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Abstract Approximate proximal point algorithms (abbreviated as APPAs) are classi-
cal approaches for convex optimization problems and monotone variational inequal-
ities. To solve the subproblems of these algorithms, the projection method takes the
iteration in form of uk+1 = PΩ [uk −αkd

k]. Interestingly, many of them can be paired
such that ũk = PΩ [uk − βkF (vk)] = PΩ [ũk − (dk

2 − Gdk
1 )], where inf{βk} > 0 and

G is a symmetric positive definite matrix. In other words, this projection equation
offers a pair of directions, i.e., dk

1 and dk
2 for each step. In this paper, for various

APPAs we present a unified framework involving the above equations. Unified char-
acterization is investigated for the contraction and convergence properties under the
framework. This shows some essential views behind various outlooks. To study and
pair various APPAs for different types of variational inequalities, we thus construct
the above equations in different expressions according to the framework. Based on
our constructed frameworks, it is interesting to see that, by choosing one of the di-
rections (dk

1 and dk
2 ) those studied proximal-like methods always utilize the unit step

size namely αk ≡ 1.
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1 Introduction

Let Ω be a nonempty closed convex subset of Rn and F be a continuous point-to-
point mapping from Rn into itself. The variational inequality problem is to determine
a vector u∗ ∈ Ω such that

VI(Ω,F ) (u − u∗)T F (u∗) ≥ 0, ∀u ∈ Ω. (1.1)

VI(Ω,F ) problems include nonlinear complementarity problems (when Ω = Rn+)
and systems of nonlinear equations (when Ω = Rn), and thus have many important
applications. Notice that VI(Ω,F ) is invariant when we multiply F by some positive
scalar β > 0. For any β > 0, it is well known ([1], p. 267) that

u∗ is a solution of VI(Ω,F ) ⇐⇒ u∗ = PΩ [u∗ − βF(u∗)], (1.2)

where PΩ(·) denotes the projection onto Ω with respect to the Euclidean norm, i.e.,

PΩ(v) = argmin{‖u − v‖ | u ∈ Ω}.
Since Ω is convex and closed, the projection onto Ω is unique. We say the mapping
F is monotone with respect to Ω if

(u − v)T (F (u) − F(v)) ≥ 0, ∀u,v ∈ Ω.

The variational inequality VI(Ω,F ) is monotone when the mapping F is monotone.
For solving a monotone variational inequality, a classical method is the proximal
point algorithm (abbreviated as PPA) [17, 18]. For given uk ∈ Ω and βk > 0, the new
iterate uk+1 of the exact PPA is the solution of the following variational inequality:

(PPA) u ∈ Ω, (u′ − u)T Fk(u) ≥ 0, ∀u′ ∈ Ω, (1.3a)

where

Fk(u) = (u − uk) + βkF (u). (1.3b)

According to (1.2), solving problem (1.3) is equivalent to finding a solution of the
following projection equation

u = PΩ [uk − βkF (u)]. (1.4)

The sequence {uk} generated by the exact PPA satisfies

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − ‖uk − uk+1‖2, (1.5)

where u∗ is any solution point of VI(Ω,F ) (for a proof, see [10] or [18]). Since the
new iterate uk+1 is closer to the solution set than uk , we say that the sequence {uk}
is Fejér monotone with respect to the solution set. By using the terminology in [2],
such methods are called contraction methods in this paper.
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The ideal form (1.4) of the method is often impractical, since in many cases
solving problem (1.3) exactly is either impossible or expensive. Extensive develop-
ments on approximate proximal point algorithms (abbreviated as APPAs) are fol-
lowed [4, 5, 20].

Let vk be an approximate solution of the PPA’s subproblem (1.3) accepted by a
certain condition. In the sense of (1.4), we have

vk ≈ PΩ [uk − βkF (vk)]. (1.6)

Define the right-hand-side of (1.6) by ũk , we call

(Basic equation of APPAs) ũk = PΩ [uk − βkF (vk)] (1.7)

the basic equation of APPAs. It is clear that ũk is the exact solution of the subproblem
(1.3) if ũk = vk or F(ũk) = F(vk). In this paper, for constructing various methods
for VI(Ω,F ), we rewrite the basic equation of APPAs (1.7) as

