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Abstract. The augmented Lagrangian method (ALM) is a benchmark for solving a convex
minimization model with linear constraints. We consider the special case where the objective is
the sum of m functions without coupled variables. For solving this separable convex minimization
model, it is usually required to decompose the ALM subproblem at each iteration into m smaller
subproblems, each of which only involves one function in the original objective. Easier subproblems
capable of taking full advantage of the functions’ properties individually could thus be generated. In
this paper, we focus on the case where full Jacobian decomposition is applied to ALM subproblems,
i.e., all the decomposed ALM subproblems are eligible for parallel computation at each iteration.
For the first time, we show, by an example, that the ALM with full Jacobian decomposition could
be divergent. To guarantee the convergence, we suggest combining a relaxation step and the output
of the ALM with full Jacobian decomposition. A novel analysis is presented to illustrate how to
choose refined step sizes for this relaxation step. Accordingly, a new splitting version of the ALM
with full Jacobian decomposition is proposed. We derive the worst-case O(1/k) convergence rate
measured by the iteration complexity (where k represents the iteration counter) in both the ergodic
and nonergodic senses for the new algorithm. Finally, some numerical results are reported to show
the efficiency of the new algorithm.
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1. Introduction. A canonical optimization model is the convex minimization
problem with linear constraints:

(1.1) min{f(z) | Az =b, z € X},

where A € R>X™ b e R, X C R™ is a closed convex set, § : R — R is a convex
function (could be nonsmooth). To solve (1.1), the augmented Lagrangian method
(ALM) in [23, 33] turns out to be a benchmark in both theoretical and algorithmic
aspects. Starting from A\’ € R!, the ALM generates a sequence {(z*, \F)} via the
following scheme:

k+1

. L k
x arg min Az, A7),

1.2
12 AL = \E — H(Azh+! —b),
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where
1
La(z,\) =0(z) — AT (Az — b) + §||Aa: —b||%

denotes the augmented Lagrangian function of (1.1); A € R is the Lagrange multiplier
and H € R is a positive definite matrix playing the role of a penalty parameter (in
applications, we usually choose H as a scalar matrix: H = SI; with g > 0 and I; is
the identity matrix in #/*!). Note that here and after, ||z|| := Vo7 Hx, where x and
the positive definite matrix H have appropriate dimensions. In [34], it was analyzed
that the ALM is indeed an application of the proximal point algorithm (PPA) in [28]
to the dual of (1.1). Throughout our discussion, the penalty matrix H is assumed to
be fixed.

When specific applications of (1.1) are considered, the abstract model (1.1) can
often be specified with favorable structures. One typical example is the case where
the objective function can be expressed as the sum of m (m > 2) functions without
coupled variables, each function referring to a particular objective of modeling. We
thus consider the following special form of the canonical convex minimization model

(1.1):
min 221 0i(;),

(13) Z:il Azl‘l = b,

fiEXia 1=1,...,m,
where 6; : " — R (i = 1,...,m) are closed proper convex functions and they are
not necessarily smooth; X; C R™ (i = 1,...,m) are closed convex sets; A; €
RIxmi (7 =1,...,m) are given matrices; b € R! is a given vector; and Yiing = n.
Note that the variable z is also partitioned into m subvectors, i.e., x = (x1,22...,Tm),

each z; € R™ can be explained as the decision variable of the ith objective 6;. The co-
efficient matrix A is partitioned accordingly as (A1, Aa, ..., Ay, ) in (1.3). Throughout,
the solution set of (1.3) is assumed to be nonempty.

Let the Lagrangian function of (1.3) be

(1.4) L@y, m, A) = Y Oi(ws) = A" (ZAixi—b>
i=1 i=1

and the augmented Lagrangian function of (1.3) be

m 2

Z Aixi —b
i=1

with A € R! the Lagrange multiplier and H € R'*! the penalty matrix. Applying
the generic ALM scheme (1.2) straightforwardly to the well-structured form (1.3), the
iterative scheme is

15) (¥t akt) = argmin{ La(z1,...,Tm, A¥) |:rZ €X;, i=1,...,m},
' AL = \E (ST At p),

1
LA(gcl,...,xm,/\):L(xl,...,xm,/\)+§

H

This is an exact execution of the ALM; thus the sequence generated by (1.5) has the
known convergence of the ALM such as those in [23, 33, 35]. But, for the separable
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case with m > 2, the implementation of (1.5) may have the difficulty that all the
subvectors x;’s are required to be solved simultaneously and all 6; are considered
aggregately. Even though each 6; is simple in the sense that the resolvent operator of
90; has a closed-form expression (e.g., 0;(x;) = ||z;][1 or ||z;[|?), the z-subproblem in
(1.5) might not be easy. Therefore, the straightforward implementation (1.5) of the
ALM could be inefficient for the particularly structured model (1.3). One strategy
for effectively taking advantage of 6;’s properties individually is to decompose the
z-subproblem in (1.5) into m smaller ones. Accordingly, the objective function of
the ith decomposed subproblem involves only 0;(z;) and a simple quadratic term.
This treatment thus results in subproblems that are easy enough to have closed-form
solutions for many applications arising in diverse areas such as image processing,
statistical learning, and compressive sensing. Therefore, splitting versions of the ALM
have received wide attention for solving the separable convex programming model
(1.3).

A fundamental splitting version of the ALM is the Douglas—Rachford alternating
direction method of multipliers (ADMM for short) proposed in [13] (see also [10]) for
the special case of (1.3) with m = 2. At each iteration, the ADMM splits the ALM
subproblem into two smaller subproblems in Gauss—Seidel order, and generates the

next iterate (zT! 25T M1 via the following scheme:

x]fﬂ = argmin{6‘1 (z1) — a7 ATNF + %HAlxl + Agzh — b||% ‘ T € Xl},
(16) x§+1 = argmin{ﬂg(xz) — $§A§Ak + %||A1$lf+l 4+ Asxy — bH%{ ‘ XTo € XQ},
AL = A\ — H(A2{ T+ Agaf ™ — 1),

We refer to, e.g., [6, 7, 9, 11, 12, 14, 19, 27, 37], for some earlier articles in the areas
of partial differential equations, convex programming, and variational inequalities.
In the review paper on the ADMM [2], the authors commented that “ADMM is at
least comparable to very specialized algorithms (even in the serial setting), and in
most cases, the simple ADMM algorithm will be efficient enough to be useful.” One
may immediately want to extend the idea of (1.6) to the generic case of (1.3) with
m > 3, and propose the following splitting version of ALM with full Gauss—Seidel
decomposition:

(1.7)
l'lf+1 = argmin{Gl(xl) — ${A,{)\k + %HAlxl + Z;n:2 AfE? - b”%{ | 1 € Xl},
bt = argmin{fs(x2) — 23 ATNF

=+ %”Ali]erl + Asxo + ET:B AJ{E;C — b”%{‘ To € Xg},
M = arg min{0;(z;) — xT AT\

+ IS AT A+ T Ak — bl |es € XY,

2P = argmin{6,, (z,,) — xL, AT ¥

+ 31 75 Al A = bl | @ € X},

AL = \E — H (YT Aja T —b).

Despite the efficiency of (1.7) having been verified empirically in various contexts
(e.g., [32, 36]), it was recently shown in [3] that the scheme (1.7) is not necessarily

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/09/15 to 116.7.234.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

FULL JACOBIAN DECOMPOSITION OF ALM 2277

convergent. We refer to [3, 15, 20, 24] for some techniques to ensure the convergence
of (1.7) under some additional assumptions.

In addition to (1.7), an equally important splitting version for solving (1.3) is
the ALM with full Jacobian decomposition whose decomposed subproblems are as
follows:

(1.8)
x’f“ = argmin{@l(wl) — 2T ATN\F + %HAlxl + Z;n:z ij;’? —b||% } 1 € Xl},

= argmin{fa(z2) — x5 ATA*

+ %HAlx’f + Aoxo + ZT:B Ajﬁéc — bH%I| To € Xg},

&
N
|

2f = arg min{@i(xi) —al ATAF

i—1 m
+ %H Zj:lij§ + Aixi + Zj:i.HAij;? — bH%I|:C1 S Xi},

el = argmin{ 6y, (zm) — aL, ALY 4 1] Zy:ll Ajzl + A — bl | Zm € X}

ARFL = XK — H(YT ) Al —b).

Different from (1.7), the splitting version of ALM with full Jacobian decomposition
(1.8) enjoys the feature that all the z;-subproblems can be solved in parallel, and this is
an important feature when large- or huge-scale data are under consideration and when
parallel computing infrastructures are available. Given the divergence of the Gauss—
Seidel splitting scheme (1.7), it seems natural to conjecture that the Jacobian splitting
scheme (1.8) should not be convergent as it is an even less accurate approximation to
the ALM step (1.5) than (1.7). We will give an example to show that this conjecture
is indeed true; see the appendix. The output of (1.8) thus cannot be used as the next
iterate directly. This is the first contribution of this paper.

