)− α2
k

∥∥G−1d1
(
wk, w̃k, ξk

)∥∥2
G

= q(αk),

where the last inequality follows from (35). Hence, the first assertion of this theorem
is proved. By setting v = wk − αkG

−1d2(w
k, w̃k, ξk) and u = w∗ in (8) we get

∥∥wk+1
2 (αk) − w∗∥∥2

G
≤ ∥∥wk − αkG

−1d2
(
wk, w̃k, ξk

)− w∗∥∥2
G

− ∥∥wk − αkG
−1d2

(
wk, w̃k, ξk

)− wk+1
2 (αk)

∥∥2
G
.

Substituting the above inequality into (41), we obtain

ϑ2(αk) ≥ ∥∥wk − w∗∥∥2
G

− ∥∥wk − w∗ − αkG
−1d2

(
wk, w̃k, ξk

)∥∥2
G

+ ∥∥wk − wk+1
2 (αk) − αkG

−1d2
(
wk, w̃k, ξk

)∥∥2
G

= ∥∥wk − wk+1
2 (αk)

∥∥2
G

+ 2
〈
wk+1

2 (αk) − w∗, αkd2
(
wk, w̃k, ξk

)〉
. (43)

Since wk+1
2 (αk) ∈ W , it follows from Lemma 4.1 that

〈
wk+1

2 (αk) − w̃k, d2
(
wk, w̃k, ξk

)〉≥ 〈wk+1
2 (αk) − w̃k, d1

(
wk, w̃k, ξk

)〉
. (44)

The addition of (27) to both sides of (44) yields
〈
wk+1

2 (αk) − w∗, d2
(
wk, w̃k, ξk

)〉

≥ ϕ
(
wk, w̃k, ξk

)+ 〈wk+1
2 (αk) − wk,d1

(
wk, w̃k, ξk

)〉
. (45)
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Substituting (45) into the right-hand side of (43), we obtain

ϑ2(αk) ≥ ∥∥wk − wk+1
2 (αk)

∥∥2
G

+ 2αkϕ
(
wk, w̃k, ξk

)

+ 2αk

(
wk+1

2 (αk) − wk
)T

d1
(
wk, w̃k, ξk

)

= ∥∥wk − wk+1
2 (αk) − αkG

−1d1
(
wk, w̃k, ξk

)∥∥2
G

− α2
k

∥∥G−1d1
(
wk, w̃k, ξk

)∥∥2
G

+ 2αkϕ
(
wk, w̃k, ξk

)

≥ 2αkϕ
(
wk, w̃k, ξk

)− α2
k

∥∥G−1d1
(
wk, w̃k, ξk

)∥∥2
G

= q(αk).

Hence, the proof is completed. �

Denote

ϑ(αk) := min
{
ϑ1(αk),ϑ2(αk)

}≥ q(αk). (46)

Note that q(αk) is a quadratic function of αk , and it reaches its maximum at

α∗
k = ϕ(wk, w̃k, ξk)

‖G−1d1(wk, w̃k, ξk)‖2
G

, (47)

which is just the same as defined in (21). Consequently, it follows from Theorem 5.1
that

ϑ
(
α∗

k

)≥ q
(
α∗

k

)= α∗
kϕ
(
wk, w̃k, ξk

)
.

Since inequality (35) is used in the proof of Theorem 5.1, in practice, multiplication
of the “optimal” step length α∗

k by a factor γ > 1 may result in faster convergence.
By using (42) and (47) we have

q
(
γ α∗

k

)= 2γ α∗
kϕ
(
wk, w̃k, ξk

)− (γ α∗
k

)2∥∥G−1d1
(
wk, w̃k, ξk

)∥∥2
G

= γ (2 − γ )α∗
kϕ
(
wk, w̃k, ξk

)
. (48)

In order to guarantee that the right-hand side of (48) is positive, we choose γ ∈ [1,2).
The following theorem shows that the sequence {wk} generated by the proposed
method is Fejèr monotone with respect to W∗.

