
This article was downloaded by: [116.6.49.94] On: 31 October 2017, At: 23:22
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Mathematics of Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Convergence Rate Analysis for the Alternating Direction
Method of Multipliers with a Substitution Procedure for
Separable Convex Programming
Bingsheng He, Min Tao, Xiaoming Yuan

To cite this article:
Bingsheng He, Min Tao, Xiaoming Yuan (2017) Convergence Rate Analysis for the Alternating Direction Method of Multipliers
with a Substitution Procedure for Separable Convex Programming. Mathematics of Operations Research 42(3):662-691.
https://doi.org/10.1287/moor.2016.0822

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2017, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/moor.2016.0822
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

MATHEMATICS OF OPERATIONS RESEARCH
Vol. 42, No. 3, August 2017, pp. 662–691

http://pubsonline.informs.org/journal/moor/ ISSN 0364-765X (print), ISSN 1526-5471 (online)

Convergence Rate Analysis for the Alternating Direction Method
of Multipliers with a Substitution Procedure for Separable
Convex Programming
Bingsheng He,a, b Min Tao,c Xiaoming Yuan d

a
Department of Mathematics, South University of Science and Technology of China, Shenzhen 518055, China;

b
Department of

Mathematics, Nanjing University, Nanjing 210093, China;
c
Department of Mathematics, Nanjing University, Nanjing, 210093, China;

d
Department of Mathematics, Hong Kong Baptist University, Hong Kong, China

Contact: hebma@nju.edu.cn (BH); taom@nju.edu.cn (MT); xmyuan@hkbu.edu.hk (XY)

Received: September 18, 2012
Revised: December 12, 2013, January 12, 2015,
April 6, 2016, and June 12, 2016
Accepted: August 4, 2016
Published Online in Articles in Advance:
February 7, 2017

MSC2010 Subject Classification: 90C25;
90C30
OR/MS Subject Classification: Nonlinear
programming

https://doi.org/10.1287/moor.2016.0822

Copyright: © 2017 INFORMS

Abstract. Recently, in He et al. [He BS, Tao M, Yuan XM (2012) Alternating direction

method with Gaussian back substitution for separable convex programming. SIAM J.
Optim. 22(2):313–340], we have showed the first possibility of combining the Douglas-

Rachford alternating direction method of multipliers (ADMM) with a Gaussian back

substitution procedure for solving a convex minimization model with a general sepa-

rable structure. This paper is a further study on this theme. We first derive a general

algorithmic framework to combine ADMM with either a forward or backward substitu-

tion procedure. Then, we show that convergence of this framework can be easily proved

from the contraction perspective, and its local linear convergence rate is provable if cer-

tain error bound condition is assumed. Without such an error bound assumption, we

can estimate its worst-case convergence rate measured by the iteration complexity.

Funding: Bingsheng He was supported by the National Natural Science Foundation of China (NSFC)

[Grant 11471156]. Min Tao was supported by the NSFC [Grant 11301280] and the Fundamental

Research Fund for the Central Universities [Grant 020314330019]. Xiaoming Yuan was supported

by the General Research Funds from Hong Kong Research Grants Council [Grants HKBU203613

and HKBU12300515.]

Keywords: convex programming • alternating direction method of multipliers • convergence rate • iteration complexity • contraction methods

1. Introduction
We consider a structured convex minimization model with linear constraints and a separable objective function:

min

m∑
i�1

θi(xi)
m∑

i�1

Ai xi � b;

xi ∈Xi , i � 1, . . . ,m ,

(1)

where θi :<ni →< (i � 1, . . . ,m) are convex functions and they are not necessarily smooth; Xi ⊆<ni (i � 1, . . . ,m)
are closed-convex sets; Ai ∈ <l×ni (i � 1, . . . ,m) are given matrices with full column ranks; and b ∈ <l

is a given

vector. Throughout, the solution set of (1) is assumed to be nonempty. Our discussion focuses on the particular

case of (1) where m ≥ 3, see, e.g., Peng et al. [35], Ruszczyński [39], Tao and Yuan [41], Tibshirani et al. [42], Zhou

et al. [48] for such applications.

Except for problems in very small dimensions, it is not wise to treat (1) as a generic convex programming

and ignore its favorable separable structure when we try to design efficient numerical algorithms for (1). One

obvious reason is that each single θi could be simple, while the aggregation of all θi’s is hard, to be minimized for

many concrete applications of the abstract model (1). This has inspired many interesting results in the literature,

e.g., a series of papers combining the augmented Lagrangian method (see Hestenes [23], Powell [36]), smoothing

technique and Lagrangian duality theory in Lan andMonteiro [28], Necoara and Suykens [30], Nedelcu et al. [31],

Tran-Dinh et al. [43, 44]. We are thus in favor of such an algorithm that can take advantage of the separable

structure of (1) effectively; or more precisely, can exploit the properties of all θi’s fully by treating these functions

individually rather than aggregatively. In the literature, structure-exploited algorithms have beenwell studied, but

only for the special case of (1) where m � 2. A fundamental method for this special case is the Douglas-Rachford

662

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

http://pubsonline.informs.org/journal/moor/
mailto:hebma@nju.edu.cn
mailto:taom@nju.edu.cn
mailto:xmyuan@hkbu.edu.hk

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS 663

alternating direction method of multipliers (ADMM) proposed in Glowinski and Marrocco [16] (see also Gabay

and Mercier [13]). More specifically, for solving (1) with m � 2, the standard ADMM iterative scheme is
xk+1

1
� arg min

{
θ

1
(x

1
) − xT

1
AT

1
λk

+
1

2
‖A

1
x

1
+A

2
xk

2
− b‖2H | x1

∈X
1

}
,

xk+1

2
� arg min

{
θ

2
(x

2
) − xT

2
AT

2
λk

+
1

2
‖A

1
xk+1

1
+A

2
x

2
− b‖2H | x2

∈X
2

}
,

λk+1

� λk −H(A
1
xk+1

1
+A

2
xk+1

2
− b),

(2)

where λk ∈<l
is the Lagrange multiplier and the penalty matrix H ∈<l×l

is positive definite. In applications, we

usually choose H as a diagonal matrix: H � βIl×l with β > 0. The standard ADMM scheme (2) shows that ADMM

blends the benefits of the dual decomposition and the augmented Lagrangianmethod. It is thus possible to exploit

the properties of θi’s individually. We refer to, e.g., Chan and Glowinski [4], Eckstein and Bertsekas [8], Fortin

and Glowinski [11], Fukushima [12], Glowinski [14], Glowinski and Le Tallec [15], He et al. [22], Kontogiorgis and

Meyer [27], Tseng [45] for some earlier articles in the areas of partial differential equations, convex programming

and variational inequalities. Moreover, recently ADMM has found many interesting applications in a broad

spectrum of areas such as imaging processing, statistical learning and engineering, see, e.g., Boyd et al. [2], Chan

et al. [3], Chen et al. [5], Esser [9], He et al. [21], Ng et al. [33, 32], Sun and Zhang [40], Tao and Yuan [41],

Zhang et al. [46] to mention a few. Essentially, the main reason ensuring ADMM’s efficiency for these concrete

applications (where the functions θi’s usually have special properties) is that the decomposed subproblems in (2)

are often simple enough to have closed-form solutions or can be solved efficiently up to high precisions. In the

review paper on ADMM (Boyd et al. [2], p. 104), the authors complimented that “ADMM is at least comparable

to very specialized algorithms (even in the serial setting), and in most cases, the simple ADMM algorithm will be

efficient enough to be useful.”

To take advantage of each θi’s properties individually, a natural idea for solving the general case of (1) with

m ≥ 3 is to extend the ADMM scheme (2) straightforwardly—yielding the following scheme:

xk+1

1
� arg min

{
θ

1
(x

1
) − xT

1
AT

1
λk

+
1

2

A
1
x

1
+

m∑
j�2

A j x
k
j − b

2

H

���� x1
∈X

1

}
;

xk+1

2
� arg min

{
θ

2
(x

2
) − xT

2
AT

2
λk

+
1

2

A
1
xk+1

1
+A

2
x

2
+

m∑
j�3

A j x
k
j − b

2

H

���� x2
∈X

2

}
;

· · ·

xk+1

i � arg min

{
θi(xi) − xT

i AT
i λ

k
+

1

2

 i−1∑
j�1

A j x
k+1

j +Ai xi +

m∑
j�i+1

A j x
k
j − b

2

H

���� xi ∈Xi

}
;

· · ·

xk+1

m � arg min

{
θm(xm) − xT

mAT
mλ

k
+

1

2

m−1∑
j�1

A j x
k+1

j +Am xm − b

2

H

���� xm ∈Xm

}
;

λk+1

� λk −H
(m∑

j�1

A j x
k+1

j − b
)
.

(3)

Just as the original ADMM scheme (2), the iterative scheme (3) can be easily derived by decomposing the aug-

mented Lagrangian function of (1) in the Gauss-Seidel fashion. In (3), the variables xi’s are minimized in alter-

nating order and the decomposed subproblems are much easier than the original problem (1) since only one

function θi is involved in its xi-subproblem. Then, the step of updating the Lagrange multiplier coordinates all

these solutions to local small subproblems to find a solution to a global large problem. Note that the direct exten-

sion of the ADMM scheme (3) reduces to the augmented Lagrangian method in Hestenes [23], Powell [36], and

the standard ADMM scheme (2) when m � 1 and m � 2 in (1), respectively.

The convergence of the scheme (3), however, had perplexed authors for a long time. On one hand, the scheme (3)

empirically works well for some applications, see, e.g., Peng et al. [35], Tao and Yuan [41]. On the other hand,

in the literature, its convergence could be shown only under some further assumptions. For example, in Han

and Yuan [17], the convergence of (3) was shown under the conditions that all θi are strongly convex and the

penalty parameter β (when H � βIl×l) should be chosen judiciously within a certain interval. Moreover, when each

function θi in (1) is of particular structure and the update of λk+1

in (3) is required to adopt a new stepsize rather

than H � βIl×l , i.e.,

λk+1

� λk − τ
(m∑

j�1

A j x
k+1

j − b
)
, (4)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
664 Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS

where τ > 0 is sufficiently small to fulfill certain error bound conditions, the resulting scheme was proved to be

convergent in Hong and Luo [24]; some linear convergent results were also analyzed in Hong and Luo [24]. In

fact, the scheme (3) but with the new update of λ in (4) can be regarded as an implementation of the dual-ascent

method to the dual of (1) with a shrank stepsize. Most recently, a counterexample was given in Chen et al. [6]

showing that scheme (3) is not necessarily convergent without further assumptions; and a sufficient condition

ensuring the convergence of (3) was given therein.

In general, it is not easy to verify whether the stepsize τ in (4) is small enough to satisfy the desired error bound.

We thus stick to the direct extension of ADMM (3) where the stepsize for updating λ is taken as the same as the

penalty parameter (thus it is not necessarily very small) and the function θi’s in (3) are only assumed to be generic

nonsmooth convex functions, and study in which way the convergence of (3) can be derived. In He et al. [19],

we have shown that the resulting sequence is convergent if the output of (3) is further corrected by a Gaussian

back substitution procedure. The numerical efficiency of the Gaussian back substitution procedure, together with

its superiority to some other relevant work based on (3), have been illustrated numerically in He et al. [19],

Ng et al. [34].

The Gaussian back substitution procedure in He et al. [19] still requires to compute the inverses of (AT
i HAi) for

i � 2, . . . ,m − 1 (see Equation (3.4) in He et al. [19]), which could be computationally expensive for generic Ai’s

arising in some image processing applications. Some elaborationwill be given in Section 7.1. This paper is a further

study on this theme, with the aim at proposing an algorithmic framework to combine an ADMM procedure with

a substitution procedure. This substitution procedure can be in either a forward (i.e., correcting the output of

the ADMM procedure in the order of xk+1

2
→ xk+1

3
→ · · · → xk+1

m → λk+1

) or backward (i.e., correcting the output

of the ADMM procedure in the order of λk+1→ xk+1

m → xk+1

m−1
→ · · · → xk+1

2
) fashion. Two concrete algorithms are

thus derived from the algorithmic framework. We will show that these two algorithms both reduce to the original

ADMM (2) for (1) with m � 2. The forward and backward substitution procedures require no computation of any

matrix’s inverse, and they are both much computationally cheaper than the Gaussian back substitution procedure

in He et al. [19] (see Sections 5.1 and 5.2 for elaboration). Moreover, we will show that the convergence of this

algorithmic framework can be easily proved from the contraction perspective, and its local linear convergence

rate is provable if a certain error bound condition is assumed. Without such an error bound assumption, we can

estimate their worst-case convergence rates measured by the iteration complexity for the new algorithms in the

nonergodic sense.

The rest of the paper is organized as follows. In Section 2, we provide some preliminaries that are useful

for further discussions; and summarize some notations, which will help us present our analysis simpler. In

Section 3, we propose an ADMM procedure inspired by (3) and prove an inequality for the sequence generated

by this ADMM procedure. In Section 4, we elaborate on the motivation of developing an appropriate substitution

procedure in combination with the ADMM procedure proposed in Section 3. Then, in Section 5, we specify the

general algorithmic framework in combination with an ADMM procedure and a substitution procedure into two

concrete algorithms; prove their global convergence and linear convergence rates in a unified framework from

the contraction perspective. In Section 6, we estimate the worst-case convergence rate measured by the iteration

complexity for the proposed algorithms in the nonergodic sense. In Section 7, we report some numerical results

when the new algorithms are applied to solve some applications of the model (1) arising in image processing.

Finally, we make some conclusions in Section 8.

2. Preliminaries
In this section, we first provide some preliminaries, which are useful for our further discussions and then sum-

marize some notations to be used.

