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Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem:
From Contraction Perspective∗
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Abstract. Recently, some primal-dual algorithms have been proposed for solving a saddle-point problem, with
particular applications in the area of total variation image restoration. This paper focuses on
the convergence analysis of these primal-dual algorithms and shows that their involved parameters
(including step sizes) can be significantly enlarged if some simple correction steps are supplemented.
Some new primal-dual–based methods are thus proposed for solving the saddle-point problem. We
show that these new methods are of the contraction type: the iterative sequences generated by
these new methods are contractive with respect to the solution set of the saddle-point problem. The
global convergence of these new methods thus can be obtained within the analytic framework of
contraction-type methods. The novel study on these primal-dual algorithms from the perspective
of contraction methods substantially simplifies existing convergence analysis. Finally, we show the
efficiency of the new methods numerically.
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1. Introduction. We consider the saddle-point problem

(1.1) min
y∈Y

max
x∈X

Φ(x, y) := yTAx+
λ

2
‖By − z‖2,

where X ⊂ �L and Y ⊂ �N are convex sets, z ∈ �N , A ∈ �N×L, B ∈ �N×N , λ > 0, ‖ · ‖
denotes the Euclidean norm, and T denotes the standard inner product operator. In particular,
the model (1.1) captures some image restoration problems involving the total variation (TV)
regularization introduced in [23]; see, e.g., [6, 11, 25]. Note that we can consider a saddle-point
problem in more general settings such as the model considered in [6],

(1.2) min
y∈Y

max
x∈X

Φ(x, y) := g(y) + yTKx− f∗(x),

where X and Y are two finite-dimensional real vector spaces equipped with an inner product
and the reduced norm ‖ · ‖; g : Y → [0,+∞) and f∗ : X → [0,+∞) are proper, convex, lower-
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120 BINGSHENG HE AND XIAOMING YUAN

semicontinuous (l.s.c.) functions; f∗ is itself the convex conjugate of a convex l.s.c. function
f ; and K : Y → X is a continuous linear operator with the induced norm

‖K‖ = max{‖Ky‖ : y ∈ Y with ‖y‖ ≤ 1}.
For clearer exposition of our analysis and simpler presentation, we focus on (1.1) in the
following analysis, and we briefly show the extension to (1.2) in section 6.

As analyzed in [6, 9, 11], the saddle-point problem (1.1) can be regarded as the primal-dual
formulation of a nonlinear programming problem, and this fact has inspired some primal-dual
algorithms for TV image restoration problems. We refer to, e.g., [6, 7, 9, 11, 15, 20, 24, 25]
for their numerical efficiency. More specifically, the iterative schemes of existing primal-dual
algorithms for (1.1) can be unified as the following procedure.

The primal-dual procedure for (1.1).

Let τ > 0, σ > 0, and θ ∈ �. With the given (xk, yk), the new iterate (xk+1, yk+1) is
generated by

xk+1 = Argmax
x∈X

{
τΦ(x, yk)− 1

2
‖x− xk‖2

}
,(1.3a)

x̄k = xk+1 + θ(xk+1 − xk),(1.3b)

yk+1 = Argmin
y∈Y

{
σΦ(x̄k, y) +

1

2
‖y − yk‖2

}
.(1.3c)

In (1.3), the parameters τ and σ are step sizes of the primal and dual steps, respectively,
and θ is called the combination parameter for obvious reasons. With some specific choices
of these parameters, some existing primal-dual algorithms for (1.1) are recovered, and their
convergence can be guaranteed when certain requirements are imposed on these parameters.
Below are some examples.

• When θ = 0 in (1.3b), the primal-dual procedure (1.3) reduces to the Arrow–Hurwicz
algorithm [1], which has been highlighted in [25] for TV image restoration problems.
In [11], the convergence of the special case of (1.3) with θ = 0 has been studied
insightfully by imposing additional restrictions ensuring that the step sizes τ and σ
are small.

• When θ ∈ [0, 1] in (1.3b), the primal-dual algorithm proposed in [6] is recovered.
In [6], it was shown that the primal-dual procedure (1.3) is closely related to many
existing methods including the extrapolational gradient method [18, 21], the Douglas–
Rachford splitting method [10], and the alternating direction method of multipliers
[13]. In particular, when θ = 1, the convergence of (1.3) was proved in [6] with the
requirement on step sizes

(1.4) τσ <
1

‖ATA‖ .

Thus, the difficulty of choosing very small step sizes in [11] is overcome. Note that un-
der some additional regularity and convexity assumptions on (1.2), some sophisticated
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strategies for choosing the parameters (τ , σ, θ) dynamically have also been analyzed
in [6] in order to yield accelerated primal-dual algorithms. In this paper, we restrict
our discussion to the deterministic scenario where all the parameters (τ , σ, θ) are fixed
throughout iterations.

In this paper, we study primal-dual algorithms for (1.1) from the perspective of contraction
methods (see [5] or section 2.4 for the definition of a contraction method). More specifically,
we will show that the primal-dual procedure (1.3) with θ = 1 is essentially an application of
the proximal point algorithm (PPA) (see [19]), provided that certain conditions on τ and σ are
required, and thus the resulting sequence of (1.3) is contractive with respect to the solution
set of (1.1). On the other hand, for the case θ 	= 1, (1.3) still takes an iterative framework
analogous to that of PPA although it cannot be interpreted as an application of PPA any
longer. However, this PPA-like structure makes it possible to develop some simple steps to
correct the output of (1.3) at each iteration. Consequently, the sequence generated by the
combination of (1.3) and such a correction step is contractive with respect to the solution set
of (1.1). Accordingly, some primal-dual–based contraction algorithms with various correction
schemes are presented for (1.1). These new algorithms are in the prediction-correction fashion,
where the primal-dual procedure (1.3) produces a predictor and it is corrected by a certain
correction step at each iteration. Our contributions in this paper can be summarized as
follows:

(1) We show that the range of the combination parameter θ can be enlarged to [−1, 1] in
(1.3), which is broader than the result θ ∈ [0, 1] in [6].

(2) When θ = −1, the step size τ and σ can be arbitrary positive numbers. When
θ ∈ (−1, 1], the condition (1.4) on step sizes can be relaxed to

(1.5) τσ
(1 + θ)2

4
<

1

‖ATA‖ .

Note that the condition (1.4) is recovered when θ = 1 in (1.5). However, when θ is
close to −1, the step sizes τ and σ can be very large simultaneously.

(3) We show that the analytic framework of contraction methods is a novel tool for study-
ing the convergence of primal-dual algorithms for (1.1). With this novel analytic
framework, the convergence analysis of existing primal-dual algorithms can be simpli-
fied substantially.

(4) We propose some efficient numerical algorithms for (1.1) by blending the ideas of
primal-dual and contraction methods.

The rest of this paper is organized as follows. In section 2, we review some preliminaries
which are useful for our analysis. In section 3, for the case θ ∈ [−1, 1), we present a primal-
dual–based contraction method and prove its convergence under the analytic framework of
contraction-type methods. The main theoretical results of enlarging the parameters in (1.3)
are also presented in this section. In section 4, we present a reduced primal-dual–based
contraction method with simpler correction steps for the case θ ∈ [−1, 1). The corresponding
requirement on the step sizes of (1.3) is also analyzed. In section 5, we pay specific attention
to the case of θ = 1. We will develop two new primal-dual–based contraction methods for this
special case. Then, we briefly analyze the extension of our convergence analysis for (1.1) to
the more general case (1.2) in section 6. In section 7, we illustrate the benefits of enlarging
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the involved parameters in (1.3) and the efficiency of the new methods numerically by some
experiment results. Finally, some conclusions are drawn in section 8.

2. Preliminaries. In this section, we provide some preliminaries which are useful for our
analysis. In particular, we review some basic knowledge of variational inequalities (VIs), the
PPA, and contraction methods, which are cornerstones of later analysis.

2.1. The VI reformulation of (1.1). We first reformulate (1.1) into a VI; for more details
the reader is referred to [25]. Let (x∗, y∗) be a solution of the saddle-point problem (1.1).
Then, we have

max
x∈X

{
(y∗)TAx+

λ

2
‖By∗ − z‖2

}
≤ (y∗)TAx∗+

λ

2
‖By∗−z‖2 ≤ min

y∈Y

{
yTAx∗ +

λ

2
‖By − z‖2

}
.

Based on their optimality conditions, we can easily verify that the above problems can be
characterized by the following VIs:{

x∗ ∈ X , (x− x∗)T (−AT y∗) ≥ 0 ∀x ∈ X ,

y∗ ∈ Y, (y − y∗)T
(
Ax∗ + λBT (By∗ − z)

) ≥ 0 ∀ y ∈ Y.

