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Abstract. In this paper  we propose a new iterative method for solving a class 
of linear complementarity problems: 

u > O, M u  + q > O, u r ( M u  + q) = O, 

where M is a given 1 x l positive semidefinite matrix (not necessarily sym- 
metric) and q is a given /-vector. The method makes two matrix-vector 
multiplications and a trivial projection onto the nonnegative orthant at each 
iteration, and the Euclidean distance of the iterates to the solution set 
monotonously converges to zero. The main advantages of the method pre- 
sented are its simplicity, robustness, and ability to handle large problems with 
any start point. It  is pointed out that the method may be used to solve general 
convex quadratic programming problems. Preliminary numerical experiments 
indicate that this method may be very efficient for large sparse problems. 

Key Words. Projection, F6jer-contraction, Linear complementarity problem, 
Linear programming, Convex quadratic programming. 

1. Introduction 

Let M be an l x I matrix and q �9 R t, where R z denotes the/-dimensional Euclidean 
space. The problem of finding a u �9 R z satisfying 

(LCP) u > O, M u  + q > O, uT(Mu + q) = O, (1) 

* On leave from the Department of Mathematics, University of Nanjing, Nanjing, People's 
Republic of China. 
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is known as a linear complementarity problem (abbreviated to LCP). Let 
L -- {1, 2 . . . . .  l} and I c L. In this paper we consider the following generalized 
linear complementarity problem, which is an LCP with equality restrictions and 
unrestricted variables: Find a vector u s R z such that 

f u~>_O, (Mu+q)i>_O,  u i (Mu+q)~=O,  for i t I ,  
(GLCP) 

( (Mu + q)i = 0, otherwise. (2) 

Here u~ denotes the ith component of u. Let 

f~ = {um Rtlu, > 0 for i e  I}, 

f2* = {u e Rtl u solves (GLCP)}. 

Throughout  this paper we assume that M is positive semidefinite (but not 
necessarily symmetric) and r r ~ .  

Some computational methods have been developed for solving LCPs. Most 
of them are direct and use a sequence of pivoting operations to the system of 
linear equations w = Mu + q [7], [8], [27]. Recently, Kojima et al. [25] proposed 
a polynomial-time method for LCP. The method is an extension of the new 
polynomial-time methods for linear programming, which originated with Kar- 
markar [23] and have been developed by many researchers. Besides the above- 
mentioned finite methods, several iterative methods for solving LCPs are known 
[1], [29], [31]. These iterative methods can be viewed as an extension similar to 
the SOR method for solving Mu 4- q -- 0. Even though the iterative methods are 
not finite, they are considerably simpler and well suited for large sparse problems. 

Our objective in this paper is to develop a new iterative method for solving 
problem (2). The method makes a trivial projection onto f2 at each iteration and 
generates a sequence {U (k)} satisfying 

dist(u(k+ 1), f~,) < dist(u(k), ~ , ) ,  (3) 

where 

dist(u, f~*) = inf{ [I u - u* I121u* e f~*}. (4) 

Using the terminology of [5], we call this method a projection and contraction 
method. 

The outline of this paper is as follows. In Section 2 we illustrate some 
equivalent expressions of (GLCP). Section 3 describes the details of the projection 
and contraction method, and in Section 4 we show the global convergence and 
give an error analysis for it. In Section 5 we illustrate how our iterative method 
is applied to general convex quadratic programming problems. The relationship 
of this method to other projection methods is described in Section 6. In Section 
7 we give a variant of the method-- the  scaled projection and contraction method. 
Finally, we give some numerical results for solving the Dirichlet problem with 
obstacles. In what follows, Pa(') denotes the (trivial) projection onto the set f~ and 
H'[I 2, 11't1 o0 denote the Euclidean and the max-norm, respectively. 
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2. The Projection Equation and Measure Functions 

It  is easy to see that  u E f~* if and only if u satisfies the following project ion 
equat ion:  

Pn[u  - ( M u  + q)] = u. (5) 

See [29] for a proof.  

