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Abstract This paper focuses on some customized applications of the proximal point
algorithm (PPA) to two classes of problems: the convex minimization problem with
linear constraints and a generic or separable objective function, and a saddle-point
problem. We treat these two classes of problems uniformly by a mixed variational
inequality, and show how the application of PPA with customized metric proximal
parameters can yield favorable algorithms which are able to make use of the models’
structures effectively. Our customized PPA revisit turns out to unify some algorithms
including some existing ones in the literature and some new ones to be proposed.
From the PPA perspective, we establish the global convergence and a worst-case
O(1/t) convergence rate for this series of algorithms in a unified way.
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1 Introduction

Let Ω be a closed convex subset in �l and F : �l → �l be a monotone mapping; �l0

(l0 ≤ l) be a subspace of �l and θ : �l0 → � be a closed convex but not necessarily
smooth function. Let u denote the sub-vector of w in �l0 for any w ∈ Ω . We consider
the mixed variational inequality (MVI): Find w∗ ∈ Ω such that

θ(u) − θ
(
u∗)+ (

w − w∗)T F
(
w∗)≥ 0, ∀w ∈ Ω. (1.1)

The MVI (1.1) includes the ordinary variational inequality (see [15]) as a special case
with θ ≡ 0, and it has been well studied in various fields such as the partial differen-
tial equations, economics and mathematical programming [25, 44]. Throughout, the
solution set of (1.1), denoted by Ω∗, is assumed to be nonempty.

We do not discuss the generic case of MVI (1.1) in this paper. Instead, we focus
on some fundamental optimization models which all turn out to be special cases of
(1.1) where there are specific properties/structures associated with the function θ , the
mapping F and the set Ω . We thus discuss how to develop customized algorithms in
accordance with these properties/structures for these optimization models. But, the
MVI (1.1) serves as a unified mathematical model for our theoretical analysis, and it
enables us to show the convergence results uniformly while presenting different algo-
rithms for various models individually. More specifically, we consider two classes of
problems: (a) the convex minimization problem with linear constraints and a generic
or separable objective function, and (b) a saddle-point problem.

(1) The generic convex minimization problem with linear constraints

min
{
θ(x)

∣∣Ax = b, x ∈X
}
, (1.2)

where A ∈ �m×n, b ∈ �m, X ⊆ �n is convex, and θ : �n → � is a closed convex
but not necessarily smooth function. The objective function in (1.2) is generic,
where no further separable structure is assumed.

(2) A particular separable case of (1.2) where the objective function is separable into
two individual functions without coupled variables. For this case, by decompos-
ing the linear constraints into two parts accordingly, we consider the model

min
{
θ(x) := θ1(x1) + θ2(x2)

∣∣A1x1 + A2x2 = b, x = (x1, x2) ∈X := X1 ×X2
}
,

(1.3)
where A1 ∈ �m×n1 , A2 ∈ �m×n2 , b ∈ �m, X1 ⊆ �n1 and X2 ⊆ �n2 are convex
sets, n1 +n2 = n, θ1 : �n1 → � and θ2 : �n2 → � are closed convex but not nec-
essarily smooth functions. With the purposes of exploiting the separable structure
effectively and developing more customized algorithms, the philosophy of algo-
rithmic design for the separable case (1.3) is different from that for the generic
case (1.2). Thus, the separable case (1.3) deserves a particular discussion.

(3) The general separable case of (1.2) where the objective function is separable into
more than two individual functions without coupled variables. Again, by rewrit-
ing the linear constraints in accordance with the separable objective function, we
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consider the model

min

{
K∑

i=1

θi(xi)

∣∣∣
∣∣

K∑

i=1

Aixi = b, xi ∈Xi , i = 1, . . . ,K

}

, (1.4)

where Ai ∈ �m×ni (i = 1, . . . ,K), b ∈ �m, Xi ⊆ �ni (i = 1, . . . ,K) are convex
sets,

∑K
i=1 ni = n, and θi : �ni → �(i = 1, . . . ,K) are closed convex but not

necessarily smooth. Note that (1.3) is a special case of (1.4) with K = 2. We con-
sider (1.3) individually because of its own wide applications in various fields and
its unique speciality in algorithmic design (as referred to Sect. 7) which are not
extendable to the general case (1.4) with K ≥ 3. Alternatively, with the purpose
of exploiting the properties of θi ’s individually in the procedure of algorithmic
design, the model (1.4) deserves specific attention mainly due to the failure of ex-
tending those algorithms applicable for (1.3) to (1.4) straightforwardly, see e.g.
[24, 27, 28].

(4) The saddle-point problem

min
x∈X

max
y∈Y

{
θ1(x) − yT Ax − θ2(y)

}
, (1.5)

where A ∈ �m×n, X ⊆ �n, Y ⊆ �m, θ1 : �n → � and θ2 : �m → � are closed
convex but not necessarily smooth functions. The saddle-point problem (1.5) cap-
tures a broad spectrum of applications in various fields such as image restoration
problems with the total variation (TV) regularization introduced in [48] (see e.g.
[8, 14, 52]), fluid dynamics or linear elasticity problems in the contexts of partial
differential equations (see e.g. [1, 16]), and Nash equilibrium problems in game
theory (see e.g. [36, 41]). In particular, finding a saddle point of the Lagrange
function of the model (1.2) is a special case of (1.5).

In Sect. 2.1, we will specify how to reformulate the models (1.2)–(1.5) as special
cases of the MVI (1.1) case by case.

The proximal point algorithm (PPA) dates back to [40] and it was introduced to
the optimization community in [37]. PPA has been playing a fundamental role both
theoretically and algorithmically in the optimization area, including of course the
models (1.2)–(1.5) under our consideration, see e.g. [22, 47] for a few of seminal
works. Let us make more concrete our motivation of relating PPA to the mentioned
target models.

(1) For solving (1.2), the augmented Lagrangian method (ALM, [33, 43]) is a bench-
mark method in the literature. More specifically, the iterate scheme of ALM for
(1.2) is

{
xk+1 = arg min{θ(x) − (λk)T (Ax − b) + β

2 ‖Ax − b‖2 |x ∈ X },
λk+1 = λk − β(Axk+1 − b),

(1.6)

where λk is the Lagrange multiplier and β > 0 is the penalty parameter for the
violation of the linear constraints. In [46], it was shown that the ALM (1.6) is
exactly the application of PPA to the dual problem of (1.2).
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(2) For solving (1.3), it is not wise to apply the generic-purpose ALM directly and a
dominating method in the literature is the alternating direction method of multi-
pliers (ADMM) proposed originally in [20] (see also [18]). The iterative scheme
of ADMM for (1.3) is
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = arg min{θ1(x1) − (λk)T (A1x1 + A2x

k
2 − b) + β

2 ‖A1x1

+ A2x
k
2 − b‖2 | x ∈ X1},

xk+1
2 = arg min{θ2(x2) − (λk)T (A1x

k+1
1 + A2x2 − b) + β

2 ‖A1x
k+1
1

+ A2x2 − b‖2 | x2 ∈ X2},
λk+1 = λk − β(A1x

k+1
1 + A2x

k+1
2 − b).

(1.7)

Obviously, the ADMM (1.7) is a splitting version of the ALM (1.6) in accordance
with the separable structure of (1.3). By decomposing the ALM subproblem into
two subproblems in the Gauss-Seidel fashion at each iteration, the variables x1
and x2 can be solved separably in the alternating order. Since the functions θ1(x1)

and θ2(x2) often have specific properties for a particular application of (1.3), the
decomposition treatment of ADMM makes it possible to exploit these particu-
lar properties separately. This feature has inspired many novel applications of
ADMM in various areas, see e.g. [4, 13, 14, 17, 49] and references cited therein.

In [19], it was elucidated that the ADMM (1.7) is essentially the application
of the Douglas-Rachford splitting method [11] (which is a special form of PPA,
as demonstrated in [12]) to the dual problem of (1.3).

