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Abstract Thealternatingdirectionmethodofmultipliers (ADMM) recently has found
many applications in various domains whose models can be represented or reformu-
lated as a separable convexminimizationmodelwith linear constraints and an objective
function in sum of two functions without coupled variables. For more complicated
applications that can only be represented by such a multi-block separable convex
minimization model whose objective function is the sum of more than two functions
without coupled variables, it was recently shown that the direct extension of ADMM
is not necessarily convergent. On the other hand, despite the lack of convergence, the
direct extension of ADMM is empirically efficient for many applications. Thus we
are interested in such an algorithm that can be implemented as easily as the direct
extension of ADMM, while with comparable or even better numerical performance
and guaranteed convergence. In this paper, we suggest correcting the output of the
direct extension of ADMM slightly by a simple correction step. The correction step is
simple in the sense that it is completely free from step-size computing and its step size
is bounded away from zero for any iterate. A prototype algorithm in this prediction-
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correction framework is proposed; and a unified and easily checkable condition to
ensure the convergence of this prototype algorithm is given. Theoretically, we show
the contraction property, prove the global convergence and establish the worst-case
convergence rate measured by the iteration complexity for this prototype algorithm.
The analysis is conducted in the variational inequality context. Then, based on this
prototype algorithm, we propose a class of specific ADMM-based algorithms that
can be used for three-block separable convex minimization models. Their numerical
efficiency is verified by an image decomposition problem.

Keywords Convex programming · Alternating direction method of multipliers ·
Splitting methods · Contraction · Convergence rate

Mathematics Subject Classification 90C25 · 90C30 · 90C33

1 Introduction

Many applications such as sparse and/or low-rank optimization, compressive sensing,
statistical learning, computer vision and large-scale distributed wireless network can
be modeled or reformulated as a convex minimization model with linear constraints
and a separable objective function in form of the sum ofmore than one function. In this
paper, inspired by some particular applications such as the robust principal component
analysis model with noisy and incomplete data in [35], the latent variable Gaussian
graphical model selection in [5] and the quadratic discriminant analysis model in [22],
we consider the special separable convex minimization model

min{θ1(x) + θ2(y) + θ3(z) | Ax + By + Cz = b, x ∈ X , y ∈ Y, z ∈ Z}, (1.1)

where θi : �ni → � are closed proper convex (not necessarily smooth) functions for
i = 1, 2, 3; X ⊆ �n1 , Y ⊆ �n2 and Z ⊆ �n3 are closed convex sets; A ∈ �m×n1 ,
B ∈ �m×n2 and C ∈ �m×n3 ; and b ∈ �m . Let n1 + n2 + n3 = n. Throughout our
discussion, the solution set of (1.1) is assumed to be nonempty; and the matrices B and
C are assumed to be full column rank. In addition, the sets X , Y and Z are assumed
to be simple in sense of that the projections onto them under the Euclidean distance
can be easily computed.

Conceptually, the augmented Lagrangian method (ALM) in [20,30] is applicable
to (1.1), resulting in the scheme

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝
xk+1

yk+1

zk+1

⎞

⎠ = argmin

{
θ1(x)+θ2(y) + θ3(z) − (λk)T (Ax + By + Cz − b)

+ β
2 ‖Ax + By + Cz − b‖2

∣
∣
∣
∣ x ∈X , y∈Y, z∈Z

}

,

λk+1 = λk − β(Axk+1 + Byk+1 + Czk+1 − b),

(1.2)

where λ ∈ �m is the Lagrange multiplier associated with the linear constraints in
(1.1), β > 0 is a penalty parameter and ‖ · ‖ represents the l2-norm throughout.
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For the direct application of ALM (1.2), each of the resulting subproblems requires
minimizing an objective function consisting of all θi ’s and a quadratic term in which
all the variables x , y and z are coupled. Usually, the (x, y, z)-subproblem in (1.2) is
not easy to solve. We are interested in the particular scenario where each function
θi in the objective has some particular structures and properties; and it is beneficial
to explore these structures/properties in algorithmic design. For example, for some
applications of the abstract model (1.1) arising in sparse- and/or low-rank-concerned
areas, θi ’s are simple in the sense that the following minimization problems may have
closed-form solutions for any β > 0 and x0 ∈ �n1 , y0 ∈ �n2 and z0 ∈ �n3 :

min
{
θ1(x) + β

2
‖x − x0‖2}, min

{
θ2(y) + β

2
‖y − y0‖2} and

min
{
θ3(z) + β

2
‖z − z0‖2}. (1.3)

We are thus interested in such an algorithm whose subproblems are at most as difficult
as

min
x∈X

{
θ1(x) + β

2
‖Ax − p01‖2

}
, min

y∈Y
{
θ2(y) + β

2
‖By − p02‖2

}
and

min
z∈Z

{
θ3(z) + β

2
‖Cz − p03‖2

}
(1.4)

with p0i ∈ �m . Note that when the minimization problems in (1.3) have closed-
form solutions, solving (1.4) could be generally easy, especially for the case that
X = �n1 , Y = �n2 and Z = �n3 . For instance, if X = �n1 , the problem (1.4) can
be iteratively solved by linearizing the quadratic term in (1.4) because the linearized
subproblem reduces to the problem (1.3). This is indeed an implementation of the
forward-backward splitting method which was originated in [28]. To expose our main
idea of algorithmic design with easier notation, we just focus on the discussion of
designing an algorithm with subproblems in form of (1.4) and do not discuss its
linearized counterparts whose subproblems are in form of (1.3). Thus, for the (x, y, λ)-
subproblem in (1.2), we naturally want to decompose it into three smaller and easier
ones in the Gauss–Seidel manner. That is, we may consider the following scheme
instead of (1.2):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = argmin{θ1(x) − (λk)T
(
Ax
)+ β

2

∥
∥Ax + Byk + Czk − b

∥
∥2 | x ∈ X }, (1.5a)

yk+1 = argmin{θ2(y) − (λk)T
(
By
)+ β

2

∥
∥Axk+1 + By + Czk − b

∥
∥2 | y ∈ Y}, (1.5b)

zk+1 = argmin{θ3(z) − (λk)T
(
Cz
)+ β

2

∥
∥Axk+1 + Byk+1 + Cz − b

∥
∥2 | z ∈ Z}, (1.5c)

λk+1 = λk − β(Axk+1 + Byk+1 + Czk+1 − b). (1.5d)

Compared with the direct application of ALM (1.2), obviously the scheme (1.5) is
more implementable because its subproblems are significantly easier under our men-
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tioned simplicity assumption of θi ’s. The scheme (1.5) is indeed a direct extension
of the alternating direction method of multiplier (ADMM), which was originally pro-
posed in [12] (see also [4,10]) and recently has found many data-driven applications
including those mentioned. We refer to [3,7,11] for some review papers on ADMM.

In fact, the numerical efficiency of (1.5) has been demonstrated empirically in the
literature, see e.g. [29,35]. Without any further assumption, however, it was shown in
[6] that the scheme (1.5) is not necessarily convergent. In [15,17], we have proposed
some algorithms whose common feature is generating a new iterate by correcting the
output of (1.5) with some correction steps, instead of using the output of (1.5) directly.
With rigorously proved convergence, these algorithms still numerically perform less
efficiently than the direct extension of ADMM (1.5) mainly because their correction
steps need to determine step sizes iteratively with nonnegligible computation. The
purpose of this paper is to find algorithms that could be implemented as easily as
(1.5), while with comparable or even faster numerical performance and theoretically
provable convergence. More specifically, because of the obvious advantage of (1.5) in
exploiting the functions’ structures individually and its empirical efficiency, we want
to completely preserve the step of (1.5) but correct its output appropriately by a simple
correction to generate a new iterate. That is, we still follow the prediction-correction
algorithmic framework as those in [15,17], using the output of (1.5) as a predictor; but
the correction step should be completely free from step-size computing and its step
size is bounded away from zero for all iterates.

We will propose a prototype algorithm, based on which a class of specific ADMM-
based algorithms for the model (1.1) can be easily obtained. A unified and easily
checkable condition to ensure the convergence of this prototype algorithm will also
be given. Indeed, the possible divergence of the direct extension of ADMM (1.5) can
be simply illustrated as that it does not satisfy this condition. Theoretically, we show
the contraction property, prove the global convergence and establish the worst-case
convergence rate measured by the iteration complexity for the prototype algorithm.
The analysis is conducted in the variational inequality context. Numerically, we show
the efficiency of this class of ADMM-based algorithms by an image decomposition
problem. With the possibility of numerical acceleration, the provable global conver-
gence and the estimate of the worst-case convergence rate measured by the iteration
complexity, we regard these algorithms some theoretical and numerical improvement
over the direct extension of ADMM (1.5).

The rest of this paper is organized as follows. We recall some known results in
Sect. 2 for further analysis. In Sect. 3, we propose a prototype algorithm in the context
of variational inequality reformulation of (1.1); and then a sufficient condition is given
to ensure the convergence of this prototype algorithm. We then show that the direct
extension of ADMM (1.5) does not satisfy this condition. In Sects. 4 and 5, we prove
the convergence of this prototype algorithm and establish its worst-case convergence
rate, respectively. We specify the prototype algorithm as a class of ADMM-based
specific algorithms for the model (1.1) in Sect. 6, and show their efficiency in solving
some image processing applications in Sect. 7. Finally, some conclusions are made
and some possible topics for future research are discussed in Sect. 8.
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2 Preliminaries

In this section, we recall some known results and definitions that will be used later.