Therefore, the saddle-point problem (1.1) can be characterized by the following compact VI:
Find u∗ ∈ Ω such that

VI(Ω, F ) : (u− u∗)TF (u∗) ≥ 0 ∀u ∈ Ω,(2.1a)

where

u =

(
x
y

)
, F (u) =

( −AT y
Ax+ λBT (By − z)

)
, and Ω := X × Y.(2.1b)

It is easy to verify that the mapping F (u) in (2.1b) is monotone with respect to Ω, i.e.,

(u− v)T (F (u) − F (v)) ≥ 0 ∀u, v ∈ Ω.

Therefore, VI(Ω, F ) is monotone and its solution set denoted by Ω∗ is nonempty (see, e.g.,
[12]).

Let the projection onto Ω under the Euclidean norm be denoted by PΩ(·), i.e.,

PΩ(v) = Argmin{‖v − u‖2 | u ∈ Ω}.

Then, the following lemma shows that solving VI(Ω, F ) amounts to solving a projection equa-
tion.

Lemma 2.1. The point u∗ is a solution of VI(Ω, F ) if and only if

u∗ = PΩ[u
∗ − αF (u∗)] ∀ α > 0.

Proof. See [4, p. 267].
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2.2. Proximal point algorithm. Among classical methods applicable for solving VI(Ω, F )
is the PPA, which was contributed originally in [19] and developed concretely in [22]. More
specifically, instead of solving VI(Ω, F ) directly, PPA generates the sequence {uk} iteratively
via solving the proximal subproblem

(2.2) (PPA) uk+1 ∈ Ω, (u− uk+1)T (F (uk+1) + r(uk+1 − uk)) ≥ 0 ∀u ∈ Ω,

with r > 0 being the proximal parameter. Let G ∈ �(L+N)×(L+N) be a symmetric positive
definite matrix. Then, the PPA (2.2) can be generalized into

(2.3) uk+1 ∈ Ω, (u− uk+1)T (F (uk+1) +G(uk+1 − uk)) ≥ 0 ∀u ∈ Ω,

where G is a metric proximal parameter. Note that (2.3) can be regarded as the PPA with
a preconditioning proximal term (see, e.g., [11]) or the PPA in the context of the G-norm
(defined by ‖u‖G =

√
uTGu) [11, 17]. Based on the convergence analysis of PPA (see, e.g.,

[19, 22]), the sequence {uk} generated by (2.2) or (2.3) converges to a solution of VI(Ω, F ).

2.3. The PPA structure of (1.3). In this subsection, we show that the primal-dual pro-
cedure (1.3) actually takes a structure analogous to that of the PPA (2.3), but the involved
preconditioning matrix G is not symmetric if θ 	= 1.

Lemma 2.2. Let Ω and F be defined in (2.1b), and let uk+1 = (xk+1, yk+1) be generated by
the primal-dual procedure (1.3). Then we have

(2.4) uk+1 ∈ Ω, (u− uk+1)T {F (uk+1) +M(uk+1 − uk)} ≥ 0 ∀u ∈ Ω,

where

(2.5) M =

(
1
τ I AT

θA 1
σ I

)
.

Proof. It follows from the optimality conditions of (1.3a) and (1.3c) that

(2.6) xk+1 ∈ X , (x− xk+1)T
{
(−AT yk) +

1

τ
(xk+1 − xk))

}
≥ 0 ∀x ∈ X

and

(2.7) yk+1 ∈ Y, (y − yk+1)T
{
[Ax̄k + λBT (Byk+1 − z)] +

1

σ
(yk+1 − yk)

}
≥ 0 ∀ y ∈ Y.

Combining (2.6) and (2.7), we get that (xk+1, yk+1) ∈ Ω and that(
x− xk+1

y − yk+1

)T {( −AT yk+1

Axk+1 + λBT (Byk+1 − z)

)
+

[(
1
τ I AT

θA 1
σI

)(
xk+1 − xk

yk+1 − yk

)]}
≥ 0

for any (x, y) ∈ Ω. By using the function F defined in (2.1b) and the matrix M defined in
(2.5), (2.4) is a compact form of the above VI and the lemma is proved.

Note that the matrix M defined in (2.5) is not symmetric except for θ = 1. Thus, the
primal-dual procedure (1.3) with θ 	= 1 is not an application of the PPA (2.3) even though
it takes a structure similar to that of PPA. In this sense, the iterative scheme (2.4) can be
regarded as a variant of PPA or the PPA with a linear proximal term, as introduced in [16].
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2.4. Contraction methods. We first recall the concept of the Fejér monotonicity for
VI(Ω, F ). For a sequence {uk}, if the property

‖uk+1 − u∗‖ ≤ ‖uk − u∗‖ ∀u∗ ∈ Ω∗

is satisfied, then the sequence {uk} is said to be Fejér monotone with respect to Ω∗. We refer
the reader to [2] for more properties of the Fejér monotonicity.

According to [5], if a method generates an iterative sequence {uk} satisfying

(2.8) ‖uk+1 − u∗‖ ≤ ‖uk − u∗‖ − c‖uk − uk+1‖ ∀u∗ ∈ Ω∗,

where c > 0 is a constant, then we call this method a contraction method for VI(Ω, F ).
Obviously, the sequence generated by a contraction method for VI(Ω, F ) is Fejér monotone
with respect to Ω∗. Let G ∈ �(L+N)×(L+N) be a symmetric positive definite matrix. If the
G-norm is considered, then the definition of a contraction method can be extended to the case
with G-norm

(2.9) ‖uk+1 − u∗‖G ≤ ‖uk − u∗‖G − c‖uk − uk+1‖G ∀u∗ ∈ Ω∗.

According to the above definition, it is easy to verify that the PPA (2.2) or (2.3) is a
contraction method. We emphasize that the primal-dual procedure (1.3) with θ 	= 1 cannot
be regarded as the PPA due to the lack of symmetry of M . Therefore, the existing primal-
dual algorithms with θ 	= 1 for (1.1) do not belong to the category of contraction methods.
This fact inspires us to investigate how to develop contraction methods for (1.1) based on the
primal-dual procedure (1.3).

In the following, we will show that whenever the matrix M defined in (2.5) is positive
definite in spite of the lack of symmetry, we can easily find some simple correction steps to
correct the iterates generated by the primal-dual procedure (1.3), and the corrected iterates
constitute a contractive sequence with respect to Ω∗. As a result, we can develop primal-dual–
based contraction methods for (1.1) in the prediction-correction fashion, where the predictor is
generated by (1.3) (or (2.4)) and is corrected by some correction step at each iteration. In fact,
it is the purpose of ensuring the positive definiteness of M that enables us to significantly relax
the requirements on the step sizes τ and σ for existing primal-dual algorithms. In addition,
the global convergence of these primal-dual–based contraction methods can be easily derived
under the analytic framework of contraction methods.

In order to present the new methods in the prediction-correction fashion, from now on we
denote by ũk = (x̃k, ỹk) the iterate generated by the primal-dual procedure (1.3). Therefore,
the primal-dual procedure (1.3) in the context of VI (i.e., (2.4)) can be redescribed as follows.

The primal-dual procedure for (1.1).

Let τ > 0, σ > 0, and θ ∈ [−1, 1]; let F and M be defined in (2.1b) and (2.5),
respectively. With the given uk, generate ũk ∈ Ω via solving

(2.10) (u− ũk)T {F (ũk) +M(ũk − uk)} ≥ 0 ∀u ∈ Ω.

In sections 3 and 4, we first restrict our discussion to the case when θ ∈ [−1, 1), and then
we analyze the case of θ = 1 particularly in section 5.
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3. A primal-dual–based contraction method for θ ∈ [−1, 1). In this section, we develop
a primal-dual–based contraction method for (1.1) when θ ∈ [−1, 1) in (1.3), with the particular
interest in TV image restoration problems. We first elucidate the details of algorithmic design
and then present the algorithm. Finally, we prove its convergence.

3.1. The prediction step. As we have mentioned, the predictor ũk is generated by solving
(2.10). Thus, for the case θ ∈ [−1, 1), the prediction step is described as follows.

The prediction step at the (k + 1)th iteration.

Let θ ∈ [−1, 1). With the given uk, generate the predictor ũk via solving (2.10).

In the following, we discuss how to realize the primal-dual procedure (1.3) for some TV-
l2 image restoration problems. For these applications, in (1.1), we have L = 2N , X is the
Descartes product of some unit boxes (or balls under the infinity norm) in �2, Y is a ball
in �N with certain (or infinite) radius or the whole space �N , the matrix A corresponds
to the matrix representation of the discrete gradient operator, the matrix B represents a
deconvolution or subsampling operator such as the denoising or deblurring operator, and the
vector z represents a given image. We refer to [25] for the procedure of reformulating TV-l2

image restoration problems as the saddle-point problem (1.1).

Recall the definition of Φ(x, y) in (1.1). By deriving the optimality condition of (1.3a) and
using Lemma 2.1, the solution of (1.3a) is given by

(3.1) x̃k = PX [xk + τAT yk].