(3) For solving (1.4), a natural idea is to extend the ADMM (1.7) in a straightforward
way, yielding the iterative scheme
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = arg min{θ1(x1) + β

2 ‖(A1x1 +∑K
j=2 Ajx

k
j − b)

− 1
β
λk‖2|x1 ∈X1};

xk+1
2 = arg min{θ2(x2) + β

2 ‖(A1x
k+1
1 + A2x2 +∑K

j=3 Ajx
k
j − b)

− 1
β
λk‖2|x2 ∈X2};

...

xk+1
i = arg min{θi(xi) + β

2 ‖(∑i−1
j=1 Ajx

k+1
j + Aixi

+∑K
j=i+1 Ajx

k
j − b) − 1

β
λk‖2|xi ∈Xi};

...

xk+1
K = arg min{θK(xK) + β

2 ‖(∑K−1
j=1 Ajx

k+1
j + AKxK − b)

− 1
β
λk‖2|xK ∈ XK};

λk+1 = λk − β(
∑K

j=1 Ajx
k+1
j − b).

(1.8)

The extended ADMM scheme (1.8), which comes from the straightforward split-
ting of the ALM subproblem in alternating order, preserves the advantages of the
original ADMM scheme (1.7) such that θi ’s properties can be exploited individ-
ually and thus the subproblems might be easy. Unfortunately, the convergence of
(1.8) remains a challenge without further assumptions on the model (1.4). This
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difficulty thus has inspired us to develop a series of splitting algorithms [24,
27, 28] recently, the common purpose of which is to preserve the decomposition
nature as (1.8). Among these work, the splitting method in [27] is inspired by
PPA.

(4) As analyzed in [8, 14, 52], the saddle-point problem (1.5) can be regarded as the
primal-dual formulation of a nonlinear programming problem, and this fact has
inspired a series of primal-dual algorithms in the particular literature of image
restoration problems with total variational regularization. We refer to, e.g. [8,
14, 51, 52], for their numerical efficiency. In [31], we revisit these primal-dual
algorithms from the PPA perspective. It turns out that this PPA revisit simplifies
the convergence analysis for this type of algorithms substantially and makes it
possible to relax the involved parameters (step sizes and proximal parameters)
greatly, as acknowledged instantly by some most recent works (e.g. [10, 42, 50]).

Because of the aforementioned individual applications, we are interested in study-
ing the PPA’s applications for the models (1.2)–(1.5) in a unified way, by means of
the unified model (1.1). Our aim is to show that by choosing the proximal parame-
ters judiciously in accordance with the specific structures of the MVI reformulations
of the models (1.2)–(1.5), a series of customized PPAs can be obtained. These cus-
tomized PPAs are fully capable of taking advantage of the available structures of the
models under consideration, and they are competitive with, or even more efficient
than some benchmark methods designed particularly for these models. In addition,
this customized PPA approach enables us to establish the global convergence and a
worst-case O(1/t) convergence rate uniformly for this series of algorithms.

To elucidate the application of PPA to the MVI (1.1), let G ∈ �l×l be a symmetric
positive definite matrix and the G-norm be defined as ‖w‖G := √

wT Gw. With the
given wk ∈ Ω , the PPA in the metric form for (1.1) generates the new iterate wk+1

via solving the subproblem

(PPA) wk+1 ∈ Ω,

θ(u) − θ
(
uk+1)+ (

w − wk+1)T (F
(
wk+1)+ G

(
wk+1 − wk

))≥ 0,

∀w ∈ Ω, (1.9)

where G is called the metric proximal parameter. A popular choice of G is G = rI

where r > 0 is a scalar and I ∈ �l×l is the identity matrix. In the literature there are
intensive investigations on how to determine a value of r to guarantee convergence
theoretically or how to adjust it dynamically for numerical acceleration. This simplest
choice of G essentially means that the proximal regularization makes no difference on
different coordinates of w and thus all the coordinates of w are proximally regularized
with equivalent weights. On the other hand, there are some impressive works on PPA
with metric proximal regularization, e.g. [3, 5, 6, 35] and references therein, which
mainly discuss theoretical restrictions or numerical choices on the metric proximal
parameter.

For the generic form of (1.1) where particular properties/structures of θ , F and
Ω are not specified, there is no hint to determine any customized choice for the
metric proximal parameter and thus the simplest choice of G is enough on theoretical
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purposes. But, for the particular models (1.2)–(1.5) under our consideration, their
MVI reformulations in the form of (1.1) enjoy favorable splitting structure in θ , F

and Ω . Thus, customized choices of G in accordance with the separable structures of
their MVI reformulations are potential to decompose the generic PPA task (1.9) into
smaller and easier subproblems. Accordingly, it becomes possible to exploit fully the
particular properties of the models (1.2)–(1.5) for algorithmic benefits. This is our
philosophy of algorithmic design.

The rest of the paper is organized as follows. In Sect. 2, we provide some prelimi-
naries which are necessary for further discussions. In Sect. 3, we present the concep-
tual algorithmic framework based on the relaxed PPA in [21] for the models (1.2)–
(1.5). Then we establish uniformly the global convergence in Sect. 4 and a worst-
case O(1/t) convergence rate in Sect. 5 for the conceptual algorithmic framework.
In Sect. 6, we elucidate the customization of this relaxed PPA for the model (1.2). The
customization of this relaxed PPA for the model (1.3) is analyzed in Sect. 7. Similar
discussions for the model (1.4) are completed in Sect. 8. Afterwards, we analyze the
customization for the model (1.5) in Sect. 9. Finally, we make some conclusions in
Sect. 10.

2 Preliminaries

In this section, we review some preliminaries which are useful later. First, we specify
the MVI reformulation for the models (1.2)–(1.5). Then, we take a brief look at the
generic application of PPA to this variational reformulation, and in particular, we
recall the relaxed PPA in [21] which blends the original PPA with a simple relaxation
step. After that, we show a characterization on the solution set of the MVI (1.1) which
is a cornerstone for proving a worst-case O(1/t) convergence rate for the algorithms
to be proposed. Finally, we supplement some useful notations and preliminaries.

2.1 The MVI reformulations of (1.2)–(1.5)

We first show that all the models (1.2)–(1.5) can be reformulated as specifical cases
of the MVI (1.1).

(1) Let λ ∈ �m be the Lagrange multiplier associated with the linear constraints in
(1.2). It is easy to see that solving (1.2) amounts to finding w∗ = (u∗, λ∗) such
that

w∗ ∈ Ω, θ(x) − θ
(
x∗)+ (

w − w∗)T F
(
w∗)≥ 0, ∀w ∈ Ω, (2.1a)

where

w =
(

x

λ

)
, F (w) =

(−AT λ

Ax − b

)
and Ω = X × �m. (2.1b)

Therefore, (2.1a), (2.1b) is a special case of (1.1) with l = m + n, u = x, w =
(u,λ), F(w) and Ω are given in (2.1b).
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(2) Similarly, we have that solving the model (1.3) is equivalent to finding w∗ =
(x∗

1 , x∗
2 , λ∗) such that

w∗ ∈ Ω, θ1(x1) − θ1
(
x∗

1

)+ θ2(x2) − θ2
(
x∗

2

)+ (
w − w∗)T F

(
w∗)≥ 0,

∀w ∈ Ω, (2.2a)

where

w =
⎛

⎝
x1
x2
λ

⎞

⎠ ,

F (w) =
⎛

⎝
−AT

1 λ

−AT
2 λ

A1x1 + A2x2 − b

⎞

⎠ and Ω = X1 ×X2 × �m.

(2.2b)

Therefore, (2.2a), (2.2b) is a special case of (1.1) with l = n1 + n2 + m,
u = (x1, x2), θ(u) = θ1(x1) + θ2(x2), w = (x1, x2, λ), F(w) and Ω are given
in (2.2b).