2.1. A Variational Characterization of (1)
We first reformulate (1) as a variational form, which is useful for our subsequent analysis of convergence and the

estimate of worst-case convergence rate measured by the iteration complexity.

Let λ ∈<l
be the Lagrangemultiplier associatedwith the linear constraints in (1). Then, the Lagrangian function

of (1) is

L(x
1
, x

2
, . . . , xm , λ)�

m∑
i�1

θi(xi) − λT

(m∑
i�1

Ai xi − b
)
,

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS 665

and it is defined on

W�X×<l , where X�X
1
×X

2
× · · · ×Xm .

Let (x∗
1
, x∗

2
, . . . , x∗m , λ

∗) be a saddle point of the Lagrangian function. Then, we have the saddle point inequalities

Lλ∈<l (x∗
1
, x∗

2
, . . . , x∗m , λ) ≤ L(x∗

1
, x∗

2
, . . . , x∗m , λ

∗) ≤ Lxi∈Xi i�1,...,m(x1
, x

2
, . . . , xm , λ

∗). (5)

For i � 1, . . . ,m, we set

(x
1
, . . . , xi−1

, xi , xi+1
, . . . , xm)� (x∗1 , . . . , x∗i−1

, xi , x
∗
i+1
, . . . , x∗m) ∈X,

in the second inequality in (5). Then, we have

x∗i ∈Xi , θi(xi) − θi(x∗i)+ (xi − x∗i)T(−AT
i λ
∗) ≥ 0, ∀ xi ∈Xi , i � 1, . . . ,m.

Moreover, it follows from the first inequality in (5) that

λ∗ ∈<l , (λ− λ∗)T
(m∑

i�1

Ai x
∗
i − b

)
≥ 0, ∀λ ∈<l .

Thus, finding a saddle point of L(x
1
, x

2
, . . . , xm , λ) is equivalent to finding a vector

w∗ � (x∗
1
, x∗

2
, . . . , x∗m , λ

∗) ∈W

such that 

θ
1
(x

1
) − θ

1
(x∗

1
)+ (x

1
− x∗

1
)T(−AT

1
λ∗) ≥ 0, ∀ x

1
∈X

1
,

θ
2
(x

2
) − θ

2
(x∗

2
)+ (x

2
− x∗

2
)T(−AT

2
λ∗) ≥ 0, ∀ x

2
∈X

2
,

...

θm(xm) − θm(x∗m)+ (xm − x∗m)T(−AT
mλ
∗) ≥ 0, ∀ xm ∈Xm ,

(λ− λ∗)T
{ m∑

i�1

Ai x
∗
i − b

}
≥ 0, ∀λ ∈<l .

(6)

More compactly, the inequalities in (6) can be rewritten as the following variational inequality (VI):

VI(W, F, θ): w∗ ∈W, θ(x) − θ(x∗)+ (w −w∗)T F(w∗) ≥ 0, ∀w ∈W, (7a)

where

x �

©­­­­«
x

1

x
2

...
xm

ª®®®®¬
, θ(x)�

m∑
i�1

θi(xi), w �

©­­­­­«
x

1

x
2

...
xm
λ

ª®®®®®¬
and F(w)�

©­­­­­­­«

−AT
1
λ

−AT
2
λ

...

−AT
mλ∑m

i�1
Ai xi − b

ª®®®®®®®¬
. (7b)

Note that the operator F(w) defined in (7b) is monotone because it is affine with a skew-symmetric matrix. LetW∗

be the solution set of VI(W, F, θ). Since the solution set of (1) is assumed to be nonempty, W∗ is also nonempty.

2.2. Some Notations
In this subsection, we summarize some notations, which will be used in later analysis. These notations will make

the presentation of our theoretical analysis in later sections more compact.

First, revisit the iterative scheme of the direct extension of ADMM (3). It is easy to notice that the iterate xk
1
is not

involved in the (k + 1)-th iteration of (3), just like the original ADMM (2). In other words, the input to execute the

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
666 Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS

iteration of (3) is only the sequence {xk
2
, . . . , xk

m , λ
k}. Therefore, following Boyd et al. [2], we call x

1
an intermediate

variable. It is thus natural to introduce the notations

v �

©­­­­«
x

2

...
xm
λ

ª®®®®¬
and V�X

2
× · · · ×Xm ×<l

to differentiate the variables, which are truly involved in the iteration from the intermediate variable x
1
. Obviously,

v is a subvector of w defined in (7b). The notations vk
is thus clear from the context. Accordingly, we also use the

notation

V∗ � {(x∗
2
, . . . , x∗m , λ

∗) | (x∗
1
, x∗

2
, . . . , x∗m , λ

∗) ∈W∗}.

Taking a closer look at (3), we can easily find that the input to generate a new iterate is indeed {A
2
xk

2
, . . . ,

Am xk
m , λ

k}. Thus, it is convenient to define

u �

©­­­­«
u

2

...
um
uλ

ª®®®®¬
�

©­­­­«
H1/2A

2
x

2

...
H1/2Am xm

H−1/2λ

ª®®®®¬
(8)

from which the notation uk � [uk
2
, . . . , uk

m , u
k
λ] is also clear. For some concrete applications of (1) such as those in

He et al. [19], Ng et al. [34], the matrices A
2
, . . .Am are all identity matrices. For these cases, u reduces to v if H � I.

Accordingly, we also use the notation

U∗ �

u∗ �
©­­­­«

u∗
2

...
u∗m
u∗λ

ª®®®®¬
�

©­­­­«
H1/2A

2
x∗

2

...
H1/2Am x∗m

H−1/2λ∗

ª®®®®¬
������� w∗ � (x∗

1
, . . . , x∗m , λ

∗) ∈W∗
 .

With these notations, the scheme (3) can be summarized as generating the new iteration wk+1

with the input uk
.

Second, we introduce several matrices in blockwise form. With these matrices, our notation for theoretical

analysis will be much easier and more compact. Recall that the variable x
1
is an intermediate variable for the

scheme (3). We thus introduce the matrix

A� diag(H1/2A
2
,H1/2A

3
, . . . ,H1/2Am ,H

−1/2Il) (9)

to collect all the coefficient matrices with respect to the variables in (1), except for x
1
and the identity matrix

(corresponding to the Lagrangemultiplier).With the definition (9), we obviously can relate the variables v and u as

u �Av. (10)

We also define the following block matrices:

S� (Il , Il , . . . , Il ,−Il) (11)

and

I� diag(Il , Il , . . . , Il , Il). (12)

In addition, we define the following m ×m-block matrices:

P�

©­­­­­«
Il 0 · · · · · · 0

Il Il
. . .

...
...

. . .
. . .

. . .
...

Il · · · Il Il 0

0l · · · 0l 0l Il

ª®®®®®¬
, N�

©­­­­­«
Il 0 · · · · · · 0

0l Il
. . .

...
...

. . .
. . .

. . .
...

0l · · · 0l Il 0

−Il · · · −Il −Il Il

ª®®®®®¬
, (13)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS 667

and

L�

©­­­­­«
Il 0 · · · · · · 0

Il Il
. . .

...
...

. . .
. . .

. . .
...

Il · · · Il Il 0

−Il · · · −Il −Il Il

ª®®®®®¬
, (14)

which will be used in the substitution procedures to be proposed. Note that P, N, and L are all well-structured

block lower triangular matrices, and they are related in the following equation:

L�PN. (15)

Moreover, for (1) with m � 2, we have P�I and N�L.

Finally, two more matrices are useful:

Q̃�

©­­­­­­­«

0 0 · · · · · · 0

AT
2

H1/2
0 · · · · · · 0

AT
3

H1/2 AT
3

H1/2 . . .
...

...
...

. . .
. . .

...
AT

mH1/2 AT
mH1/2 · · · AT

mH1/2
0

−H−1/2 −H−1/2 · · · −H−1/2 H−1/2

ª®®®®®®®¬
(16)

and

Q�

©­­­­­«
AT

2
H1/2

0 · · · · · · 0

AT
3

H1/2 AT
3

H1/2 . . .
...

...
...

. . .
. . .

...
AT

mH1/2 AT
mH1/2 · · · AT

mH1/2
0

−H−1/2 −H−1/2 · · · −H−1/2 H−1/2

ª®®®®®¬
. (17)

As we shall show, these two matrices are mainly used to represent the accumulated iterative information in a

compact way and thus simplify our notation. In fact, Q̃ is used as the associated matrix to left multiply a vector wk
,

while Q is the associated matrix to left multiply a vector vk
. Note that the absence of the intermediate variable xk

1

in the iteration to be proposed also explains why the first row of Q̃ is a zero vector. Nevertheless, despite that

the matrix Q can be obtained by easily removing the first row of Q̃, we give the explicit expressions of these two

relevant matrices separately as we need to use both of them later.

Some relationships among the matrices defined above are summarized in the following lemmas. We omit their

proofs since they are elementary.

Lemma 2.1. Let the matrices S, I, and L be defined in (11), (12), and (14), respectively. Then, we have

LT
+L�I+STS. (18)

Lemma 2.2. Let the matrices A, L, and Q be defined in (9), (14), and (17), respectively. Then, we have

Q�ATL. (19)

The identities (18) and (19) in Lemmas 2.1 and 2.2 will be used in our theoretical analysis.

3. An ADMMProcedure Based On (3)
We have mentioned that an efficient strategy to overcome the divergence of the scheme (3) is to supplement a

substitution procedure to the output of (3), as the algorithm in He et al. [19]. In this section, we propose an ADMM

procedure, which is slightly different from the scheme (3) only in the update of its Lagrange multiplier.

3.1. An ADMM Procedure
Since the notations xk+1

i ’s will be used to denote the new iterate and the output of the proposing ADMMprocedure

is only its predictor, we use x̃k
i ’s to denote the output of the proposing ADMM procedure. Our ADMM procedure

based on the scheme (3) is as follows, and it will be used as a subprocedure in the algorithms to be proposed.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
668 Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS

Algorithm 1 (An ADMM Procedure (prediction step) for (1))

x̃k
1
� arg min

{
θ

1
(x

1
) − xT

1
AT

1
λk

+
1

2

A
1
x

1
+

m∑
j�2

A j x
k
j − b

2

H

���� x1
∈X

1

}
;

x̃k
2
� arg min

{
θ

2
(x

2
) − xT

2
AT

2
λk

+
1

2

A
1
x̃k

1
+A

2
x

2
+

m∑
j�3

A j x
k
j − b

2

H

���� x2
∈X

2

}
;

· · ·

x̃k
i � arg min

{
θi(xi) − xT

i AT
i λ

k
+

1

2

 i−1∑
j�1

A j x̃
k
j +Ai xi +

m∑
j�i+1

A j x
k
j − b

2

H

���� xi ∈Xi

}
;

· · ·

x̃k
m � arg min

{
θm(xm) − xT

mAT
mλ

k
+

1

2

m−1∑
j�1

A j x̃
k
j +Am xm − b

2

H

���� xm ∈Xm

}
.

(20a)

˜λk
� λk −H

(
A

1
x̃k

1
+

m∑
j�2

A j x
k
j − b

)
. (20b)

Remark 3.1. The scheme (20) differs from the direct extension of ADMM (3) (also the method in He et al. [19])

only in the way of updating the Lagrange multiplier, i.e., (20b), and all the essential subproblems dominating the

computation (i.e., (20a)) at each iteration are the same as those in (3). For this reason, we still call the scheme (20) an

ADMM procedure. The only difference in its update of the Lagrange multiplier indeed provides us the possibility

to ensure the convergence for the combination of (20) with a desired substitution procedure. In fact, as we shall

show in Theorem 3.3, this particular update (20b) enables us to derive an estimate on the accuracy of w̃k
in (21),

which is more succinct than the inequality (4.3) in He et al. [19]. To see the relationship between the outputs of

(20) and (3), we set

xk+1

1
� x̃k

1
, xk+1

2
� x̃k

2
, . . . , xk+1

m � x̃k
m

and

λk+1

� ˜λk
+H

(m∑
j�2

A j(xk
j − x̃k

j)
)
,

then the output of (3) is recovered. More compactly, by using the notations u, v, and N, the outputs uk+1

generated

by (3) and ũk
by (20) are related in the following way:

uk+1

� uk −N(uk − ũk).

Remark 3.2. Taking a closer look at the iterative schemes (3) and (20), it is easy to find that, at each iteration, the

input to implement these schemes is actually (A
2
xk

2
, . . . ,Am xk

m , λ
k).

3.2. An Important Inequality
In the following theorem, we prove an important inequality for the output of the ADMM procedure (20), which

will be used often in our further discussions, including the analysis of the substitution procedure in Section 5 and

the analysis of the worst-case convergence rate in Section 6.

Theorem 3.3. Let w̃k be generated by the ADMM procedure (20) with given vk and u �Av. Then, we have

w̃k ∈W, θ(x) − θ(x̃k)+ (w − w̃k)T F(w̃k) ≥ (u − ũk)TL(uk − ũk), ∀w ∈W, (21)

where L is defined in (14).
Proof. Since x̃k

i is the solution of (20a), for i � 1, 2, . . . ,m, we have

x̃k
i ∈Xi , θi(xi) − θi(x̃k

i)+ (xi − x̃k
i)T

{
AT

i

[
H

(i∑
j�1

Ax̃k
j +

m∑
j�i+1

A j x
k
j − b

)
− λk

]}
≥ 0, ∀ xi ∈Xi .

Substituting
˜λk � λk −H(A

1
x̃k

1
+

∑m
j�2

A j xk
j − b) (see (20b)) into the above inequality, we obtain

x̃k
i ∈Xi , θi(xi) − θi(x̃k

i)+ (xi − x̃k
i)T

{
−AT

i
˜λk

+AT
i H

(i∑
j�2

(A j x̃
k
j −A j x

k
j)
)}
≥ 0, ∀ xi ∈Xi .