L e m m a  1. For all u ~ f~, 

{u - Pa[u  - ( M u  + q)]}T(Mu + q) >_ ]lu -- Pn[u  -- (Mu  + q)]]]2 (6) 

P r o o f  Since ~ c R t is a closed convex set, we know by the propert ies  of  a 
project ion on a closed convex set [5] that,  for any  v ~ R z and u ~ fL 

[v - Pn(v ) l r [u  - Pn(v)] < O. (7) 

For  v := u -- ( M u  + q) we obta in  the assert ion of the lemma.  [ ]  

Let  

q~(u) := {u -- Pn[u  - (Mu  + q ) ] } r (Mu  + q), (8) 

if(u):= flu - P , [ u  - (Mu  + q)]lp 2. (9) 

Actually, by (5) and (6), we have proved  the following. 

Theorem 1. Le t  ~p(u) and if(u) be defined as in (8) and (9), respectively. Then  

(i) q~(u) > if(u) _> 0 f o r  all u ~ ~ .  
(ii) u ~ f~ and q~(u) = 0 r162 if(u) = 0 ~ u ~ l)*. 

For  u EfL the functions q~(u) and if(u) can be viewed as measures  for the distance 
of u f rom the solution set f~*. 

3. A Search Direction and the Algorithm 

For  any u * ~ * ,  the search direction of the contract ion me thod  should be a 
descent direction of F(u) = �89 - u* II 2 F r o m  (6) and (8), if we put  

g(u) = M r { u  - e n [ u  - (Mu  + q)]} + ( M u  + q), (10) 

then we have 

Theorem 2. Le t  u* e f~* and u ~ f~, then 

(u - u*)T g(u) > ~o(u), (11) 

i .e. , for u ~ f~\f~*, - g ( u )  is a descent direction o f F ( u )  at u. 
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Proof.  Since u* s f~*, we have 

( M u *  + q ) T u *  ----- 0 

and, for any v ~ R z, 

( M u *  + q)Tpa(v ) > O. 

As M is positive semidefinite, we get 

(u - u*)Tg(u) = {U -- Pa[u  -- ( M u  + q)]}T[ (Mu + q) -- ( M u *  + q)] 

+ (u -- u*)T(Mu + q) 

= (p(U) + {Pn[u -- ( M u  + q)-]}T(Mu* + q) 

- -  uT(Mu  * + q) + (U -- u*)T(Mu + q) 

> ~O(U) + (U -- u*)TM(u -- U*) 

>_ ~o(u). 

For u ~ ~, let 

N(u) = { i e l l u i  = 0 and gi >- 0}, 

B(u) = L \N(u ) .  

Correspondingly, denote 

u = , g ( u )  = , g B ( u )  = , a N ( u )  = �9 
\ u u /  \ g ~ /  gN 

Then 

(u - u*)rg~(u) <_ O. 

Therefore 

(u - u*)rgB(u) > (u - u*)rg(u) > ~o(u). 

Thus, we have the same algorithm as in [211. 

(12) 

(13) 

[ ]  

(14) 

(15) 

( 1 6 )  

(17) 

(18) 

Algorithm PC (Projection and Contract ion Method) 
Given u (~ ~ ~. 
For  k = 0, 1, . . . , / f  u Ck) ~ ~2", then 

1. Calculate ~p(u (~)) and g(u ~k)) by (8) and (10), respectively. 
2. Determine gB(U (k)) by (14)--(16) and calculate the step size 

p(u(~)) _ q~(u~)) 

Ilgdu~))ll z" 

3. Update 

~1(k) = hi(k) - -  p(u(k))gB(U(k)),  

u(k + 1) = pa[fi~k)-]. 

(19) 

(20) 

(21) 
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In the practical computation, we use 

o r  

I[u -- Pn[u -- (Mu + q)]ll ~ 

Ilqll 
< e  

as the termination criterion. 

4. Convergence 

Theorem 3. Let u*e  f~* and {u (k)} be the sequence generated by Algorithm PC. 
Then 

~o2(u ~k~) 
Ilu ~k§ - u*ll z <_ Ilu ~ k ) -  u*ll 2 (22) 

[tgB(U(k))ll 2 " 

Proof Since u*e fL we have, by the well-known projection property, for any 
v ~ R z, 

r l e d v )  - u*ll < IIv - u*ll ,  

so that 

f lu ~ k + l ~  - u * t l  <-  Ila ( ~  - u*ll.  