Theorem 5.2 For any w∗ ∈ W∗, the sequence {wk} generated by each of the pro-
posed methods (with update form (19) or (20)) satisfies

∥∥wk+1 − w∗∥∥2
G

≤ ∥∥wk − w∗∥∥2
G

− γ (2 − γ )α∗
kϕ
(
wk, w̃k, ξk

) ∀w∗ ∈ W∗. (49)

Proof It follows from Theorem 5.1 that ϑ(γ α∗
k ) ≥ q(γ α∗

k ), which is equivalent to

∥∥wk+1 − w∗∥∥2
G

≤ ∥∥wk − w∗∥∥2
G

− q
(
γ α∗

k

)
.

Then, the result of this theorem directly follows from (48). �
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Theorem 5.2 indicates that the sequence {wk} converges to the solution set mono-
tonically in the Fejèr sense. Thus, according to [16, 17], the proposed method belongs
to the class of contraction methods. In the following, we show that α∗

k > 0 has a pos-
itive lower bound.

Lemma 5.1 For any given (but fixed) positive definite matrix G, there exists a con-
stant c0 > 0 such that α∗

k ≥ c0 for all k > 0.

Proof From the definition of M in (14) it is easy to show that

M
(
wk − w̃k

) =

⎛

⎜⎜⎜⎜
⎜⎜
⎝

AT
1 H 1/2 0 · · · 0 0

AT
2 H 1/2 AT

2 H 1/2 . . .
...

...
...

...
. . . 0 0

AT
NH 1/2 AT

NH 1/2 · · · AT
NH 1/2 0

0 0 · · · 0 H−1/2

⎞

⎟⎟⎟⎟
⎟⎟
⎠

×

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

H 1/2A1(x
k
1 − x̃k

1 )

H 1/2A2(x
k
2 − x̃k

2 )

...

H 1/2AN(xk
N − x̃k

N )

H−1/2(λk − λ̃k)

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

.

Therefore, there exists a constant K > 0 such that

∥∥M
(
wk − w̃k

)∥∥2 ≤ K

(
N∑

j=1

∥∥Aj

(
xk
j − x̃k

j

)∥∥2
H

+ ∥∥λk − λ̃k
∥∥2

H−1

)

.

Moreover, according to the inexactness criteria (11), we have

∥∥ξk
∥∥2 ≤

N∑

j=1

∥∥Aj

(
xk
j − x̃k

j

)∥∥2
H

.

Since d1(w
k, w̃k, ξk) = M(wk − w̃k) − ξk , we have

∥∥d1
(
wk, w̃k, ξk

)∥∥2 ≤ 2
∥∥M
(
wk − w̃k

)∥∥2 + 2
∥∥ξk
∥∥2

≤ 2(K + 1)

(
N∑

j=1

∥∥Aj

(
xk
j − x̃k

j

)∥∥2
H

+ ∥∥λk − λ̃k
∥∥2

H−1

)

.

Using (31) and recalling that any two norms in a finite-dimensional space are equiv-
alent, we have

α∗
k = ϕ(wk, w̃k, ξk)

‖d1(wk, w̃k, ξk)‖2
G−1

≥ c′ϕ(wk, w̃k, ξk)

‖d1(wk, w̃k, ξk)‖2
≥ c0 := c′

8(K + 1)
> 0, (50)

where c′ > 0 is a constant. This completes the proof of the lemma. �
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Theorem 5.3 Let {wk} and {w̃k} be the sequences generated by the proposed
alternating-direction-based contraction methods (19) and (20) for problem (3). Then,
we have

(i) The sequence {wk} is bounded.
(ii) limk→∞{∑N

j=1‖Aj(x
k
j − x̃k

j )‖2 + ‖λk − λ̃k‖2} = 0.