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS 669

Summarizing the above inequality over i � 1, . . . ,m, we obtain w̃k ∈W and

θ(x) − θ(x̃k)+

©­­­­­­«

x
1
− x̃k

1

x
2
− x̃k

2

· · ·
xi − x̃k

i
· · ·

xm − x̃k
m

ª®®®®®®¬

T 

©­­­­­­­«

−AT
1

˜λk

−AT
2

˜λk

· · ·
−AT

i
˜λk

· · ·
−AT

m
˜λk

ª®®®®®®®¬
+

©­­­­­­­«

0

AT
2

H(A
2
x̃k

2
−A

2
xk

2
)

· · ·
AT

i H
(∑i

j�2
(A j x̃k

j −A j xk
j)
)

· · ·
AT

mH
(∑m

j�2
(A j x̃k

j −A j xk
j)
)
ª®®®®®®®¬


≥ 0, ∀ xi ∈Xi . (22)

Because Ax̃k
1
+

∑m
j�2

A j xk
j − b +H−1(˜λk − λk)� 0 (see (20b) again), we have(m∑

j�1

A j x̃
k
j − b

)
+H−1(˜λk − λk) −

m∑
j�2

(A j x̃
k
j −A j x

k
j)� 0. (23)

Combining (22) and (23), we get w̃k ∈W and

θ(x) − θ(x̃k)+

©­­­­­­­­«

x
1
− x̃k

1

x
2
− x̃k

2

· · ·
xi − x̃k

i
· · ·

xm − x̃k
m

λk − ˜λk

ª®®®®®®®®¬

T 

©­­­­­­­­­«

−AT
1

˜λk

−AT
2

˜λk

· · ·
−AT

i
˜λk

· · ·
−AT

m
˜λk∑m

j�1
A j x̃k

j − b

ª®®®®®®®®®¬
+

©­­­­­­­­­­«

0

AT
2

H(A
2
x̃k

2
−A

2
xk

2
)

· · ·
AT

i H
(∑i

j�2
(A j x̃k

j −A j xk
j)
)

· · ·
AT

mH
(∑m

j�2
(A j x̃k

j −A j xk
j)
)

H−1(˜λk − λk) −∑m
j�2
(A j x̃k

j −A j xk
j)

ª®®®®®®®®®®¬


≥ 0

for all w ∈W. Using the notations of F (see (7b)), u (see (8)) and Q̃ (see (16)), the above inequality can be rewritten as

w̃k ∈W, θ(x) − θ(x̃k)+ (w − w̃k)T{F(w̃k) − Q̃(uk − ũk)} ≥ 0, ∀w ∈W. (24)

Recall the definitions of Q̃ and Q. We then have

(w − w̃k)TQ̃(uk − ũk)� (v − ṽk)TQ(uk − ũk).

Because Q�ATL and Av � u (see (19) and (10)), we have

(w − w̃k)TQ̃(uk − ũk)� (u − ũk)TL(uk − ũk).

The assertion (21) thus follows from (24) and the last equality immediately. �

4. The Motivation of Finding a Substitution Procedure: From the Contraction Perspective
As we have mentioned, the output of (20) needs to be further corrected to yield convergence, and our strategy

for the correction is to propose a substitution procedure whose computation is cheap. The idea inspiring the

substitution strategy comes from the fact that the output of (20) can be corrected easily such that the corrected

sequence is contractive with respect to the set U∗. Note that we follow the classical definition of a contractive

sequence in Blum and Oettli [1]. Then, we show that the correction step on contraction purpose can be easily

executed in either a forward or backward substitution fashion, because of the particular structure of the matrix Q.
We would emphasize that Theorem 3.3 plays an important role for the coming analysis.

First, with the respective definitions ofA andL in (9) and (14), we can prove two obvious propositions regarding

the output of the ADMM procedure (20).

Proposition 4.1. Let w̃k be generated by the ADMM procedure (20) with given vk and u �Av. Then, we have

(uk − u∗)TL(uk − ũk) ≥ (uk − ũk)TL(uk − ũk), ∀ u∗ ∈U∗ , (25)

where L is defined in (14).

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
670 Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS

Proof. The proof is an immediate conclusion based on the assertion (21) and the monotonicity of F. In fact, for an

arbitrarily fixed w∗ ∈W∗, it follows from (21) that

(ũk − u∗)TL(uk − ũk) ≥ (w̃k −w∗)T F(w̃k)+ θ(x̃k) − θ(x∗), ∀w∗ ∈W∗.

Using the monotonicity of F and the optimality of w∗, we have

(w̃k −w∗)T F(w̃k)+ θ(x̃k) − θ(x∗) ≥ (w̃k −w∗)T F(w∗)+ θ(x̃k) − θ(x∗) ≥ 0.

The above two inequalities imply that

(ũk − u∗)TL(uk − ũk) ≥ 0, ∀ u∗ ∈U∗ ,

and the assertion (25) follows from the last inequality immediately. �

Proposition 4.2. Let w̃k be generated by the ADMM procedure (20) with given vk and u �Av. Then, we have

(uk − ũk)TL(uk − ũk)� 1

2
‖uk − ũk ‖2 + 1

2
‖S(uk − ũk)‖2 , (26)

where L and S are defined in (14) and (11), respectively.

Proof. First, we have

(uk − ũk)TL(uk − ũk)� 1

2
(uk − ũk)T(LT

+L)(uk − ũk).
Then, using the identity (18) in Lemma 2.1, the assertion (26) is proved immediately. �

Remark 4.3. The assertions (21) and (26) jointly imply that if ‖uk − ũk ‖ � 0, then we have

w̃k ∈W, θ(x) − θ(x̃k)+ (w − w̃k)T F(w̃k) ≥ 0, ∀w ∈W,

which means that the output w̃k
of the ADMM procedure (20) is a solution point of VI(W, F, θ) (see (7)). Therefore

the result (26) provides us an easy stopping criterion to terminate the iteration (20):

‖uk − ũk ‖ ≤ ε,

where ε is the tolerance set by users.

Now, with Propositions 4.1 and 4.2, we have

(uk − u∗)TL(uk − ũk) ≥ 1

2
‖uk − ũk ‖2 + 1

2
‖S(uk − ũk)‖2 , ∀ u∗ ∈U∗ , (27)

and it becomes apparent how to correct the output of (20) in the contraction way. More specifically, whenever

‖uk − ũk ‖ , 0, the assertion (26) shows the positivity of the term (uk − ũk)TL(uk − ũk), and thus the assertion (25)

indicates that the direction −L(uk − ũk) is beneficial for reducing the proximity to the solution setU∗ if the current
iterate ũk

moves along this direction with an appropriate stepsize. That is, the spirit of contraction-type methods

(see Blum and Oettli [1]) is applicable. More explicitly, the new iterate uk+1

can be generated by

uk+1

� uk − αG−1L(uk − ũk), (28)

where G is an arbitrarily symmetric positive definite matrix with the same dimensionality as L and α > 0 is an

undetermined stepsize. Then, with an appropriate choice of the stepsize α, we can prove that the sequence {uk}
generated by (28) is contractive with respect to the set U∗ under the G-norm. In other words, the scheme (28) can

be used to correct the output of (20).

To see why the scheme (28) yields a contractive sequence, we have the following easy fact:

‖uk − u‖2G − ‖uk+1 − u‖2G � ‖uk − u‖2G − ‖(uk − u) − αG−1L(uk − ũk)‖2G
� 2α(uk − u)TL(uk − ũk) − α2‖G−1L(uk − ũk)‖2G . (29)

Set u � u∗ in (29), and use (25) and (26). Then, we get

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G ≥ 2α(uk − ũk)TL(uk − ũk) − α2‖G−1L(uk − ũk)‖2G
� α(‖uk − ũk ‖2 + ‖S(uk − ũk)‖2) − α2‖G−1L(uk − ũk)‖2G , ∀ u∗ ∈U∗. (30)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS 671

Note that right-hand side of (30) is a quadratic function of α. To obtain the closest proximity to U∗, we wish to

maximize this quadratic function, and this desire inspires us to take the optimal value of α as

α � αk :�
‖uk − ũk ‖2 + ‖S(uk − ũk)‖2

2‖G−1L(uk − ũk)‖2G
. (31)

With this choice of stepsize, it follows from (30) that

‖uk+1 − u∗‖2G ≤ ‖uk − u∗‖2G − 1

2
αk(‖uk − ũk ‖2 + ‖S(uk − ũk)‖2), ∀ u∗ ∈U∗. (32)

Since αk > 0 whenever ‖uk − ũk ‖ , 0, (32) shows that the sequence {uk} generated by the scheme (28) is contractive

with respect to U∗ if the stepsize is appropriately chosen.

Indeed, it is flexible to choose different positive definite matrices for G in the generic scheme (28) if our purpose

is only to ensure that the sequence {uk} is contractive with respect toU∗. To induce simple substitution procedures,

which are computationally inexpensive, two specific interesting choices are

G �I and G �PPT .

In fact, these two choices yield two efficient substitution procedures to correct the output of (20), as we elaborate

below.

• If G �I, then the scheme (28) reduces to

uk+1 − uk
� αL(ũk − uk), (33)

and it can be rewritten as

L−1(uk+1 − uk)� α(ũk − uk). (34)

Recall that the matrix L defined in (14) is a block unit lower triangular matrix and

L−1

�

©­­­­­­«

Il 0 · · · · · · 0

−Il Il
. . .

...

0

. . .
. . .

. . .
...

...
. . . −Il Il 0

0 · · · 0 Il Il

ª®®®®®®¬
.

Thus the implementation of (34) is essentially a forward substitution procedure where the new iterate uk+1

is

yielded in the order of uk+1

2
→ uk+1

3
→ · · · → uk+1

m → λk+1

. Overall, with the given uk
and the output ũk

of (20), the

new iterative uk+1

can be generated via the forward substitution procedure (33). The resulting sequence {uk} is
contractive with respect to the set U∗ provided that the stepsize α is chosen appropriately.

• If G �PPT
in (28), because the inequality (27) can be written as

(G(uk − u∗))T(G−1L(uk − ũk)) ≥ 1

2
‖uk − ũk ‖2 + 1

2
‖S(uk − ũk)‖2 , ∀ u∗ ∈U∗ , (35)

we can view G−1L(ũk − uk) as a descent direction of ‖u − u∗‖2G at the point uk
. By using G � PPT

and (15), the

scheme (28) can be rewritten as

PT(uk+1 − uk)� αP−1L(ũk − uk)� αN(ũk − uk). (36)

Recall the definition ofP in (13). We see that (36) is essentially a backward substitution procedure to yield the new

iterate uk+1

in the order of λk+1→ uk+1

m → uk+1

m−1
→ · · ·→ uk+1

2
. Also, the resulting sequence {uk} is contractive with

respect to the set U∗, provided that the stepsize α is chosen appropriately.

Therefore, a unified algorithmic framework combining the ADMM procedure (20) with the substitution pro-

cedure (28) is proposed for solving (1). In particular, we can choose the specific substitution procedures (33)

and (36).

5. ADMMWith a Substitution Procedure
As we have analyzed, the resulting algorithms, by combining the ADMM procedure (20) with the substitution

procedure (28), are contraction-type methods if the involving stepsizes are chosen appropriately; thus their con-

vergence analysis can be conducted from the contraction perspective. In this section, we specify the choices of

stepsize in (33) and (36), and thus derive two concrete algorithms for solving (1). Then, we prove their global

convergence in an unified way, by following the standard analytic framework of contraction methods.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
672 Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS

5.1. ADMM With a Forward Substitution
We first combine the ADMM procedure (20) with the forward substitution (33) for solving (1). The resulting

algorithm can be summarized as follows.

Algorithm 2 (ADMM with a forward substitution procedure)
Let γ ∈ (0, 2), A, S, and L be defined in (9), (11), and (14), respectively. Start with u0

. With the given iterate uk
,

the new iterate uk+1

is given as follows.

Step 1. ADMM procedure (prediction step). Execute the scheme (20) to generate w̃k
and thus ṽk

. Set ũk �Aṽk
.

Step 2. Forward substitution procedure (correction step). Generate the new iterate uk+1

via.

uk+1 − uk
� αkL(ũk − uk), (37a)

where

αk � γα
F
k with αF

k �
‖uk − ũk ‖2 + ‖S(uk − ũk)‖2

2‖L(uk − ũk)‖2 . (37b)

Remark 5.1. The strategy of determining αF
k in (37b) is obtained by taking G � I in (31). As we have shown, it is

for the purpose of ensuring that the sequence {uk} is contractive with respect to the set U∗. Recall we determine

the stepsize α by maximizing the quadratic function of α in the right-hand side of (30), which is merely a lower

bound of the true proximity progress. Thus the optimal value of α calculated based on this quadratic function

should be relaxed to some extent, and this is the role of the relaxation factor γ. For restricting γ into the interval

(0, 2), it is to ensure the contractive property of the iterative sequence {uk}, see (42).
Recall that the proposed Algorithm 2 is gained by taking G � I in (28). Thus the contraction of the sequence

{uk} generated by Algorithm 2 is an immediate conclusion of the inequalities (30) and (32). For completeness,

we summarize these results in the following theorem for the special case of G � I. First, we emphasize that the

forward substitution procedure with an undetermined stepsize α > 0 is

uk+1

� uk
+ αL(ũk − uk). (38)

Theorem 5.2. Let w̃k be generated by the ADMM procedure (20) with given uk and ũk � Aṽk . If the new iterate uk+1 is
updated by (38), then we have

‖uk − u∗‖2 − ‖uk+1 − u∗‖2 ≥ qF (α), ∀ u∗ ∈U∗ , (39)

where
qF (α)� α(‖uk − ũk ‖2 + ‖S(uk − ũk)‖2) − α2‖L(uk − ũk)‖2. (40)

Proof. This is a special case of (30) by taking G �I. �

Now, we are ready to show that the sequence {uk} generated by the proposed Algorithm 2 is contractive with

respect to the set U∗, starting from the following lemma.

