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Abstract The primal–dual hybrid gradientmethod (PDHG)
originates from the Arrow–Hurwicz method, and it has been
widely used to solve saddle point problems, particularly in
image processing areas. With the introduction of a combina-
tion parameter, Chambolle and Pock proposed a generalized
PDHG scheme with both theoretical and numerical advan-
tages. It has been analyzed that except for the special case
where the combination parameter is 1, the PDHG cannot
be casted to the proximal point algorithm framework due
to the lack of symmetry in the matrix associated with the
proximal regularization terms. The PDHG scheme is non-
symmetric also in the sense that one variable is updated
twice while the other is only updated once at each itera-
tion. These nonsymmetry features also explain why more
theoretical issues remain challenging for generalized PDHG
schemes; for example, the worst-case convergence rate of
PDHG measured by the iteration complexity in a noner-
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godic sense is still missing. In this paper, we further consider
how to generalize the PDHG and propose an algorithmic
framework of generalized PDHG schemes for saddle point
problems. This algorithmic framework allows the output of
the PDHG subroutine to be further updated by correction
steps with constant step sizes. We investigate the restriction
onto these step sizes and conduct the convergence analysis
for the algorithmic framework. The algorithmic framework
turns out to include some existing PDHG schemes as special
cases, and it immediately yields a class of new generalized
PDHG schemes by choosing different step sizes for the cor-
rection steps. In particular, a completely symmetric PDHG
scheme with the golden-ratio step sizes is included. Theo-
retically, an advantage of the algorithmic framework is that
the worst-case convergence rate measured by the iteration
complexity in both the ergodic and nonergodic senses can be
established.

Keywords Convex programming · Saddle point problem ·
Image restoration · Variational models · Primal–dual hybrid
gradient method ·Convergence rate ·Variational inequalities

1 Introduction

We consider the saddle point problem

min
x∈X

max
y∈Y

�(x, y) := θ1(x) − yT Ax − θ2(y), (1.1)

where A ∈ �m×n , X ⊆ �n and Y ⊆ �m are closed convex
sets, θ1 : �n → � and θ2 : �m → � are convex but
not necessarily smooth functions. The solution set of (1.1)
is assumed to be nonempty throughout our discussion. The
model (1.1) captures a variety of applications in different
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areas. For examples, finding a saddle point of the Lagrangian
function of the canonical convex minimization model with
linear equality or inequality constraints is a special case of
(1.1). Moreover, a number of variational image restoration
problems with the total variation (TV) regularization (see
[25]) can be reformulated as special cases of (1.1), see details
in, e.g., [5,27–29].

Since the work [29], the primal–dual hybrid gradient
(PDHG) method has attracted much attention and it is still
being widely used for many applications, especially in image
processing areas. We start the discussion of PDHG with the
scheme proposed in [5]:

⎧
⎨

⎩

xk+1 = argmin
{
�(x, yk) + r

2‖x − xk‖2 | x ∈ X }
,

x̄ k = xk+1 + τ(xk+1 − xk),
yk+1 = argmax

{
�(x̄ k, y) − s

2‖y − yk‖2 | y ∈ Y}
,

(1.2)

where τ ∈ [0, 1] is a combination parameter, and r > 0 and
s > 0 are proximal parameters of the regularization terms.
The scheme (1.2) splits the coupled term yT Ax in (1.1) and
treats the functions θ1 and θ2 individually; the resulting sub-
problems are usually easier than the original problem (1.1).
In [5], it was shown that the PDHG scheme (1.2) is closely
related to the extrapolational gradientmethods in [20,24], the
Douglas-Rachford splitting method in [9,21] and the alter-
nating direction method of multipliers (ADMM) in [12]. In
particular, we refer to [10,26] for the equivalence between a
special case of (1.2) and a linearized version of the ADMM.
As analyzed in [5], the convergence of (1.2) can be guaran-
teed under the condition

rs > ‖AT A‖. (1.3)

When τ = 0, the scheme (1.2) reduces to the PDHG scheme
in [29] which is indeed the Arrow–Hurwicz method in [1]. In
addition to the numerical advantages shown in, e.g., [5,16],
the theoretical significance of extending τ = 0 to τ ∈ [0, 1]
was demonstrated in [15]. That is, if τ = 0, then the scheme
(1.2) could be divergent even if r and s are fixed at very large
values; thus, the condition (1.3) is not sufficient to ensure
the convergence of (1.2). Note that it could be numerically
beneficial to tune the parameters r and s as shown in, e.g.,
[16,28], and it is still possible to investigate the convergence
of the PDHG scheme (1.2) with adaptively adjusted proximal

parameters, see, e.g., [3,10,13]. Here, to expose our main
idea more clearly and to avoid heavy notation, we only focus
on the case where both r and s are constant and they satisfy
the condition in (1.3) throughout our discussion.

In [16],we showed that the special case of (1.2)with τ = 1
is an application of the proximal point algorithm (PPA) in
[22], and thus the scheme in [14] can be immediately com-
bined with the PDHG scheme (see Algorithm 4 in [16]). Its
numerical efficiency has also been verified therein. This PPA
revisit has been further studied in [23], in which a precon-
ditioning version of the PDHG scheme (1.2) was proposed.
When τ �= 1,1 it is shown in [16] [see also (2.7b)] that the
matrix associated with the proximal regularization terms in
(1.2) is not symmetric and thus the scheme (1.2) cannot be
casted to an application of the PPA. The techniques in [14]
are thus not applicable to (1.2) with τ �= 1. But the conver-
gence canbe guaranteed if the output of thePDHGsubroutine
(1.2) is further corrected by some correction steps (see Algo-
rithms 1 and 2 in [16]). The step sizes of these correction
steps, however, must be calculated iteratively and they usu-
ally require expensive computation (e.g., multiplications of
matrices or matrices and vectors) if high dimensional vari-
ables are considered. It is thus natural to ask whether or not
we can further correct the output of (1.2) when τ �= 1 while
the step sizes of the correction steps are iteration-independent
(more precisely, constants)?Moreover, it is easy to notice that
the PDHG scheme (1.2) is not symmetric also in the sense
that the variable x is updated twice while y is updated only
once at each iteration. So onemore question is whether or not
we can update y also right after the PDHG subroutine and
modify (1.2) as a completely symmetric version? To answer
these questions, we propose the following unified algorith-
mic framework that allows the variables to be updated both,
either, or neither, after the PDHG subroutine (1.2):

(Algorithmic Framework)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩

x̃ k = argmin
{
�(x, yk) + r

2‖x − xk‖2 | x ∈ X }
,

x̄ k = x̃ k + τ(x̃ k − xk),
ỹk = argmax

{
�(x̄ k, y) − s

2‖y − yk‖2 | y ∈ Y}
,

(1.4a)

{
xk+1 = xk − α(xk − x̃ k),
yk+1 = yk − β(yk − ỹk).