By means of (18)-(20), we get 

Ila~kl - u*ll 2 < Ilu (k) - u * l l  2 

and thus the theorem is proved. 

(23) 

(24) 

~o2(u~) 
][gB(u(n))][ z (25) 

[] 

Because (22) is true for any u* e f~*, by Theorem 3 we have actually shown 

[dist(u(k+ 1), f~.)]z < [dist(u(k), f~.)]2 (26) 
Ilgdu~k))ll 2 '  

i.e., the sequence {u (k)} is F6jer-monotone with respect to the solution set f~*. 

Theorem 4. I f  f~* is nonempty, then the algorithm is globally convergent, i.e., 

lim dist(u (k), f~*) -- 0. 
k--* go 

(27) 

Proof Let u* be a solution of problem (2). It 
F6jer-monotone sequence is bounded. Suppose 

lim dist(u (k), f~*) = 6o > 0, 
k - - * ~  

is easy to check that every 

(28) 



252 Bingsheng He 

then 

{u (k)} c S : =  {u e f~16o _< dist(u, f~*), Ilu - u*tl _< Ilu (~ - u* l [}  (29) 

and S is a closed bounded  set. Moreover ,  f rom the assumption,  S ~ ~*  = ~ ,  then 
on S 

@(u) 
T(u) . -  > O. 

IIg(u)ll 2 

Since T(u) is cont inuous  on S, we have 

min{T(u) lu  ~ S} := eo > 0. (30) 

F r o m  (28), there is a ko > 0, such that,  for all k > ko, 

GO [dist(u(k), f~.)]2 < 62 + - - .  (31) 
2 

On  the other  hand,  f rom (26), (30), and IIgB(u)ll -< IIg(u)[I, 

[dist(utk+l), ~')*)]2 ([dist(u(k),  fl*)]2 < 62 CO. (32) 
- -  2 

This contradicts  (28). [ ]  

The  reason that  we use ~o(u (k)) ___ e 2 as our  te rminat ion  criterion in practice is 
the following. 

Theorem 5. 
fi is a solution of  the perturbed problem 

eaEu - (Mu + ~)] = u, 

where ~1 satisfies 

I l q -  q]l < (IIMII + 1)E.  

Let f ie f~ and q~(fi) < e 2, then we can find fi such that Hfi - all < e and 

(33) 

(34) 

Proof. Put  ~ = Mfi '+ q. By the assumpt ion  and Theorem 1 

lift - -  P n ( f i  - -  ~)l] < e .  

Let 

(35) 

0 if i ~ I  and u ~ < v i ,  
fi~ = (36) 

u i otherwise. 

By the construct ion of fi, if ~i r fii, then 

ui - [Pa(  fi -- O]i = 0, 

hence 

(a -- f i ) I  (t7 -- Pn(fi -- ~)). (37) 
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Similarly, if fii # t~i, then 

[Pn( ~ -- v)]i = [Pn( 0 - v)]i. 

Therefore  

(fi - -  fi) + [ f i  - -  P n ( f i  - -  z3)~ = fi - -  P n ( f i  - -  8) .  ( 3 8 )  

F r o m  (37) and (38) we get 

I]0 - fill 2 + lift - P n ( f i  - 0112 = Ila - p n ( a  - 0112. ( 3 9 )  

It  follows that  11~7 - all  < ~ and 

I1~ - Pn(fi - z3)lP _< e. (40) 

F r o m  (40) we can easily find a ~ satisfying Ill - z3l[ < e and I1~ - e d ~  - v311 = 0. 
Let O = f - Mfi, then 

II0 - ql l  = I1~ - Mz7 - qll = II~ - 13 - M ( f i  - fi)ll < (IIMII + 1)e .  [ ]  

5 .  A p p l i c a t i o n  t o  C o n v e x  Q u a d r a t i c  P r o g r a m m i n g  

We have constructed a project ion and contract ion a lgor i thm PC for p rob lem (2). 
The principal  formulas  in this me thod  are 

9(u) = {u -- Pn[u -- (Mu + q)]}T(mu + q) 

and 

g(u) = MT{u  -- Pn[u -- (Mu + q)]} + (Mu + q). 

