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Abstract This paper demonstrates a customized application of the classical proximal
point algorithm (PPA) to the convex minimization problem with linear constraints.
We show that if the proximal parameter in metric form is chosen appropriately, the ap-
plication of PPA could be effective to exploit the simplicity of the objective function.
The resulting subproblems could be easier than those of the augmented Lagrangian
method (ALM), a benchmark method for the model under our consideration. The
efficiency of the customized application of PPA is demonstrated by some image pro-
cessing problems.
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1 Introduction

We consider a basic optimization model, i.e., the convex minimization problem with
linear equality constraints,

min{6(x) | Ax =b,x € X}, (1.1)

where 6(x) : W' — N is a convex (not necessarily smooth) function, A € R"*",
b e N and X C N" is a nonempty closed convex set. Throughout, the solution set
of (1.1) denoted by X* is assumed to be nonempty.

The augmented Lagrangian method (ALM) in [15, 20] plays a fundamental theo-
retical and algorithmic role in solving the model (1.1). The iterative scheme of ALM
for (1.1) reads

{xk+1 = Argmin{0(x) — )7 (Ax —b) + || Ax — b|? | x € X},

(12)
Akl — gk IB(Axk—H —b),

where A € %" is the Lagrange multiplier and 8 > 0 is a penalty parameter. We refer
to, e.g., [3, 19], for the advantages of ALM over some Lagrange based methods or
penalty methods. One particular advantage is that the penalty parameter 8 is not
required to tend to infinity by the ALM. Thus, the subproblem in (1.2) is more likely
to be well-conditioned and it becomes possible to apply sophisticated methods (e.g.,
Newton-like solvers) to tackle the ALM subproblems.

Our discussion is for the specific case of (1.1) where the objective function 6 (x)
is simple in the sense that following problem is easy to solve (e.g., a closed-form
solution exits or efficient solvers are available)

x:=Argmin{9(x)+%||x—a||2|xeX}, (1.3)

for any given a € " and r > 0. Our interest in this specific scenario is inspired
mainly by the increasingly popular applications of sparse optimization in various
areas such as compressed sensing, image processing, and statistics, all of which are
the cases of (1.3) with (x) = [lx|l1 := Y-, |x;|. For the case of (1.3) where X =
™, the simplicity assumption (1.3) essentially means the resolvent operator of 6 (x),
which is defined as (I + %89)’1 (a), has a closed-form representation. Here, o(-)
denotes the subdifferential of a convex but nonsmooth function.

Under the simplicity assumption (1.3), however, the ALM subproblem in (1.2)
could be still hard whenever the coefficient matrix A is not a multiple of the identity.
The main purpose of this paper is to show that if we apply the very classical proximal
point algorithm (PPA) [18] to the saddle-point reformulation of (1.1) but with a cus-
tomized proximal parameter in accordance with the specific structure of (1.1), then
the difficulty of solving the resulting subproblem at each iteration is the same as solv-
ing (1.3). Therefore, once the objective function 6 (x) in (1.1) has the simple property
given in (1.3), our customized application of PPA is able to exploit it while the di-
rect application of ALM (1.2) does not. More concretely, if 6(x) is simple enough
such that the problem in (1.3) has a closed-form solution (which is the case when
0(x) = ||x]l1 and X = R"), so are the subproblems of our proposing customized ap-
plication of PPA. Given the insightful explanation in [21] of how the ALM is related
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the PPA, i.e., the ALM for the primal problem (1.1) is exactly the application of PPA
to its dual problem, this paper demonstrates the close relationship between these two
fundamental methods from another perspective. That is, we show that the PPA can be
directly applied to solve the primal problem (1.1), and this primal application could
be more effective than its dual application for some specific scenarios of (1.1).

The rest of the paper is organized as follows. In Sect. 2, we review the application
of PPA to the saddle-point reformulation of (1.1), based on which our idea of exploit-
ing the simplicity in (1.3) via a customized proximal parameter can be clearly illus-
trated. In Sect. 3, we specify the implementation details of the resulting customized
PPA for (1.1). In Sect. 4, we show that our discussion for (1.1) can be easily extended
to a general case with linear inequality constraints. Then, in Sect. 5, we apply the
derived customized algorithms to solve some image processing problems and report
some preliminary numerical results. Finally, in Sect. 6, we make some conclusions.