To tackle the divergence of (1.8), one strategy is combining the output of (1.8)
with an underrelaxation step. In [16, 18, 25], some such steps were proposed for the
special cases of m = 2, m = 3, and m > 3, respectively. In [16] (for the case m > 3)
and [18] (for the case m = 3), it was suggested to further adjust the output of (1.8)
via the step

(1.9) wht = wk — a(w® — @),

where o > 0 is a chosen step size, w* = (2%, 25, ..., 2% A\¥) and @* denotes the
output of (1.8) with the input w®. The step (1.9) is indeed very simple; we thus
stick to this scheme to investigate how to combine an underrelaxation step with the
splitting ALM step (1.8) to ensure convergence. Intuitively, we can understand the
underrelaxation step (1.9) in this way: Since the output @* of (1.8) is a Jacobian
decomposition of the real ALM step (1.5) and it might be too inaccurate to be the
new iterate (especially when m is large), we compensate for this loss of accuracy by
combining the last iterate w* with @w* approximately (i.e., seeking an appropriate step
size «). Technically, as Theorem 4.7 shows in section 4, this underrelaxation step with
an appropriate step size « can ensure the strict contraction of the iterative sequence
and thus the global convergence becomes provable by following the standard analytic
framework of contraction methods in [1]. With the given moving direction (@* —w*),
the emphasis of designing (1.9) is thus to refine the step size « for (1.9) or, more
specifically, to enlarge the range of possible step sizes. In [18], for the case of (1.3)
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with m = 3, it was shown that the upper bound of the range of step size is 2 — v/3;
and in [16], for the case of (1.3) with m > 3, the upper bound is 1/(3m + 1). We
shall show that the upper bound of the range of step sizes in (1.9) can be enlarged to
2(1-Vig), e, a € (0,2(1— V%5 ), to ensure the convergence of the combination

m—+1
of (1.8) with (1.9). In particular, because it holds that

1
2(1—,/L)
m+1< m—+1

for any integer m > 0, we can simply take a constant step size in (1.9) as

k+1 _  k 1 k ~kY.
(1.10) w' T = w m+1(w wh);
see Remark 3.3 for details. With a constant step size, the underrelaxation step (1.10)
is extremely easy to implement and the additional computation is negligible in com-
parison with the splitting ALM step (1.8). Note that in (1.10) the constant step
size is nearly three times larger than the lower bound 1/(3m + 1) derived in [16].
With this refined step size in (1.9), a new splitting version of ALM with full Jacobian
decomposition is thus derived. This is the second contribution of this paper.

Our third contribution is to establish the worst-case O(1/k) convergence rate
measured by the iteration complexity (where k represents the iteration counter) in
both the ergodic and nonergodic senses for the new splitting version of ALM with full
Jacobian decomposition. Note that we follow the work [29, 30] and many others, where
a worst-case O(1/k) convergence rate measured by the iteration complexity means the
accuracy to a solution under certain criteria is of the order O(1/k) after k iterations of
an iterative scheme or, equivalently, it requires at most O(1/¢) iterations to achieve an
approximate solution with an accuracy of €. This line of analysis is mainly motivated
by our recent work of convergence analysis for the ADMM in [21, 22].

The rest of the paper is organized as follows. In section 2, we provide some
preliminaries which are useful for further discussions and summarize some notation
for the convenience of discussion. In section 3, we propose two algorithms based
on the new splitting version of ALM with full Jacobian decomposition. Then, we
prove the global convergence for the algorithms in section 4 by using the technique
of contraction methods in [1]. The rationale of choosing a refined step size in (1.9)
is also explained in this section. In sections 5 and 6, we establish the worst-case
O(1/k) convergence rate for Algorithms 1 and 2 in the ergodic and nonergodic senses,
respectively. In section 7, we report some numerical results to show the efficiency of
the proposed algorithms. Finally, we draw some conclusions in section 8.

2. Preliminaries. In this section, we summarize some preliminaries which are
useful for further discussions and then give some notation to be used.

2.1. A variational characterization of (1.3). We first reformulate (1.3) as a
variational form, which is useful when we establish the global convergence and worst-
case convergence rates for the proposed splitting version of ALM with full Jacobian
decomposition.

Recall that L(x1,x2,...,2m, A) defined in (1.4) is the Lagrange function of (1.3).
Let (;v’{, x5, oo xh /\*) be a saddle point of L(z1, 22, ..., Zm, ). Then, for any A € R

and z; € X; (1 =1,...,m), we have

Lz}, x5, ...,z o A) < L(xy,xs, ...,z A) < L(z1, 20, ..., T, A).

»m rrmo

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/09/15 to 116.7.234.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

FULL JACOBIAN DECOMPOSITION OF ALM 2279

Thus, finding a saddle point of L(x1,xa,...,xm,A) is equivalent to finding a vector
w* = (a], x5, ..., x5, A7) eW
such that

91(331) — 01(5(’1() + (ZIJl — JJT)T(—A,{'/\*) >0, Vz e,

Om(Tm) — O (zk,) + (T — xfn)T(—Aﬁ)\*) >0, Va,c€X,,
(N — /\*)T(Zyil Azl — b) >0, Vie®Rh

More compactly, (2.1) can be rewritten as the following variational inequality (VI):
(2.2a) VI(W, F,0) : 0(z) — 0(x*) + (w — w)TF(w*) >0 YweWw,

where W = X X X X+ Xy x R,

Ty
a:l m .
e=| |, 0@ =) bi(x), w=]| * [,
z i=1 Tm
(2.2b) " A
' —AT )
and F(w) = :
—AT )\
Dimy Aiwi — b

Note that the operator F'(w) defined in (2.2b) is monotone because it is affine with
a skew-symmetric matrix. Since we have assumed that the solution set of (1.3) is
nonempty, the solution set of VIOV, F, 0), denoted by W*, is also nonempty.

2.2. A characterization of W*. We recall a characterization of WW*, which
is the basis of our discussion for establishing the worst-case convergence rate in the
ergodic sense in section 5. We refer to Theorem 2.3.5 in [8] and Theorem 2.1 in [21]
for the proof of the following theorem.

THEOREM 2.1. The solution set of VIW, F,0) is convex and it can be charac-
terized as

(2.3) W= () {weW:0(z) —0(F) + (w—w)" Fw) >0}.
wew

According to Theorem 2.1, for a given € > 0, we say w € WV is an e-approximate
solution when

(2.4) sup {6(z) — 0(z) + (w —w)"F(w)} <e,
wé€ Dy ()

where

(2.5) Dyy(w) = {w eEW | |w—w| < 1}.

We refer to [31] for a similar definition of the e-approximate solution.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/09/15 to 116.7.234.242. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2280 BINGSHENG HE, LIUSHENG HOU, AND XIAOMING YUAN

2.3. Some matrices. To present our analysis with succinct notation, we need
to define some symmetric matrices. More specifically, let

0 —ATH A, e —-ATHA,, 0
—ATHA,
(2.6) S = _AT_HA,,
—AT HA, ~ATHA,, 1 0 0
0 e e 0 H-1
and
2ATHA, ATHA, e ATHA,, 0
ATHA,
(2.7) G = AT HA,
AT H A, AT HA,, 1 2ATHA,, 0
0 o o 0 H-1
In addition, we let
(2.8) P=(A1,As, ..., Ay, 00TH(AL, As, ..., A, 0),
and thus have
(2.9) G=S5+2P.

Remark 2.2. The matrix M in [18] (see (4.5) on page 206 of [18]) is just the
matrix G here with m = 3. In addition, if Ay,..., A, are full column rank matrices,
then G is positive definite.

2.4. A proposition. The following proposition can be proved by elementary
techniques, and it will be used in later analysis.

PROPOSITION 2.3. For any scalars a1 > as > 0, by > by > 0 with as + by > 0,
we have

ay + bs >a2+b2
ay + by 7a2+b1'

(2.10)

For any nonzero vectors p,q € R, positive definite matric H € R*!, and 7 > 0, it
holds that

Tpl% + 20T q + |l 1
(2.11) . . >1—4/=.
TlIpl% + llgll5 - T
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Proof. The first assertion is trivial. Note that H is positive definite; by a manip-

ulation, we get
7lpllF + 20" + llallF
TllpllE + llallF—
~ (=) (llplig + llall3 ) + (2 el + 20 g+ 72 gl )
- Tllpll; + llall -
T rip+ Hlg|%
TlpllE + llallF—

and the proof is complete. O

=(1-772) +

9y

3. Algorithms. In the introduction, we have explained that the new splitting
version of ALM with full Jacobian decomposition is a combination of the splitting
step (1.8) with the underrelaxation step (1.9). In this section, we delineate the details
of choosing the step size « in (1.9) and derive two concrete algorithms. One has
dynamically updated step sizes and the other has a constant step size.

3.1. Algorithm 1 with dynamically updated step sizes. We first show that
the step size in (1.9) can be chosen judiciously at each iteration and it may be updated
dynamically. Recall that the output of (1.8) needs to be further adjusted. We thus
relabel it as w* := (z¥,25,...,2%  \F). That is, we can rewrite the splitting ALM
step (1.8) as
(3.1)

Tk = argmin{@l(xl) — T ATk 4 %HAlxl + Z;n:2 ijé? —b|j% ‘ 1 € Xl},

Tk = argmin{ﬂg(xg) — o ATk 4 %HAla"f + Aszs + 2213 Aja:;? — b||%1} T9 € XQ},

¥ = argmin{0;(z;) — a7 AT \F

i—1 m
+ %H Zj:lij§ + Aixi + Zj:i.HAij;? — bH%{|IEZ S Xi},

¥, = argmin{Op, (z,,,) — 3, AT XF + 1| 27:711 Ajrh 4+ Apwm — b3 | #m € X},

m

A= \b— H(S, Ak —b).

Remark 3.1. We will show that the specific strategy determining «} in (3.2b)
comes from the purpose of maximizing a certain quadratic function which is bene-
ficial for making more progress toward proximity to the solution set W* (or, more
intuitively, making the iterative sequence more “contractive”). This is a standard
technique for contraction-type methods. The parameter ~ is a relaxation factor, and
its restriction v € (0,2) is also for the purpose of ensuring the contraction of the
iterative sequence (see (4.21) in Theorem 4.7).

Remark 3.2. The strategy of choosing the step size oy in (3.2b) can be regarded
as an extension of that in [18] for the special case where m = 3. More specifically,
in section 4, we will prove that o} defined in (3.2b) is uniformly lower bounded by

(1—\/mI+1) for all k’s. Note that
2(1— L) =23

m—+1

holds when m = 3. Our lower bound for general m includes as a special case the upper
bound of the range of step size derived in [18] for the special case of m = 3. As we
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ALGORITHM 1. A SPLITTING VERSION OF ALM WITH FULL JACOBIAN DECOMPO-
SITION AND DYNAMICALLY UPDATED STEP SIZES.

Step 1: Generate w* via (3.1).

Step 2: Adjust w* and generate the new iterate w**! via

(3.2a) wh = wk — o (wh — "),
where
(32b) A = Y, O = Hwk — ’UNJkHZ ) e (072)7

G is defined in (2.7), and

(3.2¢) oWk, 0*) = |lwk — @F||Z + 2% — AT <Z Ai(zk — :zf)) .
=1

ALGORITHM 2. A SPLITTING VERSION OF ALM WITH FULL JACOBIAN DECOMPO-
SITION AND A CONSTANT STEP SIZE.