Lemma 5.3. Let αF
k be defined in (37b). Then, we have

αF
k ≥

1

2‖LTL‖
. (41)

Proof. It is trivial from (37b). �

Theorem 5.4. Let the sequence {uk} be generated by the proposed Algorithm 2. Then, we have

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 −
γ(2− γ)
4‖LTL‖

‖uk − ũk ‖2 , ∀ u∗ ∈U∗. (42)

Proof. Using (40), by a manipulation, we obtain

qF (αk) � γαF
k(‖u

k − ũk ‖2 + ‖S(uk − ũk)‖2) − γ2αF
k(αF

k ‖L(u
k − ũk)‖2)

(37b)

� γ

(
1−

γ

2

)
αF

k(‖u
k − ũk ‖2 + ‖S(uk − ũk)‖2)

(41)

�
γ(2− γ)
4‖LTL‖

‖uk − ũk ‖2.

The assertion (42) follows from (39) immediately. �

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS 673

Remark 5.5. For the special case where m � 2, if we determine the stepsize αk in a simpler way: αk ≡ 1, then the

forward substitution procedure (37a) becomes

uk+1 − uk
�L(ũk − uk);

or more specifically, (
H1/2A

2
(xk+1

2
− xk

2
)

H−1/2(λk+1 − λk)

)
�

(
Il 0

−Il Il

) (
H1/2A

2
(x̃k

2
− xk

2
)

H−1/2(˜λk − λk)

)
. (43)

In this case, we have (see (40))

qF (1) � ‖uk − ũk ‖2 + ‖S(uk − ũk)‖2 − ‖L(uk − ũk)‖2

�

 H1/2A
2
(xk

2
− x̃k

2
)

H−1/2(λk − ˜λk)

2

+ ‖H1/2A
2
(xk

2
− x̃k

2
) −H−1/2(λk − ˜λk)‖2 −

(Il 0

−Il Il

) (
H1/2A

2
(xk

2
− x̃k

2
)

H−1/2(λk − ˜λk)

)

2

� ‖λk − ˜λk ‖2H−1
, (44)

and thus qF (1) ≥ 0. Combining (39) with the last equality, we obtain

 H1/2A
2
(xk+1

2
− x∗

2
)

H−1/2(λk+1 − λ∗)

2

≤

 H1/2A

2
(xk

2
− x∗

2
)

H−1/2(λk − λ∗)

2

− ‖λk − ˜λk ‖2H−1
, ∀ u∗ ∈U∗.

Because

u0

�

(
H1/2A

2
x0

2

H−1/2λ0

)
, ũk

�

(
H1/2A

2
x̃k

2

H−1/2 ˜λk

)
, and A

2
xk+1

2
� A

2
x̃k

2
(see (43)),

combining the definition of
˜λk

(see (20b)), the method is equivalent to{
xk+1 � x̃k ,
λk+1 � λk −H(A

1
xk+1

1
+A

2
xk+1

2
− b),

which is exactly the ADMM scheme (2). Therefore, for the case m � 2, Algorithm 2 with αk ≡ 1 is exactly the

standard ADMM. Based on the above analysis, the proposed Algorithm 2 can be regarded as an extension of the

standard ADMM scheme (2) from the special case with m � 2 to the general case with a generic m in (1).

Note that the computation of the stepsize αF
k in (37b) is cheap, because S and L are very simple (see (11)

and (14)). Moreover, in (41), we have shown a unified lower bound of this stepsize for any m. This bound is

certainly conservative because it holds for the general case with a generic m. For a specific m, we are interested

in a bound that is more accurate than this conservative bound. Also, one may ask the question if the stepsize

αk can be fixed as a constant, so that the computation of the forward substitution procedure (37a) can be further

alleviated. To answer these questions, we need to analyze how to ensure the positivity of the term qF (α). In the

remark above, we has shown that αk could be fixed as 1 for the special case where m � 2 in (1).

Moreover, according to (40), we have

qF (α) ≥ 0 ⇐⇒ ‖uk − ũk ‖2 + ‖S(uk − ũk)‖2 ≥ α‖L(uk − ũk)‖2.

Hence we need only to take α such that

(I+STS) − αLTL � 0

to ensure qF (α) ≥ 0 (thus to ensure the contraction and convergence). For any fixed m ≥ 3, we define

αF
∗ � sup{α | (I+STS) − αLTL � 0}. (45)

We summarize how to choose a constant stepsize for Algorithm 2 in the following theorem.

Theorem 5.6. Let {uk} be the sequence generated by the proposed Algorithm 2 with a constant stepsize α ∈ (0, αF
∗), where

αF
∗ is defined in (45). Then, we have

qF (α) ≥ α(αF
∗ − α)‖L(uk − ũk)‖2 , (46)

and consequently,
‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − α(αF

∗ − α)‖L(uk − ũk)‖2 , ∀ u∗ ∈U∗. (47)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
674 Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS

Proof. Using (40), we have

qF (α)� α((‖uk − ũk ‖2 + ‖S(uk − ũk)‖2) − α‖L(uk − ũk)‖2).

According to (45), we have

(‖uk − ũk ‖2 + ‖S(uk − ũk)‖2) ≥ αF
∗ ‖L(uk − ũk)‖2

and thus (46) is proved. The assertion (47) follows from (39) and (46) immediately. �

Now, we take the case where m � 3 as an illustrative example. For this case, since

I+STS�
©­«

2I I −I
I 2I −I
−I −I 2I

ª®¬ and LTL�
©­«

3I 2I −I
2I 2I −I
−I −I I

ª®¬ ,
we investigate the determinate of the matrix (I+STS) − αLTL,

∆(α) :�

������2− 3α 1− 2α α− 1

1− 2α 2− 2α α− 1

α− 1 α− 1 2− α

������ . (48)

In fact, with a detailed manipulation, we have

∆(α) � −2(α− 1)(α− 2)(3α− 2)+ {(2(1− 2α)+ (2α− 2)+ (3α− 2))}(α− 1)2 + (α− 2)(2α− 1)2

� −2(α− 1)(α− 2)(3α− 2)+ (α− 2)(α− 1)2 + (α− 2)(2α− 1)2

� −(α− 2){2(α− 1)(3α− 2) − (α− 1)2 − (2α− 1)2}
� −(α− 2)(α2 − 4α+ 2)
� −(α− (2−

√
2))(α− 2)(α− (2+

√
2)).

Therefore we obtain

∆(α) ≥ 0, ∀α ∈ (0, 2−√2).
In addition, for such α ∈ (0, 2−

√
2), it is easy to check that

2− 3α > 0 and

����2− 3α 1− 2α
1− 2α 2− 2α

���� > 0.

Thus

(I+STS) − αLTL � 0, ∀α ∈ (0, (2−√2)].
For m � 3, αF

∗ � 2−
√

2. Therefore, to use the forward substitution in (37a), we can take fixed αk ≡ α ∈ (0, 2−
√

2) if
m � 3 in (1).

Although it saves computation by taking a constant stepsize, we have found some applications where the

stepsize chosen by (37b) can accelerate the convergence of Algorithm 2, see the numerical results in Section 7.1.

To implement Algorithm 2, our recommendation is to use a constant stepsize if the computation of (37b) is

computationally expensive; or just use (37b) otherwise.

5.2. ADMM with a Backward Substitution
In this subsection, we combine the ADMM procedure (20) with the backward substitution (36) for solving (1). The

resulting algorithm can be summarized as follows.

Algorithm 3 (ADMM with a Backward Substitution)
Let γ ∈ (0, 2), A, S, and L be defined in (9), (11), and (14), respectively. Start with u0

. With the given iterate uk
,

the new iterate uk+1

is given as follows.

Step 1. ADMM procedure (prediction step). Execute the scheme (20) to generate w̃k
and thus ṽk

. Set ũk �Aṽk
.

Step 2. Backward substitution procedure (correction step). Generate the new iterate uk+1

via

PT(uk+1 − uk)� αkN(ũk − uk), (49a)

where

αk � γα
B
k with αB

k �
‖uk − ũk ‖2 + ‖S(uk − ũk)‖2

2‖N(uk − ũk)‖2 . (49b)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS 675

To show how to choose the stepsize in the backward substitution procedure (49a), we first look at a backward

substitution procedure whose stepsize α is undetermined, and then investigate how to seek an appropriate value

for α on contraction purpose.

Theorem 5.7. Let w̃k be generated by the ADMM procedure (20) with given uk and ũk � Aṽk . If the new iterate uk+1 is
updated by (49a), then we have

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G ≥ qB (α), ∀ u∗ ∈U∗ , (50)

where G �PPT , P is defined in (13) and

qB (α)� α(‖uk − ũk ‖2 + ‖S(uk − ũk)‖2) − α2‖N(uk − ũk)‖2. (51)

Proof. Recall that (49a) is a special case of (28) by taking G �PPT
. It follows from (30) that

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G ≥ α(‖uk − ũk ‖2 + ‖S(uk − ũk)‖2) − α2‖P−1L(uk − ũk)‖2 , ∀ u∗ ∈U∗. (52)

Since P−1L�N (see (15)), (50)–(51) is an immediate conclusion of (52). �

Accordingly, the inequality (50) suggests us to choose a value of α such that qB(α) defined in (51) is maxi-

mized, i.e.,

αB
k �
‖uk − ũk ‖2 + ‖S(uk − ũk)‖2

2‖N(uk − ũk)‖2 .

Note that we can also take G �PPT
in (31) and obtain the choice of αB

k as above. Similar as the forward substitution

procedure (37a), we attach a relaxation factor γ ∈ (0, 2) to αB
k , and thus choose the stepsize as

αk � γα
B
k

for the backward substitution procedure (49a).

Proposition 5.8. For the qB (α) defined in (51), we have

qB (α) ≥ α‖λk − ˜λk ‖2H−1
, ∀α ∈ (0, 1] (53)

and
qB (α) ≥ α(1− α)‖N(uk − ũk)‖2 , ∀α ∈ (0, 1]. (54)

Proof. Using the structures of N, u, and S (see (13), (8), and (11)), we have

‖N(uk − ũk)‖2 � ‖uk − ũk ‖2 − ‖λk − ˜λk ‖2H−1
+ ‖S(uk − ũk)‖2. (55)

According to the definition of qB (α), for any α ∈ (0, 1], we have

qB (α) � α{(‖uk − ũk ‖2 + ‖S(uk − ũk)‖2) − α‖N(uk − ũk)‖2}
(using (55)) ≥ α{(‖N(uk − ũk)‖2 + ‖λk − ˜λk ‖2H−1

) − ‖N(uk − ũk)‖2}
� α‖λk − ˜λk ‖2H−1

.

Using (see (55))

‖uk − ũk ‖2 + ‖S(uk − ũk)‖2 ≥ ‖N(uk − ũk)‖2 (56)

for any α ∈ (0, 1], we have

qB (α) � α{(‖uk − ũk ‖2 + ‖S(uk − ũk)‖2) − α‖N(uk − ũk)‖2}
≥ α(1− α)‖N(uk − ũk)‖2.

The assertions are proved. �

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
676 Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS

Moreover, to further alleviate the computation, the proposed backward substitution procedure (49a) is eligible

to simply take a constant

αk ≡ µ ∈ (0, 1)
as the stepsize. This is, in fact, a by-product of (55). From (49b) and (56), we have

αB
k ≥ 1

2
. (57)

Therefore we have γ · αB
k ≥ γ · 1

2
∈ (0, 1). If we take a constant µ ∈ (0, 1) as the stepsize for the backward substitution

procedure (49a), instead of (49b), the convergence is still ensured. Again, although it saves computation by

taking a constant stepsize in (0, 1), we also have observed some applications where the stepsize chosen by (49b)

can accelerate the convergence of Algorithm 3. Thus, similarly as Algorithm 2, to implement Algorithm 3, our

recommendation is to use a constant stepsize if the computation of (49b) is computationally expensive; or just

use (49b) otherwise.

Now, we can show that the sequence {uk} generated by the proposed Algorithm 3 is contractive with respect to

the set U∗ under the (PPT)-norm. Based on this fact, the reason why γ should be restricted into the interval (0, 2)
is also clear.

Theorem 5.9. Let the sequence {uk} be generated by the proposed Algorithm 3. Then, we have

‖uk+1 − u∗‖2G ≤ ‖uk − u∗‖2G −
γ(2− γ)

4

‖uk − ũk ‖2 , ∀ u∗ ∈U∗. (58)

Proof. Since αk � γα
B
k , it follows from (51) and αB

k ≥ 1

2
that

qB (αk) � γαB
k (‖u

k − ũk ‖2 + ‖S(uk − ũk)‖2) − γ2αB
k (αB

k ‖N(u
k − ũk)‖2)

(49b)

� γ

(
1−

γ

2

)
αB

k (‖u
k − ũk ‖2 + ‖S(uk − ũk)‖2)

≥
γ(2− γ)

4

‖uk − ũk ‖2.

The assertion follows from the above inequality and (50) directly. �

Remark 5.10. Let us revisit the case of (1) with m � 2. For this special case, it follows from (13) and (14) that P�I
and L � N. We thus have qF (α) � qB (α) (see (40) and (51)). In Subsection 5.1, we have demonstrated that if the

stepsize is taken as α ≡ 1, Algorithm 2 reduces to the standard ADMM scheme (2). Similarly, if α ≡ 1, the proposed

backward substitution procedure reduces to

PT(uk+1 − uk)�N(ũk − uk).