If  we let v = u -- Pn[u - (Mu + q)], then the main  work  in each i terat ion is the 
compu ta t ion  of M u  and MTv.  The a lgor i thm can start  at any u~~ f~, and (26) 
shows that  the me thod  is robust  and stable. 

Our  p r imary  interest, however,  is the efficient solution of convex quadrat ic  
problems:  

(CQP)  Minimize � 89  + cTx 

sub jec t to  A l l x  z + A12x  n >_ bz, 

A21x i  + A22Xl i  = bzz, 
X I ~ O~ 

where 

A l l  e R " ,  c =  
A = \A21 e R "  • b = bzz \ c z z /  

and 

( 4 1 )  

H = (  H l l  H ' e~eR , , •  
\ H 2 1  H22/I 

is a symmetr ic  positive semidefinite matrix.  P rob lems  of this type arise very often 
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in applications of numerical analysis, in optimal control and operations research, 
as well as subproblems in general nonlinear optimization problems via successive 
quadratic programming methods [201, [331, [35]. Many existing algorithms [21, 
[71, [8], [13], [15], [161, [171, [271, [361 use active set strategies and are direct 
extensions of the simplex method for linear programming. Under certain condi- 
tions most of these algorithms generate the same sequence of points, as shown by 
Pang [30] and Best [4]. We simultaneously consider the dual problem of (CQP): 

(DQP) Maximize - - l x T H x  + bTy 

subject to H l l X l  + H12Xl i  -- ATly:  -- A T l y u  + c I >_ O, 

H z l X  I + H z 2 X I I  A T z y :  T = O, __ __ A22Yi• + Cli 
Y1 -> O. (42) 

Let 

n 1 = { x e R " l x ,  >_ 0}, f~2 = { Y e R m I y I  >- 0}, f~ = f~l x f~2. 

By the duality of convex programming [81, if x* is a solution of (CQP), then there 
exists a y* such that u* = (x*, y*) is a solution of (DQP). Let 

fl* = {u* = (x*, y*)lx* solves (CQP), (x*, y*) solves (DQP)}. 

Then a necessary and sufficient condition for u = (x, y) e ~* is the following: 

e Ailx: + A i 2 x  H _ b1 >- O, 

A21XI + A z z X l I  -- bH = O, 
x : > O  
(primal feasibility); 
H l x x  I + H12x  u - A r l y l  - A T l y u  + c I > O, 

H 2 i x  I + Ha2X H -- A r 2 y i  - AT2Yl I  + cl i  = O, 
y : > O  
(dual feasibility); 
x T [ H i l x ,  + n l 2 X l l  - -  ATay: -- ATlyH + C,] = O, 

y T [ A l l x  I + A l z x  u -  bi1 = 0 
(complementarity). 

Let 

M = , q = , (43) 

then it is easy to see that the necessary and sufficient condition for u s fl* can be 
written as 

Pn[u - (Mu + q)l = u. 

Note that in this case M, although nonsymmetric, is also positive semidefinite. It 
is a generalized linear complementarity problem of type (2) and may be solved by 
Algorithm PC. If H - 0, then (41) reduces to a linear program. In particular, for 
a linear program in standard form, the corresponding formulas become 

~o(u) = JlAx - bJ] 2 + [(x + (Ary - c))+ - x1T(ATy -- C) (44) 
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and AT Axb, ATyc  ) 
g(u) = gy = A [ ( x  + (ATy - c))+ - x]  + (Ax  - b) ' 

255 

(4s) 

which have already been introduced in [21]. Because u* = (x*, y*) is the saddle 
point of the Lagrangean, sometimes we call the method a saddle-point algorithm 
[21], [223. 

6. Relationship to Other Projection Methods 

Let 

f ( x )  = �89  + cTx, (46) 

C -~ {XIAl lX  I + A l z x I I  ~ bi,  A21xi + Az2Xil  ~- bll, x i  ~ 0}. (47) 

Other known projection methods use the iteration 

x(k+ 1)= Pc[X(k) _ akg(X(k))]. (48) 

An example is the Goldstein-Levitin-Polyak gradient projection method [3], [6], 
[10], [11], [18], [28] and the related projected Newton method [12]. In the 
original algorithms of Goldstein [18] and Levitin and Polyak [28] the step size 
ak was chosen to be constant for all k. An alternative method for selecting the 
step size ek was proposed by Bertsekas [3]. His method, using a modified Armijo 
line search, was a significant contribution to making the gradient projection 
method useful in practice. As C is a general polytope, however, in order to 
determine x (k+ 1) we have to solve a minimum norm problem (possibly more than 
one), 

min{ ][ x - I x  (k )  - o~g(x(k))] []]X ~ C}, (49) 

at each iteration, which is almost as expensive as solving (CQP) itself. Therefore, 
the overall efficiency of the gradient projection method is seriously affected by the 
complexity of problem (49). 