ũk = PΩ {ũk − [d2(u
k, vk, ũk) − Gd1(u

k, vk, ũk)]} (1.8)

with the two directions namely d1(u
k, vk, ũk) and d2(u

k, vk, ũk), where G is a
symmetric positive definite matrix. In the following, we call d1(u

k, vk, ũk) and
d2(u

k, vk, ũk) the geminate directions.
Because (1.8) is derived from the basic equation of APPAs, the methods developed

in this paper are called proximal-like methods. Indeed, the reformulation (1.8) plays
the key role for constructing the unified framework in this paper. As readers can see
in this paper, many existing projection and contraction methods can be grouped as
primary methods (which take d1(u

k, vk, ũk) or d2(u
k, vk, ũk) as the search direction

and adopt the unit step size) under the unified framework. Moreover, according to the
unified framework, we can construct some more efficient methods than the primary
ones with only minor extra computational loads. In this paper, however, we only
propose the unified framework and different explicit formulations of the equation
(1.8) inducing many existing methods for various kinds of monotone VIs. The further
studies on more efficient methods are put forth in the descendent paper “Proximal-
like contraction methods for monotone variational inequalities in a unified framework
II”, see [13].

Throughout this paper we assume that the operator F is point-to-point, monotone
and continuous; the solution set of VI(Ω,F ), denoted by Ω∗, is nonempty; and the
sequence {βk} in (1.7) is bounded, i.e., 0 < βL ≤ inf∞k=0 βk ≤ sup∞

k=0 βk ≤ βU < +∞.

Note that under our assumptions the solution set Ω∗ is closed and convex (see pp.
158 in [6]). The projection mapping is a tool for the analysis in this paper. It has
some important properties as shown in Lemma 1.1, which can be found in textbooks,
e.g., [2].

Lemma 1.1 Let Ω ⊂ Rn be a closed convex set, then we have

(u′ − PΩ(u′))T (u − PΩ(u′)) ≤ 0, ∀u′ ∈ Rn, ∀u ∈ Ω, (1.9)

‖PΩ(u) − PΩ(u′)‖ ≤ ‖u − u′‖, ∀u, u′ ∈ Rn, (1.10)
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‖u − PΩ(u′)‖2 ≤ ‖u − u′‖2 − ‖u′ − PΩ(u′)‖2, ∀u′ ∈ Rn,∀u ∈ Ω. (1.11)

The paper is organized as follows. In Sect. 2, we propose the unified framework
which consists of an effective quadruplet and an accepting rule. Under the frame-
work, a class of primary methods is defined, followed by detailed analysis on their
convergence.

For the rest of the paper, guided by the unified framework, we first find the ef-
fective quadruplets and their related accepting rules for symmetric linear VIs, asym-
metric linear VIs, symmetric nonlinear VIs (which equal to differentiable convex
optimization problems) and nonlinear VIs in Sects. 3, 4, 5 and 6, respectively. Fi-
nally, we illustrate how to construct effective quadruplets for two existing APPAs,
i.e., Solodov and Svaiter’s APPA (see Algorithm 2 in [20]) and the proximal alter-
nating directions method (see [11]), abiding by their own accepting rules, in Sects. 7
and 8, respectively.

2 The unified framework and the primary methods

2.1 The unified framework

Derived from the basic equation (1.7), the unified framework consists of an accepting
rule and a related effective quadruplet described as follows.

Definition 2.1 (Accepting rule and effective quadruplet) For the triplet (uk, vk, ũk)

in the basic equation (1.7) and a designed constraint condition, say (uk, vk, ũk) ∈
A(uk, vk, ũk), a quadruplet (d1(u

k, vk, ũk), d2(u
k, vk, ũk), ϕ(uk, vk, ũk),

φ(uk, vk, ũk)) is called an effective quadruplet for contraction methods if the fol-
lowing conditions are satisfied:

1. for the geminate directions d1(u
k, vk, ũk), d2(u

k, vk, ũk) ∈ Rn, it holds that

ũk = PΩ{ũk − [d2(u
k, vk, ũk) − Gd1(u

k, vk, ũk)]} (2.1a)

where G is symmetric and positive definite;
2. there is a continuous function ϕ(uk, vk, ũk) such that, for any u∗ ∈ Ω∗,

(ũk − u∗)T d2(u
k, vk, ũk) ≥ ϕ(uk, vk, ũk) − (uk − ũk)T Gd1(u

k, vk, ũk); (2.1b)

3. under the given condition (uk, vk, ũk) ∈ A(uk, vk, ũk),

ϕ(uk, vk, ũk) ≥ 1

2
{‖d1(u

k, vk, ũk)‖2
G + φ(uk, vk, ũk)}, (2.1c)

where φ(uk, vk, ũk) is a non-negative continuous function;
4. there is a positive constant κ > 0 such that

φ(uk, vk, ũk) ≥ κ‖uk − ũk‖2. (2.1d)
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According to the above four conditions (2.1a)–(2.1d), APPAs can be derived, in
which vk is an approximate solution of the subproblem (1.3) in the sense of (1.7).
Thus, we call the condition (uk, vk, ũk) ∈ A(uk, vk, ũk) the accepting rule in the in-
dividual APPAs.