Due to the simplicity of X , it is easy to compute the projection on X in (3.1). Thus, the
subproblem (1.3a) is easy for TV-l2 image restoration problems. Now, we elaborate on how to
solve the subproblem (1.3c) for different TV-l2 image restoration problems; see [25] for more
details. In the coming analysis, the ROF model is defined in [23].

• The constrained ROF model. The discrete constrained ROF model is

(3.2) min
y

∫
D
|∇y| subject to ‖y − z‖2 ≤ |D|ς2,

where D is the image domain with its area being |D|, z is the given observed image, ς2

is an estimate of the variance of the noise in the image z, and ∇ is the discrete gradient
operator (see, e.g., [23, 25]). Note that (3.2) can be reformulated as the special case
of (1.1)

(3.3) min
y∈Y

max
x∈X

Φ1(x, y) := yTAx,

where Y := {y ∈ �N | ‖y − z‖2 ≤ |D|ς2} and A = ∇. In this case, the solution of
(1.3c) is given by

(3.4) ỹk = PY [yk − σAx̄k],

and the projection on Y can be computed easily.
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• The unconstrained ROF model. The discrete unconstrained ROF model is

(3.5) min
y

∫
D
|∇y|+ λ

2
‖y − z‖2,

where λ > 0 is a constant balancing the data-fidelity and TV regularization terms,
and all other terms are defined as (3.2). As shown in [25], (3.5) can be reformulated
as the special case of (1.1)

(3.6) min
y∈�N

max
x∈X

Φ2(x, y) := yTAx+
λ

2
‖y − z‖2,

where again A = ∇. Since Y = �N , for the given yk and x̄k, the solution of (1.3c) is
given by

∇y

(
σΦ2(x̄

k, y) +
1

2
‖y − yk‖2

)
= 0,

which means

(3.7) ỹk =
1

1 + σλ
yk +

σ

1 + σλ

(
λz −Ax̄k

)
.

• TV deblurring model. The discrete blurry and noisy TV restoration model is

(3.8) min
y

∫
D
|∇y|+ λ

2
‖By − z‖2,

where B is the matrix representation of a space-invariant blurring operator and all
other terms are defined as (3.5). Then, (3.8) can be reformulated as the special case
of (1.1)

(3.9) min
y∈�N

max
x∈X

Φ3(x, y) := yTAx+
λ

2
‖By − z‖2.

Since Y = �N , for given yk and x̄k, the solution of (1.3c) is the solution of

∇y

(
σΦ3(x̄

k, y) +
1

2
‖y − yk‖2

)
= 0,

from which we have

(3.10) (ỹk − yk) + σ
(
λBT (Bỹk − z) +Ax̄k

)
= 0.

For B, the Fourier transform of matrix multiplication by B becomes pointwise multi-
plication in the frequency domain. Hence, (3.10) can be efficiently solved by

(3.11) ỹk = F−1

[F(yk − σAx̄k) + σλF(K)∗ �F(z)

1 + σλF(K)∗ �F(K)

]
,

where F(·) and F−1[·] are the fast Fourier transform (FFT) and inverse FFT op-
erators, respectively, “∗” denotes the complex conjugate, and “�” is the pointwise
multiplication operator. For details, see section 2.4.2 in [25].
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3.2. The correction step. Recall that a matrix M ∈ �(L+N)×(L+N) (not necessarily
symmetric) is positive definite if there exists a constant c > 0 such that

(3.12) (u− ũ)TM(u− ũ) ≥ c‖u− ũ‖2 ∀u 	= ũ ∈ �L+N .

As we have mentioned, the matrixM defined in (2.5) is asymmetric except for θ = 1. Thus,
the primal-dual procedure (1.3) with θ ∈ [−1, 1) cannot be interpreted as an application of
PPA, and the resulting sequence is not necessarily contractive with respect to Ω∗. To construct
appropriate correction steps and thus yield primal-dual–based contraction methods for (1.1),
our idea can be explained as follows. Because u∗ ∈ Ω, it follows from (2.10) that

(ũk − u∗)T {−F (ũk) +M(uk − ũk)} ≥ 0.

In addition, since ũk ∈ Ω and u∗ is a solution of VI(Ω, F ), we have

(ũk − u∗)TF (u∗) ≥ 0.

Adding the above two inequalities and using the monotonicity of F , we obtain

(ũk − u∗)TM(uk − ũk) ≥ 0,

which implies

(3.13) (uk − u∗)TM(uk − ũk) ≥ (uk − ũk)TM(uk − ũk) ∀u∗ ∈ Ω∗.

Therefore, whenever (3.12) is satisfied, we have that

(
W (uk − u∗)

)T (−W−1M(uk − ũk)
) ≤ −c‖uk − ũk‖2,

where W ∈ �(L+N)×(L+N) is an arbitrarily symmetric positive definite matrix. In this case,
we conclude that −W−1M(uk − ũk) is a descent direction of the unknown distance function
1
2‖u−u∗‖2W at the point u = uk, and this direction is able to yield the contraction of proximity
to the set Ω∗ if an appropriate step size is chosen. We are thus inspired to propose the
correction step as follows, given the positive definiteness of M .

The correction step at the (k + 1)th iteration.
If the matrix M defined in (2.5) is positive definite and the predictor ũk is generated

by (2.10), then the new iterate is yielded by correcting ũk via

(3.14) uk+1 = uk − αW−1M(uk − ũk),

where W ∈ �(L+N)×(L+N) is a symmetric positive definite matrix and α > 0 is a step
size to be specified later.

Therefore, in order to present the complete algorithm, we need to investigate how to ensure
the positive definiteness of M in (2.5) and specify the choices of the step size α and the matrix
W in (3.14). These are tasks to be addressed in the following two subsections.
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3.3. How to ensure the positive definiteness of M . Subsections 3.1 and 3.2 emphasize
the importance of the positive definiteness of the matrix M in (2.5) for developing primal-
dual–based contraction methods for (1.1). In this subsection, we focus on the determination
of the step sizes τ and σ for this purpose.

For the convenience of analysis, we define the block diagonal part of M by

(3.15) H =

(
1
τ I 0
0 1

σ I

)
.

Obviously, the matrix H defined by (3.15) is positive definite whenever τ > 0 and σ > 0.
Therefore, we choose W = H in (3.14) for the discussion in sections 3 and 4. We now divide
the analysis of this subsection into the cases θ = −1 and θ ∈ (−1, 1).

Case 1. θ = −1.
When θ = −1, the matrix M (2.5) becomes

M =

(
1
τ I AT

−A 1
σ I

)
,

which is the sum of H (3.15) and a skew-symmetric matrix

M = H +

(
0 AT

−A 0

)
.

In this case, for any positive τ and σ, we have

(3.16) (u− ũ)TM(u− ũ) = ‖u− ũ‖2H ,

which indicates the positive definiteness of M . Hence, when θ = −1, the step sizes τ and σ
can be any positive numbers in order to ensure the positive definiteness of M .

Case 2. θ ∈ (−1, 1).
When θ ∈ (−1, 1), the condition on τ and σ to ensure the positive definiteness of M can

be summarized by the following lemma.
Lemma 3.1. Let H be defined in (3.15). For θ ∈ (−1, 1), if the step sizes τ and σ in (1.3)

satisfy

(3.17) τσ
(1 + θ)2

4
<

1

‖ATA‖ ,

then for the matrix M in (2.5), we have

(3.18) (u− ũ)TM(u− ũ) ≥ δ

1 + δ
‖u− ũ‖2H ∀u 	= ũ ∈ �L+N ,

where

(3.19) δ =
2

1 + θ

√
1

τσ‖ATA‖ − 1.
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Proof. Under the condition (3.17), the scalar δ defined in (3.19) is positive and it holds
that

(3.20) τ(1 + δ)‖ATA‖(1 + θ)2

4
=

1

σ(1 + δ)
.

For any u 	= ũ, we have

(3.21) (u− ũ)TM(u− ũ) = ‖u− ũ‖2H + (1 + θ)(y − ỹ)TA(x− x̃).

By using the Cauchy-Schwarz inequality and (3.20), we get

(1 + θ)(y − ỹ)TA(x− x̃) = 2
(1 + θ

2

)
(y − ỹ)TA(x− x̃)

≥ −(
τ(1 + δ)‖ATA‖)(1 + θ)2

4
‖y − ỹ‖2 − 1

τ(1 + δ)‖ATA‖‖A(x− x̃)‖2

= − 1

σ(1 + δ)
‖y − ỹ‖2 − 1

τ(1 + δ)‖ATA‖‖A(x − x̃)‖2

≥ − 1

1 + δ

(
1

τ
‖x− x̃‖2 + 1

σ
‖y − ỹ‖2

)

= − 1

1 + δ
‖u− ũ‖2H .

Substituting this in (3.21), the assertion (3.18) is proved.