Because P is the identity matrix andL�N, Algorithm 3 also reduces to the standard ADMM scheme (2). In short,

for the case m � 2 in (1), the proposed forward and backward substitutions are identical, and Algorithms 2 and 3

reduce to the standard ADMM scheme (2). Our proposed algorithms are thus able to recover the standard ADMM

scheme (2) when m � 2 in (1).

5.3. Convergence Analysis
In the last subsections, we have shown that the sequences generated by Algorithms 2 and 3 are contractive

with respective to the set U∗. This fact thus enables us to establish the global convergence for both algorithms

simultaneously based on the analytic framework of contractionmethods in Blum andOettli [1]. Moreover, from the

contraction perspective, the local linear convergence of Algorithms 2 and 3 can be derived immediately provided

that certain error bounds (e.g., some analogous to those in Hong and Luo [24]) are assumed to be satisfied. As we

have mentioned, the input of the proposed algorithms at each iteration is uk
. Thus, in the following analysis, we

investigate the convergence for the sequence {uk}.
In fact, the inequalities (42) and (58) in which the contraction of the sequences generated by Algorithms 2 and 3

are shown, can be unified as

‖uk+1 − u∗‖2G ≤ ‖uk − u∗‖2G − c · ‖uk − ũk ‖2 , ∀ u∗ ∈U∗ , (59)

where c > 0 is certain constant. More precisely, G � I and c � γ(2− γ)/(4‖LTL‖) for Algorithm 2; and G � PPT

and c � γ(2− γ)/4 for Algorithm 3.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS 677

Theorem 5.11 (Global Convergence). Let the sequence {uk} be generated by the proposed framework of ADMM with a
substitution (either Algorithm 2 or Algorithm 3). Then, there exists u∞ ∈U∗ such that

lim

k→∞
uk

� u∞.

Proof. First, for an arbitrarily fixed u∗ ∈U∗, it follows from (59) that the sequence {uk} is bounded. Summarizing

the inequality (59) over k � 0, 1, . . ., we obtain

∞∑
k�0

c · ‖uk − ũk ‖2 ≤ ‖u0 − u∗‖2G ,

and thus

lim

k→∞
‖uk − ũk ‖2 � 0. (60)

Therefore the sequence {ũk} is also bounded. Since A j’s are assumed to be full column rank, it follows from (20b)

that {w̃k} is bounded. Then, there exists a cluster point w∞ and a subsequence {w̃kl } of {w̃k} converging to w∞.
Recall the notation in (7b) and (8). We specify x∞ ,w∞ , u∞, respectively, as

x∞ �
©­­«

x∞
1

...
x∞m

ª®®¬ , w∞ �

©­­­­«
x∞

1

...
x∞m
λ∞

ª®®®®¬
, u∞ �

©­­­­«
H1/2A

2
x∞

2

...
H1/2Am x∞m
H−1/2λ∞

ª®®®®¬
. (61)

In addition, we have

lim

l→∞
‖ x̃kl

j − x∞j ‖ � 0, j � 1, . . . ,m. (62)

Since H is assumed to be positive definite, it follows that liml→∞ ‖ũkl − u∞‖ � 0. Combining this with (60) and the

positive definiteness of G, we immediately have

lim

l→∞
‖ukl − u∞‖G � 0. (63)

On the other hand, because of the continuity of θ, taking limit in (22) along the subsequence {w̃kl } and using (60)

again, we obtain

θ(x) − θ(x∞)+

©­­­­­­«

x
1
− x∞

1

x
2
− x∞

2

· · ·
xi − x∞i
· · ·

xm − x∞m

ª®®®®®®¬

T ©­­­­­­«

−AT
1
λ∞

−AT
2
λ∞

· · ·
−AT

i λ
∞

· · ·
−AT

mλ
∞

ª®®®®®®¬
≥ 0, ∀ x ∈X

1
×X

2
× · · · ×Xm . (64)

Note that

 m∑
j�1

A j x
∞
j − b

 ≤

 m∑
j�1

A j x̃
k
j − b

+

 m∑
j�1

A j x̃
k
j −

m∑
j�1

A j x
∞
j

≤

 m∑
j�1

A j x̃
k
j − b

+ m∑
j�1

‖A j ‖ · ‖ x̃k
j − x∞j ‖. (65)

It follows from (23) that

 m∑
j�1

A j x̃
k
j − b

 ≤ ‖H−1(˜λk − λk)‖ +

 m∑

j�2

(A j x̃
k
j −A j x

k
j)

≤ ‖H−1‖ · ‖(˜λk − λk)‖ +
m∑

j�2

‖A j ‖ · ‖ x̃k
j − xk

j ‖. (66)

Also, because of (60), we have

lim

k→∞
‖λk − ˜λk ‖ � 0 and lim

k→∞
‖ x̃k

j − xk
j ‖ � 0, ∀ j � 2, . . . ,m. (67)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
678 Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS

Based on (62), (66), and (67), we take limit in (65) along the subsequence {w̃kl } and obtain

m∑
j�1

A j x
∞
j � b. (68)

Recall the VI reformulation (7). Then, it follows from (64) and (68) that

θ(x) − θ(x∞)+ (w −w∞)T F(w∞) ≥ 0, ∀w ∈W, (69)

which means w∞ is a solution point of VI(W, F, θ). From (61), this also means u∞ ∈ U∗. Furthermore, it follows

from (59) and (63) that limk→∞ ‖uk − u∞‖2G � 0 and thus limk→∞ uk � u∞. The proof is complete. �

Remark 5.12. Since the matrices Ai’s are assumed to be full column rank, the convergence of {xk
2
, . . . , xk

m , λ
k}

follows from Theorem 5.11 immediately. We refer to He et al. [20], Zhang et al. [47] for how to derive the

convergence of {xk
2
, . . . , xk

m , λ
k} from Theorem 5.11 without the full column rank assumption on the coefficient

matrices Ai’s.

Now, we can show the local linear convergence of Algorithms 2 and 3 immediately under some error bound

assumptions similar as those in Hong and Luo [24].

Theorem 5.13 (Local Linear Convergence Rate). Let the sequence {uk} be generated by the proposed framework of ADMM
with a substitution (either Algorithm 2 or Algorithm 3). Assume that there is a constant τ > 0 such that

‖uk − u∗‖ ≤ τ‖uk − ũk ‖ , u∗ ∈U∗. (70)

Then, {uk} converges to u∗ on a linear rate.

Proof. Since {‖uk − u∗‖G} is Fejér monotone with respect to U∗, the sequence {uk} is bounded. Then, the local

linear convergence rate of {uk} is an immediate assertion based on the assumption (70) and the fact (59). �

6. Worst-Case Convergence Rate in the Nonergodic Sense
In this section, our purpose is to show that without the error bound assumption in Theorem 5.13, we still can

estimate the worst-case convergence rates measured by the iteration complexity in the nonergodic sense for

Algorithms 2 and 3. The basis of the analysis in this section is the fact that the assertion (21) in Theorem 3.3 can

be rewritten as

w̃k ∈W, θ(x) − θ(x̃k)+ (w − w̃k)T F(w̃k)+ (u − ũk)TL(ũk − uk) ≥ 0, ∀w ∈W.

SinceL is a nonsingular matrix, the above inequality means that w̃k
is a solution point inW∗ if ‖uk − ũk ‖2 � 0. Thus

we can view ‖uk − ũk ‖2 as a residual or an error bound to measure the accuracy of w̃k
to a solution point inW∗. In

this section, we will show that after t iterations of the proposed Algorithms 2 and 3, we can ensure that

min

0≤k≤t
{‖uk − ũk ‖2} ≤ ε or ‖u t − ũ t ‖2 ≤ ε,

where ε�O(1/t). Thus, aworst-caseO(1/t) convergence rate in the nonergodic sense is established for Algorithms 2

and 3.

We have shown that the stepsize for either the forward or backward substitution step (i.e., (37a) or (49a)) can be

simply taken as a constant in certain intervals. This could be useful for further accelerating Algorithms 2 and 3 for

the case where computing the stepsize via (37b) or (49b) is expensive. To show the worst-case O(1/t) convergence
rate in the nonergodic sense for Algorithms 2 and 3, we consider the cases with a constant and chosen stepsize,

respectively.

6.1. The Case with a Chosen Stepsize
We first establish a worst-case O(1/t) convergence rate in the nonergodic sense for Algorithms 2 and 3 when their

substitution stepsizes are taken as (37b) and (49b)), respectively.

For both algorithms, it follows from (59) that

c
∞∑

k�0

‖uk − ũk ‖2 ≤ ‖u0 − u∗‖2G , ∀ u∗ ∈U∗ ,

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS 679

where c � γ(2− γ)/(4‖LTL‖) and G �I for Algorithm 2; and c � γ(2− γ)/4 and G �PPT
for Algorithm 3. Thus,

for any integer t > 0, we obtain

c
t∑

k�0

‖uk − ũk ‖2 ≤ ‖u0 − u∗‖2G , ∀ u∗ ∈U∗ ,

and consequently, it follows that

min

0≤k≤t
{‖uk − ũk ‖2} ≤ 1

c(t + 1) ‖u
0 − u∗‖2G , ∀ u∗ ∈U∗. (71)

Recall W∗ is convex and closed under our assumptions (see Theorem 2.3.5 in Facchinei and Pang [10]). Let

d :� inf{‖u0 − u∗‖2G | u∗ ∈U∗}.

For any given ε > 0, the inequality (71) indicates that Algorithms 2 and 3 require at most bd/(cε)c iterations to

fulfill the requirement ‖uk − ũk ‖2 ≤ ε. Thus, a worst-case O(1/t) convergence rate is established for Algorithms 2

and 3 in the nonergodic sense.

6.2. The Case with a Constant Stepsize
Then, we consider the case with a constant stepsize. We first show a lemma where an inequality regarding the

output of the ADMM procedure (20) is proved.

Lemma 6.1. Let w̃k be generated by the ADMM procedure (20) with given uk and ũk �Aṽk . Then, we have

(uk − uk+1)TL((uk − ũk) − (uk+1 − ũk+1)) ≥ 1

2
‖(uk − ũk) − (uk+1 − ũk+1)‖2(LT

+L). (72)

Proof. First, it follows from (21) that

w̃k ∈W, θ(x) − θ(x̃k)+ (w − w̃k)T F(w̃k) ≥ (u − ũk)L(uk − ũk), ∀w ∈W. (73)

This inequality is also true for k :� k + 1. Thus we have

w̃k+1 ∈W, θ(x) − θ(x̃k+1)+ (w − w̃k+1)T F(w̃k+1) ≥ (u − ũk+1)L(uk+1 − ũk+1), ∀w ∈W. (74)

Setting w � w̃k+1

and w � w̃k
in (73) and (74), respectively, and then adding these two resulting inequalities, we

obtain

(ũk − ũk+1)TL((uk − ũk) − (uk+1 − ũk+1)) ≥ (w̃k − w̃k+1)T(F(w̃k) − F(w̃k+1)).

Using the monotonicity of F, we have

(ũk − ũk+1)TL((uk − ũk) − (uk+1 − ũk+1)) ≥ 0. (75)

Adding the term

((uk − ũk) − (uk+1 − ũk+1))TL((uk − ũk) − (uk+1 − ũk+1))

to both sides of (75) and by a simple manipulation, we get (72) and the lemma is proved. �

In the following, we analyze the worst-case O(1/t) convergence rate in the nonergodic sense for Algorithms 2

and 3 where their substitution stepsizes are constant.

6.2.1. Algorithm 2 with a Constant Stepsize. Recall that the stepsize in the substitution step of Algorithm 2 can

be taken as a constant in α ∈ (0, αF
∗), where αF

∗ is defined in (45). We first show that the sequence {‖L(uk − ũk)‖2}
is monotonically nonincreasing and then derive the worst-case O(1/ε) convergence rate.

Lemma 6.2. Let {uk} be generated by Algorithm 2 with αk ≡ α ∈ (0, αF
∗). Then, we have

‖L(uk+1 − ũk+1)‖2 ≤ ‖L(uk − ũk)‖2 , ∀ k ≥ 0. (76)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
680 Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS

Proof. First, using (49a), we have

uk − uk+1

� αL(uk − ũk).
Then, substituting it into (72), we get

(uk − ũk)TLTL((uk − ũk) − (uk+1 − ũk+1)) ≥ 1

2α
‖(uk − ũk) − (uk+1 − ũk+1)‖(LT

+L). (77)

Setting a �L(uk − ũk) and b �L(uk+1 − ũk+1) in the identity

‖a‖2 − ‖b‖2 � 2aT(a − b) − ‖a − b‖2 ,

and using the inequality (77) and the relationship (18), we obtain

‖L(uk − ũk)‖2 − ‖L(uk+1 − ũk+1)‖2 ≥ 1

α
‖(uk − ũk) − (uk+1 − ũk+1)‖(LT

+L) − ‖L(uk − ũk) −L(uk+1 − ũk+1)‖2

�
1

α
‖(uk − ũk) − (uk+1 − ũk+1)‖2((I+STS)−αLTL). (78)

Because α ∈ (0, αF
∗) and thus I +STS − αLTL � 0 (see (45)), the right-hand side of (78) is nonnegative and the

lemma is proved. �

Now, we are ready to estimate a worst-case O(1/t) convergence rate in the nonergodic sense for Algorithm 2

with a constant substitution stepsize.

Theorem 6.3. Let {u t} be the sequence generated by the proposed Algorithm 2 with αk ≡ α ∈ (0, αF
∗). Then, we have

‖L(u t − ũ t)‖2 ≤ 1

α(αF
∗ − α)(t + 1) ‖u

0 − u∗‖2 , (79)

L is defined in (14).