Remark 2.1 The condition (2.1a) gives two directions d1 and d2 for the projection
contraction methods, whilst conditions (2.1b)–(2.1d) guarantee the convergence. The
reader can see the details in the following two sub-sections.

Remark 2.2 Strongly speaking, the effective quadruplet are also depends usually on β

(see (1.7)). We omit the β in their expressions for convenience. The parameter β is
adjusted mainly for satisfying the accepting rule, as can be seen in the following
analyses.

For the convenience of analysis, in what follows we ignore the index k. Namely,
instead of βk , uk, vk and ũk , we write β,u, v and ũ. From (1.2), the condition (2.1a)
implies that

ũ ∈ Ω, (u′ − ũ)T {d2(u, v, ũ) − Gd1(u, v, ũ)} ≥ 0, ∀u′ ∈ Ω. (2.2)

Remark 2.3 The exact PPA is a special case of APPAs (1.7) in which ũ = v, and
thus its accepting rule is ‖v − ũ‖ = 0. Indeed, there is an effective quadruplet
(d1(u, v, ũ), d2(u, v, ũ), ϕ(u, v, ũ), φ(u, v, ũ)) which satisfies conditions (2.1) with
G = I . According to (1.2), we have

ũ = PΩ {ũ − [βF(ũ) − (u − ũ)]}.
The above expression is a form of (2.1a) in which

d1(u, v, ũ) = u − ũ and d2(u, v, ũ) = βF(ũ). (2.3)

Since ũ ∈ Ω , using the monotonicity of F , we have

(ũ − u∗)T d2(u, v, ũ) = (ũ − u∗)T βF (ũ) ≥ (ũ − u∗)T βF (u∗), ∀u∗ ∈ Ω∗.

Because u∗ ∈ Ω∗, we have

(ũ − u∗)T βF (u∗) ≥ 0 and thus (ũ − u∗)T d2(u, v, ũ) ≥ 0.

By setting

ϕ(u, v, ũ) = φ(u, v, ũ) = ‖u − ũ‖2, (2.4)

it is easy to check that conditions (2.1b), (2.1c) and (2.1d) (with κ = 1) are satisfied.

2.2 The descent directions and the primary methods

For any u∗ ∈ Ω∗, G(u − u∗) is the gradient of the unknown distance function 1
2‖u −

u∗‖2
G at the point u. A direction d is called the descent direction of 1

2‖u − u∗‖2
G if

and only if (G(u − u∗))T d < 0. The following lemmas reveal that both −d1(u, v, ũ)
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and −d2(u, v, ũ) in the effective quadruplet are descent directions of the unknown
distance function 1

2‖u − u∗‖2
G and 1

2‖u − u∗‖2 when u ∈ Ω \ Ω∗, respectively. The
assertions are similar to Lemmas 3.1 and 3.2 in [14]. For completeness, the proofs
are provided.

Lemma 2.1 If conditions (2.1a) and (2.1b) are satisfied, then

(u − u∗)T Gd1(u, v, ũ) ≥ ϕ(u, v, ũ), ∀u∗ ∈ Ω∗. (2.5)

Proof Since u∗ ∈ Ω , it follows from (2.2) that

(ũ − u∗)T Gd1(u, v, ũ) ≥ (ũ − u∗)T d2(u, v, ũ), ∀u∗ ∈ Ω∗.

Substituting the right-hand-side of the above inequality by (2.1b), we obtain

(ũ − u∗)T Gd1(u, v, ũ) ≥ ϕ(u, v, ũ) − (u − ũ)T Gd1(u, v, ũ), ∀u∗ ∈ Ω∗. (2.6)

Assertion (2.5) follows from the above inequality directly. �

Lemma 2.2 If conditions (2.1a) and (2.1b) are satisfied, then

(u − u∗)T d2(u, v, ũ) ≥ ϕ(u, v, ũ), ∀u ∈ Ω,u∗ ∈ Ω∗. (2.7)

Proof Adding (2.2) and (2.1b), we obtain

(u′ − u∗)T d2(u, v, ũ) ≥ ϕ(u, v, ũ) + (u′ − u)T Gd1(u, v, ũ), ∀u′ ∈ Ω, u∗ ∈ Ω∗.
(2.8)

Assertion (2.7) follows from the above inequality directly by setting u′ = u. �

From Lemmas 2.1 and 2.2, the geminate descent directions (d1(u, v, ũ) and
d2(u, v, ũ)) provided by the effective quadruplet have similar properties (see (2.5)
and (2.7)). However, there are two important differences:

– The condition (2.1c) implies that ‖d1(u, v, ũ)‖ → 0 as ϕ(u, v, ũ) → 0, while it
does not ensure the same property for ‖d2(u, v, ũ)‖.