2.1 Variational inequality reformulation

It is obvious that the model (1.1) is equivalent to the variational inequality: Finding
w∗ ∈ Ω such that

VI(Ω, F, θ) : θ(u) − θ(u∗) + (w − w∗)T F(w∗) ≥ 0, ∀w ∈ Ω, (2.1)

where

u =
⎛

⎝
x
y
z

⎞

⎠ , w =

⎛

⎜
⎜
⎝

x
y
z
λ

⎞

⎟
⎟
⎠ , θ(u) = θ1(x) + θ2(y) + θ3(z), (2.2a)

F(w) =

⎛

⎜
⎜
⎝

−AT λ

−BT λ

−CT λ

Ax + By + Cz − b

⎞

⎟
⎟
⎠ and Ω := X × Y × Z × �m, (2.2b)

with u ∈ �n , w ∈ �n+m and Ω ⊆ �n+m . Obviously, the mapping F(w) defined in
(2.2b) is affine with a skew-symmetric matrix; it is thus monotone. We denote by Ω∗
the solution set of VI(Ω, F, θ), and it is nonempty because of the nonemptyness of
the solution set of (1.1).

Our theoretical analysis will be conducted in the context of variational inequality.
This is a convenient theoretical tool making us present the analysis based on the
optimality condition of the model (1.1) and enabling us to take advantage of some
existing results in the literature. Butwewould emphasize that the variational inequality
reformulation is only for analysis purpose; we do not need to solve any variational
inequality to implement the algorithms to be proposed.

2.2 Definitions

For convenience, we give the following definition to differentiate the roles of different
coordinates of a variable in the iteration of an algorithm, see some similar discussions
in [3].

Definition 1 For an iterative algorithm solving VI(Ω, F, θ), if some coordinates of
w are not involved in the iteration, then these coordinates are called intermediate
variables and those required by the iteration are called essential variables (denoted by
v).

Therefore, for the direct extension of ADMM (1.5), x is an intermediate variable
and v = (y, z, λ) are essential variables. Accordingly, the intention of the notation vk ,
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ṽk , v∗, V and V∗ should be clear from the context. We thus have

v = (y, z, λ), V = Y × Z × �m, vk = (yk, zk, λk), ṽk = (ỹk, z̃k, λ̃k), ∀k ∈ N ;
v∗ = (y∗, z∗, λ∗), V∗ = {(y∗, z∗, λ∗) | (x∗, y∗, z∗, λ∗) ∈ Ω∗}.

3 A prototype algorithm

In this section, we propose a prototype algorithm for VI(Ω, F, θ) and give a condi-
tion ensuring its convergence. With this convergence-guaranteeing condition, we also
give an explanation for why the direct extension of ADMM (1.5) is not necessarily
convergent.

3.1 Algorithm

Recall that we denote by v the essential variables of an algorithm;meaning its iteration
essentially generating vk+1 with the given vk . Then, a prototype algorithm for solving
(2.1) can be summarized as follows.

A Prototype Algorithm for (2.1)
[Step 1.] With given vk , find a vector w̃k ∈ Ω and a matrix Q satisfying

θ(u) − θ(ũk) + (w − w̃k)T F(w̃k) ≥ (v − ṽk)T Q(vk − ṽk), ∀w ∈ Ω, (3.1a)

where the matrix Q has the property: QT + Q is positive definite.
[Step 2.] Determine a nonsingular matrix M and a positive scalar α; and generate
the new iterate vk+1 by

vk+1 = vk − αM(vk − ṽk). (3.1b)

Then, the convergence of the prototype algorithm (3.1) can be guaranteed if the
following condition is fulfilled.

Convergence Condition
For the matrices Q and M , and the step size α determined in (3.1), we define two
matrices H and G respectively as

H = QM−1 (3.2a)

and

G = QT + Q − αMT HM. (3.2b)

Then, the prototype algorithm (3.1) is convergent if both H and G are positive
definite.
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Remark 1 If vk = ṽk , then w̃k is a solution point of (2.1) because of (3.1a) and the
definition of VI(Ω, F, θ). We thus can use ‖vk − ṽk‖ < ε as a stopping criterion to
implement a specific algorithm of the prototype (3.1), where ε is a given tolerance.
On the other hand, if vk 
= ṽk , then setting w = w∗ in (3.1a) and using

θ(ũk) − θ(u∗) + (w̃k − w∗)T F(w̃k) = θ(ũk) − θ(u∗) + (w̃k − w∗)T F(w∗) ≥ 0,

we get

(ṽk − v∗)T Q(vk − ṽk) ≥ 0, ∀v∗ ∈ V∗.

Using Q = HM and the above inequality, we obtain

(vk − v∗)T HM(vk − ṽk) ≥ (vk − ṽk)T
[QT + Q

2

]
(vk − ṽk), ∀ v∗ ∈ V∗. (3.3)

In some sense, the inequality (3.3) implies that the direction−M(vk − ṽk) is beneficial
for reducing the proximity to the solution set V∗ in H -norm. Hence, the correction
step (3.1b) can also be explained as a contraction step which moves along the direction
−M(vk − ṽk) starting from vk towards V∗.

3.2 The direct extension of ADMM (1.5) does not satisfy the convergence
condition

Now we show that the direct extension of ADMM (1.5) is also a special case of the
prototype algorithm (3.1) but the Convergence Condition is not satisfied. Thus an
explanation of the convergence failure is provided for (1.5). Recall that the model
(1.1) can be explained as the VI (2.1) with the specification given in (2.2).

First, the optimality condition of the iteration (1.5) can be summarized as the fol-
lowing VIs:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 ∈ X , θ1(x) − θ1(xk+1) + (x − xk+1)T

{−AT [λk − β(Axk+1 + Byk + Czk − b)]} ≥ 0, ∀x ∈ X ,
(3.4a)

yk+1 ∈ Y, θ2(y) − θ2(yk+1) + (y − yk+1)T

{−BT [λk − β(Axk+1 + Byk+1 + Czk − b)]} ≥ 0, ∀y ∈ Y,
(3.4b)

zk+1 ∈ Z, θ3(z) − θ3(zk+1) + (z − zk+1)T

{−CT [λk − β(Axk+1 + Byk+1 + Czk+1 − b)]} ≥ 0, ∀z ∈ Z.
(3.4c)

To see why the inequalities in (3.4) can be written as a special case of (3.1a), we
define w̃k = (x̃ k, ỹk, z̃k, λ̃k) with

x̃ k = xk+1, ỹk = yk+1, z̃k = zk+1, (3.5a)
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and

λ̃k = λk − β(Axk+1 + Byk + Czk − b), (3.5b)

for the given (yk, zk, λk) and the (xk+1, yk+1, zk+1) generated by the direct extension
of ADMM (1.5). Using (3.5), we can simplify the scheme (3.4) as (x̃ k, ỹk, z̃k) ∈
X × Y × Z ,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

θ1(x) − θ1(x̃
k) + (x − x̃ k)T {−AT λ̃k} ≥ 0, ∀x ∈ X , (3.6a)

θ2(y) − θ2(ỹ
k) + (y − ỹk)T {−BT λ̃k + βBT B(ỹk − yk)]} ≥ 0, ∀y ∈ Y, (3.6b)

θ3(z) − θ3(z̃
k) + (z − z̃k)T {−CT λ̃k

+βCT [B(ỹk − yk) + C(z̃k − zk)]} ≥ 0, ∀z ∈ Z. (3.6c)

We now show in the next lemma that the inequalities in (3.6) are indeed a specific
implementation of the prototype algorithm (3.1). Recall that the essential variable of
the scheme (1.5) is v = (y, z, λ).

Lemma 1 Let uk+1 = (xk+1, yk+1, zk+1) be generated by the direct extension of
ADMM (1.5) from the given vk = (yk, zk, λk); and w̃k be defined in (3.5). Then we
have

w̃k ∈ Ω, θ(u) − θ(ũk) + (w − w̃k)T F(w̃k) ≥ (v − ṽk)T Q(vk − ṽk),

∀w ∈ Ω, (3.7)

where

Q =

⎛

⎜
⎜
⎝

βBT B 0 0

βCT B βCTC 0

−B −C 1
β
I

⎞

⎟
⎟
⎠ . (3.8)

Proof Using x̃ k = xk+1, ỹk = yk+1 and z̃k = zk+1, and the Eq. (3.5b), we have

(Ax̃k + B ỹk + Cz̃k − b) − B(ỹk − yk) − C(z̃k − zk) + 1

β
(λ̃k − λk) = 0,

which can be rewritten as

λ̃k ∈ �m, (λ − λ̃k)T {(Ax̃k + B ỹk + Cz̃k − b) − B(ỹk − yk) − C(z̃k − zk)

+ 1

β
(λ̃k − λk)} ≥ 0, ∀λ ∈ �m .
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Combining (3.6) with the last inequality together, we get

w̃k ∈ Ω, θ(u) − θ(ũk) +

⎛

⎜
⎜
⎝

x − x̃ k

y − ỹk

z − z̃k

λ − λ̃k

⎞

⎟
⎟
⎠

T ⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

−AT λ̃k

−BT λ̃k

−CT λ̃k

Ax̃k + B ỹk + Cz̃k − b

⎞

⎟
⎟
⎠

+

⎛

⎜
⎜
⎝

0
βBT B(ỹk − yk)
βCT B(ỹk − yk) + βCTC(z̃k − zk)
−B(ỹk − yk) − C(z̃k − zk) + 1

β
(λ̃k − λk)

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

≥ 0, ∀w ∈ Ω.