2 Motivation

We provide a saddle-point reformulation of (1.1); and specify the idea of identifying a
customized application of PPA with the purpose of exploiting the simplicity in (1.3).

By deriving the optimality condition as a corresponding saddle-point problem, or
the primal-dual reformulation, of (1.1), we can easily see that solving (1.1) amounts
to finding a pair of (x*, A*) such that

2.1)

*eX, (x—xHT{f(x*)—ATrA*} >0, Vxed,
Ax*—b=0,

where f(x*) € 36 (x*). Further, by denoting

T
o) - () e mere e

the system (2.1) can be characterized by the following variational inequality problem
(VIP): Finding u* € 2 and f(x*) € 30(x™) such that

(u—u*)"Fu*)=0, Vueg. 2.3)

We denote (2.3) by VI(£2, F). Clearly, (2.3) is a monotone VIP because of the mono-
tonicity of 96 (x). In addition, because of the assumed nonemptiness of X*, the so-
lution set of VI(£2, F) denoted by £2* is also nonempty. We can further reformu-
late (2.3) as the problem of finding a root of a maximal monotone operator. But the
variational form (2.3) is sufficient for our later analysis.

Applying the PPA in [18] for (2.3) results in the iterative scheme

(u — uk+l)T{F(uk+l) + G(uk‘H — uk)} >0, VYues?, 2.4)

where the metric proximal parameter G € R+ > "+m) i required to be positive
definite, see e.g., [5]. A particular choice of G is G = - I where 8 > 0 and [
is the identity matrix, which means the proximal terms Wkt — by is regularized
uniformly. For the general case of (2.4) with a generic proximal parameter G, the
proximal subproblem (2.4) could be as difficult as the original problem (2.3), and
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sophisticated strategies for seeking approximate solutions of the PPA subproblem
should be investigated.
Taking into account the specific structure in (2.2), we find that if we choose G as

_ AT
G:(i’i 2 ) 2.5)
m

where r > 0, s > 0, and they satisfies rs > ||AT A|| in order to ensure the positive
definiteness of G, then the proximal subproblem (2.4) with this particular proximal
parameter reduces to

v — kT FekFy — AT o+ N rl, —ATY (xkH! = xk 0
A — k1 Axk-H —b —A sl Ah+L gk =Y

(2.6)
for any (x, A) € §2. Equivalently, we need to solve
(Ax T —b) — A(x* ! —x%) +5(AFH —2F) =0, 2.7
and
xk+1 e, (x —ka)T{f(ka) _ AT(2)J‘+1 _ Ak) +r(xk+1 —xk)} >0,
VxeX. (2.8)
Note that the solution of (2.7) is given explicitly by
Al =k %(Axk —b) (2.9)
and (2.8) amounts to solving the convex programming problem
X = Argmin{@(x) 4 % (x — xk) — %AT(M"“ — 2k ’ xe X}. (2.10)

Thus, the subproblem (2.4) with the particular proximal parameter (2.5) is specified
into (2.9) and (2.10), and it becomes easy if the simplicity assumption (1.3) holds.
In this sense, this primal application of PPA to (1.1) is more effective than its dual
application (1.2), which has harder subproblems than (2.10).

3 Algorithm

Now, based on our customized application of PPA, we can specify an algorithm for
(1.1) with the simplicity assumption (1.3). Obviously, acceleration strategies in the
literature of generic PPA can be combined with our customized PPA. We focus on the
acceleration scheme in [13] (see also [9]) which combines a computationally trivial
relaxation step with the original PPA.

From now on, we denote by i = (i*, 2¥) the output of the proximal subprob-
lem (2.4) with the given iterate u* = (x¥, %), and by u**! = (x¥*1, A¥+1) the new
iterate combined with the relaxation step in [13]. Equations (2.9) and (2.10) are thus
rewritten as (3.1a) and (3.1b), respectively.
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Algorightm 1: A customized PPA for (1.1)

Step 0. Choose G according to (2.5), let ¥ € (0, 2), and take (x%, A0) € R" x R™.
Step k. (k > 0) Let

A=k — %(Axk - b), (3.1a)

and

2
(6 — x¥) — LAT 27k = 28)
r

k+1 k k _ sk
(im) = (;ﬂ) —y (ik _;k> : (32)

Remark 3.1 Since Algorithm 1 is just a customized version of the relaxed PPA
in [13], its convergence is guaranteed by classical theory of PPA. We thus omit it.
At the same time, we would mention that it is easy to show that the sequence {x*, A%}
generated by Algorithm 1 is contractive with respective to the solution set £2*. Thus,
its convergence can also be easily established under the analytic framework of con-
traction type methods in [4].