(1.4b)

In (1.4), the output of the PDHG subroutine (1.2) is denoted
by (x̃ k, ỹk), α > 0 and β > 0 are step sizes of the correction
steps to further update the variables. This new algorithmic
framework is thus a combination of the PDHG subroutine
(1.2) with a correction step. We also call (x̃ k, ỹk) gener-
ated by (1.4a) a predictor and the new iterate (xk+1, yk+1)

updated by (1.4b) a corrector. Note that compared with the
PDHG (1.2), two more constants α and β are involved in

1 We analyzed the case τ ∈ [−1, 1] in [16]; but for simplicity we only
focus on τ ∈ [0, 1] in this paper.
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the algorithmic framework (1.4). But the framework (1.4)
with different choices of α and β corresponds to various
specific PDHG-like algorithms, and as we shall show, it is
very easy to theoretically determine these constants and thus
a series of PDHG-like algorithms can be specified by the
framework (1.4). Therefore, the additional constants in (1.4)
do not increase the difficulty of implementing PDHG-like
algorithms based on (1.4).

To see the generality of (1.4), when α = β = 1, the algo-
rithmic framework (1.4) reduces to the generalized PDHG
(1.2) in [5]; when τ = 1 and α = β ∈ (0, 2), the improved
version of PDHGfrom thePPA revisit (Algorithm4 in [16]) is
recovered.Moreover, if α = 1, we obtain a symmetric gener-
alized PDHG [see (4.9)] that updates both the variables twice
at each iteration, and in particular, a completely symmetric
version with the golden-ratio step sizes [see (4.12)]. There-
fore, based on this algorithmic framework, some existing
PDHG schemes can be recovered and a class of new gener-
alized PDHG schemes can be easily proposed by choosing
different values of α, β and τ . We shall focus on the case
where τ ∈ [0, 1] and investigate the restriction onto these
constants so that the convergence of the algorithmic frame-
work can be ensured. The analysis is conducted in a unified
manner. In addition, the mentioned nonsymmetry features
of the PDHG scheme (1.2) may also explain the difficulty
of proving its worst-case convergence rate measured by the
iteration complexity in a nonergodic sense. For the gener-
alized PDHG algorithmic framework (1.4), we shall show
that the worst-case convergence rate in both the ergodic and
nonergodic senses can be derived when the parameters are
appropriately restricted. This is a theoretical advantage of the
algorithmic framework (1.4).

Finally, we would like to mention that there is a rich
set of literature discussing how to extend the PDHG with
more sophisticated analysis tomore complicated saddle point
models or to more abstract spaces, e.g., [6–8]. But in this
paper, we concentrate on the canonical saddle point model
(1.1) in a finitely dimensional space and the representative
PDHG scheme (1.2) to present our idea of algorithmic design
clearly.

The rest of this paper is organized as follows. In Sect. 2, we
summarize some understandings of the model (1.1) and the
algorithmic framework (1.4) from the variational inequal-
ity perspective. Then, we prove the convergence of (1.4)
in Sect. 3. In Sect. 4, we elaborate on the conditions that
can ensure the convergence of (1.4); some specific gen-
eralized PDHG schemes are thus yielded based on the
algorithmic framework (1.4). Then, we derive the worst-
case convergence rate measured by the iteration complexity
for (1.4) in Sect. 5. We test the efficiency of these spe-
cific generalized PDHG algorithms by an image restoration
model in Sect. 6. Finally, we draw some conclusions in
Sect. 7.

2 Variational Inequality Understanding

In this section, we provide the variational inequality (VI)
reformulation of the model (1.1) and characterize the algo-
rithmic framework (1.4) via a VI. These VI understandings
are the basis of our analysis to be conducted.

2.1 Variational Inequality Reformulation of (1.1)

We first show that the saddle point problem (1.1) can be
written as a VI problem. More specifically, if (x∗, y∗) ∈
X × Y is a solution point of the saddle point problem (1.1),
then we have

∀y ∈ Y, ∀x ∈ X , �(x∗, y) ≤ �(x∗, y∗) ≤ �(x, y∗).
(2.1)

Obviously, the second inequality in (2.1) is equivalent to

x∗ ∈ X , θ1(x) − θ1(x
∗) + (x − x∗)T (−AT y∗) ≥ 0,

∀ x ∈ X ;

and the first one in (2.1) can be written as

y∗ ∈ Y, θ2(y) − θ2(y
∗) + (y − y∗)T (Ax∗) ≥ 0, ∀ y ∈ Y .

Therefore, finding a solution point (x∗, y∗) of (1.1) is equiv-
alent to solving the VI problem: Find u∗ = (x∗, y∗) such
that

VI(�, F, θ) u∗ ∈ �, θ(u) − θ(u∗)
+ (u − u∗)T F(u∗) ≥ 0, ∀ u ∈ �, (2.2a)

where

u =
(
x
y

)

, θ(u) = θ1(x) + θ2(y), F(u) =
(−AT y

Ax

)

and � = X × Y . (2.2b)

We denote by�∗ the set of all solution points of VI(�, F, θ)

(2.2). Notice that �∗ is convex (see Theorem 2.3.5 in [11] or
Theorem 2.1 in [17]).