(3.9)

Based on the above inequality and using the notation F(w) (see (2.2)) and matrix Q
(see (3.8)), the assertion of this lemma is proved. ��

Now, we show that the direct extension of ADMM (1.5) can be written as a special
case of the prototype algorithm (3.1). With the definition Q in (3.8), we have

QT + Q =
⎛

⎝
βBT B βBTC −BT

βCT B βCTC −CT

−B −C 1
β
I

⎞

⎠+
⎛

⎝
βBT B 0 0
0 βCTC 0
0 0 1

β
I

⎞

⎠



⎛

⎝
βBT B 0 0

0 βCTC 0
0 0 1

β
I

⎞

⎠ ,

which means Q is positive definite whenever B and C are both full column rank.
Moreover, using (3.5), the λk+1 updated by (1.5d) can be represented as

λk+1 = λk − β(Ax̃k + B ỹk + Cz̃k − b)

= λk − [
(λk − λ̃k) − βB(yk − ỹk) − βC(zk − z̃k)

]
. (3.10)

Therefore, using (3.5), we can rewrite the direct extension of ADMM (1.5) as

⎛

⎝
yk+1

zk+1

λk+1

⎞

⎠ =
⎛

⎝
yk

zk

λk

⎞

⎠−
⎛

⎝
I 0 0
0 I 0

−βB −βC I

⎞

⎠

⎛

⎝
yk − ỹk

zk − z̃k

λk − λ̃k

⎞

⎠ ,

which corresponds to the step (3.1b) with

M =
⎛

⎝
I 0 0
0 I 0

−βB −βC I

⎞

⎠ and α = 1. (3.11)

Indeed, the direct extension of ADMM (1.5) can be written in form of the prototype
algorithm (3.1).
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Now we demonstrate that the Convergence Condition is not satisfied by the direct
extension of ADMM (1.5). In fact, for the matrix M in (3.11), we have

M−1 =
⎛

⎝
I 0 0
0 I 0

βB βC I

⎞

⎠ .

Thus, with easy algebra, we know

H = QM−1 =
⎛

⎝
βBT B 0 0
βCT B βCTC 0
−B −C 1

β
I

⎞

⎠

⎛

⎝
I 0 0
0 I 0

βB βC I

⎞

⎠ =
⎛

⎝
βBT B 0 0
βCT B βCTC 0

0 0 1
β
I

⎞

⎠ ,

which is not symmetric. In addition, we have

G = QT + Q − MT Q

= QT + Q −
⎛

⎝
I 0 −βBT

0 I −βCT

0 0 I

⎞

⎠

⎛

⎝
βBT B 0 0
βCT B βCTC 0
−B −C 1

β
I

⎞

⎠

=
⎛

⎝
2βBT B βBTC −BT

βCT B 2βCTC −CT

−B −C 2
β
I

⎞

⎠−
⎛

⎝
2βBT B βBTC −BT

2βCT B 2βCTC −CT

−B −C 1
β
I

⎞

⎠

=
⎛

⎝
0 0 0

−βCT B 0 0
0 0 1

β
I

⎞

⎠ ,

which is not positive definite even if B andC are both full column rank. Therefore, the
Convergence Condition is not satisfied by the direct extension of ADMM (1.5). This
may explain the possible failure in convergence for the direct extension of ADMM
(1.5).

4 Convergence

In this section, we show the contraction property for the sequence generated by the
prototype algorithm (3.1) and then prove its global convergence. Recall the iteration
of (3.1) only updates the essential variable v. We thus show the contraction property
only for the sequence of essential variable {vk}.

We first prove a lemma. In the following, we use the notation ‖v‖2G := vT Gv where
G is a positive definite matrix.

Lemma 2 For the sequence generated by the prototype algorithm (3.1) where the
Convergence Condition is satisfied. We have
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α
{
θ(u) − θ(ũk) + (w − w̃k)T F(w̃k)

} ≥ 1

2

(‖v − vk+1‖2H − ‖v − vk‖2H
)

+α

2
‖vk − ṽk‖2G, ∀w ∈ Ω, (4.1)

where H and G are defined in (3.2).

Proof Using Q = HM (see (3.2a)) and the update form (3.1b), the right-hand side of
(3.1a) can be written as

w̃k ∈ Ω, α
{
θ(u) − θ(ũk) + (w − w̃k)T F(w̃k)

}

≥ (v − ṽk)T H(vk − vk+1), ∀w ∈ Ω. (4.2)

Applying the identity

(a − e)T H(c − d) = 1

2

(‖a − d‖2H − ‖a − c‖2H
)+ 1

2

(‖c − e‖2H − ‖d − e‖2H
)
,

to the right-hand side of (4.2) with

a = v, e = ṽk, c = vk, and d = vk+1,

we thus obtain

(v − ṽk)T H(vk − vk+1) = 1

2

(‖v − vk+1‖2H − ‖v − vk‖2H
)

+1

2
(‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H ). (4.3)

For the last term of (4.3), we have

‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H
= ‖vk − ṽk‖2H − ‖(vk − ṽk) − (vk − vk+1)‖2H
(3.1b)= ‖vk − ṽk‖2H − ‖(vk − ṽk) − αM(vk − ṽk)‖2H
= 2α(vk − ṽk)T HM(vk − ṽk) − α2(vk − ṽk)T MT HM(vk − ṽk)

(3.2a)= α(vk − ṽk)T (QT + Q − αMT HM)(vk − ṽk)

(3.2b)= α‖vk − ṽk‖2G . (4.4)

Substituting (4.3) and (4.4) in (4.2), the assertion of this theorem is proved. ��

Based on Lemma 2, we can prove the contraction property for the sequence {vk}
generated by the prototype algorithm (3.1).
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Theorem 1 For the sequence {vk} generated by the prototype algorithm (3.1) where
the Convergence Condition is satisfied, we have

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − α‖vk − ṽk‖2G , ∀v∗ ∈ V∗. (4.5)

Proof Setting w = w∗ in (4.1), we get

‖vk − v∗‖2H − ‖vk+1 − v∗‖2H ≥ α‖vk − ṽk‖2G + 2α
{
θ(ũk) − θ(u∗)

+(w̃k − w∗)T F(w̃k)
}
. (4.6)

Using the optimality of w∗ and the monotonicity of F(w), we have

θ(ũk) − θ(u∗) + (w̃k − w∗)T F(w̃k) ≥ θ(ũk) − θ(u∗) + (w̃k − w∗)T F(w∗) ≥ 0.

The assertion (4.5) follows from (4.6) and the above fact directly. ��
Recall that the matrix G defined in (3.2b) is assumed to be positive definite. It

follows from (4.5) that the sequence {vk} is contractive with respect to V∗. The con-
vergence of {vk} generated by the prototype algorithm (3.1) thus follows the standard
framework of contraction methods, see e.g. [2]. In fact, in Section 5.1, its convergence
is also implied. In the following, for completeness, we still include the detail for the
case G � 0.

Theorem 2 For the sequence {vk} generated by the prototype algorithm (3.1) where
the Convergence Condition is satisfied with G � 0, it converges to some v∞ which
belongs to V∗.

Proof According to (4.5), it holds that {vk} is bounded and

lim
k→∞ ‖vk − ṽk‖G = 0. (4.7)

So, {ṽk} is also bounded. Let v∞ be a cluster point of {ṽk} and {ṽk j } is a subsequence
which converges to v∞. Let {w̃k} and {w̃k j } be the induced sequences by {ṽk} and
{ṽk j }, respectively. It follows from (3.1a) that

w̃k j ∈ Ω, θ(u) − θ(ũk j ) + (w − w̃k j )T F(w̃k j ) ≥ (v − vk j )T Q(vk j − ṽk j ),

∀ w ∈ Ω.

Since the matrix Q is not singular, it follows from the continuity of θ(u) and F(w)

that

w∞ ∈ Ω, θ(u) − θ(u∞) + (w − w∞)T F(w∞) ≥ 0, ∀ w ∈ Ω.

The above variational inequality indicates that w∞ is a solution point of VI(Ω, F, θ).
Moreover, it follows from (4.7) and the fact lim

j→∞ vk j = v∞ that the subsequence {vk j }
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also converges to v∞. Finally, because of (4.5), we have

‖vk+1 − v∞‖H ≤ ‖vk − v∞‖H
and thus {vk} converges to v∞. The proof is complete. ��

5 Worst-case convergence rate

In this section, we estimate the worst-case O(1/t) convergence rate measured by the
iteration complexity for the prototype algorithm (3.1), where t is the iteration counter.
Note that we follow the work [24,25] and many others to measure the worst-case
convergence rate in term of the iteration complexity. That is, a worst-case O(1/t)
convergence rate means that the accuracy to a solution point under certain criteria is
of the orderO(1/t) after t iterations of an iterative scheme; or equivalently, it requires
at most O(1/ε) iterations to achieve an approximate solution with an accuracy of ε.
Lemma 2 is again crucial for the analysis.

5.1 Convergence rate in the ergodic sense

We first show that a worst-case O(1/t) convergence rate in the ergodic sense can be
established for the prototype algorithm (3.1) under the Convergence Condition.