~k . r
X" = Argmin 0(x)+§

x e X}. (3.1b)

Set

4 Extension

Our analysis can be easily extended to the case with linear inequality constraints:
min{@(x)IAx >b, x eX}. 4.1

With analogous analysis in Sect. 2, we can propose a customized PPA for (4.1) whose
subproblems are also of the same difficulty as (1.3). The detail is similar to Algo-
rithm 1; thus omitted.

Algorightm 2: A customized PPA for (4.1)

Step 0. Choose G according to (2.5), let y € (0, 2), and take (xo, ko) e R x R,
Step k. (k> 0) Let

Tk k 1 k
A :Pmﬁ[)\ —;(Ax —b) ,

where Py denotes the projection onto N’} under the Euclidean norm, and
2

(x — x¥) = LAT (27— 24)
r

)Ck+l xk )Ck _ ik
)\,k+1 = )\'k -V )\-k _ Xk .

~k . r
X" = Argmin H(x)—i—i

xeX}.

Set
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5 Numerical experiments

We now apply the proposed algorithms to solve some image reconstruction problems
and report the numerical results. Our algorithms were coded by MATLAB 7.9 and all
the numerical experiments were conducted on a Lenovo personal computer with Intel
Core(TM) CPU 2.30 GHz and 8 G memory.

5.1 Comparison of Algorithm 1 with ALM

Since the purpose of investigating customized applications of PPA is mainly to al-
leviate the ALM subproblem in (1.2) when the simplicity assumption (1.3) holds
for (1.1), we first focus on the comparison of Algorithm 1 with the direct application
of ALM (1.2).

A specific application of (1.1) is the basis pursuit (BP) problem arising from many
areas such as compressed sensing and image processing (see e.g., [7]). In this sub-
section, we apply Algorithm 1 (“C-PPA” for short) to the wavelet-based image pro-
cessing problem. A brief introduction for the wavelet-based image processing is as
follows, and for more details the reader is referred to some monographs such as [23].
Let x € % represent an /1 x [, image with [ = - [ (the two-dimensional images
are tackled by vectorizing them as one-dimensional vectors, e.g., in the lexicographic
order) and W € RIX" be a wavelet dictionary, i.e., each column of W be the elements
of a wavelet frame. Commonly, the image X possesses a sparse representation un-
der the dictionary W, i.e., x = Wx with x being a sparse vector. The wavelet-based
image processing thus considers recovering the real image x from an observation b
which might have some missing pixels or convolutions. Specifically, the model for
the wavelet-based image processing can be casted as

min{[lx |l | BWx = b}, (5.1)

where B € "%/ is a matrix representation of convolution or downsampling oper-
ators, and it is typically ill-conditioned; and ||x||; is to deduce a sparse represen-
tation under the wavelet dictionary. Thus, the wavelet-based image deconvolution,
vignetting, inpainting, zooming, and their combinations are covered by (5.1) when B
is specified into some concrete operators, see e.g., [7, 8, 10, 17, 23].

Our experiments focus on the wavelet-based image inpainting and zooming prob-
lems. For the inpainting problem, the matrix B € %'*/ (also called “mask™) in (5.1)
is a diagonal matrix whose diagonal elements are either 0 or 1, where the locations
of 0 correspond to missing pixels in images and locations of 1 correspond to the pix-
els to be kept. For the wavelet-based image zooming problem, the matrix B can be
expressed as B = SH where S € %" is a downsampling matrix and H € %>/ is
a blurry matrix. We adopt the reflective boundary condition for both image recon-
struction problems. Hence, H can be diagonalized by the discrete consine transform
(DCT), i.e., H=C~1AC where C represents the DCT and A is a diagonal matrix
whose diagonal entries are eigenvalues of H (see e.g., [14] for details). Under this
circumstance, the subproblem (1.3) possesses the following closed-form solution

-1
(1 + 139) (a) =sign(a) omax{la| — 1/r,0}, VaeR", (5.2)
r
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Fig. 1 Original Peppers, degraded Peppers, original Boat, and degraded Boat

[Tt

where the operator “o” stands for component wise scalar multiplication. Since the
dictionary W has the property WW7 = I, the blurry matrix H can be diagonal by
DCT and the binary matrix (both mask and downsampling matrices) S satisfies || S| =
1, we have ||[ATA|| = 1 (where A := BW) for the wavelet-based image inpainting
and zooming problems. Therefore, the requirement rs > ||AT A|| in (2.5) reduces to
rs > 1 in order to implement C-PPA for our experiments.