Clearly, for the mapping F given in (2.2b), we have

(u − v)T (F(u) − F(v)) = 0, ∀ u, v ∈ �. (2.3)

Moreover, under the condition (1.3), the matrix

(
r In AT

A s Im

)

(2.4)

is positive definite. The positive definiteness of this matrix
plays a significant role in analyzing the convergence of the
PDHG scheme (1.2), see e.g. [5,10,16,28].
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2.2 Variational Inequality Characterization of (1.4)

Then, we rewrite the algorithmic framework (1.4) also in
the VI form. Note that the PDHG subroutine (1.4a) can be
written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃ k =argmin
{
θ1(x) − (yk)T Ax+ r

2
‖x − xk‖2 | x ∈ X }

,

(2.5a)

x̄ k = x̃ k + τ(x̃ k − xk),

(2.5b)

ỹk = argmin
{
θ2(y) + yT Ax̄k + s

2
‖y − yk‖2 ∣

∣ y ∈ Y}
.

(2.5c)

Thus, the optimality conditions of (2.5a) and (2.5c) are

x̃ k ∈ X , θ1(x)−θ1(x̃
k) + (x− x̃ k)T

(−AT yk + r(x̃ k − xk)
)

≥ 0, ∀ x ∈ X ,

and

ỹk ∈ Y, θ2(y) − θ2(ỹ
k) + (y − ỹk)T

(
Ax̄k + s(ỹk − yk)

)

≥ 0, ∀ y ∈ Y,

respectively. Using (2.5b), we get the following VI contain-
ing only (xk, yk) and (x̃ k, ỹk):

(x̃ k , ỹk) ∈ X × Y, (θ1(x) − θ1(x̃
k)) + (θ2(y) − θ2(ỹ

k))

+
(
x − x̃ k

y − ỹk

)T{(−AT ỹk

Ax̃k

)

+
(
r(x̃ k − xk) + AT (ỹk − yk)

τ A(x̃ k − xk) + s(ỹk − yk)

)}

≥ 0, ∀(x, y) ∈ X × Y. (2.6)

Then, because of the notation in (2.2b), the PDHG subrou-
tine (1.4a) can be written compactly as (2.7). Accordingly,
the step (1.4b) can be rewritten as (2.8) and overall the algo-
rithmic framework (1.4) can be explained as the prediction-
correction way (2.7)–(2.8).

Prediction Step (PDHG subroutine step)

ũk ∈ �, θ(u) − θ(ũk) + (u − ũk)T {F(ũk) (2.7a)

+ Q(ũk − uk)} ≥ 0, ∀ u ∈ �,

where

Q =
(
r In AT

τ A s Im

)

(2.7b)

Correction Step

uk+1 = uk − M(uk − ũk), (2.8a)

where

M =
(

α In 0
0 β Im

)

. (2.8b)

3 Convergence

In this section, we investigate the convergence of the algo-
rithmic framework (1.4). Recall that (1.4) can be rewritten
as the prediction-correction way (2.7)–(2.8). We prove the
convergence of (1.4) under the condition

(Convergence Condition)

{
H := QM−1 � 0 and H = HT , (3.1a)

G := QT + Q − MT HM � 0, (3.1b)

where the matrices Q and M are given in (2.7b) and
(2.8b), respectively. Thus, it suffices to check the positive
definiteness of two matrices to ensure the convergence of
the algorithmic framework (1.4). The condition (3.1) also
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implies some specific restrictions onto the involved parame-
ters in (1.4) to be discussed in Sect. 4.

Because of the VI reformulation (2.2) of the model (1.1),
we are interested in using the VI characterization (2.7) to
discern how accurate an iterate generated by the algorithmic
framework (1.4) is to a solution point of VI(�, F, θ). This
analysis is summarized in the following theorem.

Theorem 3.1 Let uk = (xk, yk) be given by the algorithmic
framework (1.4). Under the condition (3.1), we have

θ(u) − θ(ũk) + (u − ũk)T F(ũk) ≥ 1

2

(‖u − uk+1‖2H
−‖u − uk‖2H

) + 1

2
‖uk − ũk‖2G , ∀u ∈ �. (3.2)

Proof It follows from (3.1a) that Q = HM . Using (2.8a),
we know that (2.7a) can be written as

θ(u) − θ(ũk) + (u − ũk)T F(ũk) ≥ (u − ũk)T H(uk

− uk+1), ∀u ∈ �. (3.3)

For H satisfying (3.1a), we apply the identity

(a − b)T H(c − d) = 1

2

{
‖a − d‖2H − ‖a − c‖2H

}

+ 1

2

{
‖c − b‖2H − ‖d − b‖2H

}

to the right-hand side of (3.3) with

a = u, b = ũk, c = uk, and d = uk+1,

and obtain

(u − ũk)T H(uk − uk+1) = 1

2

(‖u − uk+1‖2H
−‖u − uk‖2H

) + 1

2

(
‖uk − ũk‖2H − ‖uk+1 − ũk‖2H

)
.

(3.4)

For the last term of the right-hand side of (3.4), we have

‖uk − ũk‖2H − ‖uk+1 − ũk‖2H
= ‖uk − ũk‖2H − ‖(uk − ũk) − (uk − uk+1)‖2H

(3.1a)= ‖uk − ũk‖2H − ‖(uk − ũk) − M(uk − ũk)‖2H
= 2(uk − ũk)T HM(uk − ũk)

−(uk − ũk)T MT HM(uk − ũk)

= (uk − ũk)T (QT + Q − MT HM)(uk − ũk)
(3.1b)= ‖uk − ũk‖2G . (3.5)

Substituting (3.4) and (3.5) into (3.3), we obtain the assertion
(3.2). �

With the assertion in Theorem 3.1, we can show that the
sequence {uk} with uk given by (1.4) is strictly contractive
with respect to the solution set �∗. We prove this property in
the following theorem.

Theorem 3.2 Let uk = (xk, yk) be given by the algorithmic
framework (1.4). Under the condition (3.1), we have

‖uk+1 − u∗‖2H ≤ ‖uk − u∗‖2H − ‖uk − ũk‖2G, ∀u∗ ∈ �∗.
(3.6)

Proof Setting u = u∗ in (3.2), we get

‖uk − u∗‖2H − ‖uk+1 − u∗‖2H ≥ ‖uk − ũk‖2G
+ 2{θ(ũk) − θ(u∗) + (ũk − u∗)T F(ũk)}. (3.7)

Then, using (2.3) and the optimality of u∗, we have

θ(ũk) − θ(u∗) + (ũk − u∗)T F(ũk)

= θ(ũk) − θ(u∗) + (ũk − u∗)T F(u∗) ≥ 0

and thus

‖uk − u∗‖2H − ‖uk+1 − u∗‖2H ≥ ‖uk − ũk‖2G . (3.8)

The assertion (3.6) follows directly. �

Theorem 3.2 shows that the sequence {uk} with uk given
by (1.4) is Fèjer monotone and the convergence of {uk} to a
u∗ ∈ �∗ in H -norm is immediately implied, see, e.g., [2].