(3) Also, the Lagrange function of (1.4) is

L(x1, x2, . . . , xK,λ) =
K∑

i=1

θi(xi) − λT

(
K∑

i=1

Aixi − b

)

,

which is defined on

Ω = X1 ×X2 × · · · ×XK × �m. (2.3)

It is evident that finding a saddle point of L(x1, x2, . . . , xK,λ) is equivalent to
finding a vector w∗ = (x∗

1 , x∗
2 , . . . , x∗

K,λ∗) ∈ Ω such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

θ1(x1) − θ1(x
∗
1 ) + (x1 − x∗

1 )T (−AT
1 λ∗) ≥ 0, ∀x1 ∈ X1,

θ2(x2) − θ2(x
∗
2 ) + (x2 − x∗

2 )T (−AT
2 λ∗) ≥ 0, ∀x2 ∈ X2,

...

θK(xK) − θK(x∗
K) + (xK − x∗

K)T (−AT
Kλ∗) ≥ 0, ∀xK ∈XK,

(λ − λ∗)T (
∑K

i=1 Aix
∗
i − b) ≥ 0, ∀λ ∈ �m.

(2.4)

More compactly, (2.4) can be written into the following VI:

θ(u) − θ
(
u∗)+ (

w − w∗)T F
(
w∗)≥ 0, ∀w ∈ Ω, (2.5a)
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which is a special case of (1.1) with l =∑K
i=1 ni + m,

u =

⎛

⎜⎜⎜
⎝

x1
x2
...

xK

⎞

⎟⎟⎟
⎠

, θ(u) =
K∑

i=1

θi(xi),

w =

⎛

⎜⎜⎜⎜⎜
⎝

x1
x2
...

xK

λ

⎞

⎟⎟⎟⎟⎟
⎠

, F (w) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

−AT
1 λ

−AT
2 λ
...

−AT
Kλ

∑K
i=1 Aixi − b

⎞

⎟⎟⎟⎟⎟⎟
⎠

(2.5b)

and Ω being given in (2.3).
(4) Note that solving (1.5) is equivalent to finding w∗ = (x∗, y∗) such that

w∗ ∈ Ω, θ1(x) − θ1
(
x∗)+ θ2(y) − θ2

(
y∗)+ (

w − w∗)T F
(
w∗)≥ 0,

∀w ∈ Ω, (2.6a)

where

w =
(

x

y

)
, F (w) =

(−AT y

Ax

)
, Ω = X ×Y . (2.6b)

Therefore, the model (2.6a), (2.6b) is a special case of the MVI (1.1) with l =
n + m, u = w = (x, y), θ(u) = θ1(x) + θ2(y), F(w) and Ω are given in (2.6b).

Note that it is trivial to verify that the operators F(w) given in (2.1b), (2.2b), (2.5b)
and (2.6b) are all monotone.

2.2 A characterization of the solution set of (1.1)

As in [7, 32], for the purpose of proving a worst-case O(1/t) convergence rate, it
is useful to follow Theorem 2.3.5 in [15] (see (2.3.2) in p. 159) to characterize the
solution set of the MVI (1.1). The proof of the following Theorem 2.1 is similar as
those in some existing literature, e.g. [7, 32]; we thus omit it.

Theorem 2.1 The solution set of (1.1), i.e., Ω∗, is convex and it can be represented
by

Ω∗ =
⋂

w∈Ω

{
w̃ ∈ Ω : θ(u) − θ(ũ) + (w − w̃)T F (w) ≥ 0

}
. (2.7)

Theorem 2.1 thus implies that w̃ ∈ Ω is an approximate solution of the MVI (1.1)
with the accuracy ε > 0 if it satisfies

θ(u) − θ(ũ) + F(w)T (w − w̃) ≥ −ε,∀w ∈D(ũ),
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where D(w̃) = {w ∈ Ω | ‖w − w̃‖ ≤ 1}. In other words, after t iterations of an algo-
rithm, if we can find w̃ ∈ Ω such that

w̃ ∈ Ω and sup
w∈D(w̃)

{
θ(ũ) − θ(u) + (w̃ − w)T F(w)

}≤ ε,

where ε = O(1/t), then a worst-case O(1/t) convergence rate of this algorithm is
derived. In the papers [7, 32], we have shown worst-case O(1/t) convergence rates
for some algorithms including the ADMM (1.7) and the split inexact Uzawa method
in [51]. In this paper, we will follow this line of research and prove a worst-case
O(1/t) convergence rate for the application of PPA to MVI (1.1), and thus the worst-
case O(1/t) convergence rates of a series of algorithm are established uniformly.

2.3 Some additional notations

In this subsection we supplement some useful notations for the convenience of further
analysis.

First, revisiting the iterative schemes of the ALM (1.6), we see that only the se-
quence {λk} is required to execute the scheme and {xk} is not required at all. We thus
call the variable x an intermediate variable, meaning it is not involved in the itera-
tion, see e.g., [4]. Similarly, for the ADMM (1.7), the variable x1 is an intermediate
variable and only the sequence {xk

2 , λk} is involved in the iteration. Thus, for the vari-
able w in (1.1), we conceptually classify all the coordinates into two categories: the
intermediate coordinate which means its variable is not involved in the iteration and
essential coordinate which means its variable is required by the iteration. Here, we
introduce the variable v, an appropriate sub-vector of w, to collect all the essential
coordinates of w, i.e., v represents all the coordinates of w which are really involved
in iterations. Accordingly, the intended meaning of the notations vk , ṽk , v∗, V and V∗
should be clear from the context. For example, when the ALM (1.6) is considered,
we have

v = λ; V = �m;
vk = λk; ṽk = λ̃k, ∀k ∈ N ;
v∗ = λ∗; V∗ = {

λ∗∣∣(x∗, λ∗) ∈ Ω∗}.

When the ADMM (1.7) is considered, we have

v = (x2, λ); V = X2 × �m;
vk = (

xk
2 , λk

); ṽk = (
x̃k

2 , λ̃k
)
, ∀k ∈ N ;

v∗ = (
x∗

2 , λ∗); V∗ = {(
x∗

2 , λ∗)∣∣(x∗
1 , x∗

2 , λ∗) ∈ Ω∗}.

Later, for the algorithms to be proposed, we will establish the global convergence
in the context of the essential coordinates v. That is, we shall show that the sequence
{vk} generated by each of the algorithms to be proposed converges to a point in V∗.
The consideration of investigating the convergence on the essential coordinates is
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inspired by the well-known convergence results of the ALM in [46] and the ADMM
in [4, 19, 29]. In these literatures, the convergence analysis for the ALM is conducted
in term of the sequence {λk} in [46], and for the ADMM in term of the sequence
{xk

2 , λk} in [4, 19, 29].
On the other hand, it is apparent that the proximal regularization on the inter-

mediate coordinates of w is profitless or redundant in (1.9). Thus, we only need to
regularize proximally the essential coordinates of w. In other words, the metric prox-
imal parameter G in (1.9) are not necessarily square with the dimensionality l × l. In
fact, its number of columns corresponds to the dimensionality of the vector v while
its number of rows are still in the dimensionality of l. Thus, in general, the metric
proximal parameter could be a thin matrix in (1.1) under our consideration for the
models (1.2)–(1.5). Accordingly, by denoting the partial metric proximal parameter
as Q, we rewrite (1.9) as

wk+1 ∈ Ω, θ(u) − θ
(
uk+1)+ (

w − wk+1)T {F
(
wk+1)+ Q

(
vk+1 − vk

)}≥ 0,

∀w′ ∈ Ω. (2.8)

Indeed, this idea of partially proximal regularization has been implemented in [7] for
the particular case of (1.3).