Step 1: Generate w* via (3.1).

Step 2: Adjust @* and generate the new iterate w**! via

(3.3a) wh = wh — a(wh — "),
where
(3.3b) a=r (1 . ) and € (0,2).

have mentioned, the matrix G defined in (2.7) reduces to the matrix M in [18] when
m = 3. Also, the function ¢(w*,@w*) defined in (3.2c) reduces to the function in [18]
(see (4.13)) when m = 3.

3.2. Algorithm 2 with a constant step size. For Algorithm 1, the step size
ay, is calculated by (3.2b) and it is updated at each iteration. The advantage of
doing so is that some beneficial step size at each iteration could be found towards the
purpose of maximizing the contraction of the sequence. At the same time, this chosen
step size requires additional computation and it might be computationally demanding
(e.g., some large-scale cases where large matrix variables are considered). We are thus
also interested in the case where the step size of the underrelaxation step is fixed as
a constant throughout the iteration. This can be done by choosing a uniform lower
bound of the sequence {ay} determined in (3.2b) as the constant step size.

As we have mentioned, we will prove later that «j defined in (3.2b) satisfies

ajp, > (1 = Viy) for all k's. We can thus take 1 — V% as a constant step size
and a splitting version of ALM with full Jacobian decomposition and a constant step
size is ready to be presented. This treatment is certainly more conservative than the
strategy of dynamically updating the step size in Algorithm 1 and thus it is expected
to require more iterations to achieve the same level of solution accuracy. But it enjoys
cheaper computation at each iteration. Thus it is not conclusive which one is more

preferable because it really depends on the specific problem setting of (1.3).
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Remark 3.3. Note it holds that

1— m 1— m 1
(3.4) 1— )2 = mil mil

m—+1

for any integer m > 0. The constant step size defined in (3.3b) thus satisfies

g

If 7 is taken as (1 + /75 ) € (0,2) in (3.3b), then we have o = ﬁ This means

the underrelaxation step (3.3) reduces to
whtt = wh — L(wk — o).
m+1

4. Global convergence. In this section, we prove the global convergence for
Algorithms 1 and 2. As we have mentioned, the proof follows the standard analytic
framework of contraction methods in [1] (see also [17]).

We first try to quantity the difference between the output @* of the splitting step
(3.1) and a solution point in W* by means of the characterization of W* in (2.3). The
result is shown in the following lemma.

LEMMA 4.1. Let @" be the output of the splitting step (3.1) with given w*. Then,
we have

(4.1) @ ew, 0(z)—0(GF") + (w— &) T{F @) + S(@*F —wh)} >0 Ywew,

where S is defined in (2.6).
Proof. Tt follows from (3.1) that for ¢ = 1,2,...,m, it holds that
(4.2)
Lff e X, 91(:51) — 91(551’“)
(= @) —ATN + ATH [ Azf + > Ajah —b| 3 >0 Va; € X
=1, j#i

Substituting \¥ = \¥ — H(Z;-nzl Ajié’? —b) (see also (3.1)) into the above inequality,
we obtain

4.3 - LS
(4.3) (s — @) —ATN —ATH [ N Ak —ab) | b >0 Ve X
j=1,j#i

Summing the above inequalities over i = 1,...,m, we obtain @* € W and

(4.4)
o=@\ [—ATN ATH (372, Ay (&) — )

0(x) = 0(F") + | ;- &f —ATN | — | ATH (L) s Ay (&) = )
L — BF —AT )k AT H (YT Ay (ah — ab))
>0 YVw e W.
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The last equation in (3.1) can be rewritten as

S AjEE b +H (W= =0
j=1
and in variational form

45) MeR, A=MTS D A —b | +HIAN =N b >0 vaer.
j=1

Combining (4.4) and (4.5), we get @* € W and

0(z) — (")
N ATk —ATH (X7, Aj (3 — k)
z; — ik — AT )k _A?H(Z;ll i Ai (‘%? - xf))
+ . i o
_ gk T 5k T ml g gk g
a:n; agzl m_Ami\k _AmH(Z;{:}kAJ (ig — )
AP — ijlijj—b H=H AR = \F)
>0

for all w € W. Using the notation of F' (see (2.2b)) and S (see (2.6)), the above
inequality can be rewritten as

" e W, 0(x) — 0(E*) + (w — ") T{F (@) + S(0* —w)} >0 YweWw.

The assertion (4.1) thus is proved. O

Recall the VI characterization (2.2) of the optimization problem (1.3). Then, the
assertion (4.1) inspires us to investigate the term (@* — w*)T S(w® — @*).

LEMMA 4.2. Let @" be the output of the splitting step (3.1) with given w*. Then,
we have

(4.6) (" — w)TS(w* —a*) >0 Yw* e W,

where S is defined in (2.6).

Proof. The proof is an immediate conclusion based on the assertion (4.1) and the
monotonicity of F. In fact, for an arbitrarily fixed w* € W*, it follows from (4.1)
that

(" — wH)TS(w* — %) > (0F — w*)TF(@*) + 6(zF) — (=) Yw* € W*.
Using the monotonicity of F' and the optimality of w*, we have
(0* — w)TF (") +0(3F) — (") > (@ — w*)' F(w*) + 0(3F) — 0(z*) > 0.

The above two inequalities imply that the assertion (4.6) is true. O
LEMMA 4.3. Let wF be the output of the splitting step (3.1) with given w®. Then,
we have

(4.7) (w* — w) TGk — %) > p(w®, %) Yw* e W,
where G is defined in (2.7) and @(w*,w*) is defined in (3.2c).
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Proof. Since G = S + 2P (see (2.9)), we first show that
(4.8)  (0F —w)T Pk — @) = (A\F = AT (Z A (zk — 5:5)) Yw* e W
i=1

Because P = (A1, Ag, ..., Ay, 0)TH(Ay, Ag, ..., Ay, 0) (see (2.8)), we have

(0F — w*)TP(wF — o) = (iAi(:ftf—:r ) <ZA ak — zh )

By using

Z Azl =b and H <Z Ak — b)) =\ \F (see (3.1)),
i=1 1=1

we get

m T m m
(z A xn) i (z At - fm) Ry (z At - :zf)) |
=1 =1

i=1

The assertion (4.8) follows from the above equations directly. Adding
(@" —w*)T2P)(w" —a*) = 2" = A)T (Z Ailay — 5:2“))

to both sides of (4.6) and using G = S + 2P, we get

(0" — w)TGw" —a*) > 2(\ (Z Aq( )

The assertion (4.7) follows from the above inequality and the definition of p(w*,w")
directly. O

Following the analytic framework of convergence analysis for contraction methods
n [1, 17], we now need to prove that

p(wh, @*) > bl|lw* — a|IZ
for a certain constant § > 0 which is only dependent on m. We show this fact in
Lemma 4.4 by using Proposition 2.3.
LEMMA 4.4. Let @" be the output of the splitting step (3.1) with given w*. Then,
we have

4. Bogky > (1= =2 ) lwk — |2
(1.9 e (e S T

Proof. Using the notation of G (see (2.7)), we get

m
lo® — ¥ |IE = (| Asef — )11 +
i=1

2
A= N
H

k
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Substituting it into the expression of p(w*,@w*) (see (3.2¢)) we obtain

w”, @) ZIIA DI+

Therefore, we have
(4.10)

p(wh, a¥) ST Al — D) + | 00 Al — B + H O = )|
el R (DY 1A( = )5+ I = A3

2

> Ak — @)+ HIOF -2

H

lwk =@ S (| Ai(e

Note that we need only to prove the assertion with the assumption

m 2 m 2
YAl =@ N = NG = Y Aial - &)+ HOF =M
i=1 H =1 H
otherwise p(w”, @) > ||wk — wk||% and (4.9) is true. By using
m 2
Z 1Aif =05, b= | Al =@+ IN = N
i=1 H
and
m 2
by = ZAz(xf —E) 4+ HIOF - 2R
i=1 H
n (4.10), we get
k ok b
(411) So(w 73‘} )2 _ a1 + 2.
|wk —@*)Z, a1+ b
We denote
1 || & ’
ay = — Y Ai(af — &)
i=1 H

Thus, we have a1 > as > 0. Then, using (4.11) and (2.10), we obtain

o(wk, @) as + by
||k — ﬁ)kHQG T as+ by

(4.12) -

S ISo Ai(af — &)1 + | 20, Aulaf —8F) + H M = M)
ol S0 Ak = )1+ 20 Al — )15+ N = 2R3
and, consequently,

p(wk, @)

lwh — ¥ |2

T ST Aslat — EDIIE + 200 = AT (DT el — 3) + [N - M

2> -
L ST Aiaf = @)+ N = AR
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To the right-hand side of the last inequality, by setting 7 = —, p=> it Ai(zk—2k),
and ¢ = \¥ — ¥, and using (2.11), we obtain

o(wk, ") -1 m
|lwk —@k||% — m+1’

and thus the assertion (4.9) is proved. O
Remark 4.5. When m = 3, the assertion (4.9) reduces to

e(w", w E_T w —ﬁ)kHé.

Since the matrix G defined in (2.7) reduces to the matrix M in [18], the relation (4.15)
in [18] is a special result of the assertion (4.9) with m = 3. In other words, Lemma 4.4
includes Lemma 4.1 in [18] as a special case.