Now we summarize the requirement on the step sizes τ and σ in (1.3) to ensure the positive
definiteness of M .

The step sizes τ and σ of the primal-dual procedure (1.3).

(3.22)

{
τ and σ are any positive numbers if θ = −1,

τσ (1+θ)2

4 < 1
‖ATA‖ if θ ∈ (−1, 1).

Remark 3.2. Compared to (1.4) analyzed in [6], we now allow the step sizes τ and σ to be
chosen according to the rule (3.22). In fact, τ and σ can be arbitrarily large when θ = −1,
and they can be arbitrarily large simultaneously if θ is sufficiently close to −1. Hence, the
requirement on the step sizes τ and σ in [6] is significantly relaxed by (3.22).

Remark 3.3. Note that the condition (3.17) is a sufficient condition to ensure the positive
definiteness of M . In fact, the positive definiteness of M can be guaranteed if the step sizes
τ and σ are chosen to satisfy

(3.23) (uk − ũk)TM(uk − ũk) ≥ δ

1 + δ
‖uk − ũk‖2H ∀ k > 0,

where δ > 0 is a constant. In practical computation, we can use the classical Armijo’s
technique to find a pair of τ and σ to satisfy the condition (3.23) in the absence of the value
of ‖ATA‖.
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3.4. Step size of the correction step. Now we analyze how to determine the step size α
for the correction step (3.14) where W = H. Moving along the direction −H−1M(uk − ũk)
from the current point uk by a suitable step size, we can obtain a new iterate which is closer to
the solution set Ω∗; this is the essence of contraction methods. To determine an appropriate
value of α, we let

u(α) := uk − αH−1M(uk − ũk).

Further, we denote

(3.24) ϑk(α) := ‖uk − u∗‖2H − ‖u(α) − u∗‖2H ,

which can measure the progress on the proximity to the solution set Ω∗ made by the new
iterate u(α). Because ϑk(α) involves the unknown vector u∗, we are not able to maximize it
directly. But, with (3.13), we have that

ϑk(α) = ‖uk − u∗‖2H − ‖uk − αH−1M(uk − ũk)− u∗‖2H
= 2α(uk − u∗)TM(uk − ũk)− α2‖H−1M(u− ũ)‖2H
≥ 2α(uk − ũk)TM(uk − ũk)− α2‖H−1M(uk − ũk)‖2H .

We define

(3.25) qk(α) = 2α(uk − ũk)TM(uk − ũk)− α2‖H−1M(uk − ũk)‖2H ;

then qk(α) is a lower bound of ϑk(α). Hence, we can choose a value of α such that qk(α),
instead of ϑk(α), is maximized. Note that qk(α) is a quadratic function of α and reaches its
maximum at

α∗
k =

(uk − ũk)TM(uk − ũk)

‖H−1M(uk − ũk)‖2H
.

Thus, we choose α∗
k as above for the step size of the correction step (3.14).

3.5. Algorithm. With the specifications of the prediction step, the requirement on the
step sizes τ and σ to ensure the positive definiteness of M , and the correction step and its
step size, we are now ready to present a primal-dual–based contraction method for (1.1) when
θ ∈ [−1, 1) in (2.10).

Algorithm 1: A primal-dual–based contraction method for (1.1) with θ ∈
[−1, 1) in (2.10).

Step 0. Let γ ∈ (0, 2). Let θ ∈ [−1, 1), M be defined in (2.5), and H be defined in
(3.15). Take u0 ∈ �L+N . Choose the step sizes τ and σ according to (3.22).
Prediction step: Generate the predictor ũk via solving the primal-dual procedure
(1.3), i.e., the VI (2.10).
Correction step: Correct the predictor and generate the new iterate uk+1 via

uk+1 = uk − αkH
−1M(uk − ũk),(3.26a)

where

αk = γα∗
k and α∗

k =
(uk − ũk)TM(uk − ũk)

‖H−1M(uk − ũk)‖2H
.(3.26b)
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Remark 3.4. Since we choose the step size α∗
k via minimizing the lower bound qk(α) in

(3.25), rather than the real distance difference ϑk(α) in (3.24), the “optimal” step size α∗
k is

usually conservative for the contraction purpose. Thus, we attach a relaxation parameter γ
to the step size α∗

k in (3.26b). The reason why we restrict γ ∈ (0, 2) will be clear in the next
subsection (see Lemma 3.5).

3.6. Convergence. In this subsection, we show that the proposed Algorithm 1 is a con-
traction method according to the definition (2.9), and then we prove its convergence under
the analytic framework of contraction methods.

Lemma 3.5. There exists a constant c0 > 0 such that the sequence {uk} generated by the
proposed Algorithm 1 satisfies

(uk − ũk)TM(uk − ũk) ≥ c0‖uk − ũk‖2H ,(3.27a)

‖uk+1 − u∗‖2H ≤ ‖uk − u∗‖2H − γ(2− γ)α∗
kc0‖uk − ũk‖2H ∀u∗ ∈ Ω∗.(3.27b)

Proof. First, for the case θ = −1, it follows from (3.16) that the assertion (3.27) holds with
c0 = 1, and for the case θ ∈ (−1, 1), it follows from (3.18) in Lemma 3.1 that the assertion
(3.27) holds with c0 = δ

1+δ , where δ is given in (3.19). Therefore, the assertion (3.27a) is
proved. Second, using (3.26) and (3.13), we have that

‖uk+1 − u∗‖2H = ‖uk − u∗ − αkH
−1M(uk − ũk)‖2H

= ‖uk − u∗‖2H − 2αk(u
k − u∗)TM(uk − ũk) + α2

k‖H−1M(uk − ũk)‖2H
≤ ‖uk − u∗‖2H − 2αk(u

k − ũk)TM(uk − ũk) + α2
k‖H−1M(uk − ũk)‖2H

= ‖uk − u∗‖2H − γ(2− γ)α∗
k(u

k − ũk)TM(uk − ũk) ∀u∗ ∈ Ω∗.

Thus, the assertion (3.27b) is proved by substituting (3.27a) into the above inequality.

Based on Lemma 3.5, we can easily show that the proposed Algorithm 1 is a contraction
method for (1.1), as stated in the following lemma.

Lemma 3.6. The proposed Algorithm 1 is a contraction method for (1.1).

Proof. First, it follows from (3.27a) that the “optimal” step size (see (3.26b)) is bounded
below:

α∗
k ≥ c0‖uk − ũk‖2

‖H−1M(uk − ũk)‖2H
≥ c0

‖MTH−1M‖ .

Consequently, the assertion (3.27b) and the above inequality show

(3.28) ‖uk+1 − u∗‖2H ≤ ‖uk − u∗‖2H − γ(2− γ)c20
‖MTH−1M‖‖u

k − ũk‖2H ∀u∗ ∈ Ω∗.

Then, it follows from (3.26a) and (3.28) that (2.9) is satisfied by the sequence {uk} generated
by Algorithm 1. That is, Algorithm 1 is a contraction method for (1.1).

Now, because of Lemma 3.6, we can easily prove the convergence of the proposed Algo-
rithm 1 by following the standard analytic framework of contraction-type methods; see, e.g.,
[5].
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Theorem 3.7. The sequence generated by the proposed Algorithm 1 converges to a solution
point of (1.1).

Proof. According to (3.28), the sequence {uk} generated by the proposed Algorithm 1 is
bounded. In fact, the sequence is contained by the compact set

S := {u ∈ �L+N | ‖u− u∗‖H ≤ ‖u0 − u∗‖H},

where u∗ is an arbitrary point in Ω∗ and u0 ∈ �L+N . Thus, the sequence {uk} has at least
a cluster point, say u∞, and we assume that the subsequence {ukj} converges to u∞. Note
that (3.28) immediately implies that ‖ukj − ũkj‖ → 0 when kj → ∞. Thus, taking the limit
over kj → ∞ in (2.10), we have that u∞ is a solution of VI (Ω, F ) and thus of (1.1). Note
that (3.28) also implies that u∞ is the unique cluster point of the sequence {uk}. Thus, {uk}
converges to u∞, a solution point of (1.1), starting from any u0. The global convergence of
Algorithm 1 is established.

4. A reduced primal-dual–based contraction method for θ ∈ [−1, 1). In this section,
we show that the procedure of determining the optimal step size α∗

k at the correction step
(3.26b) can be reduced. Thus, a reduced primal-dual–based contraction method with an easier
correction step for (1.1) is proposed. With an easier correction step, however, we will show
that the allowable ranges of the step sizes τ and σ are narrower than those in Algorithm 1.

Instead of choosing the step length αk judiciously as (3.26b), we can simply take αk ≡ 1
and thus the correction step (3.26a) is modified to

(4.1) uk+1 = uk −H−1M(uk − ũk).