We test the 256 x 256 images of Peppers.png and Boat.png for the image inpaint-
ing and image zooming problems, respectively. The dictionary W is chosen as the
inverse discrete Haar wavelet transform with a level of 6 (see e.g., [1, 2]). Below we
give the detail of how the tested images are degraded. Both the clean and degraded
images are displayed in Fig. 1.

e For the image inpainting problem, the original image Peppers is first blurred by
the out-of-focus kernel with a radius of 7. Then 60 % pixels of the blurred images
are lost by implementing a mask operator S. The positions of missing pixels are
located randomly.

e For the image zooming problem, the original image Boat is downsampled
by a downsampling matrix S with a factor of 4. Then, the downsampled
image is corrupted by a convolution whose kernel is generated by fspe-
cial (‘gaussian’,9,2.5) of MATLAB.

For solving the concrete application (5.1) by ALM (1.2), we need to employ cer-
tain algorithms to solve the x-subproblem in (1.2) iteratively. We choose the popular
solvers “ISTA” in [8] and “FISTA” in [2] for this purpose, and they both allow for a
maximal number of 10 iterations for the internal iteration. The ALM (1.2) embedded
by ISTA and FISTA are denoted by “ALM-ISTA” and “ALM-FISTA”, respectively.
The implementation details including parameter values are described as below. We
refer to [16] for more details about how to choose the involved parameters.

e For the image inpainting problem, we take r = 0.6, s = 1.02/r, y = 1.9, and
(x9, 19 = (W7 (b), 0) to implement C-PPA; 8 = 10 and 1% = 0 in (1.2).

e For the image zooming problem, we take » = 0.55, s = 1.02/r, y = 1.2, and
(x9,19) = (0, 0) to implement C-PPA; 8 =10 and A° = 0 in (1.2).

As usual, the quality of the reconstruction is measured by the signal-to-noise ratio
(SNR) in decibel (dB)
Il

SNR :=20log; &—x|’
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Fig. 2 Evolutions of SNR w.r.t. computing time. Left: for image inpainting. Right: for image zooming

where X is a reconstructed image and x is a clean image. We plot the evolutions
of SNR with respect to computing time for ALM-ISTA, ALM-FISTA and C-PPA
in Fig. 2. It shows that all these three methods are effective to reconstruct images,
while C-PPA has the farthest reconstruction speed. It verifies our theoretical assertion:
The primal application of PPA to solve with (1.1) could be more efficient than its

dual application at least for some special cases where the simplicity assumption (1.3)
holds.

5.2 Comparison of Algorithm 1 with some other existing methods

We take the wavelet-based image processing model (5.1) as an example to compare
Algorithm 1 (“C-PPA”) with some efficient specialized algorithms in the literature,
including the linearized Bregman iterative scheme (“L-Bregman”) in [25], the primal-
dual Bregman scheme (“PD-Bregman”) in [26] and the gradient projection for sparse
reconstruction (“GPSR”) in [11].

The iterative scheme of L-Bregman in [25] for solving (5.1) is

k+1 _ . 1 k2
X = Argmin{||x]||; + 5=||x — av ,
{ gmin{|x |1 + 5 | 1) 53

v =0k (BW)T (b — BWXFTT),

where « > 0 is a penalty parameter. Also, for solving (5.1), the iterative scheme of
PD-Bregman in [26] reads as

XK+ = Argmin{(x) + 55]lx — [1 — 8(BW)T (BW)]x*
—8BW)T (* +b)|I?}, (5.4)
yk+1 — yk _ yBW(xk'H _ b),

where § > 0 is a penalty parameter and it requires to be 6 € (0, 1) for the wavelet-
based imaging problem (5.1) (recall || (B W)T(BW)| = 1); and y € (0,2) is a relax-
ation factor. For GPSR in [11], note it mainly deals with the baisis pursuit denoising
problem and solves the unconstrained /; -/, model