Uzawa's method [33] is a gradient projection method using the iterative 
scheme (48) for solving (CQP) without line search. Suppose that x* is a solution 
of (CQP) and g(x) is the gradient off(x). Since f(x) is convex, then, for any x ~ C, 

(x -- x*)rg(x) > f ( x )  -- f ( x * )  > O. (50) 

His ideal step size ek in (48) is defined by 

f ( x  (k)) - f ( x * )  
~ = j lg(x~)l l2 (51) 

and the generated sequence {x (k)} satisfies 

Ir x Ck + 1) _ x *  II 2 _< IIx ~) - x *  II 2 _ Otk[f(x(k)) _ f(x*)]. (52) 
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This method is a beautiful iterative scheme for (CQP), but in practice there are 
some drawbacks, especially 

(a) because f ( x * )  is usually unknown and then ~k in (51) is not computable, 
and 

(b) we have to solve a minimum norm problem (49) at each iteration. 

The difficulties of these projection methods for solving (CQP) are overcome 
by Algorithm PC. In the PC method we first transform (CQP) to a (GLCP), define 
a measure function q~(u) (note that ~o(u) is not differentiable) and a search direction 
g(u), which is not a gradient of ~0(u). Nevertheless, similarly as in Uzawa's method 
(see (50)), we have 

( u  - u*)Tgdu) >_ ~o(u) > 0 

and can take 

~o(u) 
p ( u )  - - -  

IIgB(u) ll 2 

as the step size. Here ~o(u) and p(u) are computable and the projection onto f~ 
is trivial. However, the algorithm usually generates an infinite sequence {u (k)} = 
{(x(k), y(k))}, and {x (k)) is not necessarily contained in the feasible set C, but, 
as is shown in Section 4, the sequence {x (k)) will be asymptotically feasible as 
dist(u (k), f~*) ~ 0, and, in fact, converges to a solution of (CQP). 

The extra gradient method, which was proposed by Korpelevich [26], is 
another projection and contraction method for finding saddle points of problem 
(CQP). His iterative scheme is the following: 

r (k) = P n [ u  (k) - o~W(u(k))], (53) 

U (k+l) = P n [ u  (k) --  c~W(fi(k))], (54) 

where W ( u )  = M u  + q and ~ is a constant. For all 0 < ~ < 1/]]MI], the iterates 
satisfy 

Ilu (k+a)  - u* l l  2 < Ilu (k) - u* l l  2 - (1  - ~ 2 1 1 M I l = ) l l u  (k) - a(k)ll 2. ( 5 5 )  

If IIMII < 1 and we take ~ = 1, then the formula may be written as 

u(k + 1) = pn[u(k)  _ ~#r(u(k))], (56) 

where 

OK(u) = - - M { u  --  P n [ u  - ( M u  + q)]} + ( M u  + q), (57) 

but our search direction for (CQP) is 

9(u) = M r { u  --  P n [ u  --  ( M u  + q)]} + ( M u  + q). 

For linear programming only, because in this case M T = - M ,  the directions are 
equal (but not the step lengths). 
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7. An Extension--The Scaled PC Method 

Let G be an I • l diagonal  positive definite matrix. 1 It  is easy to see that u solves 

Pn[u  --  ( M u  + q)] = u 

if and only if it is a solution of  the following projection equat ion:  

Pn[u  - G - l ( M u  + q)] = u. (58) 

Based on (58), similarly as (8) and (10) we let 

~o(u, G) = {u - PnEu - G - I ( M u  + q ) ] } r ( M u  + q) (59) 

and 

~(u, G) = Mr{u - Pta[u - G - I ( M u  + q)]} + ( M u  + q). (60) 