Now, combining the results of Lemmas 4.3 and 4.4, we have

k. s\T kY > _ m E o~k 2 * *
(4.13) (w” —w*)" G(w" —w") > (1 m+1)||w W' Ywt e W

This means, @w* — w" is a descent direction of the distance function ||w —w*||% at the

point w”, even if w* is unknown. Along the direction @* —w*, by choosing a suitable
step size a, we can reduce the unknown distance function |[w — w*||%. In order to
explain how to determine the step size ay in (3.2a) (resp., in (3.3a)), we define the
step-size-dependent new iterate by

(4.14) w1 (o) = wh — a(w® — @),

LEMMA 4.6. Let @* be the output of the splitting step (3.1) with given w* and
whtl(a) be given by (4.14). Then we have

(4.15) Ha) > qla),

where

(4.16) I(a) = [k —w*||E — W (@) — w1
and

(4.17) a(0) = 2ap(w*, @) — 2wt — @

Proof. By using (4.7) and the definition of ¢(«), we get

d(e) = [[w* —w*||E - Hwk“( ) — w*l|%
= [lw* —w|g = [[(w* = w*) — a(w® —@*)|%
= 2a(w* — w)TG(w* — ") — o®||w* — @ |Z
> 20p(w*, ") — o[ — ¥
= q(a).
The lemma is proved. O

Ideally we want to maximize ¥(«). However, it is impossible due to the lack of
the unknown solution point w*. We thus turn to the second best choice: maximizing
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the quadratic function ¢(«) which is a lower bound of J(«a). This promotes us to take
the value of a as

. p(wk wk)
4.18 = - 7
(4.18) %= Tk —

According to (4.9), a is positive and
(4.19) ap>1—y/—— Vk>0.
It follows from (3.4) that af > gty and

v

4.20 vt s —
(4.20) U =VY% 2 5

The “optimal” step size in the underrelaxation step (3.2) is bounded away from zero
and only dependent on m. By using the step (3.3), we need only to chose a constant
a to guarantee g(«) > 0 in each iteration.

Now, we are at the stage to prove the global convergence of Algorithms 1 and 2.
The following theorem is the main theorem regarding convergence.

THEOREM 4.7. Let {wF} be the sequence generated by either Algorithm 1 or
Algorithm 2 with an arbitrary initial iterate w®. Then, it holds that
(4.21)

2
ottt — 0| < k- w* [ = (2 - 7) (1— m%l) Jwt —atle v ew.

Proof. For any step size a > 0 in the underrelaxation step (3.2a) of Algorithm 1
(resp., (3.3a) of Algorithm 2), according to Lemma 4.6, we have that

(1.22) o+t — w3 < ok - )% - ala) V€ W,

For Algorithm 1, o = yaf. Then, it follows from (4.17) and (4.18) that

(423) q(yaq) = 2yai(, @) — (ai)?llw® — 5|2 = v(2 — (0] — T2,
Using the fact (4.19) in (4.23), we obtain

2
* m ~
o) 292 (1= /2 )k - ¥,

and the first assertion (4.21) is proved. For Algorithm 2, o = (1 — /=% ). Substi-

tuting it into (4.17), we get

2
qar) = 2y (1 — w/m%l) o(wk, w*) — 4* (1 - m’il) [k —@[|2,.

Using the fact (4.9) we obtain

(120 a0 290 ) (1[0 ) et

and the assertion (4.21) is proved. The proof is complete. a
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The assertion (4.21) still involves @*. We can easily remove it and refine (4.21)
as a recursive inequality between two consecutive iterates.

COROLLARY 4.8. Let {wF} be the sequence generated by either Algorithm 1 or
Algorithm 2 with an arbitrary initial iterate w®. Then, it holds that

2 —
(4.25) [ —w* g < flw* —w*E - %Ilwk —w"HE Ywt e wr,

Proof. For Algorithm 1, it follows from (3.2a) that

1
ak(wk _ ﬂ}k) _ _(wk o ,wchrl)7

Y
and thus the assertion follows from (4.15)—(4.17) and (4.23) immediately. For Algo-
rithm 2, it follows from (3.3a) that

and

=}

Thus, the assertion (4.25) follows from (4.15)—(4.17) and (4.24) immediately. O
By using the following notation

yi:Aiiriai:la"'ama U:(ylay27"'7ym7)\)a
V* = {(A2], Asaly, . Al A | (2], 25, . xh  AT) € W

the convergence of Algorithm 1 or 2 can be shown by either w* — w* with w* € W*
or v*¥ — v* with v* € V* under different assumptions. In the following theorem, we
only list the sketch of the proof and omit the detail.

THEOREM 4.9. Let {w*} be the sequence generated by either Algorithm 1 or 2
with an arbitrary initial iterate w°.

1. Ifall A;,i=1,...,m, in (1.3) are assumed to be full column rank, then {w*}
converges to a point w* which is a solution point of VIO, F,0).
2. Otherwise, the sequence {v*} converges to a point v* in V*.

Proof. 1. We prove the first assertion. If all A;, 7 = 1,...,m, are full column
rank matrices, then the matrix G defined in (2.7) is positive definite. It follows from
(4.21) that the sequence {w*} is bounded and thus it has at least one cluster point,
say w*. Let w® be the subsequence converging to w*. An immediate conclusion of
(4.21) is that [|@* — w* || — 0. Then, taking the limit in (4.1) for {w*}, we have
that

0(z) — 0(z*) + (w — w*) T (F(w*)) >0 Yw € W,

which means, by the definition, that w* is a solution point of VI(W, F,0). Moreover,

it follows from (4.21) trivially that the sequence {w*} cannot have two cluster points.

Thus, the sequence {w*} converges to a point w* in W*. For the second assertion, it

follows from (4.25) that

i
|

2 _
(4.26) o+t — o713, < Ilo* — ¥ B — T o — 3, Vot eV,
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where
2H H --- H 0
H
=1 H
H .- H 2H 0
0 - .. 0o H!

(m+1)x (m+1)

Obviously, the matrix H defined above is positive definite because H is assumed to
be positive definite. Hence, the sequence {v*} converges to a point v* in V*. The
proof is completed. O

5. Convergence rate in the ergodic sense. In this section, we establish the
worst-case O(1/k) convergence rate in the ergodic sense for Algorithms 1 and 2. The
technique of analysis is motivated by our recent result in [21].

More specifically, our goal is to show that Algorithm 1 or 2 needs at most |O(1/¢)|
iterations to find w € W, an approximate solution of VI(W, F, §) with an accuracy of
€ in the sense that

(5.1) 0(z) — 0(z) + (@ — w) T F(w) < e Yw € Dyy(@),

where Dyy(w) is defined in (2.5). Recall that it is reasonable to use (5.1) to measure
the accuracy of @ to a solution point of VI(W, F, ), because of the characterization
(2.3) in Theorem 2.1.

First of all, we define a new sequence w* = (z%,zk, ..., 2% \F) by
=i )
z5 Tk L m
(5.2) = and N =34 2HY Ak - ab),
i # jzl

where w* = (&%, #5,..., %%, A\F) is generated by the splitting step (3.1). This is to be
used in the convergence rate analysis. Note that for @w* and ", only their A-parts

are different. By using &; = Z; (i = 1,...,m) and (5.2), we have
(5.3) A X = (F =) 2H Y Ayl — &),
j=1

In addition, we define the following two matrices:

2ATHA, ATHA, e ATHA,, 0
ATHA,
(5:4) @= AT HA, 0
AT H A, e AT HA,,, 2ATHA,, 0
—2A, ce —2A,,_1 —2A,, H!
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and
I, 0 0 0
0 I,
. L =
(55) .
0 e 0 I, 0
2HA; --- 2HA,,_1 2HA,, I
Note that
2A?HA1 A,{'HAQ A?HAm —A{
AgHAl
QT +Q _
2 a : Aﬂ_lHAm —A%_l
A%HAl . A%HA,,H 2A£HAm —Aﬁ
_Al et _Am—l _Am H71
2, I, --- L, -1
I; . . : :
= T . . .
(5.6) =A : . . L - A,
L - I 2, —1,
R [ 1 (m+1)x(m+1)
where

A= diag(HY?A,,...,HY?A,, H '/?).

Thus, the matrix QT + Q is positive semidefinite. In fact, Q7 + Q is positive definite
when all the matrices A;’s in (1.3) are full column rank.

To establish the convergence rate, we need to use the relations of the matrices @,
L, and G, and the vectors (w* — w*) and (@* — w"). The assertion in Lemma 5.1
follows from the definitions directly, and thus the proof is omitted.

LEMMA 5.1. For the above defined matrices QQ and L, we have

(5.7) QL =G,

where G is defined in (2.7).
LEMMA 5.2. Let @w* be the output of the splitting step (3.1) with given w* and
the vector w* be defined by (5.2). Then we have

(5.8) w® — % = L(w® — @),

where matriz L is defined in (5.5).
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Proof. Tt follows directly from (5.2), (5.3), and the definition of the matrix
L. ]

As will be shown later in Theorem 5.6, we find the @w € W satistying (5.26) based
on the sequence {w"}. Now, we translate the assertion (4.1) in Lemma 4.1 into the
form of w".

LEMMA 5.3. Let w"* be the output of the splitting step (3.1) with given w* and
the vector w* be defined by (5.2). Then, we have

(5.9) W' eW, 0(z)— 0" + (w— 0" T{F(@") + Q" —w)} >0 VweWw,

where @ is defined in (5.4).
Proof. By using (5.2), we have &; = ;, i =1,...,m, and

N =N L2l Y A (3 - ).

Jj=1

Substituting it into the variational inequality (4.3), we get
(5.10)
T € Xy, 0i(ws) — 0:(})

+ (s —2f)" S AT+ ATH | YAk — ab) | + ATHA (2F — 2f) 5 >0

j=1
for all z; € X;. Summing the above inequality over i = 1,...,m, we obtain @w* € W
and
e — 7\ ([~ AT ATH (27, Aj(af — )
0(x) — 0(z") + | a; —zF —ATNe [+ [ ATH (XL, Aj(ah — o))
ok T Yk T m : ~k k
(5.11) T — Ty —AL A AmH(Zj:1 A, (:r:j — :rj))

ATH A (2} — o)
+ | ATHA;(zF — aF) >0

AL HA,, (zk — 2F)
for all x € X. Moreover, because (see (5.2))

NN —2H Y Ak —ah) =0
j=1

and (due to (3.1) using Z; = &;, i =1,...,m)

Ne=X—H Y Azh—b ),
j=1
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we have
oAk —b| =2 Aj@Eh—h)+ HIOF - ) =o.
j=1 j=1

The above equation can be written in variational form
(5.12)

MeRl A=MTS " Auah—b | =2 Aj@@h—ah)+ HIOF - >0
j=1 j=1

Ve R

Combining (5.11) and (5.12), using the notation of F' (see (2.2b)) and @ (see (5.4)),
we get a compact form

o* e W, 0(x)—0z") + (w — ") T{F(@*) + Q" —w*)} >0 YweWw.