, 1
m1n{r||x||1+§||BWx—b||2}, (5.5)
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where T > 0 is a trade-off parameter. For solving (5.5), GPSR first uses the fact
lx]l1 = u — v where u; = (x;)+ and v; = (—x;)4+ with (x;)4 := max{0, x;}; and then
reformulates it as

min{rlT(u —v)+ %”BW(M —0) b u=0v> o}, (5.6)

where 1 = (1,1,..., l)T. We will compare the nonmonotone version of GPSR
in [11], denoted by “GPSR-BB(n)”, with the proposed method. To implement the
GPSR-BB(n) approach, we use the original code downloaded from http://www.Ix.it.
pt/~mtf/GPSR. As mentioned in [11], theoretically the unconstrained model (5.5)
with an appropriately small value of t is equivalent to the constrained model (5.1)
in the sense they have the same solution. But empirically it is hard to determine
this value. For comparison purpose with other methods, we implement GPSR-BB(n)
and test the cases where 7 = {10_4, 1073,1072,107L, 1} and T = {5 x 1072,5 x
1074,5 x 1073,5 x 1072,5 x 10~!} for the inpainting and zooming scenarios
of (5.5), respectively; and compare the SNR values of the reconstructed images. Then
we select 7 = 0.01 for the inpainting scenario and 7 = 5 x 1073 for the zooming sce-
nario in the unconstrained model (5.5), since with these values the solutions of (5.5)
are closest to the approximate solutions of (5.1) approached by C-PPA. We plot the
evolution of SNR value with respect to iteration and computing time in Fig. 3. The
evolution of C-PPA is also plotted for comparison.

We still test the 256 x 256 images of Peppers.png and Boat.png; and the inpainting
and zooming operators are the same as Sect. 5.1, see Fig. 1 for the clean and corrupted
images. The implementation details of the methods to be tested are described as be-
low (For parameters of L-Bregman and PD-Bregman, we choose values as suggested
in [25, 26]).

e For the image inpainting problem, we take t = 0.01 for GPSR-BB(n); o =2
and v? = 0 for L-Bregman; § = 0.9, y = 1.8 and (x9, % = (W7 (b), 0) for PD-
Bregman; r = 0.6, s = 1.02/r, y = 1.9 and (x°, 1°) = (W7 (b), 0) for C-PPA.

e For the image zooming problem, we take 7 = 0.005 for GPSR-BB(n); o« =5 and
v? = 0 for L-Bregman; § = 0.9, y = 1.2 and (x°, y°) = (0, 0) for PD-Bregman;
r=0.555=1.02/r,y =1.2and (x° 1% = (0, 0) for C-PPA.

In Fig. 4, we plot the evolution of SNR with respect to iteration and computing time
for all the tested algorithms. These plots show that the proposed Algorithm 1 is effi-
cient for solving the specific wavelet-based image processing problem (5.1). In Fig. 5
we display the reconstructed images by executing the tested algorithms for 150 sec-
onds.

5.3 Test of Algorithm 2
In this subsection, we focus on an application of the model (4.1) and verify the effi-

ciency of the proposed Algorithm 2.
We consider the total variation (TV) uniform noise removal model:

min{1vx1], | Hx -], <o) 67
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where x? € 9! is an observed image corrupted by a zero-mean uniform noise; H €
R is the matrix representation of a blurry operator as in Sect. 4, |||V - [||1 is the
TV norm (see e.g., [22]), o is a parameter indicating the uniform noise level and
[IX]lco := maxj<;< |X;|. For applications of (5.7), the reader is referred to, e.g., [24].
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GPSR-BB(n) L-Bregman PD-Bregman C-PPA

o

Fig. 5 Reconstructed images by tested methods. Top row: image inpainting. Bottom row: image zooming

We first show that the model (5.7) is a special case of (4.1); thus the proposed
Algorithm 2 is applicable. By denoting

H x' — o1
A= [—H] and b:= |:—x0 _ 01} ,
with1=(1,1,..., )T € %, the model (5.7) amounts to

min{| | Vx|, | Ax > b}, (5.8)

which is a special case of (4.1). Applying Algorithm 2 to (5.8), the main subproblem
at each iteration is to solve the following minimization problem

. r 2 i
mln{|||Vx|||1+§llx—all } Va e 9/, (5.9)

which can be easily solved up to a high precision by existing methods. Thus, the sim-
plicity assumption (1.3) holds for the application (5.7). In our numerical experiments,
we use the method in [6] and execute 10 iterations.