Note  that, for any v ~ R t, 

P n ( G -  1/2V) = G -  1/2pf~(v), 

and if u e f L  so is G~/Zu. Then using Lemma 1 we have, for any u e f~, 

(o(u, G) = { G1/2u - Pf~[G1/Zu - G - 1 / 2 ( m u  -1- q) ]}r [G-1/2(mu -}- q)] 

> ilG1/2u _ pa[G1/2u _ G - 1 / a ( M u  + q)][lz 

= Ilu - enEu - G - l ( M u  + q)] l lg ,  

where II" 11 G denotes a n o r m  in R ~ induced by G. Similarly as in Theorem 2, we have 

(u - u*)r~(u, G) = {u - Pn[u  - G -  l ( M u  + q ) ] ) r [ ( M u  + q) - (Mu*  + q)] 

+ (u - u * ) r ( M u  + q) 

> (p(u) - u r ( M u  * + q) + (u - u* ) r (Mu  + q) 

= ~p(u) + (u - u * ) r M ( u  - u*) 

>_ ~p(u, G). 

Instead of taking ~o(u) and 9(u) as in Algori thm PC, we now use ~(u, G) and O(u, G) 
and refer to the related method  as a scaled projection and contract ion method  
(the SPC algorithm). Then, as indicated in Theorem 3, the sequence {u ~k)} satisfies 

~ 2 ( u ~ ,  G) 
[luCk+l> _ u*l[2 _ Ilu <~ - u*l12 

I r 9B(u ~), G) ll z" 

Moreover ,  the scaling matrix G m a y  vary with the iteration index, i.e., G = G k. 
With minor  modifications, the results of  this paper  are true for variable G k as well 
as for fixed G. The best choice of  the matrices G k is the topic of  further research. 

1 In fact, the results of this section are true for more general matrices G of the form 

G=( G1 G2 ), 
where G1, G2 > 0, G1 is diagonal, and G1 acts on the indices i~ I  and G 2 on L\I. 
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Another modification of the PC method is the 
diagonal positive definite matrix Q, let 

O(u, G, 9.) = 9.- lO(u, G), 

(o(u, G) 
~(u) - 

ItO.(u, G, Q)l]~" 

= Pn[u  - P(u)OB(u, G, Q)]. 

Since 

(u - u*)rQOB(u, G, Q) = (u - u*)roB(u, G) >_ (o(u, G), 

then 

LI~ - u*ll~ <- Ilu - u* - ~(u)OB(u, ~ ,  Q311~ 

= IlQ1/Z(u - u*) - p ( U ) 9 . 1 / 2 ( I B ( U  , G, Q)II 2 

= Ilu - u*ll~ - 2tS(u)(u - u*)rO~(u, G) + P=(u)llo~(u, G, Q)II~ 

,52(u, G) 
-< Ilu - u*ll~ IlOB(u, G,Q)I[~" 

We call the above method a scaled metric projection and contraction method. 
Again, the best choice of 9. is the topic of further research. 

Bingsheng He 

following: For  any l x 1 

8. Numerical Results 

In  this section we present  some numerical  experiments  with the PC algori thms 
(with G = Q = I). We consider the Dirichlet P rob lem with obstacles [24], which 
can be set in a complemen ta ry  form: 

Given cont inuous  functions f ,  l, and h on D = [0, 1] • [0, 1] and w on ~D, 
find u: [0, 1] x [0, 1] -o R such that  

max{u(p) - h(p), min{u(p) - l(p), -Au(p )  - f (p )} lp~(0 ,  1) x (0, 1)} = 0, 
(61) 

u(p) = w(p), p e ~D. 

To solve (61) by means  of a difference method,  we put  

x i = i z ,  y j = j z ,  i , j = O ,  1 . . . . .  N +  1, 

1 
Z - N + l ,  N > I  an integer 

uij = u(xi, y~), 

which leads to a linear complementar i ty  p rob lem of the type (5) 

u = Pn[u  -- (Mu  + q)], (62) 

where ~ = [ull~i < u o <_ h~, i, j = 1 . . . . .  N} is defined by box  constraints  and  M 
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is a block N 2 x N 2 matr ix  of the form 

B - I  0 . . . . . . . . .  0 

- I  B - 1  "-. 
0 - - I  B ". .  "-. 