4 How to Ensure the Condition (3.1)

In Sect. 3, the convergence of the algorithmic framework
(1.4) is derived under the condition (3.1). Now, we discuss
how to appropriately choose the parameters τ , α and β to
ensure the condition (3.1). With different choices of these
parameters in the algorithmic framework (1.4), a series of
PDHG schemes are specified for the saddle point problem
(1.1).

4.1 General Study

Recall the definitions of Q and M in (2.7b) and 2.8b, respec-
tively. Let us take a closer look at the matrices H and G
defined in (3.1).

First, we have

H = QM−1 =
(
r In AT

τ A s Im

) (
1
α
In 0
0 1

β
Im

)

=
(

r
α
In

1
β
AT

τ
α
A 1

β
s Im

)

.
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Thus, we set β = α
τ
to ensure that H is symmetric. With this

restriction, we have

H =
( r

α
In

τ
α
AT

τ
α
A τ

α
s Im

)

= 1

α

(
r In τ AT

τ A τ s Im

)

.

Then, it is clear that under the condition (1.3), we can choose
any τ ∈ (0, 1] to ensure the positive definiteness of H . Over-
all, to ensure the positive definiteness and symmetry of H ,
we pose the restriction:

τ ∈ (0, 1], β = α

τ
and α > 0. (4.1)

Second, let us deal with the matrix G in (3.1). Since
HM = Q, we have

QT + Q − MT HM = QT + Q − MT Q

=
(

2r In (1 + τ)AT

(1 + τ)A 2s Im

)

−
(

α In 0
0 α

τ
Im

) (
r In AT

τ A s Im

)

=
(

2r In (1 + τ)AT

(1 + τ)A 2s Im

)

−
(

αr In αAT

αA α
τ
s Im

)

=
(

(2 − α)r In (1 + τ − α)AT

(1 + τ − α)A (2 − α
τ
)s Im

)

. (4.2)

Therefore, we need to ensure

G =
(

(2 − α)r In (1 + τ − α)AT

(1 + τ − α)A (2 − α
τ
)s Im

)

� 0. (4.3)

Wepresent a strategy to ensure (4.3) in the following theorem.

Theorem 4.1 For given τ ∈ (0, 1], under the condition
(1.3), the assertion (4.3) holds when

τ = 1 and α ∈ (0, 2), (4.4)

or

τ ∈ (0, 1), and 0 < α ≤ (1 + τ) − √
1 − τ . (4.5)

Proof First, if τ = 1, it follows from (4.2) that

G = (2 − α)

(
r In AT

A s Im

)

.

Under the condition (1.3), we have G � 0 for all α ∈ (0, 2).
Now, we consider τ ∈ (0, 1). According to numerical

linear algebra, e.g., Theorem 7.7.7 in [19], for G � 0, we
need to ensure

(2 − α) > 0,
(
2 − α

τ

)
> 0 and (2 − α)

(
2 − α

τ

)
rs

> (1 + τ − α)2‖AT A‖.

Thus, under the condition (1.3), it is enough to guarantee

(2 − α) > 0,
(
2 − α

τ

)
> 0, (4.6a)

and

(2 − α)
(
2 − α

τ

)
≥ (1 + τ − α)2. (4.6b)

By a manipulation, the inequality (4.6b) is equivalent to

(1

τ
−1

)
α2+2

(
(1+τ)−

(

1+ 1

τ

))
α+(

4−(1+τ)2
) ≥ 0,

and thus

(1 − τ

τ

)
α2 + 2

(τ 2 − 1

τ

)
α + (3 + τ)(1 − τ) ≥ 0.

Multiplying by the positive factor
τ

1 − τ
, we get

α2 − 2(1 + τ)α + τ(3 + τ) ≥ 0.

Because the smaller root of the equation

α2 − 2(1 + τ)α + τ(3 + τ) = 0

is (1 + τ) − √
1 − τ , the condition (4.6b) is satisfied when

(4.5) holds.
In the following,we show that (4.6a) is satisfiedwhen (4.5)

holds. It follows from (4.5) directly α < 2 for all τ ∈ (0, 1).
In addition, because

(1 − τ) − √
1 − τ < 0, ∀ τ ∈ (0, 1),

we have

(1 + τ) − √
1 − τ < 2τ, ∀ τ ∈ (0, 1).

Consequently, using (4.5), we get

α

τ
≤ (1 + τ) − √

1 − τ

τ
< 2, ∀ τ ∈ (0, 1).

The proof is complete. �
In the following theorem, we summarize the restriction

onto the involved parameters that can ensure the convergence
of the algorithmic framework (1.4).

Theorem 4.2 Under the condition (1.3), if the parameters
τ, α and β in (1.4) are chosen such that either

τ = 1, and α = β ∈ (0, 2), (4.7a)
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or

τ ∈(0, 1), 0<α≤1+τ −√
1 − τ and β = α

τ
,

(4.7b)

then the matrices Q and M defined, respectively, in (2.7b)
and (2.8b) satisfy the convergence condition (3.1). Thus, the
sequence {uk} with uk given by the algorithmic framework
(1.4) converges to a solution point of VI(�, F, θ).

4.2 Special Cases

In this subsection, we specify the general restriction posed in
Theorem 4.2 on the parameters of the algorithmic framework
(1.4) and discuss some special cases of this framework.

4.2.1 Case I: τ = 1

According to (4.7a), we can take α = β ∈ (0, 2) and thus
the algorithmic framework (1.4) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎨

⎪⎪⎩

x̃ k = argmin
{
�(x, yk) + r

2
‖x − xk‖2 | x ∈ X

}
,

x̄ k = 2x̃ k − xk,

ỹk = argmax
{
�(x̄ k, y) − s

2
‖y − yk‖2 | y ∈ Y

}
.