The proposed Algorithm 1 but with the easier correction step (4.1), i.e., Algorithm 2 to be
proposed, is called a reduced primal-dual–based contraction method. We are now interested
in the conditions on τ and σ for ensuring that this new method is a contraction method.

Lemma 4.1. Assume that the matrix M (2.5) is positive definite. Let H be defined in (3.15).
Let {uk} be the sequence generated by the proposed Algorithm 1 but with the easier correction
step (4.1). If there exists c1 > 0 such that

(4.2) 2(uk − ũk)TM(uk − ũk)− ‖H−1M(uk − ũk)‖2H ≥ c1‖uk − ũk‖2H
holds for all k > 0, then, the reduced primal-dual–based contraction method with (4.1) is a
contraction method in the sense that

(4.3) ‖uk+1 − u∗‖2H ≤ ‖uk − u∗‖2H − c1‖uk − ũk‖2H ∀u∗ ∈ Ω∗.

Proof. Using (4.1) and (3.13), we have that

‖uk+1 − u∗‖2H = ‖uk − u∗ −H−1M(uk − ũk)‖2H
= ‖uk − u∗‖2H − 2(uk − u∗)TM(uk − ũk) + ‖H−1M(uk − ũk)‖2H
≤ ‖uk − u∗‖2H − 2(uk − ũk)TM(uk − ũk) + ‖H−1M(uk − ũk)‖2H
≤ ‖uk − u∗‖2H − c1‖uk − ũk‖2H ∀u∗ ∈ Ω∗,
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where the last inequality comes from (4.2). Together with (4.1), the above fact ensures that
(2.9) holds for this new algorithm. The assertion of this lemma is proved.

Now, we analyze how to determine appropriate values of the step sizes τ and σ in (1.3) to
guarantee the validation of (4.2).

Lemma 4.2. Let M and H be defined as in (2.5) and (3.15), respectively. For θ ∈ [−1, 1),
if the step sizes τ and σ satisfy

(4.4) τσ <
1

‖ATA‖ ,

then we have

(4.5) 2(u− ũ)TM(u− ũ)− ‖H−1M(u− ũ)‖2H ≥ (1− τσ‖ATA‖)‖u − ũ‖2H ∀u, ũ ∈ �L+N .

Proof. Using the definitions of the matrices M and H, we have that

2(u− ũ)TM(u− ũ) =
2

τ
‖x− x̃‖2 + 2

σ
‖y − ỹ‖2 + 2(1 + θ)(y − ỹ)TA(x− x̃).

On the other hand, since

H−1M(u− ũ) =

(
x− x̃+ τAT (y − ỹ)
y − ỹ + σθA(x− x̃)

)
,

we obtain that

‖H−1M(u− ũ)‖2H =
1

τ
‖(x− x̃) + τAT (y − ỹ)‖2 + 1

σ
‖(y − ỹ) + σθA(x− x̃)‖2

=
1

τ
‖x− x̃‖2 + 1

σ
‖y − ỹ‖2 + τ‖AT (y − ỹ)‖2 + σθ2‖A(x− x̃)‖2

+2(1 + θ)(y − ỹ)TA(x− x̃).

Therefore, we get

2(u− ũ)TM(u− ũ)− ‖H−1M(u− ũ)‖2H
=

(1
τ
‖x− x̃‖2 + 1

σ
‖y − ỹ‖2

)
−

(
τ‖AT (y − ỹ)‖2 + σθ2‖A(x− x̃)‖2

)
.(4.6)

It follows from (4.6) that

2(u− ũ)TM(u− ũ)− ‖H−1M(u− ũ)‖2H
=

(1
τ
‖x− x̃‖2 − σθ2‖A(x − x̃)‖2

)
+

( 1

σ
‖y − ỹ‖2 − τ‖AT (y − ỹ)‖2

)
≥ (

1− τσθ2‖ATA‖)1
τ
‖x− x̃‖2 + (

1− τσ‖AAT ‖) 1
σ
‖y − ỹ‖2

≥ (
1− τσ‖ATA‖)‖u− ũ‖2H ,

where the last inequality follows from the fact that θ2 ≤ 1. Thus, this lemma is proved.
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Remark 4.3. According to Lemma 4.2, the condition (4.4) is a sufficient condition to ensure
(4.2) with c1 = 1− τσ‖ATA‖. In fact, from the proof of Lemma 4.6, we need only guarantee
that the right-hand side of (4.6) is greater than c1‖u − ũ‖2H with c1 > 0, in order to meet
(4.2). In other words, the equality (4.6) implies that (4.2) holds if the step sizes τ and σ are
chosen to guarantee that

(4.7) τ‖AT (yk − ỹk)‖2 + σθ2‖A(xk − x̃k)‖2 ≤ (1− c1)
(1
τ
‖xk − x̃k‖2 + 1

σ
‖yk − ỹk‖2

)
∀ k > 0

for a given scalar c1 > 0. In practical computation, we can use the classical Armijo technique
to find values of τ and σ to satisfy (4.7) in the absence of the value ‖ATA‖.

Remark 4.4. As we have mentioned, an important case of the primal-dual procedure (1.3)
is the primal-dual hybrid gradient (PDHG) method in [25] with θ = 0 in (1.3b). For this case,
we notice that the condition (4.7) for determining values of τ and σ can be simplified to

τ‖AT (yk − ỹk)‖2 ≤ (1− c1)
(1
τ
‖xk − x̃k‖2 + 1

σ
‖yk − ỹk‖2

)
∀ k > 0,

for a given scalar c1 > 0.
Now, we are ready to present the reduced primal-dual–based contraction method for (1.1)

with θ = [−1, 1) in (2.10).

Algorithm 2: A reduced primal-dual-based contraction method for (1.1)
with θ ∈ [−1, 1) in (2.10).
Step 0. Let θ ∈ [−1, 1), M be defined in (2.5), and H be defined in (3.15). Take
u0 ∈ �L+N . Choose the step sizes τ and σ according to (4.4).
Prediction step: Generate the predictor ũk via solving the primal-dual procedure
(1.3), i.e., the VI (2.10).
Correction step: Correct the predictor and generate the new iterate uk+1 via

(4.8) uk+1 = uk −H−1M(uk − ũk).

Remark 4.5. Since Lemmas 4.1 and 4.2 show that the proposed Algorithm 2 is a contraction
method for (1.1) under the condition (4.4), the convergence analysis of Algorithm 2 is similar
to that of Algorithm 1 and it is omitted.

To close this subsection, we discuss the relationship of the proposed Algorithm 2 with
the PDHG method in [25]. Recall that the PDHG method in [25] is the special case of the
primal-dual procedure (1.3) with θ = 0, and its convergence was proved in [11] with very small
step sizes τ and σ. When θ = 0, the primal-dual procedure (1.3) reduces to

x̃k = Argmax
x∈X

{
τΦ(x, yk)− 1

2
‖x− xk‖2

}
,(4.9a)

ỹk = Argmin
y∈Y

{
σΦ(x̃k, y) +

1

2
‖y − yk‖2

}
.(4.9b)

Then, the PDHG method in [25] takes(
xk+1

yk+1

)
=

(
x̃k

ỹk

)
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as the new iterate. On the other hand, the proposed Algorithm 2 generates the new iterate
by (

xk+1

yk+1

)
=

(
x̃k − τAT (yk − ỹk)
ỹk

)
.

Hence, when θ = 0, the proposed Algorithm 2 differs from the PDHG method in [25] in
that the variable x̃k is further corrected. Recall that the PDHG method in [25] is essentially
an Arrow–Hurwicz algorithm in [1]. Since the variable x̃k is further corrected and the ỹk

remains uncorrected, the proposed Algorithm 2 with θ = 0 can be regarded as a semi-implicit
Arrow–Hurwicz algorithm.

5. Primal-dual-based contraction methods for θ = 1. In this section, we pay attention
to the special case of (1.3) when θ = 1. As we have emphasized, for this case, the matrix M
defined in (2.5) becomes

(5.1) M =

(
1
τ I AT

A 1
σI

)
,

and it is symmetric. Thus, the primal-dual procedure (1.3) with θ = 1 is exactly an application
of the classical PPA whenever the positive definiteness of M is guaranteed. Then, the iterate
scheme (1.3) without any correction step is a contraction method with respect to the solution
set Ω∗. Similarly to Lemma 3.1, we can easily show that the positive definiteness of the matrix
M in (5.1) is guaranteed if

(5.2) τσ <
1

‖ATA‖ .

Thus, with the restriction (5.2) on the step sizes, the primal-dual procedure (1.3) with θ = 1
is a contraction-type method, and this is exactly the extrapolational gradient method in [6].

Notice that the condition (5.2) coincides with the condition (3.17) by taking θ = 1 and
the condition (4.4). All the analysis conducted in sections 3 and 4 is valid for θ = 1. Thus,
we can easily extend the proposed Algorithms 1 and 2 to the case θ = 1. In particular,
by extending Algorithm 2, we immediately obtain a reduced primal-dual–based contraction
method for (1.1) with θ = 1 in (2.10).