The assertion (5.9) thus is proved. O
The assertion of the next lemma will be used in the proof of Lemma 5.5 which is
essential for establishing the worst-case O(1/k) convergence rate in the ergodic sense.
LEMMA 5.4. Let w"* be the output of the splitting step (3.1) with given w* and
the vector @w* be defined by (5.2). Then we have

(5.13) lw* — @7 = w* =" > 0.

Proof. By using w**! = w¥ — a(w* — @F), we obtain

e R e e [ e 2

= 2a(w® — @")TG(wk — %) — ?||w® — @*|%.

[l

Since wk — w* = L(w* — @") (see (5.8)), from the above equation it follows that
(5.14) [lw" —a"|[& — |t —a*||E = 20(w” —@") T LT G (w" — ") — o?|w* —a" |3

By a manipulation (see L in (5.5) and G in (2.7)), we have

2ATHA, ATHA, e ATHA,, 2AT
ATHA,
(5.15) LTG = AT HA, 24T
AT HA, e AT HA,, 1 2ATHA,,  2AT
0 .. . 0 H-1
And thus

(w* — " TLTG(w* — a*) = ||[w® — @F || + 200F — XF)T <Z Aj(zh — :Ef))

(5.16) = p(w", ") (see o(wk, @) in (3.2¢c)).
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Substituting (5.16) into (5.14) and using (4.17), we get

Hwk+1 _wkH2

ot — @)% - 2 = 2ap(w*,0) - o?u* - 3% = g(a).

By using each update form, we always have g(ay) > 0 and thus (5.13) is proved. d
To establish the worst-case O(1/k) convergence rate in the ergodic sense, we need
to prove one more lemma.
LEMMA 5.5. Let w" be the output of the splitting step (3.1) with given w* and
the vector w* be defined by (5.2). Then, we have

(5.17) ak{ﬂ(x)—O(:Ek)—l—(w w)} > = (Hw wk+1||2G—Hw—wk||2G) Yw e W.

Proof. The assertions (5.17) can be obtained based on the following facts:

(1) Using Lemma 5.3 and the fact (w — w*)T F(w) > (w — @*)T F(w"), we have
(5.18)
o { (0(z) — 9(§ck)) + (w — )T F(w )} > on(w—w MTQw* —a*) Yw e W.

(2) For the right-hand side of (5.18), using Lemmas 5.1 and 5.2, we have
(w® — @*) = L(w" — @") and QL=G.
Together with ay,(w® — wF) = (w* — w*+1), we obtain
(5.19) ap(w — )T Q(wk — a*) = (w — ™) T G(w® — whth).

k+1

(3) Set a = w, h =w* g =w*, and r = w**! in the identity

1
(a=m)TG(g=r)=5(la=rllg = lla = gllg) + 5 (llg = PlIE = lIr = AlIE);

19) becomes

k)TG(wk _ wk+1)

i~ N =

the right-hand side of

(-

k+1||é o

(hw —w lw — w*||)

1

(5.20)

+ w|r~ g

> (¥ = @F% - wb ! —a*)2).

Combining (5.18), (5.19), and (5.20), we obtain

(5.21) o { (0(x) = 0(z")) + (w — *)" F(w)}
5.21 1 1 - -

> §(Hw - w“lné = wF2) 4 3 (e — @~ — 2).
The assertion (5.17) follows from (5.21) and (5.13) immediately. The proof is com-

plete. d

Now, we are ready to show a worst-case O(1/k) convergence rate in the ergodic
sense (more precisely, in the uniformly weighted average sense) for the proposed al-
gorithms.

THEOREM 5.6. Let {w*} be the sequence generated by Algorithm 1 or 2, and the
accompanying sequence {w*} be defined by (5.2). For any integer k > 0, let

k k
1 .
5.22 V) = —— iil ith T = -
( ) i T, ;:0 ;W wi k ZE:O «
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Then, we have wy, € W and
m—+1
(k +1)

Proof. Note that the the inequality (5.17) holds for ¢ = 0,1, ..., k. Summarizing
these inequalities, we obtain

T
<Tk9 Zaz ) (T;.Cw Zal ) >——Hw Wl Yw e W,

which implies that

(5.23) 0(zy) — 0(z) + (0 — w)T F(w) < |lw—w’|% YweW.

(5.24)

1 - ) 1 k . T 1
<,r_k§a10([ﬂ)_9($)> + (T—k;aiwl_w> F( ) _2 Hw wO”G Yw e W.
Since Ty, := %k Z?:o ;T is a convex combination of the vectors (z°,z',...,z%) and

0(x) is convex, we have

1
Sy L i
0@e) < 7 gaﬂ(x )
Substituting it into (5.24), we obtain
(5.25) O(zy) — O(x) + (0 —w)T Flw) < 2—||w Wl Yw e W.
Recall that we have shown (see (3.5) and (4.20)) that
o>
b 2(m +1)
holds for any integer ¢. Using this fact in (5.22), we get
g
Ty > (k+1)—/——
= (D5
and thus
1 _2(m+1)
YTr = v(k+1) '

Substituting it into (5.25), we obtain the assertion (5.23). The proof is com-
plete. d
For given substantial compact set Dy (wg) C W, we define
d = sup{||w — w’||& | w € Dy (wr)},

where w? is the initial point. Based on Theorem 5.6, after k iterations of Algorithm 1
or 2, we can find wy € VW such that

(5.26) sup  {0(zk) — 0(z)) + (W —w) F(w)} < ! <(m i 1)d) .

Vwe Dy () k+1 v
Recall (5.26). The proposed Algorithm 1 or 2 is able to generate an approximate
solution (i.e., w;) with the accuracy O(1/k) after k iterations. That is, a worst-
case O(1/k) convergence rate in the ergodic (uniformly weighted average) sense is
established for Algorithms 1 and 2.
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6. Convergence rate in a nonergodic sense. In section 5, a worst-case
O(1/k) convergence rate in the ergodic sense is established for Algorithms 1 and
2. One may ask if we can establish the same convergence rate in some nonergodic
sense, i.e, directly for the sequence {w*} generated by the proposed algorithms. This
section answers this question affirmatively. The technique of analysis is motivated by
our work [22]. As stated in [22], a necessary fact for conducting this analysis is that
the quantity [|w® — w**1||% can be used to measure the accuracy of the iterate w**1
to a solution point of VIW, F, 6) (see the VI characterization (2.2) and Lemma 4.1),
and it is reasonable to seek an upper bound of [|w* —w**1||% in term of the quantity
O(1/k) to investigate the worst-case convergence rate for the proposed algorithms.

Recall we have shown that the sequence generated by either Algorithm 1 or 2 is
strictly contractive with respect to the set W* (see (4.21)):

(6.1) [ — W[ <l —w* g = Tllw® — @G Yt e W

where

(6.2) T =7(2—7) (1—%)10

with v € (0,2). To establish the worst-case O(1/k) convergence rate in a noner-

godic sense, we need to show that the sequence {||w* — *|| ¢} is monotonically non-

increasing. The basis of the analysis in this section is the assertion of Lemma 5.3.
LEMMA 6.1. Let {w*} be the sequence generated by Algorithm 1 or 2, and the

accompanying sequence {w*} be defined by (5.2). Then we have

(6.3)

(wh —wF ) TQ((wh —wh) — (W — 1)) > o[ (wh —h) — (@R P g

N | =

where Q) is defined in (5.4).
Proof. First, it follows from (5.9) that

(6.4) @F eW, 0(z)—0z")+(w—a")TF@@*) > (w—a")TQw*—a*) YweWw.
This inequality is also true for k := k 4 1, and thus we have

"t ew,  0(z) — 0z + (w — ") TF (M)

6.5
( ) > (w _ wk+1)TQ(wk+1 o ,u—}k—i—l) Yw e W.

Setting w = w**! and w = w* in (6.4) and (6.5), respectively, and then adding these
two resulting inequalities, we obtain

(@* — T Q((wk — @) — (wh! — wk+1)) > (@ — d" VT (F(a") — F(@"*1)).
Using the monotonicity of F', we have
(6.6) (" — *HTQ((w" — @¥) — (Wt — @) > 0.
Adding the identity
((wk_ wk) _ (warl _ warl))TQ((wk_ wk) _ (wk+1 _ warl))

1 _ _
— §H(wk_ wk) _ (warl_ wk+l)|‘%QT+Q)
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to both sides of (6.6) and by a simple manipulation, we get (6.3) and the lemma is
proved. O

Using the assertion (6.3) in Lemma 6.1, it is now possible to make an estimate
for the difference [|w* — @2, — ||wF ! — @k +1(|2.

LEMMA 6.2. Let {wk} be the sequence generated by Algorithm 1 or 2 with a
constant step size o, = > 0. Then we have
(6.7)

ook — a2

1 ~ N N i
> —|[L[(w" = @*) = (@ = @ )[lgry ) — (w" = @) = (W™ — @M.

Hwarl _ warlHé

Proof. By using (w* — w"*) = L(w* — &%) (see (5.8)) in (6.3), we get

2(wk o warl)TQL((wk _ ,J}k) _ (warl _ u~}k+1))

6.8
(©8) > L — @) — @ — ) Porsg.

Using the relations (see (3.3) and (5.7))

F_wk)y  and QL

I
@

in (6.8), we have that
(6.9)

1
k_ ~k\T k_mky (k] _mh 1)) > k k) — (kg2
2(w" —o")" G((w" —a") — (w w'th)) > SILI(w® ~2%) = (w @ )]l 1q)

On the other hand, by setting h = (w* —@*) and g = (w**' — @**1) in the identity
IlIE = llglE = 2h"G(h — g) — |k — glI2,

we have

(6.10)

w* — @ ||g — [|w
k —

_ 2(’(1} ﬁ}k)TG((wk _ ,J}k) _ (wk+1 _ wk—!—l)) _ ”(wk _ ﬂ}k) _ (wk—H _ 'UN}k—H)Hé'

k+1 _ ,L'[}]C+1 ”é

Substituting (6.9) into the right-hand side of (6.10), the assertion (6.7) is
proved. 0

In order to show the monotonicity of {|[w* — @*|c}, we need only to show the
right-hand side of (6.7) is nonnegative. Thus, we prove the following lemma.