Proof. First, it follows from Theorem 5.6 (see (47)) that

α(αF
∗ − α)

∞∑
k�0

‖L(uk − ũk)‖2 ≤ ‖u0 − u∗‖2 , ∀ u∗ ∈U∗. (80)

Note that Lemma 6.2 shows that the sequence {‖L(uk − ũk)‖2} is monotonically nonincreasing. Thus we have

(t + 1)‖L(u t − ũ t)‖2 ≤
t∑

k�0

‖L(uk − ũk)‖2 , (81)

which implies the assertion (79) immediately. �

RecallW∗ is convex and closed under our assumptions (see Facchinei and Pang [10, Theorem 2.3.5]). Let

d
1

:� inf{‖u0 − u∗‖2 | u∗ ∈U∗}.

For any given ε > 0, Theorem 6.3 indicates that Algorithm 2 with αk ≡ α ∈ (0, αF
∗) requires at most bd

1
/(α(αF

∗ −α)ε)c
iterations to ensure that ‖L(uk − ũk)‖2 ≤ ε. A worst-case O(1/t) convergence rate in the nonergodic sense is thus

established for Algorithm 2 with αk ≡ α ∈ (0, αF
∗).

6.2.2. Algorithm 3 with a Constant Stepsize. Recall that the stepsize in the substitution step of Algorithm 3 can

be taken as a constant in α ∈ (0, 1). First, it follows from (50) and (54) that

‖uk+1 − u∗‖2G ≤ ‖uk − u∗‖2G − α(1− α)‖N(uk − ũk)‖2 , ∀ u∗ ∈U∗. (82)

Then, we need to show that the sequence {‖N(uk − ũk)‖2} is monotonically nonincreasing before we derive the

worst-case O(1/t) convergence rate.
Lemma 6.4. Let {uk} be generated by Algorithm 3 with αk ≡ µ ∈ (0, 1). Then, we have

‖N(uk+1 − ũk+1)‖2 ≤ ‖N(uk − ũk)‖2 , ∀ k ≥ 0. (83)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS 681

Proof. Using (49a), we have

uk − uk+1

� αP−TN(uk − ũk).

Substituting it into (72) and using N�P−1L, we get

(uk − ũk)TNTN((uk − ũk) − (uk+1 − ũk+1)) ≥ 1

2α
‖(uk − ũk) − (uk+1 − ũk+1)‖(LT

+L). (84)

In addition, setting a �N(uk − ũk) and b �N(uk+1 − ũk+1) in the identity

‖a‖2 − ‖b‖2 � 2aT(a − b) − ‖a − b‖2 ,

and using the inequality (84), we obtain

‖N(uk − ũk)‖2 − ‖N(uk+1 − ũk+1)‖2 ≥ 1

α
‖(uk − ũk) − (uk+1 − ũk+1)‖(LT

+L) − ‖N(uk − ũk) −N(uk+1 − ũk+1)‖2

≥ ‖(uk − ũk) − (uk+1 − ũk+1)‖(LT
+L) − ‖(uk − ũk) − (uk+1 − ũk+1)‖2(NTN). (85)

The last inequality is due to α ∈ (0, 1]. It follows from (13) and (14) that

LT
+L�

©­­­­­«
2Il Il · · · Il −Il

Il 2Il
. . .

...
...

...
. . .

. . . Il −Il
Il · · · Il 2Il −Il
−Il · · · −Il −Il 2Il

ª®®®®®¬
and NTN�

©­­­­­«
2Il Il · · · Il −Il

Il 2Il
. . .

...
...

...
. . .

. . . Il −Il
Il · · · Il 2Il −Il
−Il · · · −Il −Il Il

ª®®®®®¬
.

Thus the right-hand side of (85) is nonnegative and the lemma is proved. �

Now, we are ready to estimate a worst-case O(1/t) convergence rate in the nonergodic sense for Algorithm 3

with a constant substitution stepsize.

Theorem 6.5. Let {u t} be the sequence generated by the proposed Algorithm 3 with αk ≡ µ ∈ (0, 1). Then, we have

‖N(u t − ũ t)‖2 ≤ 1

α(1− α)(t + 1) ‖u
0 − u∗‖2G , (86)

where G �PPT and P is defined in (14).

Proof. First, it follows from (82) that

α(1− α)
∞∑

k�0

‖N(uk − ũk)‖2 ≤ ‖u0 − u∗‖2G , ∀ u∗ ∈U∗. (87)

Note that Lemma 6.4 shows that the sequence {‖N(uk − ũk)‖2} is monotonically nonincreasing. Thus we have

(t + 1)‖N(u t − ũ t)‖2 ≤
t∑

k�0

‖N(uk − ũk)‖2 , (88)

which implies the assertion (86) immediately. �

RecallW∗ is convex and closed under our assumptions (see Facchinei and Pang [10, Theorem 2.3.5]). Let

d
2

:� inf{‖u0 − u∗‖2G | u∗ ∈U∗}.

For any given ε > 0, Theorem 6.5 indicates that Algorithm 3 with αk ≡ µ ∈ (0, 1) requires at most bd
2
/(µ(1− µ)ε)c

iterations to ensure that ‖N(uk − ũk)‖2 ≤ ε. A worst-case O(1/t) convergence rate in the nonergodic sense is thus

established for Algorithm 3 with αk ≡ µ ∈ (0, 1).

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
682 Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS

7. Numerical Experiments
In this section, we apply the proposed Algorithms 2 and 3 (denoted by “ADMM-Forward” and “ADMM-

Backward,” respectively) to solve some specific applications of the model (1) arising in image processing and

report the numerical results. For “ADMM-Forward” and “ADMM-Backward,” we will test both cases where the

stepsize is chosen dynamically by the proposed strategies and fixed as a constant. We also compare them numer-

ically with the direct extension of ADMM (3) (denoted by “EADMM”) and the ADMM with Gaussian back

substitution in He et al. [19] (denoted by “ADMM-GB”).

Note that all the methods to be tested involve an ADMM procedure (3) or (20). For the penalty matrix H in (3)

or (20), we choose it as a block diagonal matrix in the following form for all the methods:

H �

©­­­«
β2

1
In

1

0 . . . 0

0 β2

2
In

2

. . . 0

...
...

. . .
...

0 0 . . . β2

m Inm

ª®®®¬ , (89)

where βi > 0 and Ini
is the identity matrix in<ni×ni for i � 1, 2, . . . ,m.

All the methods were coded by Matlab 7.1, and all numerical experiments were performed on a personal

Lenovo laptop computer with Intel Core i5-6300U processor @ 2.30 GHz and 8 GB memory.

7.1. Example 1—An Image Restoration Model for Mixed Noise Removal
Let x ∈ <n

represent a digital image with n � l
1
× l

2
. Note that a two-dimensional image can be represented by

vectorizing it as a one-dimensional vector in certain order, e.g., the lexicographic order. We consider the following

image restoration model for mixed noise removal in Huang et al. [25]:

min

x,y

{
τ‖|∇x|‖

1
+
ρ

2

‖x−y‖2 + ‖PΩ(By− x0)‖
1

}
, (90)

where ‖ · ‖
1
and ‖ · ‖ denote the l

1
and l

2
norms, respectively; ∇� (∂

1
, ∂

2
) denotes the gradient operator and ‖|∇ · |‖

1

is the total variation term (see, e.g., Rudin et al. [38]), which can induce sparse representation of a piecewise

smooth function; B is the spatially invariant convolutional matrix generating blur to the image; Ω represents the

set of pixels, which are corrupted by the impulsive noise (all the pixels outside Ω are corrupted by the Gaussian

noise); PΩ is the characteristic function of the set Ω, i.e., PΩ(x) has the value 1 for any pixel withinΩ and 0 for any

pixel outside Ω; x0

is the corrupted image with blurry and mixed noise; and τ and ρ are positive constants.

We first show that themodel (90) can be reformulated as a special case of (1). In fact, by introducing the auxiliary

variables u, v, and z, we can reformulate (90) as

min τ‖|u|‖
1
+

ρ

2
‖v‖2 + ‖PΩ(z)‖1

s.t. u�∇x,
v� x−y,
z� By− x0 ,

(91)

which is a special case of the abstract model (1) with the following specification:

• x
1

:� x, x
2

:� y and x
3

:� (u,v, z); Xi (i � 1, 2, 3) are the whole real spaces in appropriate dimensionality;

• θ
1
(x

1
) :� 0, θ

2
(x

2
) :� 0 and θ

3
(x

3
) :� θ

3
(u,v, z)� τ‖|u|‖

1
+ (ρ/2)‖v‖2 + ‖PΩ(z)‖1;

• and

A
1

:�


∇
I
0

 , A
2

:�


0

−I
B

 , A
3

:�


−I 0 0

0 −I 0

0 0 −I

 , b :�


0

0

x0

 . (92)

Thus the methods “EADMM,” “ADMM-GB,” “ADMM-Forward,” and “ADMM-Backward” are all applicable to

the model (91). Below we elaborate on the minimization subproblems arising in the ADMM procedure (3) or (20)

and show that they all have closed-form solutions.

• The x̃
1
-subproblem in (20), i.e., the x̃-subproblem for (91), can be formulated as

x̃k
1
� arg min

x
1

{‖A
1
x

1
+H−1/2(uk

2
+ uk

3
) − b − uk

λ‖2H}

⇔ (β2

1
∇T∇+ β2

2
I)x̃k

1
� β

1
∇T(uk

21
+ uk

31
− uk

λ1
) − β

2
(uk

22
+ uk

32
− uk

λ2
), (93)

which can be solved efficiently by the fast Fourier transform (FFT) or the discrete cosine transform (DCT) (see,

e.g., Hansen et al. [18] for details).

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS 683

• The x̃
2
-subproblem in (20), i.e., the ỹ-subproblem for (91), can be written as

x̃k
2
� arg min

x
2

{‖A
1
x̃k

1
+A

2
x

2
+H−1/2uk

3
− b − uk

λ‖2H}

⇔ (β2

2
I + β2

3
BT B)x̃k

2
� β

3
BT(β

3
x

0
− uk

33
+ uk

λ3
)+ β

2
(uk

32
− uk

λ2
+ β

2
x̃k),

which can also be solved by the fast transforms as that of (93).

• The x̃
3
-subproblem in (20), i.e., the (ũ, ṽ, z̃)-subproblem for (91), reads as

x̃k
3
� (ũk , ṽk , z̃k) � arg min

u,v, z

{
τ‖|u|‖

1
+
ρ

2

‖v‖2 + ‖PΩ(z)‖1 +
β2

1

2

∇x̃k −u−
uk
λ1

β
1

2

+
β2

2

2

x̃k − ỹk −v−
uk
λ2

β
2

2

+
β2

3

2

Bỹk − z− x0 −
uk
λ3

β
3

2
}
,

and it can be solved separably as follows:

— ũk � shrinkτ/β2

1

(∇x̃k − uk
λ1
/β

1
), where shrinkσ(·) denotes the well-known shrinkage operator (see, e.g.,

Donoho [7]). That is,

shrinkσ(a)� sign(a) ◦max{|a | − σ, 0}, ∀ a ∈Rn ,

with σ > 0, where sign(·) is the sign function and the operator “◦” stands for the componentwise scalar multipli-

cation.

— ṽk � β
2
[β

2
(x̃k − ỹk) − uk

λ2
]/(ρ+ β2

2
).

— z̃k
is given by

z̃k
� arg min

z

{
‖PΩ(z)‖1 +

β2

3

2

Bỹk − z− x0 −
uk
λ3

β
3

2
}
,

whose closed-form solution can be obtained via

(z̃k)i �
{
[shrink(1/β2

3
)(Bỹk − x0 − uk

λ3
/β

3
)]i , if i ∈Ω,

[Bỹk − x0 − uk
λ3
/β

3
]i if i <Ω.

In Table 1, we list the correction steps of ADMM-GB, ADMM-Forward, and ADMM-Backward, where they take

the constant α as the stepsize. From this table, we can see their difference in computation demand. In particular,

for ADMM-GB, the update of xk+1

2
is computationally expensive when solving the model (91). More specifically,

by denoting rk
:� (AT

2
HA

2
)−1AT

2
A

3
(xk

3
− x̃k

3
) and recalling that x

3
� (u,v, z) , we have

rk
:� (AT

2
HA

2
)−1AT

2
A

3
(xk

3
− x̃k

3
)

:� (β2

2
I + β2

3
BT B)−1[yk − ỹk − BT(zk − z̃k)]

:� F−1

[
F(yk − ỹk) −D∗ ◦F(zk − z̃k)

β2

2
+ β2

3
|D |2

]
,

where F is FFT and F−1

is its inverse; D includes the eigenvalues of the convolutional matrix B and D∗ is its

conjugate transform, and “◦” is themultiplication in componentwise. Thus the auxiliarymatrix D and the constant

Table 1. Correction steps of ADMM-GB, ADMM-Forward, and ADMM-Backward

with a constant stepsize α.

Algorithm Correction step

ADMM-GB


xk+1

2
� xk

2
+ α(x̃k

2
− xk

2
) − α(AT

2
A

2
)−1AT

2
A

3
(x̃k

3
− xk

3
)

xk+1

3
� xk

3
+ α(x̃k

3
− xk

3
)

λk+1 � λk + α(˜λk − λk)

ADMM-Forward


uk+1

2
� uk

2
− α(uk

2
− ũk

2
)

uk+1

3
� uk

3
− α(uk

2
− ũk

2
+ uk

3
− ũk

3
)

uk+1

λ � uk
λ − α(uk

λ − ũk
λ − uk

2
+ ũk

2
− uk

3
+ ũk

3
)

ADMM-Backward


uk+1

2
� uk

2
− α(uk

2
− ũk

2
− uk

3
+ ũk

3
)

uk+1

3
� uk

3
− α(uk

3
− ũk

3
)

uk+1

λ � uk
λ − α(uk

λ − ũk
λ − uk

2
+ ũk

2
− uk

3
+ ũk

3
)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
684 Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS

Figure 1. Top row: Clean images. Bottom row: Degraded images by out-of-focus blur with radius r and mixed noise.