Algorithm 3: A reduced primal-dual–based contraction method for (1.1)
with θ = 1 in (2.10).

Step 0. Let θ = 1. Take u0 ∈ �L+N . Choose the step sizes τ and σ according to (5.2).
Prediction step: Generate the predictor ũk via solving the primal-dual procedure
(1.3), i.e., the VI (2.10).
Correction step: Correct the predictor and generate the new iterate uk+1 via

(5.3) uk+1 =

(
xk+1

yk+1

)
=

(
x̃k − τAT (yk − ỹk)
ỹk − σA(xk − x̃k)

)
.

Because of the speciality of θ = 1, in this section we show that another primal-dual–
based contraction method can be easily derived for (1.1) with θ = 1. The new primal-dual–
based contraction method is also in the prediction-correction fashion, and it differs from the
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proposed Algorithms 1–3 in that its correction step is much less demanding computationally.
Our motivation is that the aforementioned correction steps (3.26a), (4.8), and (5.3) all require
multiplications of the matrices A and AT with some vectors. For TV image restoration
problems, these multiplications might be computationally demanding. Thus, it is desired
to develop a primal-dual–based contraction method for (1.1) such that its correction step is
simple enough to involve no multiplications of matrices and vectors.

Similar to the motivation stated in section 3.2, our idea is that for the case θ = 1, we can
easily derive that

(5.4) (uk − u∗)TM(uk − ũk) ≥ ‖uk − ũk‖2 ∀u∗ ∈ Ω∗,

which indicates that the direction −(uk− ũk) is a descent direction of the function 1
2‖u−u∗‖2

at the point u = uk. Thus, we can move closer to the solution set Ω∗ along the direction
−(uk − ũk). The resulting primal-dual–based contraction method for θ = 1 in (2.10) is
presented as follows.

Algorithm 4: A new primal-dual–based contraction method for (1.1) with
θ = 1 in (2.10).

Step 0. Let θ = 1 and ρ ∈ (0, 2). Take u0 ∈ �L+N . Choose the step sizes τ and σ
according to (5.2).
Prediction step: Generate the predictor ũk via solving the primal-dual procedure
(1.3), i.e., the VI (2.10).
Correction step: Correct the predictor and generate the new iterate uk+1 via

(5.5) uk+1 = uk − ρ(uk − ũk).

Remark 5.1. Recall that the primal-dual procedure (1.3) is exactly the PPA (see (2.3))
when θ = 1. Thus, Algorithm 4 can also be regarded as a relaxed PPA, or a PPA-based
contraction method.

Lemma 5.2. Let M be defined in (5.1), where the condition (5.2) is satisfied. The sequence
{uk} generated by the proposed Algorithm 4 satisfies

‖uk+1 − u∗‖2M ≤ ‖uk − u∗‖2M − ρ(2− ρ)‖uk − ũk‖2M ∀u∗ ∈ Ω∗.

Proof. First of all, the positive definiteness of M in (5.1) is ensured under the condition
(5.2). Then, using (5.5) and (5.4) and by a simple manipulation, we obtain

‖uk+1 − u∗‖2M = ‖uk − u∗ − ρ(uk − ũk)‖2M
= ‖uk − u∗‖2M − 2ρ(uk − u∗)TM(uk − ũk) + ρ2‖uk − ũk‖2M
≤ ‖uk − u∗‖2M − 2ρ‖uk − ũk‖2M + ρ2‖uk − ũk‖2M
= ‖uk − u∗‖2M − ρ(2− ρ)‖uk − ũk‖2M ∀u∗ ∈ Ω∗.

The assertion is proved.
Remark 5.3. According to Lemma 5.2, it is clear why the parameter ρ is restricted in the

interval (0, 2). In fact, when ρ ∈ (0, 2), (5.5) and the assertion of Lemma 5.2 immediately
indicate that the sequence {uk} generated by Algorithm 4 satisfies (2.9) under the M -norm.
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That is, Algorithm 4 is a contraction method with respect to Ω∗. Hence, the convergence of
Algorithm 4 can be established easily, and we omit it.

At the end of this section, we analyze the difference between the extrapolational gradient
method in [6] and the proposed Algorithm 4. Since θ = 1, the primal-dual procedure (1.3)
reduces to

x̃k = Argmax
x∈X

{
τΦ(x, yk)− 1

2
‖x− xk‖2

}
,(5.6a)

ỹk = Argmin
y∈Y

{
σΦ(2(x̃k − xk), y) +

1

2
‖y − yk‖2

}
.(5.6b)

Then, the extrapolational gradient method in [6] takes

(
xk+1

yk+1

)
=

(
x̃k

ỹk

)

as the new iterate, and the convergence is guaranteed under the condition (5.2). Under the
same condition (5.2), the proposed Algorithm 4 takes a combination of uk and ũk to generate
a new iterate: (

xk+1

yk+1

)
=

(
xk

yk

)
− ρ

(
xk − x̃k

yk − ỹk

)
with ρ ∈ (0, 2).

Obviously, the extrapolational gradient method in [6] is a special case of the proposed Algo-
rithm 4 with ρ = 1.

6. Extension to a general saddle-point problem. As we have mentioned, we can extend
our convergence analysis to the saddle-point problem (1.2) which was considered in [6]. The
convergence analysis for this general model is completely analogous to the previous analysis
for (1.1). Thus we only briefly present the procedure of reformulating (1.2) as a variational
inequality and explain how to express existing primal-dual algorithms in [6] by the structure
of PPA but with an asymmetric preconditioning matrix.

Similarly, the problem (1.2) can be reformulated as the following monotone variational
inequality: find (x∗, y∗) ∈ X × Y , F (x∗) ∈ ∂f∗(x∗), and G(y∗) ∈ ∂g(y∗) such that

(6.1)

(
x− x∗

y − y∗

)T (
F (x∗)−KTy∗

G(y∗) +Kx∗

)
≥ 0 ∀(x, y) ∈ X × Y,

where ∂(·) denotes the subdifferential operator of a convex function. By denoting

(6.2) u =

(
x
y

)
, U(u) =

(
F (x)−KTy
G(y) +Kx

)
, and Ω = X × Y,

(6.1) is a monotone VI denoted by VI (Ω, U). Note that the monotonicity of the VI (Ω, U) is
guaranteed by the convexity of f∗ and g.

Recall that the primal-dual algorithm for (1.2) presented in [6] is as follows.
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Chambolle and Pock’s primal-dual algorithm for (1.2).

xk+1 = Argmax
x∈X

{
τ
(
(yk)TKx− f∗(x)

) − 1

2
‖x− xk‖2

}
,(6.3a)

x̄k = xk+1 + θ(xk+1 − xk), θ ∈ [0, 1],(6.3b)

yk+1 = Argmin
y∈Y

{
σ
(
g(y) + yTKx̄k

)
+

1

2
‖y − yk‖2

}
.(6.3c)

With analogous reasoning, we can easily verify that the iterate (xk+1, yk+1) generated
by (6.3) can be characterized as follows: (xk+1, yk+1) ∈ X × Y , F (xk+1) ∈ ∂f∗(xk+1), and
G(yk+1) ∈ ∂g(yk+1) such that(

x− xk+1

y − yk+1

)T{(
F (xk+1)−KTyk+1

G(yk+1) +Kxk+1

)
+

[(
1
τ I KT

θK 1
σI

)(
xk+1 − xk

yk+1 − yk

)]}
≥ 0

for any (x, y) ∈ X × Y . Using the notation in (6.2), we have the compact form

(u− uk+1)T {U(uk+1) +M(uk+1 − uk)} ≥ 0 ∀u ∈ Ω,

where M is defined the same as (2.5) if we regard K as A. Therefore, we obtain the same
assertion in Lemma 2.2 for the case (1.2). Consequently, all the convergence analysis conducted
in sections 3–5 can be implemented analogously for the model (1.2).

7. Numerical experiments. In this section, we apply the proposed algorithms to solve
some TV image deblurring and inpainting problems, and report the numerical results. For
these applications, the linear operator A in (1.1) is thus the matrix representation of the
discrete gradient operator, and the matrix B in (1.1) is a deconvolution or subsampling op-
erator. We also compare these algorithms numerically with some existing efficient methods.
More specifically, this section consists of the following three parts.

• Subsection 7.1 illustrates the sensitivity of the involved parameters of the proposed
algorithms by a TV image deblurring problem. The sensitivity of the step sizes τ and
σ, the combination parameter θ, and the parameter ρ of the proposed algorithms will
be investigated in this subsection.

• Subsection 7.2 compares the proposed algorithms numerically with the PDGH method
in [25] for solving some TV image deblurring problems.

• Subsection 7.3 compares the proposed algorithms numerically with the PDHG method
in [25] and the first-order primal-dual algorithm in [6] for some TV image inpainting
problems.