LEMMA 6.3. For the given matrices G, Q, L and any constant o < 2(1—, /-2 ),
we have
(6.11) LT(QT + Q)L — oG = 0.

Proof. Since QL = G (see (5.7)) and G is symmetric, we have

LT(QT +Q)L=GL+ LTG.
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Using the above equation and the expression of LTG (see (5.15)), it yields
(6.12)

2ATHA, ATHA, ATHA,, AT
ATHA,
T(NHT —
Plerror=2 AT HA, AT,
ATHA, -+ ATHA,, 24THA, AT
Al Am—l Am H_l

Furthermore, using the notation
A =diag(HY?A,,... ,HY?A,,, H /?)
and the expression of G (see (2.7)), we have

LT(Q"+ Q)L — oG

200 I, --- I I
I
T
=A 2 : . . :
L - I 2I; I
(6.13) T R [ |
200 I, --- I O
I
I TR A A
L - I, 2 O
0 v - 0 I

(m+1)x (m+1).

In this way, in order to show (6.11), we need only to prove that the (m+1) x (m+1)
symmetric matrix

_ I, +eel e I, +ee” 0
T_2< i 1)_a< ; 1)>0,

where e is an m-vector whose each element equals 1. Let Tz = vz, where v is the
eigenvalue of T and z is the related eigenvector. In the following we show that all the
eigenvalues of T" are nonnegative. Note that

(6.14) T — ( (2- a)éfe? +eel) ) 2_ea ) .

Without loss of generality, we assume that the eigenvectors of T have the form

~(2) = (1)
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where y € R™. In the first case, 27 = (y7,0), it follows from Tz = vz and (6.14) that

(2 —a)y+(2-a)(e"ye=ry, N (2—a)y=vry,
eTy =0. eTy=0.
Therefore, we have (m — 1) linear independent vectors, y', i = 1,...,m — 1, in the

orthogonal subspace to e, and

zi:<% ) i=1,....m—1,

are eigenvectors of T' and the related eigenvalues are

Vi—th= == (2—a) >0 (duet00<a§2(1— #1))

In the second case, 27 = (y7, 1), from Tz = vz and (6.14) we have

(6.15) { (2 -y + (2 - a)e’y + 2)e = vy,

2eTy+ (2 —a) =v.

Left multiplying the first equation of (6.15) by e? and then using the second equation
of (6.15) and e’'e = m, we derive that

vE—(m+2)2—a)v+[(m+1)(2—a)* —4m]=0.

The remaining two eigenvalues of T" are the roots of the above equation and thus

(m+2)2—a)£/(m+2)22—a)?—4[(m+1)(2 — )% — 4m]
5 .

v(T) =

Since a < 2(1 — 4 /mlﬂ), we have

0<4[(m+1)(2—a)®—4m] < (m+2)%(2—a)?

and thus v, (T) > 0. All the eigenvalues of 7' are nonnegative and the lemma is
proved. O

Therefore, the monotonicity of {||w* —@w*| ¢} is a straightforward consequence of
Lemmas 6.2 and 6.3. Now, we are ready to estimate the worst-case O(1/k) conver-
gence rate in a nonergodic sense.

THEOREM 6.4. Let {w*} be the sequence generated by Algorithm 1 or 2 with the
requirement on step size

(6.16) ap <2 (1 - mlﬂ)

for all k’s. Then we have

(6.17) [ — w2, < w® —w*|Z, Vur e W

;‘
Y2 —=7)(k+1)
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Proof. First, we remark that the requirement (6.16) is satisfied for Algorithm 1
if its step size determined in (3.2b) is now set as

o) = min {7a2,2 (1 —\/ A )},

and it always holds for Algorithm 2 (see (3.3b)). Then, it follows from (6.1) that

(6.18) TZ”wi—ﬁjiHé < Jw® —w* || Ywt e W
i=0

Using (6.16), it follows from Lemmas 6.2 and 6.3 that the sequence {||w* —@*||%} is
monotonically nonincreasing. Therefore, we have

(6.19) (k+ D —a"|E <Y Ju' —a'|2.
It follows from (6.18) and (6.19) that

Yw* € W*.

5 1
i = o < s o

Since w* — wF*! = ay(wh — %) and ay < 2 (1 — /mlﬂ), we have

4

ko k412 o’
e = TEERICER

S O_ *2 * k
Gt w||G Yw* € W*.

e w® —wr & <
The assertion (6.17) is proved, The proof is complete. O

Notice that W* is convex and closed. Let d := sup{||w®—w*||% |w* € W*} Then
after (k + 1) iterations of Algorithm 1 or 2, we have ||w"* — wk’LlHé =57 2 7) k+1 =
O(1/k). Since w**! is a solution point of VIIW, F,0) if ||w® — w12, = 0, the
worst-case O(1/k) convergence rate in a nonergodic sense for Algorithms 1 and 2 is
established in Theorem 6.4.

7. Numerical results. In this section, we report some numerical results to show
the efficiency of the proposed algorithms. In the literature, splitting versions of ALM
with full Jacobian decomposition have been well tested by various examples; see, e.g.,
[16, 25] and especially in [16] for a number of applications in image processing. The
efficiency of the proposed new splitting version of ALM with a refined step size thus
can be easily demonstrated by this type of example. Here, we further illustrate the
efficiency of this type of algorithm from a different perspective. Note that an extreme
case of (1.3) is a linear programming (LP) model where n; = 1 for all i, each 6; is the
product of a constant in R*! with x;, and each A; is a column. We thus can artificially
treat a linear program as a very special case of (1.3) and solve it by the proposed
splitting versions of ALM with full Jacobian decomposition. We will test two different
LP cases: first, an assignment problem which can be expressed as a structured linear
program but with specific coefficient matrices in its constraints. In fact, these matrices
result in extremely easy subproblems when the proposed scheme is applied. Second,
we test a series of LP models whose coefficient matrices are ill-conditioned. For these
LP models, the resulting subproblems when the proposed algorithms are applied are
general and they do not have any specific structure as the mentioned assignment
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problem. Moreover, we test an [;-norm model which has a wide range of applications
in areas such as compressive sensing, signal processing, information science, and so on.

We would mention that our purpose of testing these examples is verifying the fact
that the combination of a relaxation step with the full Jacobian decomposition of the
ALM, where step size of the relaxation step is refined and the Jacobian decomposition
extent could be huge, works and, numerically, tackling a separable convex minimiza-
tion model with many functions in its objective. Thus, our algorithmic-design theory
of ensuring the convergence by a very simple relaxation step even when the ALM
is splitted many times can be well verified. We do not advocate that the proposed
algorithms can beat the state-of-the-art in LP literature, even though they also work
well for the tested applications. Indeed, for the assignment problem, the proposed
algorithms are even competitive with the well-commercialized specific LP solver “IBM
ILOG CPLEX Optimization Studio” (CPLEX). But the new algorithms are proposed
in a generic setting and they are applicable for nonlinear and nonsmooth problems,
not just for LP.

Our code was written by MATLAB R2014a and all our experiments were per-
formed on a desktop with the Windows 7 system, Intel(R) Core(TM)2 Quad CPU
processor (2.66GHz), and 4 GB memory.

7.1. Implementation of Algorithms 1 and 2 in an LP context. We first
show the implementation of the proposed algorithms to linear programs. Let us
consider the following LP model with box constraints:

max CTJ?

(7.1) st. Az =b,
ot <z <zt

where A € R*™ ce R, b€ R (I < m), 2! € R™, and 2% € R™ with 2} < ¥
for i = 1,2,...,m. This LP model (7.1) is a special case of (1.3), where n; = 1,
0;(z;) = —ciwi, Ay € R for i =1,2,...,m, and X; = [z}, 2Y].

To implement the proposed algorithms, we set H = §1; throughout, where g > 0
is a scalar and [ is the identity matrix with dimensionality . We first look at the ith
subproblem of the splitting step (3.1), which is a 1-dimensional minimization problem.

For solving (7.1), the x;-subproblem in (3.1) reduces to

~k . ENT
7 = argmin{ —cx; — (A%)" Az
2

1—1 m
p k k
+§ ZAJ'JIJ» —|—AZ$1+ Z Aj[lij—b }$iEXi s
Jj=1 Jj=i+1

which, by its first-order optimality condition, can be further expressed as

JNJf S Xi, ([I’Z — Jj’f) —C; — AlT/\k

+ AT B | AiEf + Z ij? -b >0 Va; € X,
=137
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Recall A; € R! for i = 1,2,...,m. Thus, BAT A; is a positive scalar and the above
inequality can also be written as

m
e Xy, (w—3F) Q@ —ab) + g [—e/B+ AT [ | D0 Agaf b
j=1

- /B >0 Va,; € A,
which can be characterized by a projection equation:
m
B = P, Q@b — g | —ai/B+ AT Zij§—b -8 . i=1,...,m,
j=1

where Py, denotes the projection under Euclidean norm onto X;. Note X; = [z}, 2¥]

is a given interval. We thus have
Py, (€) = min{max{¢,zl}, 2!} VEe€R.

Let D = diag(AT A). Then, based on the analysis above, all the x;-subproblems
can be written compactly as

(7.2) i = Px{a" — D' [—c/B+ AT ((Az" —b) — N*/B)] },

where = (21, 22,...,2m,) and A = (41, Aa, ..., Ay,). In addition, the A-subproblem
in (3.1) is specified as

(7.3) M= 2k — B(AZF —b).

To compute the step size of the relaxation step (3.2b) in Algorithm 1, we have
(T4a)  [lw* —@"|E = B(| A diag(a® — &) |5 + A" = 2°))%) + |\* = M|*/8
and
(7.4b) p(w*, ") = [lw* — @ |G + 200F — )T A@* — %),
where “diag” denotes the MATLAB script. Thus, it can be easily computed. For the

constant step size of the relaxation step (3.3b) in Algorithm 2, it is also easy.