Cameraman · png(256) Man · png(1024)

r = 3 r = 5 r = 7 r = 10

Shape · jpg(128) Barbara · png(512)

β2

2
+ β2

3
|D |2 can be computed once and then used for all iterations; but two FFT and one inverse FFT must be

executed iteratively. This is also the main reason why ADMM-GB performs less efficiently than ADMM-Forward

and ADMM-Backward, as the numerical results to be reported show.

For numerical comparisons, we test some images in different sizes varying from 128 to 1,024. All clean images

are corrupted by the out-of-focus blur with a radius r. The blurred images are further corrupted by both the

impulsive noise with an intensity 0.5 and the zero mean Gaussian noise with a variance 0.01. The clean and

degraded images are shown in Figure 1. As in Huang et al. [25], we first apply adaptive median filter (AMF) (see

Hwang and Haddad [26]) to identify the set Ω and then remove the impulsive noise within that set. The window

size for AMF is taken as 19. The parameters in (90) are fixed as τ � 0.003 and ρ � 1 for the model (90).

For the scalars βi’s in (89), we set them as β
1
� β

2
� 0.1 and β

3
� 1 for all the methods to be tested. For the

relaxation parameter γ appearing in (37b) and (49b), we set it as 1.5. In addition, to test the performance of

ADMM-Forward and ADMM-Backward with the constant stepsize α in their correction steps, we take α � 0.5 as

an illustrative example. All the methods take the zero vector as the initial iterate.

To measure the quality of a restored image, we use the signal-to-noise ratio (SNR) in the unit of dB defined as

SNR� 20 log
10

‖x∗‖
‖x̄− x∗‖ , (94)

where x̄ is the restored image and x∗ is the clean image. As we have shown in the theoretical analysis (see

Remark 4.3), it is reasonable to use ‖uk − ũk ‖2 to measure the accuracy of an iterate to a solution point. Thus the

stopping criterion for all the methods to be tested is taken as

TOL :�
‖uk − ũk ‖2
‖uk ‖2 + 1

< 10
−4. (95)

In Table 2, we report the numbers of iterations (“It”) and computing time in seconds (“CPU”) when themethods

under test are terminated by satisfying the criterion (95). In addition to the case with chosen stepsizes, the case

Table 2. Numerical results of the image restoration model (90).

Shape Cameraman Barbara Man

Algorithm It CPU SNR It CPU SNR It CPU SNR It CPU SNR

EADMM 55 0.61 16.39 44 2.51 17.38 44 11.78 17.49 45 48.98 16.97

ADMM-GB(0.5) 76 1.44 (0.51) 16.38 72 5.62 (2.50) 17.39 60 19.05 (8.19) 17.47 64 83.01 (36.09) 16.99

ADMM-Forward 66 0.76 (0.11) 16.38 42 2.45 (0.66) 17.38 42 10.95 (3.03) 17.50 37 42.03 (10.33) 16.89

ADMM-Forward(0.5) 69 0.69 (0.06) 16.37 46 2.51 (0.48) 17.39 45 11.03 (1.79) 17.50 40 41.53 (5.99) 16.88

ADMM-Backward 50 0.56 (0.06) 16.36 37 1.59 (0.39) 17.32 30 7.91 (2.64) 17.50 30 31.34 (7.34) 16.87

ADMM-Backward(0.5) 67 0.80 (0.08) 16.38 41 1.98 (0.41) 17.12 39 9.86 (1.44) 17.47 38 39.31 (4.66) 16.68

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS 685

where all the methods take 0.5 as the constant stepsize is reported. The SNR values of the images restored by

these methods when the criterion (95) is satisfied are also reported. Since the methods under test mainly differ

in their correction steps, we also report the computing time required by their correction steps (accumulated

for all iterations), see the data in parenthesis of the CPU columns in Table 2. According to this table, we see

that ADMM-Forward and ADMM-Backward are more efficient than ADMM-GB for the tested model—they can

achieve solutions in the same level of quality (only having a difference at the first or second digit) measured

by the SNR values within shorter time. As we have mentioned, this is mainly because some Fourier transforms

are inevitable in the correction steps of ADMM-GB. For the comparison between ADMM-Forward and ADMM-

Backward, it seems that ADMM-Backward is slightly faster than ADMM-Forward for most of the scenarios we

tested. Moreover, for the tested scenarios, it seems that the constant stepsize 0.5 sometimes can accelerate ADMM-

Forward for the tested scenarios. But, in general, it is not conclusive that a constant stepsize must be better

than a chosen stepsize—using a constant stepsize saves computation, while the chosen stepsize requiring extra

computation can accelerate the contraction to the solution set.

To see the comparison among different methods clearly, we also plot the evolutions of the SNR values of the

restored images with respect to iterations and computing times in Figure 2, respectively. In Figure 3, for ADMM-

Forward andADMM-Backward, we plot the evolutions of the SNR values with respect to iterations when different

constant stepsizes are chosen. For succinctness, only the Cameraman and Barbara images are tested. Finally, we

display the images restored by ADMM-Forward after 50 iterations in Figure 4.

7.2. Example 2—An Image Decomposition Model
Image decomposition is an important problem in image processing and it plays a significant role in many realms

such as object recognition and biomedical engineering. A useful image decomposition problem is to decompose

a target image into two meaningful components: One is its geometrical part or sketchy approximation, which is

called cartoon component, and the other is its oscillating part or small-scale special patterns, which is called texture
component. Mathematically, the cartoon component can be described by a piecewise smooth (or a piecewise

constant) function and the texture component is commonly oscillating. Because of their different properties, it is

usually required to separate them for further tasks in image processing or image analysis.

We test the model in Ng et al. [34] for decomposing an image with corruptions (e.g., blurry and/or missing

pixels):

min

x∈<n ,g∈<n×<n

{
τ‖|∇x|‖

1
+

1

2
‖K(x+div g) − f‖2 + µ‖|g|‖∞

}
, (96)

where ‖ · ‖
1
, ‖ · ‖ and ‖ · ‖∞ denote the l

1
, l

2
, and l∞ norms, respectively; f ∈<n

is a target image; div :�−∇T
denotes

the divergence operator where ∇ is the gradient operator as mentioned in (90); K:<n→.Rn
is a linear operator;

τ > 0 and µ > 0 are trade-off constants to balance the target image f into the cartoon x and the texture v � div g,
respectively. Different choices of K correspond to different corruptions in the observed image. For instance, K � S,
where S is a binary matrix (also the so-called “mask” operator) means decomposing an image with missing pixels,

see Ng et al. [34] for more details. In Ng et al. [34], ADMM-GB was used to solve the model (96).

First, we show that the model (96) can be formulated as a special case of (1). In fact, by introducing the auxiliary

variables u, y, and z, the model (96) can be rewritten as

min τ‖|u|‖
1
+

1

2
‖Ky− f‖2

2
+ µ‖|z|‖∞

s.t. u�∇x
y� x+div g
z� g,

(97)

which is a special case of (1) with the following specifications:

• x
1

:� x, x
2

:� g, x
3

:� (u,y, z), X
1

:�<n
, X

2
:�<n ×<n

and X
3

:� (<n ×<n) ×<n × (<n ×<n);
• θ

1
(x

1
) :� 0, θ

2
(x

2
) :� 0 and θ

3
(x

3
) :� τ‖|u|‖

1
+

1

2
‖Ky− f‖2 + µ‖|z|‖∞;

• and

A
1

:�


∇
I
0

 , A
2

:�


0

div

I

 , A
3

:�


−I 0 0

0 −I 0

0 0 −I

 , b :� 0.

Then, we elaborate on the minimization subproblems in the ADMM procedure (2) or (20) for solving the

model (97).

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
686 Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS

Figure 2. (Color online) Model (90). Evolutions of SNR w.r.t. to iterations (left column) and computing time (right column).

From top to bottom: For Shape, Cameraman, Barbara, and Man images.

0 10 20 30 40 50
2

4

6

8

10

12

14

16

Iteration no.

S
N

R
 (

dB
)

2

4

6

8

10

12

14

16

18

S
N

R
 (

dB
)

2

4

6

8

10

12

14

16

S
N

R
 (

dB
)

0 0.1 0.2 0.3 0.4 0.5

CPU time (s)

0

0

2

4

6

8

10

12

14

16

18

S
N

R
 (

dB
)

0

2

4

6

8

10

12

14

16

18

S
N

R
 (

dB
)

0

2

4

6

8

10

12

14

16

18

S
N

R
 (

dB
)

0

2

4

6

8
6

8
10

12

14

16

18

S
N

R
 (

dB
)

2

4

10

12

14

16

18

S
N

R
 (

dB
)

0
10 20 30 40 50 60 70 80

Iteration no.

0 1 2 3 4 5

CPU time (s)

0 10 20 30 40 50

Iteration no.

0 10 20 30 40 50

Iteration no.

0 2 4 6 8 10 12

CPU time (s)

0 10 20 30 40 50 60

CPU time (s)

EADMM
ADMM-GB
ADMM-Forward
ADMM-Forward(0.5)
ADMM-Backward
ADMM-Backward(0.5)

• The x̃
1
-subproblem, i.e., the x̃k

-subproblem for (97), corresponds to the following optimization problem:

x̃k
1
� arg min

x
1

{‖A
1
x

1
+H1/2(uk

2
+ uk

3
) − uk

λ‖2H},

⇔ (β2

1
∇T∇+ β2

2
I)x̃k

� β
1
∇T[β

1
uk
λ1
− uk

21
− uk

31
]+ β

2
(β

2
uk
λ2
− uk

22
− uk

32
),

which can be easily solved as that of (93).

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS 687

Figure 3. (Color online) Model (90). Evolutions of SNR w.r.t. iterations for ADMM-Forward and ADMM-Backward with

different constant stepsizes α. Left: For Cameraman. Right: For Barbara.

2

4

6

8

10

12

14

16
S

N
R

 (
dB

)

2

4

6

8

10

12

14

16

18

S
N

R
 (

dB
)

0 20 40 60 80 100

Iteration no. Iteration no.

0 20 40 60 80 100 120

ADMM-Forward(0.1) ADMM-Forward(0.3) ADMM-Forward(0.5)

ADMM-Backward(0.1) ADMM-Backward(0.5) ADMM-Backward(0.9)

Figure 4. Restored images by ADMM-Forward after 50 iterations for the model (90).

• The x̃
2
-subproblem, i.e., the g̃k

-subproblem for (97), is equivalent to

x̃k
2
� arg min

x
2

{‖A
1
x̃k

1
+A

2
x

2
+H−1/2uk

3
− uk

λ‖2H}

⇔ (β2

2
div

T
div+β2

3
I)g̃k

� β
2

div
T[β

2
(uk

λ2
− x̃k

1
) − uk

32
] − β

3
(uk

33
− β

3
uk
λ3
),

and the FFT or DCT can be used as that for solving (93) because div �−∇T
.

• The x̃
3
-subproblem, i.e., the (ũk , ỹk , z̃k)-subproblem for (97), corresponds to

x̃k
3
� (ũk , ỹk , z̃k) � arg min

u,y, z

{
τ‖|u|‖

1
+

1

2
‖Ky− f‖2 + µ‖|z|‖p + 1

2
‖A

1
x̃k

+A
2
g̃k

+A
3
x

3
−H−1/2uk

λ‖2H
}
,

and each variable can be solved separably as shown below.

—The ũ-subproblem can be solved explicitly by the shrinkage operator:

ũk
� arg min

u

{
τ‖|u|‖

1
+
β2

1

2

u−∇x̃k
+

uk
λ1

β
1

2
}
� shrinkτ/β2

1

(
∇x̃k −

uk
λ1

β
1

)
.

—The ỹ-subproblem is equivalent to

ỹk
� arg min

y

{
1

2

‖Ky− f‖2
2
+
β2

2

2

x̃k
+div g̃k −y−

uk
λ2

β
2

2
}

⇔ (KT K + β2

2
I)y � KTf+ β

2
[β

2
(x̃k

+div g̃k) − uk
λ2
],

whose computational effort is dependent on the operator K (see Ng et al. [34] for details).

—The z̃-subproblem is equivalent to

z̃k
� arg min

z

{
µ‖|z|‖∞ +

β2

3

2

z− g̃k −
uk
λ3

β
3

2
}
� prox(µ/β2

3
)‖ | · |‖∞

(
g̃k

+
uk
λ3

β
3

)
, (98)

where proxc‖| · |‖∞(·) denotes the proximal operator of the function c‖| · |‖∞ for c > 0, see, e.g., Martinet [29],

Rockafellar [37]. Thus, z̃k
is giving by computing the projection onto the l∞ ball.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
688 Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS

Figure 5. (Color online) Test images. Left: 256× 256 “Barbara.png.” Right: 250× 248× 3 “weave.jpg.”

The correction steps for ADMM-GB, ADMM-Forward, and ADMM-Backward can be summarized similarly as

Table 1. For succinctness, we omit them.

For numerical comparison, we test the images with different sizes displayed in Figure 5. For simplification, we

only report the cases when K � I in the model (96). The parameters in (96) are taken as τ � 0.5 and µ � 5 in our

experiments.

The scalars in (89) are chosen as β
1
� β

2
� β

3
� 1 for all the methods to be tested. Again, for the relaxation

parameter γ appearing in (37b) and (49b), we set it as 1.5. All the methods take the zero vector as the initial iterate.