Working on the reformulation VI(Ω, F, θ) of the model (1.1), one advantage is that
a characterization of its solution set proposed in [9] becomes useful for establishing
the worst-case convergence rate in the ergodic sense for the prototype algorithm (3.1).

Theorem 3 The solution set of VI(Ω, F, θ) is convex and it can be characterized as

Ω∗ =
⋂

w∈Ω

{
w̃ ∈ Ω : θ(u) − θ(ũ) + (w − w̃)T F(w) ≥ 0

}
. (5.1)

Proof The proof is an incremental extension of Theorem 2.3.5 in [9], or see the the
proof of Theorem 2.1 in [18]. ��

Theorem 3 thus implies that w̃ ∈ Ω is an approximate solution of VI(Ω, F, θ)

with an accuracy of ε > 0 if it satisfies

θ(u) − θ(ũ) + F(w)T (w − w̃) ≥ −ε, ∀w ∈ Ω ∩ D(ũ),

where

D(ũ) = {u | ‖u − ũ‖ ≤ 1}.
Now, we show that after t iterations of the prototype algorithm (3.1), we can find
w̃ ∈ Ω such that

θ(ũ) − θ(u) + (w̃ − w)T F(w) ≤ ε, ∀w ∈ Ω ∩ D(ũ), (5.2)

123



804 B. He, X. Yuan

with ε = O(1/t), a worst-case O(1/t) convergence rate is thus established for the
prototype algorithm (3.1).

Prior to the proof, it is easy to see that the monotonicity of F implies that

(w − w̃k)T F(w) ≥ (w − w̃k)T F(w̃k).

Notice that the matrix G defined in (3.2b) is positive definite. Substituting it in (4.1),
we obtain

w̃k ∈ Ω, θ(u) − θ(ũk) + (w − w̃k)T F(w) + 1

2α
‖v − vk‖2H

≥ 1

2α
‖v − vk+1‖2H , ∀w ∈ Ω. (5.3)

Theorem 4 For the sequence generated by the prototype algorithm (3.1) where the
Convergence Condition is satisfied and any integer t > 0, we have

θ(ūt ) − θ(u) + (w̄t − w)T F(w) ≤ 1

2(t + 1)α
‖v − v0‖2H , ∀w ∈ Ω, (5.4)

where

w̄t = 1

t + 1

t∑

k=0

w̃k . (5.5)

Proof First, because of (5.3), it holds that w̃k ∈ Ω for all k ≥ 0. Together with
the convexity of Ω , (5.5) implies that w̄t ∈ Ω . Summing the inequality (5.3) over
k = 0, 1, . . . , t , we obtain

(t + 1)θ(u) −
t∑

k=0

θ(ũk) +
(
(t + 1)w −

t∑

k=0

w̃k
)T

F(w) + 1

2α
‖v − v0‖2H ≥ 0,

∀w ∈ Ω.

Using the notation of w̄t , we can rewrite the last inequality as

1

t + 1

t∑

k=0

θ(ũk) − θ(u) + (w̄t − w)T F(w) ≤ 1

2(t + 1)α
‖v − v0‖2H , ∀w ∈ Ω.

(5.6)

Since θ(u) is convex and

ūt = 1

t + 1

t∑

k=0

ũk,
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we have that

θ(ūt ) ≤ 1

t + 1

t∑

k=0

θ(ũk).

Substituting it in (5.6), the assertion of this theorem follows directly. ��
Therefore, because of (5.2), the conclusion (5.4) indicates that the prototype algo-

rithm (3.1) is able to generate an approximate solution point (i.e., w̃t ) of VI(Ω, F, θ)

with an accuracy of O(1/t) after t iterations. That is, a worst-case O(1/t) convergence
rate in the ergodic sense is established for the prototype algorithm (3.1).

5.2 Convergence rate in a nonergodic sense

In this subsection, we show that if the matrix G defined in (3.2b) is positive definite, a
worst-case O(1/t) convergence rate in a nonergodic sense can also be established for
the prototype algorithm (3.1). Note that a nonergodic convergence rate is generally
stronger than an ergodic convergence rate.We first need to prove the following lemma.

Lemma 3 For the sequence generated by the prototype algorithm (3.1) where the
Convergence Condition is satisfied, we have

α(vk − ṽk)T MT HM{(vk − ṽk) − (vk+1 − ṽk+1)}
≥ 1

2
‖(vk − ṽk) − (vk+1 − ṽk+1)‖2

(QT +Q)
. (5.7)

Proof First, setting w = w̃k+1 in (3.1a), we have

θ(ũk+1) − θ(ũk) + (w̃k+1 − w̃k)T F(w̃k) ≥ (ṽk+1 − ṽk)T Q(vk − ṽk). (5.8)

Note that (3.1a) is also true for k := k + 1. Thus, we also have

θ(u) − θ(ũk+1) + (w − w̃k+1)T F(ṽk+1) ≥ (v − ṽk+1)T Q(vk+1 − ṽk+1), ∀w ∈ Ω.

Setting w = w̃k in the above inequality, we obtain

θ(ũk) − θ(ũk+1) + (w̃k − w̃k+1)T F(w̃k+1) ≥ (ṽk − ṽk+1)Q(vk+1 − ṽk+1).

(5.9)

Adding (5.8) and (5.9) and using the monotonicity of F , we get

(ṽk − ṽk+1)T Q{(vk − ṽk) − (vk+1 − ṽk+1)} ≥ 0. (5.10)
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Adding the term

{(vk − ṽk) − (vk+1 − ṽk+1)}T Q{(vk − ṽk) − (vk+1 − ṽk+1)}

to both sides of (5.10), and using vT Qv = 1
2v

T (QT + Q)v, we get

(vk − vk+1)T Q{(vk − ṽk) − (vk+1 − ṽk+1)}
≥ 1

2
‖(vk − ṽk) − (vk+1 − ṽk+1)‖2

(QT +Q)
.

Substituting (vk − vk+1) = αM(vk − ṽk) in the left-hand side of the last inequality
and using Q = HM , we obtain (5.7) and the lemma is proved. ��

Now, we are ready to prove (5.11), the key inequality in this section.

Theorem 5 For the sequence generated by the prototype algorithm (3.1) where the
Convergence Condition is satisfied, we have

‖M(vk+1 − ṽk+1)‖H ≤ ‖M(vk − ṽk)‖H , ∀ k > 0. (5.11)

Proof Setting a = M(vk − ṽk) and c = M(vk+1 − ṽk+1) in the identity

‖a‖2H − ‖c‖2H = 2aT H(a − c) − ‖a − c‖2H ,

we obtain

‖M(vk − ṽk)‖2H − ‖M(vk+1 − ṽk+1)‖2H
= 2(vk − ṽk)T MT HM{(vk − ṽk) − (vk+1 − ṽk+1)}

−‖M{(vk − ṽk) − (vk+1 − ṽk+1)}‖2H .

Inserting (5.7) into the first term of the right-hand side of the last equality, we obtain

‖M(vk − ṽk)‖2H − ‖M(vk+1 − ṽk+1)‖2H
≥ 1

α
‖(vk − ṽk) − (vk+1 − ṽk+1)‖2

(QT +Q)
− ‖M{(vk − ṽk) − (vk+1 − ṽk+1)}‖2H

= 1

α
‖(vk − ṽk) − (vk+1 − ṽk+1)‖2G ≥ 0,

where the last inequality is because of the positive definiteness of the matrix (QT +
Q) − αMT HM � 0. The assertion (5.11) follows immediately. ��

Note that it follows from G � 0 and Theorem 1 there is a constant c0 > 0 such
that

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − c0‖M(vk − ṽk)‖2H , ∀v∗ ∈ V∗. (5.12)
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Now, with (5.12) and (5.11), we can establish the worst-case O(1/t) convergence rate
in a nonergodic sense for the prototype algorithm (3.1).

Theorem 6 Let {vk} and {w̃k} be the sequences generated by the prototype algorithm
(3.1) under the Convergence Condition. For any integer t > 0, we have

‖M(vt − ṽt )‖2H ≤ 1

(t + 1)c0
‖v0 − v∗‖2H . (5.13)

Proof First, it follows from (5.12) that

∞∑

k=0

c0‖M(vk − ṽk)‖2H ≤ ‖v0 − v∗‖2H , ∀ v∗ ∈ V∗. (5.14)

According to Theorem 5, the sequence {‖M(vk − ṽk)‖2H } is monotonically non-
increasing. Therefore, we have

(t + 1)‖M(vt − ṽt )‖2H ≤
t∑

k=0

‖M(vk − ṽk)‖2H . (5.15)

The assertion (5.13) follows from (5.14) and (5.15) immediately. ��
Notice thatV∗ is convex and closed (seeTheorem3). Letd := inf{‖v0−v∗‖H | v∗ ∈

V∗}. Then, for any given ε > 0, Theorem 6 shows that it needs at most �d2/c0ε� itera-
tions to ensure that ‖M(vk − ṽk)‖2H ≤ ε. Recall that a solution point of VI(Ω, F, θ) is
found if ‖M(vk − ṽk)‖2H = 0 (see (3.7) and due to Q = HM). A worst-case O(1/t)
convergence rate in a nonergodic sense is thus established for the prototype algorithm
(3.1).