(iii) Any accumulation point of {w̃k} is a solution of (3).
(iv) When Ai , i = 1, . . . ,N , are full column rank matrices, the sequence {w̃k} con-

verges to a unique w∞ ∈ W∗.

Proof The first assertion follows from (49). Moreover, by combining the recursion
of (49) and the fact that α∗

k ≥ c0 > 0 it is easy to show that

lim
k→∞ϕ

(
wk, w̃k, ξk

)= 0.

Consequently, it follows from Theorem 4.1 that

lim
k→∞

∥∥Ai

(
xk
i − x̃k

i

)∥∥= 0, i = 1, . . . ,N, and lim
k→∞

∥∥λk − λ̃k
∥∥= 0, (51)

and the second assertion is proved. Using similar arguments as in the proof of Theo-
rem 4.1, we obtain

w̃k ∈W, lim
k→∞

〈
w − w̃k,F

(
w̃k
)〉≥ 0 ∀w ∈ W, (52)

and thus any accumulation point of {w̃k} is a solution of VI(W,F ), i.e., a solution of
(3). If all Ai are full column rank matrices, it follows from the first assertion and (51)
that {w̃k} is also bounded. Let w∞ be an accumulation point of {w̃k}. Then, there
exists a subsequence {w̃kj } that converges to w∞. It follows from (52) that

w̃kj ∈W, lim
k→∞

〈
w − w̃kj ,F

(
w̃kj
)〉≥ 0 ∀w ∈W,

and consequently, we have

w∞ ∈W,
〈
w − w∞,F

(
w∞)〉≥ 0 ∀w ∈W,

which implies that w∞ ∈ W∗. Since {wk} is Fejèr monotone and limk→∞ ‖wk −
w̃k‖ = 0, the sequence {w̃k} cannot have any other accumulation point and thus must
converge to w∞. �

6 Complexity

The analysis in this section is inspired by [26]. It is based on a key inequality (see
Lemmas 6.1 and 6.2) that is similar to that in [26]. In the current framework of varia-
tional inequalities, the analysis becomes much simpler and more elegant. As a prepa-
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ration for the proof of the complexity result, we first give an alternative characteriza-
tion of the optimal solution set W∗, namely,

W∗ =
⋂

w∈W

{
w∗ ∈W : 〈w − w∗,F (w)

〉≥ 0
}
.

For a proof of this characterization, we refer to Theorem 2.3.5 in the book [27].
According to the above alternative characterization, we have that ŵ ∈ W is an ε-
optimal solution of VI(W,F ) if it satisfies

ŵ ∈W and sup
w∈W

{〈
ŵ − w,F(w)

〉}≤ ε. (53)

In general, our complexity analysis follows the lines of [28], but instead of using
w̃k directly, we need to introduce an auxiliary vector, namely,

ŵk =

⎛

⎜⎜⎜
⎝

x̃k
1
...

x̃k
N

λ̂k

⎞

⎟⎟⎟
⎠

, where λ̂k = λ̃k − H

N∑

j=1

Aj

(
xk
j − x̃k

j

)
.

Since λ̃k = λk −H(
∑N

j=1 Aj x̃
k
j −b) (see (12)), we have λ̂k = λk −H(

∑N
j=1 Ajx

k
j −

b) or, equivalently,

H−1(λk − λ̃k
)=

N∑

j=1

Aj x̃
k
j − b = −

N∑

j=1

Aj

(
xk
j − x̃k

j

)+ H−1(λk − λ̂k
)
.

As a consequence, we may rewrite the two descent directions separately as

d1
(
wk, w̃k, ξk

)= M
(
wk − w̃k

)− ξk = M̂
(
wk − ŵk

)− ξk =: d̂1
(
wk, ŵk, ξk

)
, (54)

where

M̂ :=

⎛

⎜⎜⎜⎜⎜⎜
⎝

AT
1 HA1 0 · · · 0 0

AT
2 HA1 AT

2 HA2
. . .

...
...

...
...