(4.8a)

(
xk+1

yk+1

)

=
(
xk

yk

)

− α

(
xk − x̃ k

yk − ỹk

)

. (4.8b)

This is exactly Algorithm 4 in [16] which can be regarded
as an improved version of (1.2) using the technique in [14].
Clearly, choosing α = β = 1 in (4.8) recovers the special
case of (1.2) with τ = 1

4.2.2 Case II: α = 1

Now let α = 1 be fixed. In this case, the algorithmic frame-
work (1.4) can be written as

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 = argmin
{
�(x, yk) + r

2‖x − xk‖2 | x ∈ X }
,

x̄ k = xk+1 + τ(xk+1 − xk),
ỹk = argmax

{
�(x̄ k, y) − s

2‖y − yk‖2 | y ∈ Y}
,

yk+1 = yk + β(ỹk − yk),

(4.9)

which is symmetric in the sense that it updates both the vari-
ables x and y twice at each iteration. For this special case,
the restriction in Theorem 4.2 can be further specified. We
present it in the following theorem.

Theorem 4.3 Under the condition (1.3), if α = 1; the
parameters β and τ satisfy

τ ∈
[√

5 − 1

2
, 1

]
, and β = 1

τ
, (4.10)

then the condition (4.7a) or (4.7b) is satisfied and thus the
PDHG scheme (4.9) is convergent.

Proof If α = 1 and τ = 1, it follows from (4.10) that the
condition (4.7a) is satisfied. Now we consider α = 1 and
τ ∈ (0, 1). In this case, the condition (4.7b) becomes

τ ∈ (0, 1) and 1 ≤ 1 + τ − √
1 − τ ,

and thus

τ ∈ (0, 1) and τ 2 + τ − 1 ≥ 0.

The above condition is satisfied for all τ ∈ [√
5−1
2 , 1

)
. The

proof is complete. �
Therefore,with the restriction in (4.10), thePDHGscheme

(4.9) can be written as

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 = argmin
{
�(x, yk) + r

2‖x − xk‖2 | x ∈ X }
,

x̄ k = xk+1 + τ(xk+1 − xk),
ỹk = argmax

{
�(x̄ k, y) − s

2‖y − yk‖2 | y ∈ Y}
,

yk+1 = yk + 1
τ
(ỹk − yk),

(4.11)

where τ ∈
[√

5−1
2 , 1

]
. Indeed,we can further consider choos-

ing τ0 =
√
5−1
2 . Then, we have 1

τ0
= 1 + τ0 and it follows

from (4.11) that

yk + 1

τ0
(ỹk − yk) = yk + (1 + τ0)(ỹ

k − yk)

= ỹk + τ0(ỹ
k − yk).

Thus, the scheme (4.11) can be further specified as

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 = argmin
{
�(x, yk) + r

2‖x − xk‖2 | x ∈ X }
,

x̄ k = xk+1 + τ0(xk+1 − xk),
ỹk = argmax

{
�(x̄ k, y) − s

2‖y − yk‖2 | y ∈ Y}
,

yk+1 = ỹk + τ0(ỹk − yk),

(4.12)

where τ0 =
√
5−1
2 . It is a completely symmetric PDHG

scheme in the sense that both the variables are updated twice
at each iteration and the additional updating steps both use
the golden-ratio step sizes.
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4.2.3 Case III: β = 1

We can also fix β = 1. In this case, the algorithmic frame-
work (1.4) reduces to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎧
⎪⎪⎨

⎪⎪⎩

x̃ k = argmin
{
�(x, yk) + r

2
‖x − xk‖2 | x ∈ X

}
,

x̄ k = x̃ k + τ(x̃ k − xk),

yk+1 = argmax
{
�(x̄ k, y) − s

2
‖y − yk‖2 | y ∈ Y

}
.

(4.13a)

xk+1 = xk − α(xk − x̃ k). (4.13b)

For this case, the restriction on the involved parameters in
Theorem 4.2 can be further specified as the following theo-
rem.

Theorem 4.4 Under the condition (1.3), if β = 1; the
parameters α and τ satisfy

α = τ ∈ (0, 1], (4.14)

then the convergence condition (4.3) is satisfied.

Proof First, in this case, the condition (4.1) is satisfied. The
matrix G in (4.3) becomes

G =
(

(2 − α)r In AT

A s Im

)

,

which is positive definite for all α ∈ (0, 1] under the assump-
tion (1.3). �

Therefore, considering the restriction in (4.14), we can
specify the scheme (4.13) as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎧
⎪⎪⎨

⎪⎪⎩

x̃ k = argmin
{
�(x, yk) + r

2
‖x − xk‖2 | x ∈ X

}
,

x̄ k = x̃ k + τ(x̃ k − xk),

yk+1 = argmax
{
�(x̄ k, y)− s

2
‖y − yk‖2 | y∈Y

}
.

(4.15a)

xk+1 = xk−τ(xk − x̃ k). (4.15b)

where τ ∈ (
0, 1

]
.

5 Convergence Rate

In this section, we establish the worst-case convergence rate
measured by the iteration complexity for the algorithmic
framework (1.4) in both the ergodic and nonergodic senses.

5.1 Convergence Rate in the Ergodic Sense

Wefirst derive the worst-case convergence rate in the ergodic
sense for the algorithmic framework (1.4). For this purpose,

we need to define an approximate solution of the problem
(1.1).

Let (x∗, y∗) ∈ �∗ be a saddle point of (1.1). According
to the definition (2.1), we have

�(x, y∗) − �(x∗, y) ≥ 0, ∀x ∈ X , y ∈ Y,

which, by using the notation defined in (2.2b), can be speci-
fied as

θ(u) − θ(u∗) + (u − u∗)T F(u∗) ≥ 0, ∀u ∈ �.

That is, θ(u) − θ(u∗) + (u − u∗)T F(u∗) can be used to
measure the primal–dual gap of the model (1.1) at the point
u ∈ �. It is thus reasonable to define an approximate solution
of the problem (1.1) in terms of the primal–dual gap, as stated
below.

Definition 5.1 For given ε > 0 and a solution point u∗ of
the problem (1.1), u ∈ � is called an ε-approximate solution
of the problem (1.1) if it satisfies

0 ≤ θ(u) − θ(u∗) + (u − u∗)T F(u∗) ≤ ε. (5.1)

The following theorem essentially implies that we can
find an ε-approximate solution of the problem (1.1) based on
O(1/ε) iterations generated by the algorithmic framework
(1.4).