6 A class of ADMM-based algorithms for (1.1)

Now we present a class of specific ADMM-based algorithms for model (1.1) based
on the prototype algorithm (3.1). Other algorithms can also be generated if the matrix
M and the scalar α are chosen otherwise in (3.1).

As mentioned, because of the verified efficiency of the direct extension of ADMM
(1.5) in the literature, we stick to correcting the output of (1.5) via some correction step
in algorithmic design. Thus, the step (3.1a) is exactly the direct extension of ADMM
(1.5), meaning the matrix Q in (3.1a) can be chosen as the matrix defined in (3.8). In
this case, w̃k is defined by (3.5). For the step (3.1b), we suggest choosing

M := M(τ ) =
⎛

⎝
I −(1 − τ)(BT B)−1BTC 0

τ(CTC)−1CT B I 0
−βB −βC I

⎞

⎠ with τ ∈ [0, 1].

(6.1)
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Then, with different choices of τ , a class of specific algorithms for solving (1.1)
is proposed. We have to verify the Convergence Condition in order to ensure the
convergence of the proposed algorithms with Q and M defined in (3.8) and (6.1),
respectively. Also, we have to specify how to choose the constant step size α for the
step (3.1b). For convenience, we define the left-upper sub-matrix of Q by Q0, i.e.,

Q =
(

Q0 0
−B −C 1

β
I

)

and thus Q0 =
(

βBT B 0
βCT B βCTC

)

. (6.2)

Theorem 7 Let the matrices Q and M be given by (3.8) and (6.1), respectively. Let
H = QM−1 as defined in (3.2a). Then, for τ ∈ [0, 1], we have

H =
(
H0 0
0 1

β
I

)

, (6.3)

where

H0 =
[
τD−1

0 + (1 − τ)Q−T
0 D0Q

−1
0

]−1
, (6.4)

Q0 is defined in (6.2) and

D0 =
(

βBT B 0
0 βCTC

)

. (6.5)

In addition, the matrixes H0 and H are both symmetric and positive definite.

Proof For the matrix M defined in (6.1), we define its left-upper sub-matrix by M0,
i.e.,

M =
(

M0 0
−βB − βC I

)

,

where

M0 =
(

I −(1 − τ)(BT B)−1BTC
τ(CTC)−1CT B I

)

. (6.6)

Indeed,

HM =
(
H0 0
0 1

β
I

)(
M0 0

−βB − βC I

)

=
(

H0M0 0
−B − C 1

β
I

)

.

According to (6.2), in order to show HM = Q, we need only to verify that

H0M0 = Q0. (6.7)
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Note that (see (6.6))

M0 = τ

(
I 0

(CTC)−1CT B I

)

+ (1 − τ)

(
I −(BT B)−1BTC
0 I

)

. (6.8)

Observing the two parts in (6.8), the first part

(
I 0

(CTC)−1CT B I

)

=
(

βBT B 0
0 βCTC

)−1 (
βBT B 0
βCT B βCTC

)

= D−1
0 Q0,

(6.9)

while the second part is

(
I −(BT B)−1BTC
0 I

)

=
(
I (BT B)−1BTC
0 I

)−1

=
[(

(βBT B)−1 0
0 (βCTC)−1

)(
βBT B βBTC

0 βCTC

)]−1

= (D−1
0 QT

0 )−1 = Q−T
0 D0. (6.10)

Substituting (6.9) and (6.10) into (6.8), we obtain

M0 = τD−1
0 Q0 + (1 − τ)Q−T

0 D0 = (
τD−1

0 + (1 − τ)Q−T
0 D0Q

−1
0

)
Q0. (6.11)

Indeed, using (6.4) and the last equation, we have M0 = H−1
0 Q0 and thus (6.7) is

verified. Note that

H−1
0 = τD−1

0 + (1 − τ)Q−T
0 D0Q

−1
0 ,

which is a convex combination of the matrices D−1
0 and Q−T

0 D0Q
−1
0 . Recall that the

coefficient matrices B and C are assumed to be full column rank. Thus, both D−1
0 and

Q−T
0 D0Q

−1
0 are positive definite; and the symmetry and positive definiteness of H0

follows immediately. Consequently, it follows from the definition of H in (6.3) that
H is positive definite. The proof is complete. ��
Remark 2 Note that the coefficient matrices B and C are assumed to be full column
rank throughout our discussion. This assumption holds for most of the applications of
(1.1) found in the literature, such as those in [5,22,35] whose coefficient matrices are
actually all identity matrices. Even without this assumption, the convergence analysis
can be modified slightly and be representable in terms of the sequence {Byk,Czk, λk}
instead of {yk, zk, λk}, see, e.g., [8,16], for similar discussions.

Now, let us discuss how to specify the step sizeα and ensure the positive definiteness
of the G in (3.2b). Since both QT + Q and H are positive definite, we can define

α(τ) := argmax{α | QT + Q − αMT HM 
 0}, (6.12)
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and have α(τ) > 0. For any α ∈ (0, α(τ )), the matrix QT +Q−αMT HM is positive
definite. In order to estimate the magnitude of α(τ), we need the expression in the
following lemma.

Lemma 4 Let the matrices Q and M be given by (3.8) and (6.1), respectively, and
H = QM−1. Then for any α > 0, we have

QT + Q − αMT HM

=
⎛

⎝
2(1 − α)βBT B − ατβBTC(CTC)−1CBT (1 − α(1 + τ))βBTC −(1 − α)BT

(1 − α(1 + τ))βCT B 2(1 − α)βCTC −(1 − α)CT

−(1 − α)B −(1 − α)C 2−α
β

I

⎞

⎠ .

(6.13)

Proof It follows from the definition of Q in (3.8) that

QT + Q =
⎛

⎝
2βBT B βBTC −BT

βCT B 2βCTC −CT

−B −C 2
β
I

⎞

⎠ . (6.14)

Since Q = HM , we have

MT HM = QT M

=
⎛

⎝
βBT B βBTC −BT

0 βCTC −CT

0 0 1
β
I

⎞

⎠

⎛

⎝
I −(1 − τ)(BT B)−1BTC 0

τ(CTC)−1CT B I 0
−βB −βC I

⎞

⎠

=
⎛

⎝
2βBT B + τβBTC(CTC)−1CBT (1 + τ)βBTC −BT

(1 + τ)βCT B 2βCTC −CT

−B −C 1
β
I

⎞

⎠ . (6.15)

Using (6.14) and (6.15), we get (6.13) and the assertion is proved. ��
Theorem 8 Let the matrices Q and M be given by (3.8) and (6.1), respectively, and
H = QM−1. Then

1. if τ = 0, then

G = QT + Q − αMT HM

{

 0, for α = 1;
� 0, ∀ α ∈ (0, 1).

(6.16)

2. in the case τ ∈ (0, 1],

G = QT + Q − αMT HM � 0, for α = 1

1 + τ
. (6.17)
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Proof If τ = 0, it follows from (6.13) that

G = QT + Q − αMT HM

=
⎛

⎝
2(1 − α)βBT B (1 − α)βBTC −(1 − α)BT

(1 − α)βCT B 2(1 − α)βCTC −(1 − α)CT

−(1 − α)B −(1 − α)C 2−α
β

I

⎞

⎠

= β

⎛

⎝
BT 0 0
0 CT 0
0 0 1

β
I

⎞

⎠

⎛

⎝
2(1 − α)I (1 − α)I −(1 − α)I
(1 − α)I 2(1 − α)I −(1 − α)I

−(1 − α)I −(1 − α)I (2 − α)I

⎞

⎠

⎛

⎝
B 0 0
0 C 0
0 0 1

β
I

⎞

⎠ .

Since

⎛

⎝
2(1 − α) (1 − α) −(1 − α)

(1 − α) 2(1 − α) −(1 − α)

−(1 − α) −(1 − α) (2 − α)

⎞

⎠

{

 0, for α = 1;
� 0, ∀ α ∈ (0, 1),

the assertion (6.16) is proved. Now, we turn to prove the second part. Indeed, setting
α = 1/(1 + τ) in (6.13), we obtain

G =

⎛

⎜
⎜
⎜
⎝

2τ
1+τ

βBT B − τ
1+τ

βBTC(CTC)−1CBT 0 − τ
1+τ

BT

0 2τ
1+τ

βCTC − τ
1+τ

CT

− τ
1+τ

B − τ
1+τ

C (1+2τ)
(1+τ)β

I

⎞

⎟
⎟
⎟
⎠

= β

1 + τ

⎛

⎜
⎜
⎜
⎝

BT 0 0

0 CT 0

0 0 1
β I

⎞

⎟
⎟
⎟
⎠

⎛

⎝
2τ I − τC(CTC)−1CT 0 −τ I

0 2τ I −τ I
−τ I −τ I (1 + 2τ)I

⎞

⎠

⎛

⎝

B 0 0
0 C 0
0 0 1

β I

⎞

⎠ .

(6.18)

Obviously, it holds that I − C(CTC)−1CT 
 0. Thus, we have

⎛

⎝
2τ I − τC(CTC)−1CT 0 −τ I

0 2τ I −τ I
−τ I −τ I (1 + 2τ)I

⎞

⎠ 

⎛

⎝
τ I 0 −τ I
0 2τ I −τ I

−τ I −τ I (1 + 2τ)I

⎞

⎠ � 0,

from which we know that G is positive definite for all τ ∈ (0, 1] and α = 1
1+τ

. The
proof is complete. ��

Theorems 7 and 8 mean the Convergence Condition is satisfied. Hence, the proto-
type algorithm (3.1) with Q in (3.1a) and M in (6.1) is convergent.