Finally, we also recall the definition of the projection under the Euclidean norm.
For a convex set Ω ⊆ �l , the projection onto Ω under the Euclidean norm is defined
by

PΩ(w) = Arg min

{
1

2
‖z − w‖2

∣∣∣∣z ∈ Ω

}
. (2.9)

By the first-order optimality condition, we can easily derive the inequality

(
z − PΩ(w)

)T (
PΩ(w) − w

)≥ 0, ∀ z ∈ Ω, ∀w ∈ �l , (2.10)

which will be used often in the coming analysis.

3 Conceptual algorithmic framework

In this section, we propose the conceptual algorithmic framework by applying PPA to
the MVI (1.1). In particular, we are interested in the relaxed PPA [21] which generates
the new iterate by relaxing the output of the original PPA (1.9) appropriately. More
specifically, let the solution of (1.9) be denoted by w̃k , then the relaxed PPA in [21]
yields the new iterate via

wk+1 = wk − γ
(
wk − w̃k

)
, (3.1)

where γ ∈ (0,2) is a relaxation factor, and it is called an under-relaxation (when
γ ∈ (0,1)) or over-relaxation factor (when γ ∈ (1,2)). Obviously, the relaxed PPA
(3.1) reduces to the original PPA (1.9) when γ = 1. Our numerical results in [7, 30,
31] have already shown the effectiveness of acceleration contributed by this relaxed
step (3.1) with γ ∈ (1,2) numerically.
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Recall that we consider the PPA subproblem (2.8) with partial proximal regular-
ization merely on the essential coordinates of w, i.e., the sub-vector v. Thus, instead
of the full relaxation on w in (3.1), we only relax vk in the relaxation step accordingly.
Overall, we propose conceptually the following algorithmic framework for the MVI
(1.1) by applying the relaxed PPA in [21] but with partial proximal regularization.

The conceptual algorithmic framework of relaxed PPA for (1.1) with partial
proximal regularization.

Let the partial metric proximal parameter Q be positive semi-definite, the relax-
ation factor γ ∈ (0,2) and v be an appropriate sub-vector of w. With the initial iterate
v0, the iterate scheme is

1. PPA step: generate w̃k via solving

w̃k ∈ Ω, θ(u) − θ
(
ũk
)+ (

w − w̃k
)T {

F
(
w̃k
)+ Q

(
ṽk − vk

)}≥ 0, ∀w ∈ Ω.

(3.2)
2. Relaxation step: generate the new iterate vk+1 via

vk+1 = vk − γ
(
vk − ṽk

)
. (3.3)

As we have mentioned, our convergence analysis will be mainly conducted in the
context of the essential coordinates v. For each concrete algorithm to be proposed,
the following requirement should be met for the convenience of theoretical analysis.

A requirement associated with the conceptual relaxed PPA (3.2)–(3.3).

We need to identify a positive semi-definite, square, and symmetric sub-matrix of
Q, which is denoted by H , such that

wT Qv = vT Hv, ∀w ∈ Ω. (3.4)

Remark 3.1 Recall that the partial metric proximal parameter Q could be a thin ma-
trix (when v �= w), and it is not necessary to be square and positive definite. This is
different from a traditional metric proximal parameter in the PPA literature, where
the square and positive definiteness requirements are always assumed. However, if v

coincides with w, i.e., all the coordinates of w are essential, then Q is square. For
this case, we simply choose H = Q. Nevertheless, as we shall show later (see Re-
marks 6.1 and 7.1), if Q is a thin matrix, we can find H by simply removing the zero
rows from Q.

Remark 3.2 We refer to [7, 30, 31] for some preliminary discussions on the relaxed
PPA for the models (1.2), (1.3) and (1.5).

4 The global convergence

In this section, we establish the global convergence uniformly for all the proposed
algorithms in the context of the unified form (3.2)–(3.3). Our coming analysis uses
the notation ‖v‖H to denote

√
vT Hv for notational convenience.
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The proof follows the framework of contraction type methods (see [2] for the
definition of contraction methods). That is, we show that the sequence {vk} generated
by the conceptual algorithm (3.2)–(3.3) is contractive with respect to the set V∗ (see
the definition in [2] or (4.4)). Recall that for a given proposed algorithm, v denotes
the set of all essential coordinates which are truly required by the iteration; and all
the proposed algorithms are concrete cases of the conceptual algorithm (3.2)–(3.3)
with specified u, v, w, θ , F , Ω , Q and H defined before.

We first prove an inequality in Lemma 4.1 which is useful for establishing the
global convergence.

Lemma 4.1 The sequence {vk} generated by the scheme (3.2)–(3.3) satisfies

(
vk − v∗)T H

(
vk − ṽk

)≥ ∥∥vk − ṽk
∥∥2

H
, ∀v∗ ∈ V∗. (4.1)

Proof Let w∗ ∈ Ω∗. Note that w∗ ∈ Ω . By setting w = w∗ in (3.2), we get

(
w̃k − w∗)T Q

(
vk − ṽk

)≥ (
w̃k − w∗)T F

(
w̃k
)+ θ

(
ũk
)− θ

(
u∗)≥ 0, ∀w∗ ∈ Ω∗.

By using the monotonicity of F and the fact that w∗ ∈ Ω∗, we obtain

(
w̃k − w∗)T F

(
w̃k
)+ θ

(
ũk
)− θ

(
u∗)≥ (

w̃k − w∗)T F
(
w∗)+ θ

(
ũk
)− θ

(
u∗)≥ 0.

Consequently, we have

(
w̃k − w∗)T Q

(
vk − ṽk

)≥ 0, ∀w∗ ∈ Ω∗.

Finally, recall the requirement (3.4), we obtain

(
ṽk − v∗)T H

(
vk − ṽk

)≥ 0, ∀v∗ ∈ V∗.

Therefore, the assertion (4.1) follows from the above inequality and the notation
‖v‖H := √

vT Hv immediately. �

With Lemma 4.1, we are ready to show an important inequality.

Lemma 4.2 The sequence {vk} generated by the scheme (3.2)–(3.3) satisfies

∥∥vk+1 − v∗∥∥2
H

≤ ∥∥vk − v∗∥∥2
H

− γ (2 − γ )
∥∥vk − ṽk

∥∥2
H

, ∀v∗ ∈ V∗. (4.2)

Proof It follows from (3.3) that

∥∥vk − v∗∥∥2
H

− ∥∥vk+1 − v∗∥∥2
H

= ∥∥vk − v∗∥∥2
H

− ∥∥(vk − v∗)− γ
(
vk − ṽk

)∥∥2
H

= 2γ
(
vk − v∗)T H

(
vk − ṽk

)− γ 2
∥∥vk − ṽk

∥∥2
H

, ∀v∗ ∈ V∗.
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Recall (4.1). It follows from the last inequality that

∥∥vk − v∗∥∥2
H

− ∥∥vk+1 − v∗∥∥2
H

≥ γ (2 − γ )
∥∥vk − ṽk

∥∥2
H

, ∀v∗ ∈ V∗. (4.3)

The assertion of the lemma follows immediately. �

Remark 4.1 According to (4.2), it is clear to require γ ∈ (0,2) in the relaxation step
(3.3) for the purpose of ensuring the contraction of {vk} with respect to V∗.

With Lemma 4.2, we show that the relaxation step (3.3) is actually effective for
the contraction purpose. In other words, this step brings the new iterate vk+1 closer
to the set V∗ than vk under the H -norm, making it true that the sequence {vk} gener-
ated by the scheme (3.2)–(3.3) be contractive with respect to the set V∗. Hence, the
techniques for establishing convergence in [2] apply.