. . . 0 0
AT

NHA1 AT
NHA2 · · · AT

NHAN 0
−A1 −A2 · · · −AN H−1

⎞

⎟⎟⎟⎟⎟⎟
⎠

and

d2
(
wk, w̃k, ξk

)= F
(
w̃k
)+

⎛

⎜⎜⎜
⎝

AT
1
...

AT
N

0

⎞

⎟⎟⎟
⎠

H

(
N∑

j=1

Aj

(
xk
j − x̃k

j

)
)

= F
(
ŵk
)
. (55)
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In fact, we constructed ŵk and M̂ such that d̂1(w
k, ŵk, ξk) is exactly the direction

d1(w
k, w̃k, ξk) and F(ŵk) is exactly the direction d2(w

k, w̃k, ξk). Moreover, the as-
sertion in Lemma 4.1 can be rewritten accordingly as

〈
w − ŵk,F

(
ŵk
)− d̂1

(
wk, ŵk, ξk

)〉≥ 0 ∀w ∈W . (56)

Now we are ready to prove the key inequality for both algorithms, which is given
in the following two lemmas.

Lemma 6.1 If the new iterate wk+1 is updated by (19), then we have

〈
w − ŵk, γ α∗

kF
(
ŵk
)〉+ 1

2

(∥∥w − wk
∥∥2

G
− ∥∥w − wk+1

∥∥2
G

)≥ 0 ∀w ∈ W .

Proof Due to (56), we have

〈
w − ŵk, γ α∗

kF
(
ŵk
)〉≥ 〈w − ŵk, γ α∗

k d̂1
(
wk, ŵk, ξk

)〉 ∀w ∈W . (57)

In addition, we have, by using (54) and (19),

γ α∗
k d̂1
(
wk, ŵk, ξk

)= γ α∗
k d1
(
wk, w̃k, ξk

)= G
(
wk − wk+1).

Substitution of the last equation into (57) yields

〈
w − ŵk, γ α∗

kF
(
ŵk
)〉≥ 〈w − ŵk,G

(
wk − wk+1)〉.

Thus, it suffices to show that

〈
w − ŵk,G

(
wk − wk+1)〉+ 1

2

(∥∥w − wk
∥∥2

G
− ∥∥w − wk+1

∥∥2
G

)≥ 0 ∀w ∈W . (58)

Applying the equality

〈
a − b,G(c − d)

〉+ 1

2

(‖a − c‖2
G − ‖a − d‖2

G

)= 1

2

(‖c − b‖2
G − ‖d − b‖2

G

)
,

we derive that

〈
w − ŵk,G

(
wk − wk+1)〉+ 1

2

(‖w − wk‖2
G − ‖w − wk+1‖2

G

)

= 1

2

(∥∥wk − ŵk
∥∥2

G
− ∥∥wk+1 − ŵk

∥∥2
G

)
. (59)

In view of (19), we have

∥∥wk − ŵk
∥∥2

G
− ∥∥wk+1 − ŵk

∥∥2
G

= ∥∥wk − ŵk
∥∥2

G
− ∥∥wk − ŵk − γ α∗

kG−1d1
(
wk, w̃k, ξk

)∥∥2
G

= 2
〈
wk − ŵk, γ α∗

k d1
(
wk, w̃k, ξk

)〉− γ 2(α∗
k

)2∥∥G−1d1
(
wk, w̃k, ξk

)∥∥2
G
.
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Moreover, we have
〈
wk − ŵk, d1

(
wk, w̃k, ξk

)〉

= 〈wk − w̃k, d1
(
wk, w̃k, ξk

)〉+ 〈w̃k − ŵk, d1
(
wk, w̃k, ξk

)〉

= 〈wk − w̃k, d1
(
wk, w̃k, ξk

)〉+
〈

H

N∑

j=1

Aj

(
xk
j − x̃k

j

)
,H−1(λk − λ̃k

)
〉

= 〈wk − w̃k, d1
(
wk, w̃k, ξk

)〉+
〈

λk − λ̃k,

N∑

j=1

Aj

(
xk
j − x̃k

j

)
〉

= ϕ
(
wk, w̃k, ξk

)
, (60)

where the second equality follows from the definitions of w̃k , ŵk , and d1(w
k, w̃k, ξk).