The proof of Theorems 7 and 8 also gives us the guidance of how to choose the
step size α for the step (3.1b). In fact, for any fixed τ ∈ (0, 1], according to (6.12)
and (6.17), we have α(τ) > 1

1+τ
, meaning the step size could be chosen easily and it

being bounded below away for any given τ ∈ (0, 1]. In fact, for some special values
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of τ , by a careful manipulation we can get tighter lower bounds of α(τ). Note that we
have

QT + Q − αMT HM

= β

⎛

⎝
BT 0 0
0 CT 0
0 0 1

β
I

⎞

⎠

⎛

⎝
(2(1 − α) − ατ)I (1 − α(1 + τ))I −(1 − α)I
(1 − α(1 + τ))I 2(1 − α)I −(1 − α)I

−(1 − α)I −(1 − α)I (1 + 2τ)I

⎞

⎠

⎛

⎝
B 0 0
0 C 0
0 0 1

β
I

⎞

⎠ .

In order to ensure QT + Q − αMT HM � 0, we can choose α such that

⎛

⎝
2(1 − α) − ατ 1 − α(1 + τ) −(1 − α)

1 − α(1 + τ) 2(1 − α) −(1 − α)

−(1 − α) −(1 − α) (1 + 2τ)

⎞

⎠ � 0.

In the following table, we list the lower bounds of α(τ) for some values of τ .
Now we are ready to present a class of specific ADMM-based algorithms for (1.1)

based on the prototype algorithm (3.1).

A Class of ADMM-based Algorithms for (1.1)

[Step 1.] With the given vk = (yk, zk, λk), generate a vector w̃k ∈ Ω via

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃ k = argmin{θ1(x)−λT (Ax
)+ β

2

∥
∥Ax+Byk+Czk − b

∥
∥2 | x ∈ X }, (6.19aa)

ỹk = argmin{θ2(y)−λT (By
)+ β

2

∥
∥Ax̃k +By+Czk−b

∥
∥2 | y ∈ Y}, (6.19ab)

z̃k =argmin{θ3(z)−λT (Cz
)+ β

2

∥
∥Ax̃k +B ỹk+Cz−b

∥
∥2 | z ∈ Z}, (6.19ac)

λ̃k = λk − β(Ax̃k + B ỹk + Cz̃k − b). (6.19ad)

[Step 2.] Generate the new iterate vk+1 = (yk+1, zk+1, λk+1) by
⎛

⎝
yk+1

zk+1

λk+1

⎞

⎠ =
⎛

⎝
yk

zk

λk

⎞

⎠− α

⎛

⎝
I −(1 − τ)(BT B)−1BTC 0

τ(CTC)−1CT B I 0
0 0 I

⎞

⎠

⎛

⎝
yk − ỹk

zk − z̃k

λk − λ̃k

⎞

⎠ ,

(6.19b)

where τ ∈ [0, 1], α ∈ (0, α(τ )) and α(τ) is defined in (6.12).

Remark 3 As mentioned, for many applications of (1.1), the coefficient matrices are
identity matrices. Indeed, when B = C = Im×m , the step (6.19b) can be further
simplified as

⎛

⎝
yk+1

zk+1

λk+1

⎞

⎠ =
⎛

⎝
yk

zk

λk

⎞

⎠− α

⎛

⎝
I −(1 − τ)I 0

τ I I 0
0 0 I

⎞

⎠

⎛

⎝
yk − ỹk

zk − z̃k

λk − λ̃k

⎞

⎠ .
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Table 1 Tighter lower bounds
of α(τ) for some values of τ

τ = 0 1/5 1/4 1/3 1/2 2/3

α(τ) > 1 − ε 7/8 6/7 4/5 3/4 5/8

In particular, if we choose τ = 1
2 , then according to Table 1, we can just choose the

step size as 3
4 . The above step can be specified as

⎛

⎝
yk+1

zk+1

λk+1

⎞

⎠ =
⎛

⎝
yk

zk

λk

⎞

⎠− 3

4

⎛

⎝
I − 1

2 I 0
1
2 I I 0
0 0 I

⎞

⎠

⎛

⎝
yk − ỹk

zk − z̃k

λk − λ̃k

⎞

⎠ ,

which is simple with almost no additional computation.

Remark 4 Note that the step (6.19b) can be written as

⎛

⎝
Byk+1

Czk+1

λk+1

⎞

⎠ =
⎛

⎝
Byk

Czk

λk

⎞

⎠− α

⎛

⎝
I −(1 − τ)I 0

τ I I 0
0 0 I

⎞

⎠

⎛

⎝
B(yk − ỹk)
C(zk − z̃k)
λk − λ̃k

⎞

⎠ .

Meanwhile, what the step (6.19a) really needs is not (yk, zk), but (Byk,Czk). Thus,
for the general case where B 
= I and C 
= I , in the step (6.19b) we can just
directly compute and store the vectors Byk+1 and Czk+1, rather than yk+1 and zk+1

until the iteration is terminated. So, the inverses (BT B)−1BTC and (CTC)−1CT B in
(6.19b) are just for algebraically showing the correction step explicitly; and they can
be completely avoided in computation empirically. More specifically, the computation
load in the step (6.19b) consists of only two multiplications of matrix and vector (B ỹk

and Cz̃k) and some additions in order of O(m). Thus the correction step (6.19b) is
extremely simple and its iteration-independent step size is bounded away from zero.
In this sense, we say that this class of algorithm (6.19a)–(6.19b) can be implemented
as easily as the direct extension of ADMM (1.5).

Remark 5 In addition to the convergence already proved rigorously, wewill show later
that these algorithms (6.19) could even numerically outperform the direct extension
of ADMM (1.5). These features make them significantly different from some existing
splitting versions of theALMsuch as [15,17]. The outstanding numerical performance
of (6.19) could be explained intuitively as follows. Taking a look at the step (6.19b),
we see that this correction step does not change the output λ̃k generated by the direct
extension of ADMM (6.19a); it actually only makes a balance between the variables
y and z to generate a new iterate.1 Indeed, for the direct extension of ADMM (1.5),
there are two primal variables y and z that are essentially required by the iteration. The
scheme (1.5), however, treats these two essential primal variable differently—they are
updated consecutively and the update of z uses the newest y. This lack of symmetry

1 For the ADMM scheme, the primal variables x and y play different roles—- x is an intermediate variable
which is not involved in the iteration and the only primal variable required by the iteration is y.
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in primal variables may also explain why it fails to guarantee the convergence of the
direct extension of ADMM (1.5). The step (6.19b) makes a balance between the output
of y and z generated by the direct extension of ADMM (6.19a), and it may be regarded
as a compensation to the loss of symmetry over y and z in (1.5). This may explain
the reason why sometimes the algorithms (6.19) outperform the direct extension of
ADMM (1.5), because the effort of balancing y and z may make the whole sequence
{yk, zk, λk} converge to the solution set in a more balance way and thus on a faster
speed.

Remark 6 Note that we just need to check the convergence condition (3.2) when
implementing the proposed algorithm (6.19); and do not need to compute the matrices
H and G.

7 Numerical results

In this section, we apply the proposed algorithms (6.19) to test a concrete application
of the model (1.1) arising in image processing; and report the numerical results. Our
codes were written inMatlab 7.9 and they were run on a Lenovo personal computer
with Intel Core (TM) CPU 2.30GHZ and 8G memory.

7.1 An image decomposition model

We focus on the image decomposition model proposed recently in [33]. First, we
review some background of the image decomposition problem briefly. Let f ∈ Rn

represent a digital image. Note that in our discussion a two-dimensional image is
stacked as a one-column vector, e.g., in the lexicographic order, and the pixel values
of an image are re-scaled into the interval [0,1]. The goal of image decomposition
is to decompose an image into two meaningful components. Image decomposition
is an important problem in image processing and it plays a significant role in many
realms such as object recognition and biomedical engineering. A very useful task is
to decompose the target image f into two components μ and ν, i.e., f = μ + ν,
where μ represents the cartoon part containing the structural component and sketchy
approximations of f and ν is the texture part containing the oscillations and repeated
patterns of f . See more details in, e.g., [1,23,26,27,34,36]. Analytically, the cartoon
part μ can be described as a piecewise smooth function and the texture part ν is
typically an oscillating function. In addition to the data fidelity term ‖(μ + ν) − f ‖22,
we usually have to use other terms to mathematically characterize these two parts in
the objective function of an image decomposition model. For the cartoon part μ, it
is standard to characterize it by the total variation semi-norm in [32]. To capture the
feature of the texture part ν, in [33] it was suggest to first partition the texture part ν

of an n1-by-n2 (with n = n1 · n2) image orderly into a series of r -by-r (with r � n)
non-overlapping patches under some boundary condition; then stack each individual
patch as a column vector, denoted by ωi ∈ Rr2 (i = 1, 2, · · · , s). Here, s = �n/r2�
with �·� rounding a scalar as the nearest integer towards infinity. By further realigning
all ωi ’s together, an r2-by-s matrix, denoted by V , is attained. The patch mapping
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P : Rn → Rr2×s , which describes the preceding process on rearranging the texture
part ν of an image as a matrix V , is defined as

V = Pν = [ω1, ω2, · · · , ωs] .