M ~ " "  " " " " " "  " " 

" " . " " , " "  �9 " "  , 0 

0 . . . . . . . . .  0 - - I  B 

and B is an N x N matr ix  of the following form: 

4 - 1  0 . . . . . . . . .  
- 1  4 - 1  ". .  

0 - 1  4 ". .  " . .  

B ~ " "  " ' . " ' . " " .  ' " . 

0 . . . . . . . . .  0 - 1  

It  is well known that  M is 

(63) 

0 ~ 

(64) 

0 
- 1  

4 

positive definite. To  investigate the convergence 
behaviour  of Algor i thm PC, we form r a n d o m  test p roblems (62) with matr ix  (63) 
and (64) as follows: First, we set l~j -- 0, and choose h~j randomly  in (10, 20), and 
tgj r andomly  in (0, 1). Then  let 

"0 if tii <<- 0.25, 
u*  = h~j x (2h j  - 0.5) if 0.25 < tij < 0.75, 

hij otherwise, 

"randomly in (0, 10) if tij <_ 0.25, 
v i j =  0 if 0 . 2 5 < t ~ j < 0 . 7 5 ,  

r andomly  in ( -  10, 0) otherwise, 

and 

q := v - -  M u * .  

In this way we get a r a n d o m  test p rob lem with a given solution u*. 
The  code was writ ten in F O R T R A N  and run on a VAX-8810 compute r  of  

the Compu t ing  Center  of the Universi ty  of  Wiirzburg.  We stop the i teration as 
soon as 

/lu - ea[u - ( M u  + q)]ll 
_<e 

I t q l l  ~o 

for some e > 0. The  numerical  results are given in Tables  1 and 2. Here,  n = N 2 
is the n u m b e r  of  variables. The  C P U  time and the number  Ilu - u* II | refers only 
to the runs with the highest accuracy e = 10-7. We used the following start ing 
points:  uij" (o) = 0 and u~j" (o) = h~j/2 for the problems in Table  1 and Table  2, respec- 
tively. 
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Table 1 

Number  of iteration for 8 = 

C P U  

N n E -- 3 E - 5 E - 7 (seconds) Ilu - u*ll~o 

10 100 40 85 130 0.25 0 . 4 8 E - 5  

20 400  60 85 125 0.98 0 . 4 8 E - - 5  

30 900  60 80 120 2.13 0 . 3 8 E - 5  

40 1600 45 85 135 4.41 0 . 6 7 E - 5  

50 2500 55 90 165 9.16 0 . 7 9 E - 5  

60 3600 50 90 135 10.49 0 . 6 7 E - 5  

70 4900 60 95 160 17.64 0 .91E - 5 

80 6400 55 95 155 22.88 0 . 8 3 E - 5  

Table 2 

Number  of iteration for e = 

C P U  

N n E - 3 E - -  5 E - 7 (seconds)  [[u - u*[]~ 

10 100 40 75 115 0.23 0 . 4 8 E - 5  

20 400 45 75 115 0.93 0 .48E - 5 

30 900 50 70 110 2.06 0 . 6 7 E - 5  

40 1600 45 95 150 4.67 0 .67E - 5 

50 2500 55 95 175 9.19 0 .72E - 5 

60 3600 40 70 120 9.46 0 .74E - 5 

70 4900 55 95 165 17.07 0 . 6 2 E - 5  

80 6400 50 90 145 21.10 0 . 1 1 E - 4  

9. Conclusions 

This paper decribes, a new projection and contraction method for solving a class 
of generalized linear complementarity problems, which may be used to solve 
general convex quadratic programs. The related fundamental theory can be found 
in [8], [29], [19], and [34]. The main advantages of the new method are its 
simplicity and robustness. The numerical experiments in Section 8 show that the 
algorithm is efficient in some important practical applications. For an iterative 
method, however, we cannot expect it to be faster than other direct methods when 
solving small problems. We believe that a scaled projection and contraction 
method may also be a suitable method for general nonlinear programs and 
nonlinear complementarity problems: if these problems are treated by the SQP 
method, and, e.g., by the inexact Newton method [32], respectively, then the 
resulting quadratic programs, respectively, the linear complementarity problems, 
could be solved by Algorithm PC iteratively. 
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