7.2. Application to the assignment problem. We cite from Wikipedia, “The
assignment problem is one of the fundamental combinatorial optimization problems
in the branch of optimization or operations research in mathematics. It consists of
finding a maximum weight matching in a weighted bipartite graph.”

7.2.1. Specifications. Let us consider the LP model
max 30y i Cijijs
Z?:lxij = 1, 1= 1,...,7”L,

Siixy =1, j=1,...,n,
ngijgl.

(7.5)
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The classical assignment problem is recovered if we replace 0 < z;; < 1 by z;; € {0,1}
in (7.5). This is a special case of (7.1), and thus (1.3) with [ = 2n and m = n%. We
choose this model for simulation because it is a well-structured problem (see the
matrix A in (7.6)). Thus, splitting versions of ALM are easily implementable because
the subproblems can be solved trivially.

For simulation, we use the standard MATLAB scripts “rand(’state’,0)}” and
“C=rand(n,n)*10” to produce the assignment matrix C for (7.5),

C11 €12 Cin

C21  C22 Con
C= .

Cnl  Cn2 Cnn

Thus, entries of C' are randomly generated in the interval (0, 10).
To cast (7.5) into the setting of (7.1), we have an n?-dimensional vector

=

X L1112y« ++ 3y Llny L215, X225 -« , L2ny  + -5 Tply Ln2y - - - 7'7;77,11)-

Moreover, the matrix A and the vector b in (7.1) are specified as

A= 1 1 1 and

2nxn2

1
Thus, the Lagrangian multiplier ) is a 2n-vector A = (y, z), and diag(AT A) = 21,,-.
For convenience, we regroup the n2-vector = in the matrix form

11 X122 cc Tin
T21 X222 . T2p

X = ,
Tnl Tn2 e Tnn

then the 2n-vector (Az — b) is given by

Xe—e
Agc_b_(XTe—e )’

where e is an n-vector whose each element equals 1.
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For given 2% and \¥ = (y*, 2¥), the n2-vector AT ((Az* —b) — A\¥/B) of (7.2) is
also regrouped in an n X n matrix
Pl +ex (@),
where the n-vectors p* and ¢* are given by
PP=(XMe—e—y"/B and ¢"=(X")Te—e—2F/B.
Finally, the predictor (7.2) is computed by

X% =Py {Xk—%(—C/ﬁ—i—pk*eT-i-e*(qk)T)]

(4)-() (&)

where Py () is elementwise given by max{min{¢, 1}, 0}.
To calculate the relaxation step (3.2b) in Algorithm 1, we need to calculate
[wk — @F||% and p(w*, @*), which are available, respectively, by

2 +l
B
and

(7.7b) p(w®, %) = WP =" |G +2(eT (XF = XF)T (% —g%) +eT (XF - XF) (2 - 2F)).

7.2.2. Numerical results. Now, we report some numerical results when Algo-
rithms 1 and 2 are applied to solve the model (7.5). Throughout, we choose 8 =5/n
(recall H = 8I;) and the initial iterate is taken as 0. The stopping criterion is

(7.8) max{||z" — ¥ o0, | AZ" — |0} < 1078,

and

(XF — XFe
(Xk o Xk)Te

k_ -~k
y =y
2k — 3k

)

(T.70)  Juk — @t = B <2|X’f xR H

and we take the final @* as the output solution.

We first use some small-scale cases of (7.5) to compare Algorithms 1 and 2. More
specifically, we test the cases where n = 3, 5, and 10 in (7.5). Recall I = 2n and
m = n? in the setting of (7.1). For Algorithm 1, we fix v = 1 and thus a; = «j.
Recall Algorithm 1 requires us to choose an “optimal” step size in the sense of max-
imizing the quadratic function defined in (4.17) at each iteration, while Algorithm 2
simply chooses a constant step size for all iterations. According to (3.3), the constant
step size for Algorithm 2 should be in the interval (0,2(1—n+/1/(n? + 1) )). Neverthe-
less, this choice is too conservative and it can hardly be good enough to result in fast
convergence. For example, 2(1 —ny/1/(n? + 1) ) ~ 0.0099 when n = 10, which is ex-
tremely small. We thus test other constant step sizes including the n-dependent value
1/(n? +1) and some more aggressive n-independent values (even though these values
already exceed the theoretical upper bound of the range of step sizes). All the number
of iterations of Algorithms 1 and 2 with different step sizes are reported in Table 1.

Data in Table 1 show that Algorithm 1 significantly outperforms Algorithm 2
with a constant step size determined by (3.3b). As we have mentioned, this is mainly
because an optimal step size is sought judiciously for Algorithm 1 at each iteration
and the cost of finding this step size is low for the assignment problem (7.5). Algo-
rithm 2 with conservative constant step size converges very slowly, despite its proven
theoretical convergence. On the other hand, Algorithm 2 with some selective excessive
step sizes could be fast even though the convergence cannot be established rigorously
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TABLE 1
Comparison of Algorithms 1 and 2 for small-scale cases of (7.5).

Algorithm 1 Algorithm 2 Algorithm 2 with excessive step size
nl| ax=ap |a=tyla=2 (1 - ngil) 0.2]03[04]05]06]07]09]|1.1]|1.2
3 11 250 243 121 | 78 | 56 | 42 [ 33 | 24 | 16 | 27 | —
5 25 682 675 127|182 |55 (46 {39 | — | — | — | —
10 28 2929 2922 128|183 |59 (46 (39| — | — | — | —

“~” means not convergent.

TABLE 2
Comparison of Algorithm 1 and CPLEX for medium-scale cases of (7.5).

Algorithm 1 with v =1 CPLEX Optimal Objective

n No. It CPU Sec CPU Sec | Value=Trace(CT X)
50 184 0.045 0.094 485.782539
100 211 0.132 0.188 985.870693
200 233 0.590 0.765 1983.976390

with such an excessive step size. This discrepancy is in fact quite common in opti-
mization. But there is no general rule of how to choose an appropriate excessive step
size for Algorithm 2. Last, we would reiterate that Algorithm 2 is still useful when
the calculation of the iteration-dependant optimal step size o}, is too computationally
expensive for Algorithm 1.

Then we compare the proposed algorithms with CPLEX for solving some medium-
scale cases of the assignment problem (7.5). We test the cases where n = 50, 100,
and 200. Note for these cases, the values 2(1 — ny/1/(n? + 1) ) are extremely tiny
(e.g., it is 3.9988¢ — 04 when n = 50). Thus Algorithm 2 is by no way efficient with
such a tiny step size. We thus only compare Algorithm 1 with CPLEX. We report the
comparison of Algorithm 1 and CPLEX in Table 2. Note that we compare the number
of iterations and computing time (in seconds) when these two methods achieve the
same optimal objective function value. According to Table 2, Algorithm 1 is even
faster than CPLEX for solving medium-scale cases of (7.5).

For large-scale cases of (7.5), the proposed algorithms are usually slower than
CPLEX. For example, when n = 300, Algorithm 1 requires about 1.6 times more
computation time than CPLEX to achieve the same optimal objective function value
2984.198323. One reason is that the exact ALM step (1.5) is decomposed into too
many subproblems (n? ones), making the loss of accuracy too large. In any case,
CPLEX is a well-commercialized package that is particularly efficient for linear pro-
grams while our proposed algorithms are for the generic setting of (1.3). Its superiority
to CPLEX for small- and medium-scale cases of (7.5) is interesting.

7.3. Application to ill-conditioned linear programs. In this subsection, we
test some cases of the LP model (7.1) whose coefficient matrices are ill-conditioned
and further show the efficiency of Algorithm 1.

7.3.1. Dataset. We first generate an ill-conditioned coefficient matrix A for the
LP model (7.1). Three matrices U, V, and ¥ are generated as following:

T
uu
=10- d(l,1)—5 U=1-2——
u ran (7 ) k) uTu7
T
(7.9) v=10-rand(m,1) -5, V=1I-— ZK,
vTw
o= (01,09,...,00)7, Y = [diag(o + 7) zeros(l, m — )],
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where o; = cos(li—’rl) +1fori=1,...,1, and 7 is a constant. Then, we generate

A:=UXV € R>™_ It is easy to see that the condition number of A, denoted by &, is
given by Zt7 . Thus, we can generate ill-conditioned cases of A easily. For example
o1+7 ’ ’
01—1OGUL 0'1—108dl 01—10100'1 01—10120

T06—1 ° 10°—1 @ 100—1 > 102—1

are £ = 10%, 108, 1010, 10'2, respectively. Next, we generate two vectors 2! € R™ and
% € R™ by “x"1=zeros(m,1)” and “x~u=5+5*rand(m,1),” respectively, as the box
constraints in (7.1). Let us choose

if welet 7 = L, then the condition numbers of A

K2

o = i:1,3,...,2[@} 1,

(7.10) -

A* =4 -rand(l,1) — 2,

where [a] is the smallest integer larger than or equal to a. Moreover, let us generate
a vector p € R™ by the following procedure:

g=5*rand(m,1)-2.5,
p(1:2:m)=max(q(1:2:m),0)+0.05*rand(size(q(1:2:m))),
p(2:2:m)=min(q(2:2:m),0)-0.05*rand(size(q(2:2:m))) .

m

Obviously, we have p; > 0 for i = 1,3,...,2[2

generate ¢ € R™ by

| =1 and p; < 0 otherwise. Now, we

c=ATN +p

and set b = Ax* € R!. Then, it is easy to see that the generated (A,x*,\*,c,b)
satisfies

(7.11) (x —29) T (c— ATA*) >0, Ve [z! 2],
(7.12) Az* = b,

which is exactly the optimality condition of the model (7.1). Therefore, we can gen-
erate a specific case of the model (7.1) whose solution is known and whose coefficient
matrix A can be ill-conditioned with an assigned condition number.

7.3.2. Numerical results. We use the stopping criterion
max{||z¥ — Z¥| oo, || AT* — b||oc} < 1076

and choose v =1 and 8 = 10/y/m when implementing Algorithm 1.