To report the numerical results, “It.” and “CPU” in the following tables represent the
iteration numbers and computing time in seconds, respectively. The quality of restored images
is measured by the value of the signal-to-noise ratio (SNR) given by

SNR := 20 log10
‖y∗‖

‖ȳ − y∗‖ ,

where ȳ is the image restored by a certain algorithm and y∗ is the original one.
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All the proposed algorithms were coded by MATLAB 7.9, and all the numerical experi-
ments were conducted on a Lenovo laptop with Intel Core CPU 2.30 GHZ and 8G memory.

7.1. Sensitivity of parameters. One of the contributions in this paper is that we enlarge
the allowable range of the combination parameter θ from [0, 1] to [−1, 1]. Recall that Algo-
rithms 1 and 2 are proposed for the case θ ∈ [−1, 1), while Algorithms 3 and 4 are for the case
θ = 1. In addition, the requirements on the step sizes τ and σ are different when θ = −1 and
θ ∈ (−1, 1); see (3.22) and (4.4), respectively. Thus, we divide the discussion of this subsection
into three cases, θ ∈ (−1, 1), θ = −1, and θ = 1, and report the respective sensitivity results
in three different subsections. In the following, we summarize the main task of each case and
thus clarify how we will test the sensitivity of parameters for the proposed algorithms.

• Let θ ∈ (−1, 1). Due to the symmetric role of the step sizes τ and σ, we take τ as a
fixed value throughout this case and test various values of σ. More specifically, for a
given value of σ, we test the variation of Algorithm 1’s numerical performance with
respect to various choices of θ ∈ (−1, 1). The sensitivity of θ and σ are thus illustrated
in some senses for Algorithm 1. Since Algorithm 2 is the reduced version of Algorithm
1 and our numerical experiments indicate the similar numerical performance between
these two algorithms, we omit the sensitivity results of Algorithm 2 for the sake of
succinctness. Another reason for excluding the sensitivity results of Algorithm 2 is its
similarity to Algorithm 3, whose sensitivity results will be tested for the case θ = 1.

• Let θ = −1. We test the variation of Algorithm 1’s numerical performance with respect
to various choices of τ or σ when one of them is fixed. For the same reason as before,
we omit the details of the sensitivity of Algorithm 2 for this case.

• Let θ = 1. We first test the variation of Algorithm 3’s numerical performance with
respect to various choices of τ or σ when one of them is fixed. Note that we omit
the sensitivity results of τ and σ for Algorithm 4, as they are analogous to those of
Algorithm 3. Then, since Algorithm 4 involves the parameter ρ in the correction step,
we also test the sensitivity of ρ for Algorithm 4 when the step sizes τ and σ are fixed.

We illustrate the sensitivity of parameters by deblurring the image Cameraman.png (256×
256). The original image is degraded by the gaussian blur with hsize = 21 and sigma = 5
(which can be realized by the script fspecial in the MATLAB Image Processing Toolbox).
Moreover, the additive zero-mean Gaussian noise with the standard deviation 10−3 is added
to the blurred image. The original and degraded images are shown in Figure 1. To deblur
this corrupted image, we take λ = 1000 in (1.1). Note that there is a relaxation parameter
γ for Algorithm 1. For the simpler exposition of the main results, we simply take γ = 1.6
throughout when we implement Algorithm 1.

7.1.1. θ ∈ (−1, 1). For this case, recall that the requirement on the step sizes τ and σ
is (3.22). Thus, when τ is fixed, the allowable step size σ can be expressed as

σ =
μ

τ(1 + θ)2‖ATA‖ with μ ∈ (0, 4).

In our numerical experiment, we fixed τ = 0.1 when we implemented Algorithm 1. In Figure
2, we plot the evolution of SNR values with respect to 200 iterations, for various values of θ
and μ.
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Figure 1. Left: original Cameraman.png (256 × 256). Right: degraded image.
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Figure 2. Evolutions of SNRs with respect to iterations for θ ∈ (−1, 1). From top to bottom and left to
right: μ = 0.05, μ = 0.1, μ = 0.5, μ = 1.

According to the curves in Figure 2, the numerical performance of Algorithm 1 could
be improved by taking negative values of θ when other parameters are fixed. This verifies
empirically the necessity of enlarging the allowable range of θ from [0, 1] to [−1, 1].

7.1.2. θ = −1. For this case, recall that the step sizes τ and σ can be arbitrarily large
positive numbers. In Figure 3, we show the variation of Algorithm 1’s numerical performance
with respect to various choices of σ when τ is fixed as 0.01, and that of τ when σ is fixed as
0.1.

The curves in Figure 3 indicate that Algorithm 1 could be accelerated when relatively
larger step sizes are chosen appropriately. For instance, when τ = 0.01, Algorithm 1 with
σ = 100 performs much faster than σ = 0.1 and 0.001. Thus, the enlargement of the allowable
ranges of τ and σ provides more freedom for tuning these parameters, and it makes it possible
to accelerate Algorithm 1 considerably.
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Figure 3. Evolutions of SNRs with respect to iterations for θ = −1. Left: τ = 0.01. Right: σ = 0.1.
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Figure 4. Evolutions of SNRs with respect to iterations for θ = 1. Left: τ = 0.01. Right: σ = 0.1.

7.1.3. θ = 1. For this case, recall that the requirement on the step sizes τ and σ is (4.4).
Thus, when τ is fixed, the allowable step size σ can be expressed as

σ =
μ

τ‖ATA‖ with μ ∈ (0, 1),

and when σ is fixed, the allowable step size τ can be expressed as

τ =
μ

σ‖ATA‖ with μ ∈ (0, 1).

In Figure 4, we show the variation of Algorithm 3’s numerical performance with respect
to various choices of μ when τ is fixed as 0.01 and when σ is fixed as 0.1. Figure 4 shows
clearly that larger step sizes are possible to improve the numerical performance of Algorithm
3.

Finally, we investigate the sensitivity of the parameter ρ for Algorithm 4. In Figure 5, for
Algorithm 4, we plot the evolutions of SNR values with respect to 200 iterations for different
values of ρ, when the step sizes are fixed. In this figure, ρ ∈ (1, 2) means that its value is
randomly generated in the interval (1, 2). These curves in Figure 5 indicate that ρ ∈ (1.5, 1.9)
is preferable when we implement Algorithm 4 in practice.

7.2. TV image deblurring problem. In this subsection, we apply the proposed algorithms
to solve some TV image deblurring problems and compare them numerically with the PDHG
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Figure 5. Evolutions of SNRs with respect to iterations for Algorithm 4 with different ρ. Left: (τ =
0.01, σ = 0.1). Right: (τ = 0.1, σ = 0.01)

Figure 6. Original images: Barbara.png (512 × 512) and Man.png (1024 × 1024).

Table 1
Tested scenarios in subsection 7.2.

motion blur gaussian blur

Medium scenario theta=135, len=21 hsize=21, sigma=5

Severe scenario theta=135, len=91 hsize=41, sigma=10

method in [25]. More specifically, we test the images Barbara.png (512 × 512) and Man.png
(1024 × 1024), as shown in Figure 6. These images are then degraded by convolutions and
the zero-mean Gaussian noise with the standard deviation 10−3. The blur operator and the
additive noise are generated by the respective scripts fspecial and imnoise in the MATLAB
Image Processing Toolbox, and the specific scenarios (i.e., the input of the script fspecial)
we test are listed in Table 1. In Figures 7 and 8, we display the blurred images to be tested.

To deblur these corrupted images, in (1.1) we take λ = 250 for the motion blur cases and
λ = 1000 for the gaussian blur cases. All the algorithms including Algorithms 1–4 and the
PDHG use the stopping criterion

‖yk+1 − yk‖
‖yk+1‖ < Tol,(7.1)

where {yk} is the sequence generated by one of the tested algorithms and Tol is the error
tolerance. In (7.1), we take Tol = 10−4 for the motion blur cases and Tol = 5 × 10−5 for the
gaussian blur cases. All the algorithms start their iterations with the degraded images. The
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Figure 7. Degraded images. From left to right: Barbara with medium motion blur, Man with medium
motion blur, Barbara with severe motion blur, Man with severe motion blur.

Figure 8. Degraded images. From left to right: Barbara with medium gaussian blur, Man with medium
gaussian blur, Barbara with severe gaussian blur, Man with severe gaussian blur.

Table 2
Toned values of parameters for Algorithms 1–4 for image deblurring.

Algorithm 1 τ = 0.03, σ = 5.0, θ = −0.2, γ = 1.6

Algorithm 2 τ = 0.03, σ = 5.0, θ = −0.2

Algorithm 3 τ = 0.03, σ = 4.0, θ = 1

Algorithm 4 τ = 0.03, σ = 4.0, θ = 1, ρ = 1.8

code of PDHG with toned parameters was downloaded from http://pages.cs.wisc.edu/∼swright/
GPUreconstruction/. When the proposed Algorithms 1–4 are implemented, their respective
parameters are given in Table 2.