By combining the last two equations and using (21) we obtain

∥∥wk − ŵk
∥∥2

G
− ∥∥wk+1 − ŵk

∥∥2
G

= 2γ α∗
kϕ
(
wk, w̃k, ξk

)− γ 2(α∗
k

)2∥∥G−1d1
(
wk, w̃k, ξk

)∥∥2
G

= γ (2 − γ )α∗
kϕ
(
wk, w̃k, ξk

)
.

Substituting the last equation into (59) yields

〈
w − ŵk,G

(
wk − wk+1)〉+ 1

2

(‖w − wk‖2
G − ‖w − wk+1‖2

G

)

= 1

2
γ (2 − γ )α∗

kϕ
(
wk, w̃k, ξk

)≥ 0,

which is just (58). Thus, the proof is complete. �

Lemma 6.2 If the new iterate wk+1 is updated by (20), then we have

〈
w − ŵk, γ α∗

kF
(
ŵk
)〉+ 1

2

(‖w − wk‖2
G − ‖w − wk+1‖2

G

)≥ 0 ∀w ∈ W .

Proof To begin with, we separate the term (w − ŵk)T γ α∗
kF (ŵk) into two as

〈
w − ŵk, γ α∗

kF
(
ŵk
)〉= 〈wk+1 − ŵk, γ α∗

kF
(
ŵk
)〉+ 〈w − wk+1, γ α∗

kF
(
ŵk
)〉
. (61)

In the sequel, we will deal with the above two terms separately.
Since wk+1 ∈W , we have, by substituting w with wk+1 in (56),
〈
wk+1 − ŵk, γ α∗

kF
(
ŵk
)〉

≥ 〈wk+1 − ŵk, γ α∗
k d̂1
(
wk, ŵk, ξk

)〉

= 〈wk+1 − ŵk, γ α∗
k d1
(
wk, w̃k, ξk

)〉

= 〈wk − ŵk, γ α∗
k d1
(
wk, w̃k, ξk

)〉− 〈wk − wk+1, γ α∗
k d1
(
wk, w̃k, ξk

)〉
. (62)
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Recall that the first term on the right-hand side of (62) was calculated in (60). As to
the second term, we have

〈
wk − wk+1, γ α∗

k d1
(
wk, w̃k, ξk

)〉

= 〈wk − wk+1,G
(
γ α∗

kG−1d1
(
wk, w̃k, ξk

))〉

≤ 1

2
‖wk − wk+1‖2

G + 1

2
γ 2(α∗

k

)2∥∥G−1d1
(
wk, w̃k, ξk

)∥∥2
G
.

Thus, we obtain
〈
wk+1 − ŵk, γ α∗

kF
(
ŵk
)〉

≥ γ α∗
kϕ
(
wk, w̃k, ξk

)− 1

2
γ 2(α∗

k

)2∥∥G−1d1
(
wk, w̃k, ξk

)∥∥2
G

− 1

2
‖wk − wk+1‖2

G

= 1

2
γ (2 − γ )α∗

kϕ
(
wk, w̃k, ξk

)− 1

2
‖wk − wk+1‖2

G, (63)

where the equality follows from (21).
Now, we turn to consider the second term 〈w − wk+1, γ α∗

kF (ŵk)〉 in (61). Since
wk+1 is updated by (20), wk+1 is the projection of [wk − γ α∗

kG−1F(ŵk)] onto W
under the G-norm. It follows from (7) that

〈[
wk − γ α∗

kG−1F
(
ŵk
)]− wk+1,G

(
w − wk+1)〉≤ 0 ∀w ∈W .