In Table 3, we test some cases of [, m, and « for (7.1) and report the results of
the proposed Algorithm 1. Since the dataset is generated randomly, for each fixed
combination of I, m, and k, we run Algorithm 1 ten times and report the average
performance. For all the tested cases, the solutions obtained by Algorithm 1 are
exactly the same as what we generated. Thus, we only report the number of iterations
(“No. It”), computing time in seconds (“CPU Sec”), and the objective function value
(“cT2*"). The data in Table 3 show that the proposed Algorithm 1 is efficient even
for ill-conditioned cases of (7.1). In particular, it works well for quite challenging
cases where there are lots of constraints and the dimension of the variable is high.
This observation further supports our philosophy in algorithmic design of ensuring
the convergence of splitting ALM by a simple relaxation step.
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TABLE 3
Algorithm 1 for ill-conditioned LP model (7.1).

| l | m | K | No. It | CPU Sec | cTg* |
106 133.5 0.019 —63.702126
10 25 108 145.5 0.019 —63.735452
1010 119.2 0.020 —75.329298
1012 149.0 0.023 —67.049817
106 52.3 0.807 —1236.612600
8 «
50 500 10 44.1 0.580 —1183.861435
1010 53.3 0.920 —1210.642820
1012 38.3 0.616 —1185.817668
106 95.7 9.765 —2493.092632
8
200 1000 10 67.5 6.931 —2401.944498
1010 78.0 7.906 —2456.893622
1012 97.9 9.892 —2490.443992
106 122.1 87.068 —4902.155818
8
500 2000 10 110.1 80.676 —4863.458678
1010 100.0 76.595 —4818.817975
1012 106.7 79.734 —4754.975873
106 118.9 767.535 —12262.167578
g
1000 | 5000 10 116.0 722.327 —12172.577610
1010 142.9 863.860 —12245.499874
1012 141.8 869.286 —12150.665808

7.4. Application to an l; norm model. Last, we test the model

min ||z|;
(7.13) s.t. Az =b,

<z <2,

where A € R*™ b e R 2! € R™, and 2% € R™ with 2! < 2% for i = 1,2,...,m,
and [|z|ly = >_i", |z;|. We assume | < m throughout. This model can be explained
as seeking a sparse solution of the underdetermined system linear equations Az = b,
subject to additional bound constraints. In practice, the /1 norm model (7.13) is a
special case of (1.3), where n; = 1, 0;(z;) = |z;], A; € R for i = 1,2,...,m, and

X = [ éﬂ x?]
We apply Algorithm 1 and test two cases of (7.13). First, 2/ = —1, and 2% =1,
where 1 stands for a vector in ™ whose elements are all 1. Second, 2! = —co and

2% = 400 and | < m. In this case, the model (7.13) reduces to the well-known basis
pursuit problem (see, e.g., [4, 5]), which has a wide range of applications in areas such
as compressing sensing, signal processing, data science, information science, and so
on. Note that conceptually the model (7.13) can be reformulated as a special case
of (7.1) by introducing auxiliary variables. But LP-based solvers are not efficient for
(7.13) because of the enlargement of dimensionality; and there is a rich set of literature
to discuss how to model it directly. Here, our approach, regarding it as a special case
of (1.3) and applying the proposed splitting version of the ALM, is new and efficient
and has to be tested.

7.4.1. Specification. Let us elaborate on the resulting subproblems (3.1) when
the model (7.13) is treated as a special case of (1.3) and the proposed Algorithm 1
is applied. We also choose H = (-1 with 8 > 0 for implementing Algorithm 1.
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Clearly the ith subproblem in the splitting step (3.1) is the 1-dimensional minimization
problem

=k : T AT \k
Z7 = argmin | |x;| —z; A; A

2

—|—— ZA[I‘ —|—AJJ1+ZA[I‘ —b |a:1€[:ri,:rf] ,
Jj=i+1

which can be rewritten as
(7.14)

T(._ \k 2
il Zargmin{iﬂA;AJxﬂ-F% (ffi— (xf —%W)) | @i € [xﬁ,x?]}.

The subproblem (7.14) can be further written as

- . 1
# = argmin {wxn + 5= pi?| i € [xi-,x?]}

with

pi = ﬁ and p; :=zf — AT(Zi;;l\j/ﬁ)
Thus, its closed-form solution is given by
Pt au{pi — pi} it 2! >0,
5 _ ) Petan (o= Popu{e}} if 2 <0<
' Pyt puy{pi + pi} if z <0,
= Py waipiy if 2} =—o0, a}=-+o0,

where P1 ,u) denotes the projection onto [z}, %] under the Euclidean norm.

To generate a dataset for (7.13), we first generate the entries of A randomly by
the Gaussian distribution with mean 0 and standard deviation 1. As in [26], each
row of A is normalized as a vector with a length of 1. Specifically, the procedure of
generating A is “randn(‘state’,0)” and “A=normr (randn(l,m)).” As mentioned,
the primary purpose of the model (7.13) is seeking a sparse solution of the system
Az = b. We thus generate a sparse vector ¥ € R by the following procedure:

rand(‘state’,0), index=randperm(m),
x"f=zeros(m,1), x"f(index(1:s))=sign(randn(s,1)).

This means =/ has only s nonzero entries and their values are 1 or —1. Finally, the
vector b is chosen as Az,

7.4.2. Numerical results. The stopping condition is still
max{||z* — Z%| o0, | AZ* — b|oc} < 1076,

and the parameters are still chosen as v = 1 and § = 10/y/m when implementing
Algorithm 1.
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TABLE 4
Algorithm 1 for (7.13) with o' = —1,2% = 1.
[ ¢t | m | s [Nolt] CPU Sec |

10 25 2 43 0.031

20 50 5 12 0.031

50 100 10 13 0.062
100 300 15 18 0.124
200 500 20 14 0.390
500 1000 30 14 2.464
1000 | 2000 50 15 17.862
2000 | 5000 | 100 31 403.730

TABLE 5
Algorithm 1 for (7.13) with z! = —oc0,z% = +o00.
| l | m | S | No. It | CPU Sec |

10 100 1 33 0.140

20 200 2 40 0.125

50 500 5 50 0.795

100 | 1000 | 10 93 4.617

200 | 2000 | 20 138 37.908

500 | 5000 | 50 222 784.154

We test some situations of (7.13) when [, m, and s vary. Recall that the exact
solution of (7.13) is unknown. For all the cases we have tested with 2! = —1 and
% =1, we have ||Az* — b||oc = 0 and the objective function value [|2z*||; is exactly
the same as the value of the corresponding s when the stopping criterion is satisfied.
We thus do not report their values (all are 0 and s), and only report the iteration
numbers and computing time in Table 4. Note that the iterates are projected onto the
box constraints [—1,1]. Thus, the objective function values are exactly the number
of nonzero entries, i.c., the values of s. For all the cases we have tested with z! = —o00
and 2% = 400, we have ||Az*F — b||o < 107° and [||2*||1 — s| < 107°. We thus only
report the iteration numbers and computing time in Table 5. The data in Tables 4
and 5 also clearly show the efficiency of Algorithm 1 for the /;-norm model (7.13).

8. Conclusions. We consider embedding a full Jacobian decomposition into
the ALM for solving a convex minimization model with linear constraints and an
objective function in the form of the sum of m functions without coupled variables.
We find an example showing that the straightforward splitting version of ALM with
full Jacobian decomposition could be divergent. We propose to adjust the output of
the splitting version of ALM with full Jacobian decomposition by a relaxation step.
Furthermore, we show that the range of the step size of the relaxation step in existing
methods for special m can be significantly enlarged for generic m. Two algorithms
with different strategies of step size are thus derived. The refined splitting version of
ALM with full Jacobian decomposition is then proved to have the worst-case O(1/k)
convergence rate, in both the ergodic and nonergodic senses. We finally report some
numerical results to show the efficiency of the proposed algorithms. In particular,
the algorithms designed in a generic setting have comparable performance with the
well-developed specific software “IBM ILOG CPLEX Optimization Studio.” This
prompts the promising possibility of further optimizing the implementation of the
proposed algorithms (e.g., coding in C++ with more proficiency) and then finally a
publicized or commercialized version.
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Appendix A. An example showing (1.8)’s divergence. In the appendix we
show by a simple linear equation that the straightforward splitting version of ALM
(1.8) with full Jacobian decomposition is divergent.

We consider the linear equation

T, + x2 =0,

which is a special problem of the LP model (7.1) with ¢ = 0, 2! = —oc0, 2" = +00, [ =
1, m=2, A1 = A; =1, and b = 0. For this linear equation, the VI characterization
(2.1) reduces to

((,Ul — LC’{)T(—A?)\*) >0 V€ Ay,
(2 —25)T(—ATN*) >0 Vg € Ao,
(/\—)\*)T(xf—i—x;) >0 VYieR

Since &7 = Xy = R, the above VI is a system of linear equations

0 0 -1 X1
00 -1 z | =0,
1 1 0 A

and its solution set is
W* = {(z7, 25, \") |27 + 25 = 0, A" = 0}.
To apply (1.8), we take H = 1. Recall we have
A=(1,1), b=0, and  diag(ATA) = I,.
According to (7.2), the predictor @* = (&%, AF) is given by
(A.la) ik =k — AT (Aa:k — /\k)
and
A= \F Azk,

Substituting (A.la) into the above equation and using AA”T = 2, we get
(A.1D) A= Agk — \F,

Putting (A.la) and (A.1b) together, using AT = (1) and ATA = (11), the predictor
form (A.1) becomes

zk 0 -1 1 ok
(A.2) o= -1 0 1 zh
Nk 1 1 -1 AF

If we directly take the predictor as the new iterate and begin with (29,29, \%) =
(0,0, 1), then according to (A.2), we have

xl 1 a3 -2

x| = 1 , )l =1-2],

Al -1 A2 3

3 ) xt —12
=l=(5], |l=(-121/,....
A3 -7 A1 17
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Using the formula (A.2) and w**! = &%, we obtain by induction that

ab =2k, Sign(z¥) = —Sign(\F), |z¥| >k, and |[N|>k VE>1.

The sequence {w*} thus does not converge to any solution point in the set
w* = {(a1,23,0) | 2] = —a3}.

In other words, the splitting version of ALM (1.8) with full Jacobian decomposition
is divergent and a certain relaxation step is a must to ensure its convergence.
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