Theorem 4.1 The sequence {vk} generated by the scheme (3.2)–(3.3) is contractive
with respect to V∗, i.e.,

∥∥vk+1 − v∗∥∥2
H

≤ ∥∥vk − v∗∥∥2
H

− 2 − γ

γ

∥∥vk − vk+1
∥∥2

H
, ∀v∗ ∈ V∗. (4.4)

Proof It follows from (3.3) that vk − ṽk = 1
γ
(vk − vk+1). Thus, the assertion (4.4) is

an immediate conclusion of (4.2). �

Now, we are ready to establish the global convergence for the scheme (3.2)–(3.3).
We first discuss the case where the matrix H chosen in (3.4) is positive definite.

Theorem 4.2 Let the sequence {vk} be generated by the scheme (3.2)–(3.3) and the
matrix H chosen in (3.4) be positive definite. Then we have

(i) the sequence limk→∞{‖vk − ṽk‖H } = 0;
(ii) any accumulation point of {w̃k} is a solution point of the generic MVI;

(iii) both {vk} and {ṽk} are bounded;
(iv) and there exists v∞ ∈ V∗ such that lim

k→∞ ṽk = v∞.

Proof Applying the assertion (4.4) for k = 0, . . . ,∞ and summarizing these inequal-
ities, we obtain

γ (2 − γ )

∞∑

k=0

∥∥vk − ṽk
∥∥2

H
≤ ∥∥v0 − v∗∥∥2

H
,

which implies the assertion (i) immediately. When the block matrix H is symmet-
ric positive definite, it follows from the assertion (i) that limk→∞(vk − ṽk) = 0. By
substituting limk→∞(vk − ṽk) = 0 into (3.1), we obtain that

w̃k ∈ Ω, lim
k→∞

{
θ(u) − θ

(
ũk
)+ (

w − w̃k
)T

F
(
w̃k
)}≥ 0, ∀w ∈ Ω,
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which means that limk→∞ w̃k is a solution of the MVI (1.1). Hence, the assertion
(ii) follows. The assertion (iii) is trivial by following the assertion (i). Let v∞ be
an accumulation point of {ṽk}, i.e., there exists a subsequence {ṽkj } that converges to
v∞. Then, it follows from assertion (ii) that v∞ ∈ V∗. As a consequence, Theorem 4.1
implies that

∥∥vk+1 − v∞∥∥2
H

≤ ∥∥vk − v∞∥∥2
H

− γ (2 − γ )
∥∥vk − ṽk

∥∥2
H

.

Together with the assertion (i), the last inequality ensures that the sequence {ṽk} can-
not have any other accumulation point. Therefore, it must converge to v∞ ∈ V∗. The
assertion (iv) is proved. �

Remark 4.2 For the case where the matrix H chosen in (3.4) is only positive semi-
definite, we can apply a similar proof as Theorem 4.2 to the case H + εI with ε > 0;
and then investigate the asymptotical convergence behavior of the scheme (3.2)–(3.3)
when ε → 0. We omit the detail.

5 A worst-case O(1/t) convergence rate

In this section, we establish a worst-case O(1/t) convergence rate uniformly for all
the proposed algorithms in the context of the conceptual algorithm (3.2)–(3.3). As we
have mentioned in Sect. 2.2, for this purpose, we need to show that after t iterations
of the scheme (3.2)–(3.3), we can find an approximate solution of MVI (1.1) with an
accuracy of ε = O(1/t).

We first present an identity which will be often used in the proof. Since the proof
is elementary, we omit it.

Lemma 5.1 Let H ∈ �l×l be positive semi-definite and we use the notation ‖v‖H :=√
vT Hv. Then, we have

(a − b)T H(c − d) = 1

2

(‖a − d‖2
H − ‖a − c‖2

H

)

+ 1

2

(‖c − b‖2
H − ‖d − b‖2

H

)
, ∀a, b, c, d ∈ �l . (5.1)

Then, we show some inequalities in the following lemmas which are useful for the
analysis of convergence rate.

Lemma 5.2 The sequence generated by the scheme (3.2)–(3.3) satisfies

θ(u) − θ
(
ũk
)+ (

w − w̃k
)T

F (w) ≥ (
v − ṽk

)T
H
(
vk − ṽk

)
, ∀w ∈ Ω. (5.2)

Proof It follows from (3.2) that

θ(u) − θ
(
ũk
)+ (

w − w̃k
)T

F
(
w̃k
)≥ (

w − w̃k
)T

Q
(
vk − ṽk

)
, ∀w ∈ Ω. (5.3)
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Because of the monotonicity of F , we have

(
w − w̃k

)T
F (w) ≥ (

w − w̃k
)T

F
(
w̃k
)
,

and the requirement (3.4) implies that

(
w − w̃k

)T
Q
(
vk − ṽk

)= (
v − ṽk

)T
H
(
vk − ṽk

)
.

Hence, the assertion (5.2) follows from (5.3) directly. �

Lemma 5.3 The sequence generated by the scheme (3.2)–(3.3) satisfies

γ
(
v − ṽk

)T
H
(
vk − ṽk

)+ 1

2

(∥∥v − vk
∥∥2

H
− ∥∥v − vk+1

∥∥2
H

)

≥ γ

(
1 − γ

2

)∥
∥vk − ṽk

∥
∥2

H
, ∀v ∈ V . (5.4)

Proof Recall (3.3). In order to show (5.4), we need only to prove

(
v − ṽk

)T
H
(
vk − vk+1)+ 1

2

(∥∥v − vk
∥∥2

H
− ∥∥v − vk+1

∥∥2
H

)

≥ γ

(
1 − γ

2

)∥
∥vk − ṽk

∥
∥2

H
, ∀v ∈ V . (5.5)

For the term (v − ṽk)T H(vk − vk+1), by using the identity (5.1), we get

(
v − ṽk

)T
H
(
vk − vk+1)= 1

2

(∥∥v − vk+1
∥∥2

H
− ∥∥v − vk

∥∥2
H

)

+ 1

2

(∥∥vk − ṽk
∥∥2

H
− ∥∥vk+1 − ṽk

∥∥2
H

)
. (5.6)

Use the fact (3.3) again for the term 1
2 (‖vk − ṽk‖2

H − ‖vk+1 − ṽk‖2
H ), we obtain

1

2

(∥∥vk − ṽk
∥∥2

H
− ∥∥vk+1 − ṽk

∥∥2
H

) = 1

2

(∥∥vk − ṽk
∥∥2

H
− ∥∥(vk − ṽk

)− γ
(
vk − ṽk

)∥∥2
H

)

= 1

2
γ (2 − γ )

∥∥vk − ṽk
∥∥2

H
.

Substituting it into the right-hand side of (5.6), we obtain (5.5) and the lemma is
proved. �

Now, with the assertions in Lemmas 5.2 and 5.3, we can show the O(1/t) conver-
gence rate for the scheme (3.2)–(3.3).

Theorem 5.1 For any integer t > 0, we define

w̃t = 1

t + 1

t∑

k=0

w̃k, (5.7)
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where w̃k (k = 1,2, . . . , t) are generated by the scheme (3.2)–(3.3). Then, we have
w̃t ∈ Ω and

θ(ũt ) − θ(u) + (w̃t − w)T F(w) ≤ 1

2γ (t + 1)

∥∥v − v0
∥∥2

H
, ∀w ∈ Ω, (5.8)

Proof First of all, combining (5.2) and (5.4), we get

θ(u) − θ
(
ũk
)+ (

w − w̃k
)T

F (w) + 1

2γ

∥∥v − vk
∥∥2

H
≥ 1

2γ

∥∥v − vk+1
∥∥2

H
, ∀w ∈ Ω.

(5.9)
Summing the inequality (5.9) over k = 0,1, . . . , t , we obtain

(

(t + 1)θ(u) −
t∑

k=0

θ
(
ũk
)
)

+
(

(t + 1)w −
t∑

k=0

w̃k

)T

F (w) + 1

2γ

∥∥v − v0
∥∥2

H
≥ 0,

∀w ∈ Ω.