We report the numerical results in Tables 3 and 4 for the motion blur cases and gaussian

blur cases, respectively. These tables show that all the proposed algorithms can restore images
with better quality (i.e., higher SNR values) than that restored by PDHG. For the cases with
medium blurs, the proposed algorithms are all faster than PDHG. For the cases with severe
blurs, the proposed Algorithm 4 is faster than PDHG, and Algorithms 1–3 are also very
competitive with PDHG in terms of the restoration speed. According to Tables 3 and 4,
it is easy to find that the computational cost per iteration of Algorithms 1–3 is larger than
that of Algorithm 4. The reason is that Algorithms 1–3 require multiplications of matrices
and vectors (which are computationally demanding for image deblurring problems) at their
correction steps, while Algorithm 4 does not. In addition, we can see that Algorithm 1
requires fewer iterations than Algorithm 2 for achieving the same stopping criterion, with
the same values of parameters and starting iterate. This is due to the fact that Algorithm 2
is the reduced version of Algorithm 1 without choosing appropriate step sizes at correction

http://pages.cs.wisc.edu/~swright/GPUreconstruction/
http://pages.cs.wisc.edu/~swright/GPUreconstruction/
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Table 3
Numerical results of image deblurring ( motion blur).

Medium motion blur Severe motion blur

Barbara Man Barbara Man

It. CPU SNR It. CPU SNR It. CPU SNR It. CPU SNR

Algo1 26 3.8 24.48 34 21.7 25.54 72 11.4 18.95 63 41.3 22.37

Algo2 32 4.7 24.48 42 27.1 25.54 98 14.6 18.95 85 53.4 22.37

Algo3 37 5.1 24.48 48 28.8 25.53 113 15.8 18.94 97 57.3 22.36

Algo4 44 3.8 24.48 47 15.7 25.54 75 7.3 18.95 65 28.8 22.37

PDHG 94 8.1 21.77 100 40.3 23.34 150 13.7 16.59 171 67.2 17.49

Table 4
Numerical results of image deblurring ( gaussian blur).

Medium gaussian blur Severe gaussian blur

Barbara Man Barbara Man

It. CPU SNR It. CPU SNR It. CPU SNR It. CPU SNR

Algo1 82 12.2 17.26 85 55.1 18.85 136 18.8 16.54 139 94.5 17.12

Algo2 100 14.6 17.26 106 69.2 18.85 172 21.4 16.54 177 116.9 17.12

Algo3 109 15.2 17.26 115 69.6 18.86 187 22.9 16.54 194 120.0 17.12

Algo4 84 8.5 17.26 89 41.5 18.85 146 12.7 16.54 146 70.5 17.12

PDHG 262 21.8 17.18 313 129.3 16.12 219 19.6 15.81 263 125.9 15.88

steps. Therefore, we can expect that the new iterate generated by Algorithm 1 is closer to the
solution set than that generated by Algorithm 2. On the other hand, because of the alleviation
of determining step size, the computational cost per iteration of Algorithm 2 is less than that
of Algorithm 1.

To further visualize the numerical comparison between the proposed algorithms and the
PDHG, in Figure 9 we plot their respective evolutions of SNR values with respect to iterations
and computing time for the image Barbara.png. In Figures 10 and 11, we list the images
restored by Algorithm 1 and the PDHG. Since the SNR values of the images restored by
Algorithms 1–4 are almost the same, we list only the restored images by Algorithm 1 for the
sake of succinctness. To see the difference in restoration clearly, we zoom some parts of the
images (Barbara.png with the severe motion blur and Man.png with the severe gaussian

blur) restored by PDHG and Algorithm 1 in Figure 12.

7.3. TV image inpainting problem. In this section, we apply the proposed algorithms
to solve some TV image inpainting problems, and we compare them numerically with the
PDHG method in [25] and the first-order primal-dual algorithm (denoted by CP) in [6]. Since
Algorithm 4 outperforms other proposed algorithms based on Tables 3 and 4, among the
proposed algorithms, we focus on the implementation of Algorithm 4 in this subsection.

We first review the image inpainting problem briefly. Image inpainting refers to filling in
missing or damaged regions in images either in the pixel domain or in a transformed domain,
and it plays pivotal roles in many image precessing tasks; see, e.g., [3, 8]. The image inpainting
problem with TV regularization fits in the model (1.1) with B ∈ �N×N as the mask operator,
i.e., a diagonal matrix whose zero entries denote missed information, and identity entries
indicate observed information.
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Figure 9. Evolutions of SNRs with respect to iterations and computing times for Barbara.png. First row:
the scenario of severe motion blur. Second row: the scenario of severe gaussian blur.

Figure 10. Restored images by PDHG (first row) and Algorithm 1 (second row). From left to right: Barbara
with medium motion blur, Man with medium motion blur, Barbara with severe motion blur, Man with severe
motion blur.

We test the images House.png (256×256) and Peppers.png (512×512). These images are
degraded as follows. For House.png, the operator B is a character mask where about 15% of
pixels are missed, and for Peppers.png, the operator B is the mask where we retain the pixels
at rows 1, 9, 17, . . . , 503 (i.e., we retain only one row for every eight rows) and about 87% of
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Figure 11. Restored images by PDHG (first row) and Algorithm 1 (second row). From left to right: Barbara
with medium gaussian blur, Man with medium gaussian blur, Barbara with severe gaussian blur, Man with
severe gaussian blur.

Figure 12. From left to right: original images, degraded images, zooming of the restored images by PDHG
and by Algorithm 1.

pixels are missed. For both images, we add the zero-mean Gaussian noise with the standard
deviation 0.02. The original and degraded images are shown in Figure 13.

To inpaint these images, we take λ = 50 in the model (1.1) for all methods. Since the
efficient strategies of determining the step sizes τ and σ were proposed particularly for image
deblurring problems in [25] and we found they are not efficient for the TV image inpainting
problem under consideration, we choose invariant values for τ and σ when we apply PDHG to
solve the TV image inpainting problem. More specifically, we tuned the values τ and σ via a
number of numerical experiments, and we found that PDHG performs well for the TV image
inpainting problem when τθ ≈ 0.08. For this reason, we choose (τ, θ) = (8, 0.01) for PDHG.
Similarly, we manually tuned the values of τ and σ for the CP method (i.e., Algorithm 1 in [6]),
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Figure 13. From left to right: original House.png (256 × 256), degraded House, original Peppers.png
(512× 512), degraded Peppers.

Table 5
Numerical results of image inpainting.

House Peppers

It. CPU SNR It. CPU SNR

Algorithm 4 48 1.44 28.80 114 13.29 16.56

PDHG 106 2.83 28.37 313 29.98 15.44

CP 57 1.51 28.52 169 17.32 15.73

and we found that it performs well with (τ, σ) = (0.02, 1
τ‖ATA‖) for the TV image inpainting

problem under consideration. To implement Algorithm 4, we choose τ = 3.0, σ = 0.04, and
ρ = 1.8. All the algorithms start their iterations with the degraded images, and the stopping
criterion is (7.1) with Tol= 10−3.

In Table 5, we report the numerical performance of these three algorithms for the TV
image inpainting problems. According to this table, we find that these three algorithms can
restore the image of House with almost the same quality, and Algorithm 4 outperforms all the
others for the image of Peppers (with the highest SNR value). In terms of restoration speed,
Algorithm 4 and CP are much faster than PDHG. In Figure 14, we show the images restored
by these three algorithms. To see the difference in restoration clearly, in Figure 15, we zoom
some parts of the Peppers images restored by these three algorithms.

8. Conclusions. In this paper, we highlight the novelty of applying the analytic framework
of contraction methods to analyze the convergence of primal-dual algorithms for a saddle-point
problem which has particular applications in the area of TV image restoration. With the an-
alytic framework of contraction-type methods, the conditions on the involved parameters of
existing primal-dual algorithms are relaxed significantly, and the convergence analysis is sim-
plified substantially. We also propose some efficient primal-dual–based contraction methods
in the prediction-correction fashion and verify their efficiency numerically.

It should be mentioned that the proposed primal-dual–based contraction methods require
the estimate of ‖ATA‖ to determine the involved step sizes when Armijo’s rule is too expensive
to implement (e.g., TV image restoration problems). Fortunately, this estimate is easy for
many applications in TV image restoration problems. For example, when A is the matrix
representation of the discrete gradient operator, according to Gerschgorin’s theorem [14], we
have that ‖ATA‖ ≤ 8.
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Figure 14. Restored images by PDHG (left column), CP (middle column), and Algorithm 4 (right column).

Figure 15. From left to right: zooming of the original image, the restored images by PDHG, CP, and
Algorithm 4.
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