Werefer to [33] formore details. Since the texture part of a target image possessesmany
repeated patterns, the matrix V , i.e., Pν, can be analytically perceived as a low-rank
matrix. Accordingly, the following low-rank based model for image decomposition
was developed in [33]:

min
μ∈Rn ,ν∈Rn

τ1‖|∇μ|‖1 + τ2‖Pν‖∗ + τ3

2
‖K (μ + ν) − f ‖22. (7.1)

In (7.1), ‖|∇ · |‖1 denotes the total variation semi-norm in [32] in order to induce the
cartoon part μ; ‖ · ‖∗ is the nuclear norm which is defined as the sum of all singular
values of a matrix in order to reflect the low-rank feature of the matrix Pν where ν

is the texture part; K is a linear operator corresponding to certain corruption on the
target image f : (i) K = I with I being the identity matrix corresponds to the case
where the image f is clean without noise, (ii) K = S with S being a diagonal binary
matrix corresponds to the case where some pixels of f are missing (we assume that
the missing pixels admit zero values), and (iii) K = B with B being a convolutional
matrix associated with a spatially invariant point spread function corresponds to the
case where f is corrupted by some blur; the parameters τi (i = 1, 2, 3) are positive
scalars to balance the three terms (piecewise constant feature of the cartoon part, low-
rank feature of the patched texture part and the data-fidelity of the decomposition) in
the objective function.

7.2 Reformulation of (7.1)

To solve the patched low-rank image decomposition model (7.1), we first reformulate
it as a special case of the model (1.1) and then delineate the subproblems when the
proposed algorithms (6.19) are applied.

Introducing the auxiliary variables z1 ∈ Rn × Rn , z2 ∈ Rr2×s and z3 ∈ Rn , the
model (7.1) can be rewritten as

min τ1‖|z1|‖1 + τ2‖z2‖∗ + τ3
2 ‖Kz3 − f ‖22

s.t. z1 = ∇μ

z2 = Pν

z3 = μ + ν.

(7.2)

Thus, (7.2) is a special case of the abstract model (1.1) with the following specifica-
tions:

– x = μ, y = ν, z = (z1, z2, z3), and X , Y , Z are all full Euclidean spaces.
– θ1(x) = 0, θ2(y) = 0 and θ3(z) = τ1‖|z1|‖1 + τ2‖z2‖∗ + τ3

2 ‖Kz3 − f ‖22.
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– The coefficient matrices and the vector b are given by:

A =
⎛

⎝
∇
0
I

⎞

⎠ , B =
⎛

⎝
0
P
I

⎞

⎠ , C =
⎛

⎝
−I 0 0
0 −I 0
0 0 −I

⎞

⎠ and b := 0.

Now, let us analyze the main subproblems when the proposed algorithms (6.19) are
applied to solve the reformulation (7.2). Since the algorithms in (6.19) differs only in
the correction steps and they share the same ADMM subproblems, we only focus on
the detail of the resulting ADMM subproblems.

– The x̃-subproblem in (6.19), i.e., the μ̃-subproblem for (7.2), is

μ̃k = argmin
μ

⎧
⎨

⎩

β1

2

∥
∥
∥
∥
∥
∇μ − zk1 − λk1

β1

∥
∥
∥
∥
∥

2

2

+ β3

2

∥
∥
∥
∥
∥
μ + νk − zk3 − λk3

β3

∥
∥
∥
∥
∥

2

2

⎫
⎬

⎭

⇔ (β1∇T∇ + β3 I )μ = ∇T (β1z
k
1 + λk1) + β3(z

k
3 − νk) + λk3,

which has a closed-form solution. In fact, this system of equations can be solved
efficiently by using fast Fourier transform (FFT) or discrete cosine transform
(DCT) if the periodic or reflective boundary condition is employed for the deriva-
tive operator ∇ (see more details in, e.g., [14, Chapter 7]).

– The ỹ-subproblem in (6.19), i.e., the ν̃-subproblem, reads as

ν̃k = argmin
ν

⎧
⎨

⎩

β2

2

∥
∥
∥
∥
∥
Pν − zk2 − λk2

β2

∥
∥
∥
∥
∥

2

2

+ β3

2

∥
∥
∥
∥
∥
μk+1 + ν − zk3 − λk3

β3

∥
∥
∥
∥
∥

2

2

⎫
⎬

⎭

= 1

β2 + β3

[
P−1(β2z

k
2 − λk2) + β3(z

k
3 − μk) + λk3

]
.

See more details in [33].
– The z̃-subproblem in (6.19), i.e., the (z̃1, z̃2, z̃3)-subproblem, is

(z̃1
k, z̃2

k, z̃3
k) = arg min

x,y,z

⎧
⎨

⎩
τ1‖|z1|‖1 + τ2‖z2‖∗ + τ3

2
‖Kz3 − f ‖22

+β1

2

∥
∥
∥
∥
∥
∇μ̃k − z1 − λk1

β1

∥
∥
∥
∥
∥

2

2

+β2

2

∥
∥
∥
∥
∥
P ν̃k − z2 − λk2

β2

∥
∥
∥
∥
∥

2

2

+ β3

2

∥
∥
∥
∥
∥
μ̃k + ν̃k − z3 − λk3

β3

∥
∥
∥
∥
∥

2

2

⎫
⎬

⎭
,

and all the variables z̃1, z̃2 and z̃3 can be solved simultaneously as follows.
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– The z̃1-subproblem can be solved explicitly by the soft-thresholding operator

z̃1
k = argmin

z1

⎧
⎨

⎩
τ1‖|z1|‖1 + β1

2

∥
∥
∥
∥
∥
∇μ̃k − z1 − λk1

β1

∥
∥
∥
∥
∥

2

2

⎫
⎬

⎭

= shrink τ1
β1

(

∇μ̃k − λk1

β1

)

,

where, for any c > 0, the mapping shrinkc(·) is defined as

shrinkc(g) := g − min{c, |g|} g

|g| , ∀g ∈ Rn × Rn,

and (
g
|g| )i should be taken as 0 if |g|i = 0.

– The z̃2-subproblem can be solved explicitly by the singular value decomposi-
tion (SVD)

z̃2
k = argmin

z2

⎧
⎨

⎩
τ2‖z2‖∗ + β2

2

∥
∥
∥
∥
∥
P ν̃k − z2 − λk2

β2

∥
∥
∥
∥
∥

2

2

⎫
⎬

⎭
= D τ2

β2

(

P ν̃k − λk2

β2

)

,

Here, for any c > 0, the mapping Dc(·) is defined as

Dc(W ) := UΣ̂V T , ∀W ∈ Rr2×s, (7.3)

whereUΣV T is the SVD ofW , and Σ̂i j = max{Σi j −c, 0} for all 1 ≤ i ≤ r2

and 1 ≤ j ≤ s.
– The z̃3-subproblem is solved involving in the linear operator K

z̃3
k = argmin

z3

⎧
⎨

⎩

τ3

2
‖Kz3 − f ‖22 + β3

2

∥
∥
∥
∥
∥
μ̃k + ν̃k − z3 − λk3

β3

∥
∥
∥
∥
∥

2

2

⎫
⎬

⎭

⇔ (τ3K
T K + β3 I )z3 = τ3K

T f + β3(μ̃
k + ν̃k) − λk3. (7.4)

If K is the identity or diagonal matrix, then z̃3 in (7.4) can be attained directly.
If K is a convolutional matrix, then z̃k can be solved efficiently by using FFT
or DCT.

Therefore, when the proposed algorithms (6.19) are applied to solve the image
decomposition model (7.1), all the resulting subproblems are easy to solve. This fact
contributes much to the efficiency of the new algorithms, as we shall see in the next
subsection.
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Fig. 1 Test images. From left to right: 256×256 Circles.png, 256×256 Boy.png, 512×512 Tomjerry.png
and 256 × 256 Barbara.png

7.3 Numerical results

Now, we test different cases of (7.1) where K = I (the case where f is clean), K = S
(the case where some pixels of f are missing) and K = B (the case where f is
corrupted by blur). The images to be tested are displayed in Figure 1.

Note that our purpose is to numerically verify the efficiency of the algorithms in
(6.19) for a given case of the model (1.1); especially to see the difference of various
choices of the step size α for different values of τ . As mentioned, the direct extension
of ADMM (1.5) (“EADMM” for abbreviation) is not necessarily convergent; but it
does work very well for many applications if it is indeed convergent. In fact, it usually
represents the fastest method among existing splitting methods originated from the
ALM in the literature. We thus use EADMM as the benchmark for comparison in
our experiments. Furthermore, we do not discuss how to determine the values of the
parameters (τ1, τ2, τ3) in the model (7.1), which is not the theme of this paper. Instead,
we simply follow the suggestion in [33, Theorems 3.3-3.6] to choose these parameters.
That is, we adopt τ1 ∈ [10−2, 10−1], τ2 ∈ [10−3, 10−2] (their precise values will be
specified later when a particular case is discussed) and τ3 ≡ 1. For the patch size, i.e.,
the scalar r of the mapping P , it can be easily estimated by the number of spikes of
the target image f in the Fourier domain (see [33] for details). Empirically, the integer
r is chosen as 11 throughout all numerical simulations.