For this TV uniform noise removal model, we compare Algorithm 2 (still abbrevi-
ated as “C-PPA”) with the specialized algorithm in [1] (denoted by “C-SALSA”) for
the model (5.7). By introducing auxiliary variables y and z, the model (5.7) can be
reformulated as

min{“|Vy|||1 |x=Yy, Hx=z,zeZ}, (5.10)
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with Z :={z € %" | |z — x°||o0 < o}. Then, C-SALSA solves (5.10) by the alternat-
ing direction method of multipliers in [12] and obtains the following iterative scheme

)‘llc ”2

. Ak
= Argmin{p | Hx — 2 — 21 2|12y,

k
+pallx —y* =5
. Ak
v = Argmin{|[|Vylll + 2 X —y — 217},

k
M
n1’

k+1 k k+1 k+1
Al Zkl_ﬂl(Hx+ -z,

zk+1 — PZ[HXk+1 _ (5.11)

=05 — (= yh,

where A1 and A, are Lagrangian multipliers; ;1 and w, are penalty parameters; Pz
is the projection onto Z which is defined as

(Pg[a])i :X? —i—min{l, ﬁ}(ai — X?), Va e R,
i

For the y-subproblem in (5.11) whose closed-form solution is not available, we also
use the method in [6] and execute 10 iterations.

We test the 256-by-256 images of Peppers.png and Boat.png. The clean images are
degraded by either the Gaussian (fspecial ('gaussian’,9,2.5)) or the out-
of-focus (f£special ('disk’,3)) convolution. Then, the degraded images are
further corrupted by the zero-mean uniform noise with o = 0.2 or 0.5. To implement
C-PPA, we take r = 0.6, s = 1.02/r and y = 1.8. For C-SALSA, as mentioned in [1],
the parameters p1 and wuy should be tuned and our experiments show that 1 = 50
and pup = 10 is a good choice for the application (5.7). The initial points for both
algorithms are taken as zeros and the stopping criterion is set as

k1 _
x|

In Table 1, we report the numerical results when C-PPA and C-SALSA are applied
to solve the TV uniform noise removal problem (5.7). Each set of “-/ - /-” represents
the number of iterations, the computing time in seconds and the restored SNR when
the stopping criterion (5.12) is reached. This table also shows that the C-PPA pro-
posed in generic setting is even competitive to a specialized algorithm when a con-
crete application of (4.1) is considered. In Fig. 6, for Boat.png we show the corrupted
images and the restored images by C-PPA.

[Ix dl
Tol =

X -3
<1073, (5.12)

6 Conclusions

This paper is a demonstration of how the classical proximal point algorithm (PPA)
can be customized into an efficient algorithm for solving the convex minimization
problem with linear constraints. The primal application of PPA with a customized
proximal parameter, is shown to be more efficient than its dual application which is
essentially the augmented Lagrangian method, another classical method in the area
of convex optimization. We are interested in further investigating customizations of
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Table 1 Numerical results on

uniform noise removal Blur o Images C-SALSA C-PPA
Gaussian 0.2 Peppers  42/21.3/17.91  28/12.2/17.95
Boat 40/20.2/17.98  24/11.6/18.02
0.5  Peppers  52/28.4/16.87  26/14.9/16.95
Boat 53/32.5/16.97  29/16.1/16.98

Out-of-focus 0.2 Peppers  35/19.4/18.77  22/11.3/18.97

Boat 36/20.5/18.87  23/12.2/18.90
0.5  Peppers  47/28.4/17.38  31/15.8/17.42
Boat 43/25.5/17.53  25/14.9/17.55

Fig. 6 Degraded image with o = 0.2 and restored image by C-PPA, Degraded image with ¢ = 0.5 and
restored image by C-PPA

the PPA for models other than (1.1) or some specific cases of (1.1) with separable
structures, and designing highly customized algorithms which can exploit fully the
structures and properties of the models under consideration.
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