It follows that
(

t∑

k=0

θ(ũk)

t + 1
−θ(u)

)

+(w̃t −w)T F(w) ≤ 1

2γ (t + 1)

∥∥v−v0
∥∥2

H
, ∀w ∈ Ω. (5.10)

Since

ũt = 1

t + 1

t∑

k=0

ũk and θ(u) is convex,

we have

θ(ũt ) ≤ 1

t + 1

t∑

k=0

θ
(
ũk
)
.

Substituting it into (5.10), the assertion (5.8) follows directly. �

It follows from Theorem 4.2 that the sequence {vk} generated by the scheme (3.2)–
(3.3) is bounded. Thus there exists a constant C > 0 such that ‖vk − v0‖2

H < C for all
k’s. For any w ∈D(w̃) = {w ∈ Ω | ‖w − w̃‖ ≤ 1}, it follows from (5.8) that w̃t given
by (5.7) satisfies

θ(ũt ) − θ(u) + (w̃t − w)T F(w) ≤ ε,

where ε = C
2γ (t+1)

. Recall the preliminary in Sect. 2.2. Then, a worst-case O(1/t)

convergence rate of the scheme (3.2)–(3.3) is established in ergodic sense.

Remark 5.1 We establish a worst-case O(1/t) convergence rate for the general
scheme (3.2)–(3.3) in ergodic sense. In the literature, the same convergence rate has
been derived for some special cases of the scheme (3.2)–(3.3), such as those in [32,
39] for ADMM. Our technique here basically follows the approach in [32] and differs
from that in [39].
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Remark 5.2 The result (5.8) suggests us to choose aggressive values of γ which are
close to 2, in order to induce a smaller right-hand side in (5.8). On the other hand,
recall Remark 4.1. We thus need to take a balance between these two informative
properties of γ . In practice, as shown in [7, 30, 31], we recommend γ ∈ (1.5,1.9).

6 Relaxed customized PPAs for (1.2)

Now, we start to specify the conceptual relaxed PPA (3.2)–(3.3) with customized
metric proximal parameters in accordance with the structures of the models (1.2)–
(1.5). In this section, we focus on the generic convex minimization model (1.2), and
show that some scalable algorithms can be derived by choosing different forms of the
metric proximal parameter Q in (3.2).

6.1 A relaxed augmented Lagrangian method

Recall that the ALM (1.6) is an application of PPA to the dual problem of (1.2). In
this subsection, we demonstrate that the ALM (1.6) can be recovered by taking a
specific metric proximal parameter in (3.2). Consequently, the ALM (1.6) itself is
also a special case of the direct application of PPA to the primal problem (1.2). The
PPA illustration of the ALM (1.6) thus makes it possible to combine the ALM (1.6)
with a relaxation step, yielding immediately the relaxed ALM to be proposed.

Denoting by (x̃k, λ̃k) the output of the ALM (1.6), we can rewrite the iterative
scheme (1.6) of ALM as

{
x̃k = Arg min{θ(x) + β

2 ‖Ax − b − 1
β
λk‖2|x ∈ X },

λ̃k = λk − β(Ax̃k − b).
(6.1)

According to the scheme (6.1), we have

x̃k ∈X , θ(x) − θ
(
x̃k
)+ (

x − x̃k
)T
{
βAT

[
Ax̃k − b − 1

β
λk

]}
≥ 0, ∀x ∈ X ,

or equivalently,

x̃k ∈ X , θ(x) − θ
(
x̃k
)+ (

x − x̃k
)T (−AT λ̃k

)≥ 0, ∀x ∈X . (6.2)

Note that λ̃k = λk − β(Ax̃k − b) can be written as

(
Ax̃k − b

)+ 1

β

(
λ̃k − λk

)= 0. (6.3)

Combining (6.2) and (6.3) together, we get (x̃k, λ̃k) ∈ Ω := X × �m and

θ(x) − θ
(
x̃k
)+

(
x − x̃k

λ − λ̃k

)T {(−AT λ̃k

Ax̃k − b

)
+
(

0
1
β
(λ̃k − λk)

)}
≥ 0, ∀(x,λ) ∈ Ω.

(6.4)
Obviously, (6.4) coincides with (3.2) according to the specification given in (2.1b)
and the metric proximal parameter given by
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Q =
(

0
1
β
Im

)
.

We thus can obtain a relaxed ALM for (1.2) by specifying the conceptual algorithmic
framework of the relaxed PPA (3.2)–(3.3). Note that the scheme (6.1) only requires
λk during its iterations. Thus, the essential coordinates of w is v = λ in (6.4) and
the metric proximal regularization matrix Q is thin. Accordingly, we only relax the
coordinates λ in the relaxation step.

Algorithm 6.1 A relaxed augmented Lagrangian method for (1.2)

Let γ ∈ (0,2) and β > 0 be given. With the initial iterate λ0, the iterate scheme is

1. PPA step: generate w̃k via solving
{

x̃k = arg min{θ(x) + β
2 ‖Ax − b − 1

β
λk‖2|x ∈ X },

λ̃k = λk − β(Ax̃k − b).
(6.5)

2. Relaxation step: generate the new iterate λk+1 via

λk+1 = λk − γ
(
λk − λ̃k

)
. (6.6)

Remark 6.1 Note that the requirement (3.4) is met by choosing H = 1
β
Im. In (6.4),

the first n rows of the metric proximal parameter Q are all zero, which means the
variable x (recall it is called intermediate variable) is not proximally regularized and
only the variable λ is regularized. This coincides with an application of the idea of
partial PPA in some references such as [23, 34, 38] to the MVI (2.1a), (2.1b).

Remark 6.2 Because of the simplicity of the relaxation step (6.6), the proposed Al-
gorithm 6.1 and the ALM (1.6) are of the same difficulty to implement numerically.

6.2 The relaxed customized PPA for (1.2) in [30]

In various areas, we witness such a situation of (1.2) where the objective function
θ(x) itself is easy in the sense that its resolvent operator has a closed-form repre-
sentation or it can be efficiently solved up to a high precision. Here, the resolvent
operator of the convex function θ is defined as

(
I + 1

β
∂θ

)−1

(a) = Arg min

{
θ(x) + β

2
‖x − a‖2

∣∣∣∣x ∈ �n

}
, (6.7)

for any given a ∈ �n and β > 0, see [45]. However, even for a function θ(x) whose
resolvent operator is easy to evaluate, the evaluation of

(
AT A + 1

β
∂θ

)−1(
AT a

)= Arg min

{
θ(x) + β

2
‖Ax − a‖2

∣∣∣∣x ∈ �n

}
,
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could be still difficult provided that the matrix A is not identity. An illustrative ex-
ample is the basis pursuit problem (see [9]) which falls exactly into the model (1.2)
with θ(x) = ‖x‖1 (‖x‖1 :=∑n

i=1 |ui | for inducing the sparsity) and A ∈ �m×n (with
m � n). For such a scenario, although the ALM (1.6) alleviates the difficulty resulted
by the linear constrains, the resulting ALM subproblem (1.6) is still difficult enough
to require inner iterations to pursuit an approximate solution, and the implementation
of the ALM (1.6) might be resistive from the numerical point of view. This difficulty,
however, can be removed completely by the customized PPA developed in [30]. In
[30], it was suggested to choose

Q =
(

rIn AT

A sIm

)
,

for (3.2) where the positive parameters r and s are required to satisfy rs > ‖AT A‖ for
the purpose of ensuring the positive definiteness of Q. With this customized choice
of Q, the PPA subproblem (3.2) reduces to

{
x̃k = Arg min{θ(x) + r

2‖x − [xk + 1
r
AT λk]‖2 |x ∈X },

λ̃k = λk − 1
s
[A(2x̃k − xk) − b], (6.8)

whose difficulty of implementation amounts to evaluating the resolvent operator of
θ(x). Therefore, the customized PPA in [30] alleviates the difficulty of the ALM
subproblem in (1.6) tangibly for some concrete applications.