As a consequence, we have
〈
w − wk+1, γ α∗

kF
(
ŵk
)〉≥ 〈w − wk+1,G

(
wk − wk+1)〉.

By applying the formula 〈a,Gb〉 = 1
2 (‖a‖2

G − ‖a − b‖2
G + ‖b‖2

G) to the right-hand
side of the last inequality we derive that

〈
w−wk+1, γ α∗

kF
(
ŵk
)〉≥ 1

2

(‖w−wk+1‖2
G−‖w−wk‖2

G

)+ 1

2
‖wk −wk+1‖2

G. (64)

By incorporating inequalities (63) and (64) into Eq. (61), the assertion of Lemma 6.2
follows. �

Having the same key inequality for both methods, the O(1/t) rate of convergence
(in an ergodic sense) can be obtained easily.

Theorem 6.1 For any integer t > 0, we have a ŵt ∈W that satisfies

〈
ŵt − w,F(w)

〉≤ 1

2γΥt

‖w − w0‖2
G ∀w ∈ W,

where

ŵt = 1

Υt

t∑

k=0

α∗
k ŵk and Υt =

t∑

k=0

α∗
k .
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Proof In Lemmas 6.1 and 6.2, we have proved the same key inequality for both
methods, namely,

〈
w − ŵk, γ α∗

kF
(
ŵk
)〉+ 1

2

(‖w − wk‖2
G − ‖w − wk+1‖2

G

)≥ 0 ∀w ∈ W .

Since F is monotone, we have

〈
w − ŵk, γ α∗

kF (w)
〉+ 1

2

(‖w − wk‖2
G − ‖w − wk+1‖2

G

)≥ 0 ∀w ∈ W,

or, equivalently,

〈
ŵk − w,γα∗

kF (w)
〉+ 1

2

(‖w − wk+1‖2
G − ‖w − wk‖2

G

)≤ 0 ∀w ∈ W,

When taking the sum of the above inequalities over k = 0, . . . , t , we obtain
〈

t∑

k=0

α∗
k ŵk −

(
t∑

k=0

α∗
k

)

w,F(w)

〉

+ 1

2γ

(‖wt+1 − w0‖2
G − ‖w − w0‖2

G

)≤ 0.

By dropping the term ‖wt+1 − w0‖2
G and incorporating Υt and ŵt into the above

inequality, we have

〈
ŵt − w,F(w)

〉≤ ‖w − w0‖2
G

2γΥt

∀w ∈W .

Hence, the proof is complete. �

Since it follows from (50) that

Υt =
t∑

k=0

α∗
k ≥ (t + 1)c0,

we have, by Theorem 6.1,

〈
ŵt − w,F(w)

〉≤ 1

2γΥt

‖w − w0‖2
G ≤ ‖w − w0‖2

G

2γ c0(t + 1)
∀w ∈W .

According to (53), the above inequality implies the O(1/t)-rate of convergence im-
mediately. We emphasize that our convergence rate is in the ergodic sense. From a
theoretical point of view, this suggests to use a larger parameter γ ∈ (0,2) in imple-
mentations.

7 Conclusions

Attracted by the practical efficiency of the alternating direction method of multi-
pliers, an alternating-direction-based contraction method was proposed in [16]. The
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new method deals with the general separable and linearly constrained convex opti-
mization problem, where the objective function is separable into finitely many parts.
However, the new method requires the exact solution of ADMM subproblems, which
limits its applicability. To overcome this limitation, this paper presents two inexact
alternating-direction-based contraction methods. These methods are practically more
viable since the subproblems are solved inexactly. The convergence properties and
complexity results (O(1/t) rate of convergence) of the proposed methods were de-
rived. We emphasize that even for the simplest case, where the objective function is
separable into two parts, our methods are different from the common inexact methods
in the literature [19, 20], as our subproblems for computing search directions do not
include proximal terms of any form. In addition, the complexity results, which are
proved in the framework of variational inequalities, are new for this kind of inexact
ADMs.
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