Theorem 5.2 Let {uk = (xk, yk)} be the sequence gener-
ated by the algorithmic framework (1.4) under the conditions
(1.3) and (3.1); and u∗ ∈ �∗ be a saddle point of (1.1). For
any integer t > 0, let ũt be defined as

ũt = 1

t + 1

t∑

k=0

ũk . (5.2)

Then we have

ũt ∈ �, θ(ũt ) − θ(u∗) + (ũt − u∗)T F(u∗)

≤ 1

2(t + 1)
‖u0 − u∗‖2H . (5.3)

Proof First, we know ũk ∈ � for all k ≥ 0. Because of the
convexity of X and Y , it follows from (5.2) that ũt ∈ �.
Using (2.3) and (3.2), we have

θ(u) − θ(ũk) + (u − ũk)T F(u) + 1

2
‖u − uk‖2H

≥ 1

2
‖u − uk+1‖2H , ∀u ∈ �. (5.4)
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Summing the inequality (5.4) over k = 0, 1, . . . , t , we obtain

(t + 1)θ(u) −
t∑

k=0

θ(ũk) +
(
(t + 1)u −

t∑

k=0

ũk
)T

F(u)

+ 1

2
‖u − u0‖2H ≥ 0, ∀u ∈ �.

Since ũt is defined in (5.2), we have

1

t + 1

t∑

k=0

θ(ũk) − θ(u) + (ũt − u)T F(u)

≤ 1

2(t + 1)
‖u − u0‖2H , ∀u ∈ �. (5.5)

Further, because of the convexity of θ(u), we get

θ(ũt ) ≤ 1

t + 1

t∑

k=0

θ(ũk).

Substituting it into (5.5) and setting u = u∗, the assertion of
this theorem follows directly. �

In the following theorem, we state the worst-case O(1/t)
convergence rate measured by the iteration complexity for
the algorithmic framework (1.4) in the ergodic sense. The
proof is clear based on Theorem 5.2; thus omitted.

Theorem 5.3 Let {uk = (xk, yk)} be the sequence gener-
ated by the algorithmic framework (1.4) under the conditions
(1.3) and (3.1); and u∗ ∈ �∗ be a saddle point of (1.1).
For given ε > 0, based on t iterations of (1.4) with t =
�‖u0−u∗‖2H

2ε − 1� = O(1/ε) , the point ũt defined as the
average of all these t iterations in (5.2) is an ε-approximate
solution of the problem (1.1) in sense of (5.1), i.e., it satisfies

ũt ∈ �, 0 ≤ θ(ũt ) − θ(u∗) + (ũt − u∗)T F(u∗) ≤ ε.

Finally, we would like to remark that the condition of
G � 0 in (3.1) can be relaxed to G � 0 for deriving the
convergence rate result in this subsection.

5.2 Convergence Rate in a Nonergodic Sense

In this subsection, we derive the worst-case O(1/
√
t) con-

vergence rate in a nonergodic sense for the algorithmic
framework (1.4). Note that a nonergodic worst-case conver-
gence rate is generally stronger than its ergodic counterparts.
We first prove a lemma.

Lemma 5.4 Let uk = (xk, yk) be given by the algorithmic
framework (1.4). Under the condition (3.1), we have

(uk − ũk)T MT HM{(uk − ũk) − (uk+1 − ũk+1)}
≥ 1

2
‖(uk − ũk) − (uk+1 − ũk+1)‖2

(QT +Q)
. (5.6)

Proof Setting u = ũk+1 in (2.7a), we get

θ(ũk+1) − θ(ũk) + (ũk+1 − ũk)T F(ũk)

≥ (ũk+1 − ũk)T Q(uk − ũk). (5.7)

Note that (2.7a) is also true for k := k+1. Thus, it holds that

θ(u) − θ(ũk+1) + (u − ũk+1)T F(ũk+1)

≥ (u − ũk+1)T Q(uk+1 − ũk+1), ∀u ∈ �.

Then, setting u = ũk in the above inequality, we obtain

θ(ũk) − θ(ũk+1) + (ũk − ũk+1)T F(ũk+1)

≥ (ũk − ũk+1)Q(uk+1 − ũk+1). (5.8)

Combining (5.7) and (5.8), and using the monotonicity of F
[see (2.3)], we have

(ũk − ũk+1)T Q{(uk − ũk) − (uk+1 − ũk+1)} ≥ 0. (5.9)

Adding the term

{(uk−ũk)−(uk+1 − ũk+1)}T Q{(uk−ũk)−(uk+1 − ũk+1)}

to both sides of (5.9), and using vT Qv = 1
2v

T (QT + Q)v,
we obtain

(uk − uk+1)T Q{(uk − ũk) − (uk+1 − ũk+1)}
≥ 1

2
‖(uk − ũk) − (uk+1 − ũk+1)‖2

(QT +Q)
.

Substituting (uk − uk+1) = M(uk − ũk) into the left-hand
side of the last inequality and using Q = HM , we obtain
(5.6) and the lemma is proved. �

Now, we establish the worst-case O(1/
√
t) convergence

rate in a nonergodic sense for the algorithmic framework
(1.4). Similar techniques can be found in [18].

Theorem 5.5 Let uk = (xk, yk) be given by the algorithmic
framework (1.4). Under the condition (3.1), for any integer
t > 0, we have

‖M(ut − ũt )‖2H ≤ 1

(t + 1)c0
‖u0 − u∗‖2H , (5.10)

where c0 > 0 is a constant independent of t .
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Proof First, setting a = M(uk − ũk) and b = M(uk+1 −
ũk+1) in the identity

‖a‖2H − ‖b‖2H = 2aT H(a − b) − ‖a − b‖2H ,

we obtain

‖M(uk − ũk)‖2H − ‖M(uk+1 − ũk+1)‖2H
= 2(uk − ũk)T MT HM[(uk − ũk) − (uk+1 − ũk+1)]

−‖M[(uk − ũk) − (uk+1 − ũk+1)]‖2H .