Some other set-ups of the experiments are as follows. (1) We adopt the periodic
boundary condition for all the images to be tested and thus the FFT will be used
for the resulting system of equations. (2) The SVD in (7.3) is executed by an efficient
MatlabMex interface for computing SVD via a divide-and-conquer routine (dgesdd)
implemented in LAPACK. (3) When the value of τ is determined in (6.19b), the step
sizeα in this correction step canbe chosen as anyvalue in the interval (0, α(τ )).Usually
we need to avoid smaller step size whenever possible. Thus we prefer larger values
of α close to α(τ). For example, we can choose larger values of α according to the
methodology in Table 1. (4) The penalty parameter β is chosen by the cross-validation
technique. More specifically, as analyzed in [1], the quality of image decomposition
can bemeasured by themagnitude of the correlation between the cartoonμ and texture
ν obtained via an image decomposition model:

Corr(μ, ν) := cov(μ, ν)
/√

var(μ) · var(ν), (7.5)
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Fig. 2 The implementation of (6.19) with (τ, α) = (1/5, 7/8) to (7.1) with K = I for Barbara, with
different β. Evolution of the objective function values and Corr(μ, ν) w.r.t. different β. Left: for Barbara.
Right: for Tomjerry

β = 10−3 β = 10−2 β = 10−1 β = 1 β = 101

Fig. 3 The implementation of (6.19) with (τ, α) = (1/5, 7/8) to (7.1) with K = I for Barbaba, with
different β. Decomposed cartoons (top row) and textures (bottom row)

where var(·) and cov(·, ·) are the variance and covariance of two given variables,
respectively. Therefore, to determine an appropriate value of β, we focus on the imple-
mentation of the algorithm in (6.19) with (τ, α) = (1/5, 7/8) to the special case of
the model (7.1) with K = I . We take the Barbara and Tomjerry images in Fig. 1
as the tested images. A total number of 25 cases of β in the interval [10−3, 102] are
tested on the points 10−l where l varies from −3 to 2 with an equal distance of 0.2.
For each selected value of β, we run the algorithm by 1, 000 iterations and record
the objective function value for the model (7.1) and the magnitude of the correlation
Corr(μ, ν). The plots are displayed in Fig. 2. This figure indicates that values in the
interval (0.1, 1) can yield relatively lower objective function values and correlation
values. As a result, we hereafter fix the penalty parameter βi ≡ 1 throughout our
experiments. In Fig. 3, the decomposed cartoon and texture parts are displayed for
some values of β in different levels of magnitude.
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Fig. 4 The implementation of (6.19) with different (τ, α) to (7.1) with K = I , β = 1. Evolutions of the
objective function values w.r.t. the number of iterations (upper row) and computing time in seconds (lower
row). From left column to right column: for Circles, Boy, Barbara and Tomjerry images

7.3.1 The case of K = I

For the case K = I , the model (7.1) is for decomposing a clean image with-
out any degradation. The parameters (τ1, τ2, τ3) in (7.1) are fixed as (τ1, τ2, τ3) =
(0.01, 0.005, 1), as suggested in [33]. The initial iterates for implementing the algo-
rithms in (6.19) are taken as zeros.

In Fig. 4, we plot the evolutions of the objective function values for the model (7.1)
with respect to the number of iterations and computing time in seconds, for several
cases of the algorithms in (6.19) with different choices of τ . It is shown that that
the proposed algorithms can easily outperform EADMM. These plots also show that
a smaller value of τ seems more preferable because it can yield a larger step size
α(τ) for the correction steps in (6.19b). The decomposed cartoon and texture parts by
implementing the proposed algorithm with (τ, α) = (1/5, 7/8) for 150 iterations are
displayed in Fig. 5.

7.3.2 The case of K = S

We now test the case of model (7.1) with K = S. That is, some pixels of the image
under test are missing. For succinctness, we only test the Barbara image with 9.12%
missing pixels and the Tomjerry image with 12.76% missing pixels. The degraded
images with missing pixels are shown in Fig. 6.

For this case, the parameters (τ1, τ2, τ3) in (7.2) are chosen as (0.08, 0.005, 1), as
suggested in [33, Theorem 3.3-3.6]. All initial iterates for implementing the proposed
algorithms in (6.19) are taken as zeros.

In addition to the objective function value, we report the signal-to-noise ratio
(SNR) value in unit of dB which is commonly used to measure the quality of the
restored/reconstructed images. It is defined as
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Fig. 5 Decomposed cartoon (top row) and texture (bottom row) parts by implementing (6.19) with (τ, α) =
(1/5, 7/8) to (7.1) with K = I for 150 iterations

Fig. 6 The case of (7.1) with K = S. Left: corrupted Barbara image; Right: corrupted Tomjerry image

SNR = 20 log10
‖ f ∗‖

‖ f̄ − f ∗‖ ,

where f̄ is the approximation of the ground truth f ∗. For the corrupted images listed
in Fig. 6, the SNR values are 10.88dB for Barbara image and 9.06dB for Tomjerry
image.

Weplot the evolutions of the objective functionvalue and theSNRvaluewith respect
to the number of iterations and computing time in seconds in Fig. 7, for several cases
of the algorithms in (6.19) with different choices of τ . The decomposed cartoon and
texture parts by the proposed algorithm with (τ, α) = (1/5, 7/8) for 150 iterations
are illustrated in Fig. 8. To see the quality of decomposition more clearly, we display
the images by superposing the obtained cartoon and texture components in the third
column of Fig. 8.
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Fig. 7 The implementation of (6.19) with different (τ, α) to (7.1) with K = S, β = 1. Evolutions of the
objective function value and SNR value w.r.t. the number of iterations and computing time in seconds. Top
row: for Barbara. Bottom row: for Tomjerry

Fig. 8 The decomposed cartoon (left column) and texture (middle column) parts by the proposed algorithm
with (τ, α) = (1/5, 7/8) for 150 iterations; and the superposed (right column) images. Top row: for Barbara.
Bottom row: for Tomjerry

7.3.3 The case of K = B

Finally, we test the case of the model (7.1) with K = B. That is, the image f to
be decomposed is degraded by some blur. Again, for succinctness, we only test the
Barbara and Boy images with out-of-focus blur as shown in Fig. 9. For the corrupted
images listed in Fig. 9, the SNR values are 13.18dB for the corrupted Barbara image
and 24.18dB for the corrupted Boy image, respectively.
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Fig. 9 The case of (7.1) with K = B. Convolved Barbara (left) and Boy (right) images by out-of-focus
blur with radius 3
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Fig. 10 The implementation of (6.19) with different (τ, α) to (7.1) with K = B, β = 1. Evolutions of the
objective function value and SNR value w.r.t. the number of iterations and computing time in seconds. Top
row: for Barbara. Bottom row: for Boy

For this case, the parameters (τ1, τ2, τ3) in (7.2) are chosen as (0.08, 0.005, 1), as
suggested in [33, Theorem3.3-3.6]. All initial iterates for implementing the algorithms
in (6.19) are taken as zeros.

We plot the evolutions of the objective function value and SNR value with respect
to the number of iterations and computing time in seconds in Fig. 10, for several cases
of the algorithms in (6.19) with different choices of τ . The decomposed cartoon and
texture parts by the proposed algorithm with (τ, α) = (1/5, 7/8) for 150 iterations
are illustrated in Fig. 11. To see the quality of decomposition more clearly, we display
the images by superposing the obtained cartoon and texture components in the third
column of Fig. 11.

8 Conclusions

We focus on a convex minimization model with linear constraints and an objective
function in form of the sum of three functions without coupled variables; and discuss
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Fig. 11 Thedecomposed cartoon (left column) and texture (middle column) parts by the proposed algorithm
with (τ, α) = (1/5, 7/8) for 150 iterations; and the superposed (right column) images. Top row: for Barbara.
Bottom row: for Boy

how to develop a class of splitting algorithms. We propose a new prototype algorithm
in the prediction-correction framework, which uses the output of the direct extension
of the alternating direction method of multipliers (ADMM) as a predictor and corrects
it by a simple correction step. A unified and easily checkable condition to ensure the
convergence of this prototype algorithm is also given, based on which the possible
divergenceof the direct extensionofADMMcanbe easily explained.Aclass of specific
ADMM-based algorithms are easily developed based on this prototype algorithm.
These new algorithms can be implemented as easily as the direct extension of ADMM;
but they could be even faster numerically and they have proved convergence and
estimated worst-case convergence rates measured by the iteration complexity. They
expect to find various applications.

As mentioned in the introduction, we only discuss the case where the direct exten-
sion ofADMM(1.5) is completely preserved and thus the subproblems of the proposed
new algorithms are in form of (1.4). With the purpose of further simplifying the
subproblems as easy as (1.3), linearized versions of the proposed algorithms can be
developed. Such a linearized version treats the subproblems more sophisticatedly, and
it requires more meticulous analysis to prove its convergence and convergence rate.
The convergence analysis techniques in some references, e.g., [8,19,37,38], are useful
for considering linearized versions of the proposed algorithms. Also, to expose our
main idea more clearly, we only focus on the convex minimization model where there
are three functions in its objective; and it is interesting to consider extending this work
to the more general case where there are more than three functions in the objective.
To some extent, the analysis will follow the analytic framework in this paper. But
technically, the analysis for the general case should be more demanding and the con-
clusion should also be different. For example, the lower bound for the step size α in
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the prototype algorithm (3.1) is expected to be more conservative because of the more
general setting.
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