Algorithm 6.2 The relaxed customized PPA for (1.2) in [30]
Let γ ∈ (0,2) be given, the positive scalars r and s be required to satisfy rs >

‖AT A‖. With the initial iterate w0 = (x0, λ0), the iterate scheme is

1. PPA step: generate (x̃k, λ̃k) via
{

x̃k = Arg min{θ(x) + r
2‖x − [xk + 1

r
AT λk]‖2 |x ∈X },

λ̃k = λk − 1
s
[A(2x̃k − xk) − b]. (6.9)

2. Relaxation step: generate the new iterate wk+1 via

wk+1 = wk − γ
(
wk − w̃k

)
. (6.10)

Note that x̃k and λ̃k are both required by the scheme (6.8). Accordingly, all the
coordinates of w should be regularized proximally, the entire variable w should be
relaxed, and the requirement (3.4) is met by taking H = Q. For completeness, we list
the customized PPA in [30].

Remark 6.3 Note the update formula for λ̃k in the PPA step (6.9) is neither λ̃k =
λk − 1

s
[Axk − b] nor λ̃k = λk − 1

s
[Ax̃k − b]. As analyzed in [30], this particular form

is a special case of (3.2) with the mentioned choice of Q.
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7 A relaxed customized PPA for (1.3)

In this section, we review the generalized ADMM in [12] which can be regarded as
customized applications of the relaxed PPA (3.2)–(3.3) for the separable model (1.3).

As we have mentioned, the ADMM (1.7) is a benchmark solver for (1.3) and it is
more efficient than the straightforward application of the ALM (1.6) to (1.3). In [7],
it is demonstrated that the generalized ADMM proposed in [12] can be recovered by
the proposing relaxed customized PPA when the partial metric proximal parameter in
(3.2) is chosen as

Q =
⎛

⎜
⎝

0 0
βAT

2 A2 −AT
2

−A2
1
β
I

⎞

⎟
⎠ .

Note with this customized choice of Q, it is implied that v = (x2, λ) in (3.2). For
completeness, we list the generalized ADMM in [12] below as Algorithm 7.1.

Algorithm 7.1 The generalized ADMM for (1.3) in [12]

Let γ ∈ (0,2) and β > 0 be given. With the initial iterate (x0
2 , λ0), the iterate scheme

is

1. PPA step: generate w̃k via solving

⎧
⎪⎨

⎪⎩

x̃k
1 = Arg min{θ1(x1) + β

2 ‖(A1x1 + A2x
k
2 − b) − 1

β
λk‖2 |x1 ∈X1},

λ̃k = λk − β(A1x̃
k
1 + A2x

k
2 − b),

x̃k
2 = Arg min{θ2(x2) + β

2 ‖(A1x̃
k
1 + A2x2 − b) − 1

β
λ̃k‖2 |x2 ∈X2}.

(7.1)

2. Relaxation step: generate the new iterate vk+1 by
(

xk+1
2

λk+1

)

=
(

xk
2

λk

)

− γ

(
xk

2 − x̃k
2

λk − λ̃k

)

. (7.2)

Remark 7.1 Note that the requirement (3.4) is met for Algorithm 7.1 by choosing

H =
(

βAT
2 A2 −AT

2

−A2
1
β
I

)

,

which is a symmetric square sub-matrix of Q. In addition, it is easy to verify that

H = 1

β

(
βAT

2−I

)
(
βA2 −I

)
.

Thus, it is positive semi-definite for any β > 0. For this case, the first n rows of the
metric proximal parameter Q are all zero, which means the variable x1 is not proxi-
mally regularized and only the variables (x2, λ) are regularized. This also coincides
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with an application of the idea of partial PPA in some references such as [23, 34, 38]
to the MVI (2.2a), (2.2b).

8 A relaxed customized PPA for (1.4)

In this section, we discuss how to develop customized PPAs for the model (1.4) whose
MVI reformulation is given by (2.5a), (2.5b). We show that the properties of θi ’s can
be exploited individually by choosing the metric proximal parameters appropriately
in (3.2), and consequently the relaxed PPA (3.2)–(3.3) can be specified into some
concrete customized versions for the model (1.4). For simplicity, our discussion in
this section only focuses on the circumstance where the tasks

min

{
θi(xi) + β

2
‖Aixi − a‖2 |xi ∈ Xi

}
, i = 1, . . . ,K, (8.1)

are easy for any given β > 0 and a ∈ �m. More specifically, the relaxed customized
PPA for (1.4) is summarized as Algorithm 8.1. where the primal variables xi ’s are
updated prior to the dual variable λ.

Algorithm 8.1 A relaxed customized PPA for (1.4)

Let γ ∈ (0,2) and β > 0 be given. With the initial iterate w0 = (x0
1 , . . . , x0

K,λ0), the
iterate scheme is

1. PPA step: generate w̃k via solving

x̃k
i = Arg min

{

θi(xi)+ β

2K

∥∥∥∥∥

[

KAi

(
xi −xk

i

)+
K∑

j=1

Ajx
k
j −b

]

− 1

β
λk

∥∥∥∥∥

2 ∣∣∣∣∣
xi ∈ Xi

}

,

(8.2a)
where i = 1, , . . . ,K ;

λ̃k = λk − β

(
K∑

j=1

Aj x̃
k
j − b

)

; (8.2b)

2. Relaxation step: generate the new iterate wk+1 by

⎛

⎜⎜⎜
⎝

xk+1
1
...

xk+1
K

λk+1

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

xk
1
...

xk
K

λk

⎞

⎟⎟⎟
⎠

− γ

⎛

⎜⎜⎜
⎝

xk
1 − x̃k

1
...

xk
K − x̃k

K

λk − λ̃k

⎞

⎟⎟⎟
⎠

. (8.3)

Now, we show that the step (8.2a), (8.2b) is essentially a special case of the PPA
(3.2) with a customized choice of the metric proximal parameter Q. First, by deriving
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the first-order optimality condition of (8.2a), we have

x̃k
i ∈Xi ,

θi(xi) − θi

(
x̃k
i

)+ (
xi − x̃k

i

)T
{

AT
i

[

β

(

KAi

(
x̃k
i − xk

i

)+
K∑

j=1

Ajx
k
j − b

)

− λk

]}

≥ 0,

∀xi ∈Xi ,

for i = 1,2, . . . ,K . By using (8.2b), it can be rewritten as x̃k
i ∈ Xi and

θi(xi) − θi

(
x̃k
i

)

+ (
xi − x̃k

i

)T
{

−AT
i λ̃k + βAT

i

[

KAi

(
x̃k
i − xk

i

)−
K∑

j=1

Aj

(
x̃k
j − xk

j

)
]}

≥ 0,

∀x ∈X . (8.4)

Note that the equation (8.2b) can be written as

(
K∑

j=1

Aj x̃
k
j − b

)

+ 1

β

(
λ̃k − λk

)= 0. (8.5)

Combining (8.4) and (8.5) together, we get w̃k = (x̃k, . . . , x̃k
K, λ̃k) ∈ Ω such that

θ(u) − θ
(
ũk
)+

⎛

⎜⎜⎜⎜
⎝

x1 − x̃k
1

...

xK − x̃k
K

λ − λ̃k

⎞

⎟⎟⎟⎟
⎠

T ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜
⎝

−AT
1 λ̃k

...

−AKλ̃k

∑K
i=1 Aix̃

k
i − b

⎞

⎟⎟⎟⎟
⎠

+

⎛

⎜⎜⎜⎜
⎝

KβAT
1 A1(x̃

k
1 − xk

1) − βAT
1

∑K
j=1 Aj(x̃

k
j − xk

j )

...