Inserting (5.6) into the first term of the right-hand side of the
last equality, we obtain

‖M(uk − ũk)‖2H − ‖M(uk+1 − ũk+1)‖2H
≥ ‖(uk − ũk) − (uk+1 − ũk+1)‖2

(QT +Q)

−‖M[(uk − ũk) − (uk+1 − ũk+1)]‖2H
= ‖(uk − ũk) − (uk+1 − ũk+1)‖2G ≥ 0.

The last inequality holds because the matrix (QT + Q) −
MT HM = G and G � 0. We thus have

‖M(uk+1 − ũk+1)‖H ≤ ‖M(uk − ũk)‖H , ∀ k > 0. (5.11)

Recall that the matrix M is positive definite. Thus, the
sequence {‖M(uk−ũk)‖2H } ismonotonically non-increasing.
Then, it follows from G � 0 and Theorem 3.2 there is a con-
stant c0 > 0 such that

‖uk+1 − u∗‖2H ≤ ‖uk − u∗‖2H − c0‖M(uk − ũk)‖2H ,

∀u∗ ∈ �∗. (5.12)

Furthermore, it follows from (5.12) that

∞∑

k=0

c0‖M(uk − ũk)‖2H ≤ ‖u0 − u∗‖2H , ∀ u∗ ∈ �∗. (5.13)

Therefore, for any integer t > 0, we have

(t + 1)‖M(ut − ũt )‖2H ≤
t∑

k=0

‖M(uk − ũk)‖2H . (5.14)

The assertion (5.10) follows from (5.13) and (5.14) immedi-
ately. �

Let d := inf{‖u0 − u∗‖H | u∗ ∈ �∗}. Then, for any
given ε > 0, Theorem 5.5 shows that the algorithmic frame-
work (1.4) needs at most �d2/(c0ε)� iterations to ensure that
‖M(uk−ũk)‖2H ≤ ε. Hence, if ‖M(uk−ũk)‖H is regarded as
anmeasurement of the accuracyofuk to a solutionpoint, The-
orem 5.5 indicates a worst-case O(1/

√
t) convergence rate

in a nonergodic sense for the algorithmic framework (1.4). It
is worthwhile to mention that the specific sequence {uk}with
uk given by the algorithmic framework (1.4) has the special
property of that uk being a solution point of VI(�, F, θ) if
‖M(uk−ũk)‖2H = 0 (see (2.7a) and due to Q = HM). Thus,
it is reasonable to use ‖M(uk − ũk)‖H , or ‖M(uk − ũk)‖2H ,
to measure the accuracy of an iterate uk to a solution point.

6 Numerical Results

In this section, we report some preliminary numerical results
and verify the efficiency of some specific generalized PDHG
algorithms stemming from the proposed algorithmic frame-
work (1.4). The proposed algorithms were coded by MAT-
LAB R2015a, and all our experiments were performed on a
desktop with Windows 7 system and an Intel(R) Core(TM)
i5-4590 CPU processor (3.30GH) with a 8GB memory.

We consider the standard total variational (TV) blurry and
noisy imaging restoration model

min
y

∫

D
|∇ y| + λ

2
‖By − z‖2, (6.1)

where D is the image domain with its area being |D|, z is the
given observed image, ∇ is a discrete gradient operator(see
[25]), B is the matrix representation of a space invariant
blurring operator, and λ > 0 is a constant balancing the
data-fidelity and TV regularization terms. As shown in, e.g.
[5,10,29], the model (6.1) can be reformulated as the saddle
point problem

min
y∈RN

max
x∈X yT Ax + λ

2
‖By − z‖2 (6.2)

where X is the Cartesian product of some unit balls in R2

(see, e.g., [5,16,25,29], for details), and A is the matrix rep-
resentation of the negative divergence operator.

Clearly, (6.2) is a special case of (1.1) and thus the algo-
rithmic framework (1.4) is applicable. We now illustrate
how to solve the resulting subproblems (1.4a) when (1.4) is
applied to (6.2); more details are referred to, e.g., [5,16,29].
For the x-subproblem, it reduces to

x̃ k = argmin
{
(yk)T Ax + r

2
‖x − xk‖2 | x ∈ X

}
. (6.3)

Hence, the solution is given by

x̃ k = PX

[

xk + 1

r
AT yk

]

, (6.4)

where PX denotes the projection operator onto X . As men-
tioned, X is the Cartesian product of some unit balls in R2,
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Fig. 1 Original images: cameraman (256 × 256) and pepper (256 ×
256)

Table 1 Scenarios to be tested

Gaussian blur Medium
motion blur

Severe
motion blur

hsize = 21,
sigma = 5

theta = 135,
len = 21

theta = 135,
len = 91

thus the projection operator PX can be computed easily. For
the y-subproblem, it is

ỹk = argmax

{

yT Ax̄k + λ

2
‖By − z‖2

− s

2
‖y − yk‖2 | y ∈ RN

}
. (6.5)

Table 2 Three Specific Algorithms Based on (1.4)

Case I τ = 1, α = β = 1.8

Case II τ =
√
5−1
2 , α = 1, β = 1

τ
= 2√

5−1

Case III τ = α = β = 1

Thus, we need to solve the system of equations

(ỹk − yk) + 1

s

(
λBT (B ỹk − z) + Ax̄k

) = 0, (6.6)

whose solution can be obtained by the Fast Fourier Transform
(FFT) or Discrete Cosine Transform (DCT) (see e.g., [29] for
details).

We test the grayscale image cameraman (256 × 256) and
pepper(256 × 256), as shown in Fig. 1. These images are
degraded by convolutions and the zero-mean Gaussian noise
with standard deviation σ = 10−3. The blur operator is
generated by the functions fspecial and imfilter in MAT-
LAB Image Processing Toolbox with the types “motion” and
“Gaussian”; zero-mean Gaussian noise is added by the script
imnoise. The specific scenarios (i.e., the input of the script
fspecial) under test are listed in Table1, and the degraded
images are shown in Fig. 2. For the parameter λ in (6.2), we
take λ = 250 for the “motion” blur cases and λ = 1000 for
the “Gaussian” blur case.