The stopping criterion for all methods is

TOL�
‖uk − ũk ‖2
‖uk ‖2 + 1

< 10
−6. (99)

In Table 3, we report the numbers of iteration (“It”), computing time in seconds (“CPU”) and the obtained

objective function values (“Obj”) when the stopping criterion (99) is satisfied for all the methods under test. Note

that this example is an image decomposition model; we thus report the objective function values rather than the

SNR values as for image restoration models. Again, the data in parenthesis in Table 3 are the accumulative time

in seconds of the correction steps for each method. For succinctness, we only report the case where the constant

stepsize is chosen as 0.5. Other choices of constant can also be shown similarly as Figure 3; but omitted. Based on

the data in Table 3, some conclusions similar as those in the last subsection can be claimed. For example, ADMM-

Forward and ADMM-Backward with a chosen or constant stepsize are both more efficient than ADMM-GB,

because the latter requires significantly more time for computing the correction steps. For this example, ADMM-

Backward is alsomore efficient thanADMM-Forward for the tested scenarios. In particular, we found that ADMM-

Backward is even very competitive with EADMM, which is not necessarily convergent as proved in Chen et al. [6]

but usually performs very well numerically.

To see the comparison among these methods clearly, in Figures 6 and 7, we plot the evolutions of the objective

function valueswith respect to iterations and computing time, respectively. For each figure, we zoom in a particular

area to display the difference of these methods more clearly. Finally, we display the images recovered by ADMM-

Forward after 250 iterations in Figure 8.

8. Conclusions
In this paper, by further studying the combination of the Douglas-Rachford alternating direction method of mul-

tipliers (ADMM) with a substitution procedure, we proposed an algorithmic framework for solving a convex

minimization model with a general separable structure in its objective function. The proposed forward and back-

ward substitution procedures are computationally inexpensive and thus numerically implementable. Two new

algorithms were derived from this algorithmic framework. One of the common features of these two algorithms is

Table 3. Numerical results for the image decomposition model (96).

Barbara Weave

Algorithm It CPU Obj It CPU Obj

EADMM 223 30.95 131.24 190 76.30 352.29

ADMM-GB(0.5) 351 66.91 (29.00) 132.88 334 174.39 (65.94) 360.05

ADMM-Forward 283 53.48 (20.98) 131.36 234 120.71 (45.80) 352.30

ADMM-Forward(0.5) 295 47.33 (16.65) 132.73 246 106.35 (33.85) 358.56

ADMM-Backward 205 32.14 (9.02) 131.02 173 74.69 (16.72) 350.84

ADMM-Backward(0.5) 243 36.46 (10.42) 132.49 209 88.28 (18.80) 357.16

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS 689

Figure 6. (Color online) Model (96). Evolutions of the objective function value w.r.t. iterations and computing times for

Barbara. Right column: Zoom in of the dashed boxes in the left column.

0 50 100 150 200

103

Iteration no.

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

20 40 60 80 100
102.5

102.6

102.7

Iteration no.

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

0 5 10 15 20 25 30 35 40

103

CPU time (s)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

5 10 15 20

102.5

102.6

CPU time (s)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

EADMM
ADMM-GB
ADMM-Forward
ADMM-Forward(0.5)
ADMM-Backward
ADMM-Backward(0.5)

EADMM
ADMM-GB
ADMM-Forward
ADMM-Forward(0.5)
ADMM-Backward
ADMM-Backward(0.5)

Figure 7. (Color online) Model (96). Evolutions of the objective function value w.r.t. iterations and computing time for

weave. Right column: Zoom in of the dashed boxes in the left column.

0 50 100 150 200 250

103

Iteration no.

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

20 40 60 80 100 120

102.5

102.6

102.7

102.8

Iteration no.

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

102.5

102.6

102.7

102.8

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

0 20 40 60 80 100

103

CPU time (s)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

10 20 30 40 50

CPU time (s)

EADMM
ADMM-GB
ADMM-Forward
ADMM-Forward(0.5)
ADMM-Backward
ADMM-Backward(0.5)

EADMM
ADMM-GB
ADMM-Forward
ADMM-Forward(0.5)
ADMM-Backward
ADMM-Backward(0.5)D

ow
nl

oa
de

d
fr

om
 in

fo
rm

s.
or

g
by

 [
11

6.
6.

49
.9

4]
 o

n
31

 O
ct

ob
er

 2
01

7,
 a

t 2
3:

22
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
690 Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS

Figure 8. (Color online) Decompositions of cartoons and textures by ADMM-Forward after 250 iterations for model (96).

From left to right: Cartoons of Barbara, textures of Barbara, cartoons of weave, and textures of weave.

that they both reduce to the original ADMM for the case of (1) where m � 2. For these two algorithms, we proved

their global convergence under the analytic framework of contraction methods and derived their local linear con-

vergence rate under some error bound assumptions. Under general settings without additional assumptions, we

also estimated some worst-case convergence rates measured by the iteration complexity for the new algorithms.

The new algorithms were applied to solve some applications arising in image processing and they were compared

with some existing methods of the same kind in the literature. The efficiency of these new algorithms was well

demonstrated by the tested examples.

Acknowledgments
The authors thank Dr. Wenxing Zhang for his generous help in completing the numerical experiments.

References
[1] Blum E, Oettli W (1975) Mathematische Optimierung, Econometrics and Operations Research, 20 (Springer, Berlin).

[2] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2010) Distributed optimization and statistical learning via the alternating direction

method of multipliers. Found. Trends Machine Learn. 3(1):1–122.
[3] Chan RH, Yang JF, Yuan XM (2011) Alternating direction method for image inpainting sin wavelet domain. SIAM J. Image Sci.

4(3):807–826.

[4] Chan TF, Glowinski R (1978) Finite element approximation and iterative solution of a class of mildly non-linear elliptic equations.

Stanford report STAN-CS-78-674, Computer Science Department, Stanford University, Palo Alto, CA.

[5] Chen CH, He BS, Yuan XM (2012) Matrix completion via alternating direction method. IMA J. Numer. Anal. 32(1):227–245.
[6] Chen CH, He BS, Ye YY, Yuan XM (2016) The direct extension of ADMM for multi-block convex minimization problems is not

necessarily convergent. Math. Program 155(1):57–79.

[7] Donoho DL (2006) Compressed sensing. IEEE Trans. Inform. Theory 52(4):1289–1306.

[8] Eckstein J, Bertsekas DP (1992) On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone

operators. Math. Program. 55(1):293–318.
[9] Esser E (2009) Applications of Lagrangian-based alternating direction methods and connections to split Bregman. UCLA CAM Report,

Los Angeles.

[10] Facchinei F, Pang JS (2003) Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer Series in Operations Research,

Vol. I (Springer, New York).

[11] Fortin M, Glowinski R (1983) Augmented Lagrangian methods: Applications to the numerical solutions of boundary value problems.

Stud. Math. Appl. Vol. 15 (North-Holland, Amsterdam).

[12] Fukushima M (1992) Application of the alternating direction method of multipliers to separable convex programming problems.

Comput. Optim. Appli. 1(1):93–111.
[13] Gabay D, Mercier B (1976) A dual algorithm for the solution of nonlinear variational problems via finite-element approximations.

Comput. Math. Appli. 2(1):17–40.
[14] Glowinski R (1984) Numerical Methods for Nonlinear Variational Problems (Springer, New York).

[15] Glowinski R, Le Tallec P (1989) Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. Studies in Applied

Mathematics (SIAM, Philadelphia).

[16] Glowinski R, Marrocco A (1975) Sur l’approximation par éléments finis d’ordre un et résolution par pénalisation-dualité d’une classe

de problèmes de Dirichlet non linéaires. Rev. Fr. Autom. Inf. Rech. Oper. Anal. Numér R2:41–76.

[17] Han DR, Yuan XM (2012) A note on the alternating direction method of multipliers. J. Optim. Theory Appli. 155(1):227–238.
[18] Hansen PC, Nagy JG, O’Leary DP (2006) Deblurring Images: Matrices, Spectra, and Filtering (SIAM, Philadelphia).

[19] He BS, Tao M, Yuan XM (2012) Alternating direction method with Gaussian back substitution for separable convex programming.

SIAM J. Optim. 22(2):313–340.
[20] He BS, Tao M, Yuan XM (2015) A splitting method for separable convex programming. IMA J. Numer. Anal. 35(1):394–426.
[21] He BS, Xu MH, Yuan XM (2011) Solving large-scale least squares covariance matrix problems by alternating direction methods. SIAM

J. Matrix Anal. Appli. 32(1):136–152.
[22] He BS, Liao LZ, Han DR, Yang H (2002) A new inexact alternating directions method for monontone variational inequalities. Math.

Program. 92(1):103–118.
[23] Hestenes MR (1969) Multiplier and gradient methods. J. Optim. Theory Appli. 4(5):303–320.
[24] Hong MY, Luo ZQ (2016) On the linear convergence of the alternating direction method of multipliers. Math. Programm. ePub ahead

of print July 6, http://doi.org/10.1007/s10107-016-1034-2.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

http://doi.org/10.1007/s10107-016-1034-2

He et al.: Convergence Rate Analysis for the Alternating Direction Method of Multipliers
Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 662–691, ©2017 INFORMS 691

[25] Huang YM, Ng MK, Wen YW (2009) Fast image restoration methods for impulse and Gaussian noise removal. IEEE Signal Process. Lett.
16(6):457–460.

[26] Hwang H, Haddad A (1995) Adaptive median filters: New algorithms and results. IEEE Trans. Image Process. 4(4):499–502.
[27] Kontogiorgis S, Meyer RR (1998) A variable-penalty alternating directions method for convex optimization. Math. Program. 83(1):

29–53.

[28] Lan G, Monteiro RDC (2016) Iteration-complexity of first-order augmented Lagrangian methods for convex programming. Math.
Program. 155(1):511–547.

[29] Martinet B (1970) Regularision d’inéquations variationnelles par approximations successive. Revue Francaise d’Automatique et Informatique
Recherche Opérationnelle 126:154–159.

[30] Necoara I, Suykens J (2008) Application of a smoothing technique to decomposition in convex optimization. IEEE Trans. Auto. Control
53(11):2674–2679.

[31] Nedelcu V, Necorara I, Tran-Ding Q (2014) Computational complexity of inexact gradient augmented Lagrangian methods: Application

to constrained MPC. SIAM J. Control Optim. 52(5):3109–3134.
[32] Ng MK, Wang F, Yuan XM (2011) Inexact alternating direction methods for image recovery. SIAM J. Sci. Comput. 33(4):1643–1668.
[33] Ng MK, Weiss PA, Yuan XM (2010) Solving constrained total-variation problems via alternating direction methods. SIAM J. Sci. Comput.

32(5):2710–2736.

[34] Ng MK, Yuan XM, Zhang WX (2013) On variational image decomposition model for blurred images with missing pixel values. IEEE
Trans. Image Processing 22(6):2233–2246.

[35] Peng YG, Ganesh A, Wright J, Xu WL, Ma Y (2012) Robust alignment by sparse and low-rank decomposition for linearly correlated

images. IEEE Tran. Pattern Anal. Machine Intelligence 34(11):2233–2246.

[36] Powell MJD (1969) A method for nonlinear constraints in minimization problems. Fletcher R, ed. Optimization (Academic Press,

New York), 283–298.

[37] Rockafellar RT (1976) Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper.
Res. 1(2):97–116.

[38] Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D. 60(1-4):259–268.
[39] Ruszczyński A (1993) Parallel decomposition of multistage stochastic programming problems. Math. Program. 58(1):201–228.
[40] Sun J, Zhang S (2010) A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs.

Eur. J. Oper. Res. 207(3):1210–1220.
[41] Tao M, Yuan XM (2011) Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J.

Optim. 21(1):57–81.
[42] Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005) Sparsity and smoothness via the fused lasso. J. Royal Statist. Soc. 67(1):91–108.
[43] Tran-Dinh Q, Necoara I, Diehl M (2014) Path-following gradient-based decomposition algorithms for separable convex optimization.

J. Global Optim. 59(1):59–80.
[44] Tran-Dinh Q, Necoara I, Savorgnans C, Diehl M (2013) An inexact perturbed path-following method for Lagrangian decomposition in

large-scale separable convex optimization. SIAM J. Optim. 23(1):95–125.
[45] Tseng P (1991) Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J.

Con. Optim. 29(1):119–138.
[46] Zhang S, Ang J, Sun J(2013) An alternating direction method for solving convex nonlinear semidefinite programming problems. Optim.

62(4):527–543.

[47] Zhang XQ, Burger M, Osher S (2010) A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1):20–46.
[48] Zhou Z, Li X, Wright J, Candes EJ, Ma Y (2010) Stable principal component pursuit. Proc. IEEE Intern. Sympos. Inform. Theory, ISIT ’10

(IEEE, Piscataway, NJ) 1518–1522.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

11
6.

6.
49

.9
4]

 o
n

31
 O

ct
ob

er
 2

01
7,

 a
t 2

3:
22

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

	Introduction
	Preliminaries
	A Variational Characterization of (1)
	Some Notations

	An ADMM Procedure Based On (3)
	An ADMM Procedure
	An Important Inequality

	The Motivation of Finding a Substitution Procedure: From the Contraction Perspective
	ADMM With a Substitution Procedure
	ADMM With a Forward Substitution
	ADMM with a Backward Substitution
	Convergence Analysis

	Worst-Case Convergence Rate in the Nonergodic Sense
	The Case with a Chosen Stepsize
	The Case with a Constant Stepsize
	Algorithm 2 with a Constant Stepsize.
	Algorithm 3 with a Constant Stepsize.

	Numerical Experiments
	Example 1—An Image Restoration Model for Mixed Noise Removal
	Example 2—An Image Decomposition Model

	Conclusions