KβAT
KAK(x̃k

K − xk
K) − βAT

K

∑K
j=1 Aj(x̃

k
j − xk

j )

1
β
(λ̃k − λk)

⎞

⎟⎟⎟⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

≥ 0, ∀w ∈ Ω,

which coincides with (3.2) with the specification given in (2.3) and (2.5b), and the
metric proximal parameter is

Q =

⎛

⎜⎜⎜⎜
⎝

KβAT
1 A1 0 · · · 0

0
. . .

. . .
...

...
. . . KβAT

KAK 0
0 · · · 0 1

β
Im

⎞

⎟⎟⎟⎟
⎠

−

⎛

⎜⎜⎜
⎝

βAT
1 A1 · · · βAT

1 AK 0
...

. . .
...

...

βAT
KA1 · · · βAT

KAK 0
0 · · · 0 0

⎞

⎟⎟⎟
⎠

.

(8.6)
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Obviously, the matrix

K · diag
(
AT

1 A1, . . . ,A
T
KAK

)−
⎛

⎜
⎝

AT
1 A1 · · · AT

1 AK

...
. . .

...

AT
KA1 · · · AT

KAK

⎞

⎟
⎠

is positive semi-definite. Hence, the matrix Q given in (8.6) is also positive semi-
definite for any β > 0.

Remark 8.1 Note that all the iterate (xk
1 , xk

2 , . . . , xk
K,λk) are required to implement

Algorithm 8.1. Thus, all the coordinates of w need to be proximally regularized in
(8.2a), (8.2b) and relaxed in (8.3). Accordingly, we take H = Q and the requirement
(3.4) can be met.

Remark 8.2 All the xi -subproblems of Algorithm 8.1 are in the form of (8.1), and
they are eligible for parallel computation. This feature is particularly favorable when
K is large and the xi -subproblems are of the same difficulty.

9 A relaxed customized PPA for (1.5)

In this section, we discuss how to design customized PPAs for the saddle-point prob-
lem (1.5). Recall the MVI reformulation (2.6a), (2.6b) of the model (1.5). Our pur-
pose is to exploit the properties of θ1 and θ2 individually, and the resulting subprob-
lems are of the same difficulty as evaluating the resolvent operators of θ1 and θ2

individually. Let us present the algorithm first in Algorithm 9.1.

Algorithm 9.1 A relaxed customized PPA for (1.5)
Let γ ∈ (0,2) be given, the positive scalars r and s be required to satisfy rs ≥
‖AT A‖. With the initial iterate w0 = (x0, y0), the iterate scheme is

1. PPA step: generate w̃k via solving

x̃k = Arg min

{
θ1(x) + r

2

∥∥∥∥x −
[
xk + 1

r
AT yk

]∥∥∥∥

2 ∣∣∣∣x ∈X
}
, (9.1a)

ỹk = Arg min

{
θ2(y) + s

2

∥∥∥∥y −
[
yk − 1

s
A
(
2x̃k − xk

)
]∥∥∥∥

2 ∣∣∣∣y ∈ Y
}
. (9.1b)

2. Relaxation step: generate the new iterate wk+1 by

(
xk+1

yk+1

)
=
(

xk

yk

)
− γ

(
xk − x̃k

yk − ỹk

)
. (9.2)
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Now, we show that the step (9.1a), (9.1b) is a special case of the PPA (3.2) with a
customized metric proximal parameter. Hence, the relaxation step (9.2) is effective.
In fact, by deriving the first-order optimality condition, it follows from (9.1a) that

x̃k ∈X , θ1(x) − θ1
(
x̃k
)+ (

x − x̃k
)T {

r
(
x̃k − xk

)− AT yk
}≥ 0, ∀x ∈X ,

and it can be written as

x̃k ∈X ,

θ1(x) − θ1
(
x̃k
)+ (

x − x̃k
)T {(−AT ỹk

)+ r
(
x̃k − xk

)+ AT
(
ỹk − yk

)}≥ 0,

∀x ∈ X . (9.3)

Similarly, from (9.1b), we have

ỹk ∈ Y, θ2(y) − θ2
(
ỹk
)+ (

y − ỹk
)T {

s
(
ỹk − yk

)+ A
(
2x̃k − xk

)}≥ 0, ∀y ∈ Y,

and it can be written as

ỹk ∈ Y,

θ2(y) − θ2
(
ỹk
)+ (

y − ỹk
)T {

Ax̃k + s
(
ỹk − yk

)+ A
(
x̃k − xk

)}≥ 0,

∀y ∈ Y . (9.4)

Combining (9.3) and (9.4) together, we get w̃k = (x̃k, ỹk) ∈ Ω such that

θ(u) − θ
(
ũk
)+

(
x − x̃k

y − ỹk

)T {(−AT ỹk

Ax̃k

)
+
(

r(x̃k − xk) + AT (ỹk − yk)

A(x̃k − xk) + s(ỹk − yk)

)}
≥ 0,

∀w ∈ Ω,

which coincides with (3.2) with the specification given in (2.6a), (2.6b) and the metric
proximal parameter is

Q =
(

rIn AT

A sIm

)
,

where the positive semi-definiteness of Q is ensured by the condition rs ≥ ‖AT A‖.

Remark 9.1 Since the (k + 1)-th iteration of Algorithm 9.1 requires both xk and yk ,
all the coordinates of w (i.e, x and y) need to be proximally regularized in the PPA
step (9.1a), (9.1b) and relaxed in the relaxation step (9.2). Accordingly, it is easy to
verify that the requirement (3.4) is met by choosing H = Q.

It is easy to verify that the PPA step (3.2) can be representable by finding w̃k =
(x̃k, ỹk) ∈ Ω such that

θ(u) − θ
(
ũk
)+

(
x − x̃k

y − ỹk

)T {(−AT ỹk

Ax̃k

)
+
(

r(x̃k − xk) − AT (ỹk − yk)

−A(x̃k − xk) + s(ỹk − yk)

)}
≥ 0,

∀w ∈ Ω,
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which coincides with (3.2) with the specification given in (2.6a), (2.6b) and the metric
proximal parameter is

Q =
(

rIn −AT

−A sIm

)
,

where the positive semi-definiteness of Q is ensured by the condition rs ≥ ‖AT A‖.

10 Conclusions

We study both the convex minimization problem with linear constraints and the
saddle-point problem uniformly via their mixed variational inequality reformulations,
and propose a unified methodology to design structure-exploited algorithms based on
the classical proximal point algorithm (PPA). Our idea is to specify the PPA with
customized choices of the metric proximal parameter in accordance with these mod-
els’ MVI reformulations. The resulting algorithms are in the decomposition nature,
with the possibility of exploiting the properties/structures of considered models effec-
tively. This unified customized PPA approach makes it extremely easy to accelerate
some existing benchmark methods (e.g. the augmented Lagrangian method, the alter-
nating direction method of multipliers, the split inexact Uzawa method and a class of
primal-dual methods), and to develop some customized algorithms for the considered
models as well. The global convergence and a worst-case O(1/t) convergence rate in
ergodic sense for this series of algorithm can be established easily in a unified way.

In our analysis, we relax the conventional positive definiteness assumption on the
metric proximal parameters in PPA literature to only positive semi-definiteness, and
relax the full proximal regularization to only partial proximal regularization, see Q

in (3.2). But, we still keep the symmetry requirement on H . That is, all the specified
choices of the matrix H in Sects. 6–9 are forced to be symmetric. Inspired by the
asymmetric proximal parameter in [26], we are interested in relaxing H to be asym-
metric, and also relaxing the requirement (3.4) to identifying a possibly asymmetric
square sub-matrix of Q (denoted by M) such that

wT Qv = vT Mv.

With these relaxed requirements on the customized choices of metric proximal pa-
rameter, a new series of algorithm based on the same idea of customizing PPA can
be proposed for the models (1.2)–(1.5). Because of the relaxation of the symmetric
requirement on M , we expect that the involved parameters may be further relaxed
than that in the algorithms proposed in this paper.
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