As we havementioned, the quantity ‖M(uk − ũk)‖2H mea-
sures the accuracy of the iterate uk to a solution point of

Fig. 2 Degraded images: first row (cameraman) and second row (pepper). From left to right: scenarios of Gaussian blur, medium motion blur and
severe motion blur as specified in Table1
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Iteration No.
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Fig. 3 Evolutions of SNRs with respect to iterations for “Gaussian”
blur (cameraman)

VI(�, F, θ). Therefore, we could use

‖M(uk − ũk)‖2H
max{1, ‖Muk‖2H } ≤ Tol (6.7)

as the stopping criterion, where Tol > 0 is an assigned
accuracy. The quality of a restored image (denoted by yk)
is measured by the signal-to-noise (SNR) value in decibel
(dB):

SNR : = 20 log10
‖y∗‖

‖yk − y∗‖ , (6.8)

where y∗ represents a clean image.
Among algorithms based on the algorithmic framework

(1.4), we choose three representative cases to test with
parameters specified in Table2. Case I is Algorithm (4.8)
in Sect. 4.2.1, and as mentioned, it is Algorithm 4 considered
in [16] which is also an improved version of (1.2) using the
technique in [14]. As reported in [16], usually α = 1.8 is

Table 3 Numerical results for cameraman with Tol = 10−6

Gaussian blur Medium motion blur

It. CPU SNR It. CPU SNR

Case I 31 0.26 17.95 21 0.17 27.29

Case II 33 0.26 17.94 17 0.13 27.29

Case III 43 0.33 17.94 21 0.16 27.30

numerically favorable. So we fix it as 1.8 too in our exper-
iments. Case II is the completely symmetric version (4.12)
in Sect. 4.2.2; this case is of our interests because of its the-
oretical beauty. Case III is the generalized PDHG originally
considered in [5] which is also a special case of the algorith-
mic framework (1.4); it usually works very well as widely
shown in imaging processing literature, and thus we use it as
a benchmark in our experiments. For the step-size parame-
ters r and s in the subproblems of the algorithmic framework
(1.4), throughout we fix 1/r = 0.03 and s = 10

9 · 8/r . Thus,
the condition rs > ‖AT A‖ is guaranteed to be satisfied, since
AT , the matrix representation of the discrete gradient opera-
tor, has ‖AT A‖ ≤ 8 as proved in [4]. Note that our emphasis
is to test the possible improvement in speed by combining
the step (1.4b) with the original PDHG step (1.4a). So we
just fix the values of r and s and observe the difference in
α and β in the framework (1.4). We refer to [16] for some
empirical study on the step-size parameters r and s. The ini-
tial iterates to implement all algorithms are set as x0 = 0
and y0 be the degraded image. In the following, “It.” and
“CPU” represent the iteration numbers and computing time
in seconds, respectively.

In Figs. 3 and 4, we plot the evolutions of SNR values
with respect to iterations for cameraman. Then, in Table3,
we set Tol = 10−6 in the stopping criterion (6.7) and report
the respective “It.” and “CPU” for the Gaussian and medium
motion blur cases when somewell-approximated “maximal”

Iteration No.
0 5 10 15 20 25 30

S
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R
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B
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Fig. 4 Evolutions of SNRs with respect to iterations for “motion” blur. Left: the scenario of medium motion blur; right: the scenario of severe
motion blur (cameraman)
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Table 4 Numerical results for
cameraman with Severe motion
blur and different Tol

Tol = 10−6 Tol = 10−7 Tol = 10−8

It. CPU SNR It. CPU SNR It. CPU SNR

Case I 33 0.27 21.08 55 0.45 21.39 86 0.71 21.41

Case II 38 0.29 21.12 67 0.50 21.40 111 0.83 21.41

Case III 56 0.42 21.02 99 0.74 21.39 154 1.10 21.41
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Fig. 5 Evolutions of SNRs with respect to iterations for “Gaussian”
blur (pepper)

SNR values (as observed in Figs. 3, 4) are achieved. The
reason we set Tol = 10−6 is that we found it is suffi-
ciently accurate for these cases to achieve high SNR values.
In Table4, we report the results for the severe motion blur
case. Since the model is generally more ill-conditioned with
severer blur, Tol = 10−6 is not enough to restore images
with acceptable quality. So, in this table, we test the case
with Tol is as small as 10−8 and report all the results when
Tol = 10−6, 10−7 and 10−8. Figures5 and 6 and Tables5
and 6 are the results for the pepper.

Table 5 Numerical results for pepper with Tol = 10−6

Gaussian blur Medium motion blur

It. CPU SNR It. CPU SNR

Case I 31 0.25 19.81 21 0.17 27.98

Case II 33 0.25 19.81 16 0.12 27.97

Case III 43 0.32 19.87 20 0.15 27.96

The reported experiment results clearly show the effi-
ciency of some specific generalized PDHG algorithms
derived from the algorithmic framework (1.4). In particu-
lar, the completely symmetric version (4.12) is competitive
with the overrelaxed version (4.8) and they both improve
the generalized PDHG in (1.2) favorably. These prelimi-
nary numerical results verify the possibility of specifying
more efficient algorithms based on the algorithmic frame-
work (1.4).

7 Conclusions

Wepropose an algorithmic frameworkof generalizedprimal–
dual hybrid gradient (PDHG) methods for saddle point
problems.We theoretically study its convergence and numer-
ically verify the efficiency of some specific algorithms
derived from the algorithmic framework. This algorithmic
framework includes some existing PDHG schemes as spe-
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Fig. 6 Evolutions of SNRs with respect to iterations for “motion” blur. Left: the scenario of medium motion blur; right: the scenario of severe
motion blur (pepper)
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Table 6 Numerical results for
pepper with severe motion blur
and different Tol

Tol = 10−6 Tol = 10−7 Tol = 10−8

It. CPU SNR It. CPU SNR It. CPU SNR

Case I 34 0.30 21.39 58 0.52 22.03 87 0.78 22.10

Case II 40 0.35 21.55 69 0.60 22.08 109 0.94 22.12

Case III 60 0.49 21.35 104 0.84 22.02 156 1.30 22.10

cial cases, and it yields a class of new generalized PDHG
schemes. It also possesses some theoretical advantages such
as the worst-case convergence rate measured by the iteration
complexity in a nonergodic sense. Our analysis provides a
unified perspective to the study of some PDHG schemes for
saddle point problems. It is interesting to know if our analy-
sis could be extended to some special nonconvex cases with
strong application backgrounds in image processing such as
some semiconvex variational image restoration models. We
leave it as a research topic in the future.
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