– The assertion holds for all u ∈ Rn in Lemma 2.1, while it is only true for all u ∈ Ω

in Lemma 2.2.

Definition 2.2 According to the effective quadruplet, a method is called primary (or
elementary) method when the new iterate unew is generated by one of the following
equations. The first kind updating form is

unew = u − d1(u, v, ũ), for all positive definite G in (2.1). (2.9a)

And the other two kinds are,

unew = PΩ [u − d1(u, v, ũ)], when G in (2.1) is the identity matrix, (2.9b)

and

unew = PΩ [u − d2(u, v, ũ)], when G in (2.1) is the identity matrix. (2.9c)
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Note that, in the primary methods, we use the different search directions offered by
the framework. The new iterates are updated with the unit step length 1 (with or
without additional projection).

Remark 2.4 In the exact PPA, the new iterate uk+1 is given by ũk . Note that

ũk = uk − (uk − ũk) = PΩ [uk − βkF (ũk)].
With the directions d1(u, v, ũ) and d2(u, v, ũ) defined in Remark 2.3, the new iterate
of the exact PPA method is generated by one of the primary methods.

For the primary methods, the following results are straightforward consequences
of Lemmas 2.1 and 2.2.

Proposition 2.1 Let conditions (2.1a)–(2.1c) be satisfied and the new iterate be gen-
erated by (2.9a) or (2.9b). Then we have

‖unew − u∗‖2
G ≤ ‖u − u∗‖2

G − φ(u, v, ũ), ∀u∗ ∈ Ω∗. (2.10)

Proof It follows from (1.10), (2.9a) and (2.9b) that

‖unew − u∗‖2
G ≤ ‖u − d1(u, v, ũ) − u∗‖2

G.

Consequently, applying (2.5) and (2.1c), we have

‖unew − u∗‖2
G ≤ ‖u − d1(u, v, ũ) − u∗‖2

G

= ‖u − u∗‖2
G − 2(u − u∗)T Gd1(u, v, ũ) + ‖d1(u, v, ũ)‖2

G

≤ ‖u − u∗‖2
G − φ(u, v, ũ).

The assertion is proved. �

Proposition 2.2 For G = I , let conditions (2.1a)–(2.1c) be satisfied and the new
iterate be generated by (2.9c). Then we have

‖unew − u∗‖2 ≤ ‖u − u∗‖2 − φ(u, v, ũ), ∀u∗ ∈ Ω∗. (2.11)

Proof Since u∗ ∈ Ω , it follows from (2.9c) and (1.11) that

‖unew − u∗‖2 ≤ ‖u − d2(u, v, ũ) − u∗‖2 − ‖u − d2(u, v, ũ) − unew‖2

= ‖u − u∗‖2 − 2(unew − u∗)T d2(u, v, ũ) − ‖u − unew‖2. (2.12)

Since unew ∈ Ω , it follows from (2.8) that

(unew − u∗)T d2(u, v, ũ) ≥ ϕ(u, v, ũ) + (unew − u)T d1(u, v, ũ).

Substituting it in the right-hand-side of (2.12), we get
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‖unew − u∗‖2 ≤ ‖u − u∗‖2 − 2ϕ(u, v, ũ) − 2(unew − u)T d1(u, v, ũ) − ‖u − unew‖2

= ‖u − u∗‖2 − 2ϕ(u, v, ũ) + ‖d1(u, v, ũ)‖2

− ‖u − unew − d1(u, v, ũ)‖2

≤ ‖u − u∗‖2 − 2ϕ(u, v, ũ) + ‖d1(u, v, ũ)‖2

≤ ‖u − u∗‖2 − φ(u, v, ũ).

The last inequality is followed from (2.1c) and the assertion is proved. �

2.3 Convergence of the primary methods

For the convergence of the primary methods, we need the following additional condi-
tions: The geminate directions d1(u, v, ũ) and d2(u, v, ũ) in the effective quadruplet
satisfy

lim
k→∞d1(u

k, vk, ũk) = 0 (2.13a)

and

lim
k→∞{d2(u

k, vk, ũk) − βkF (ũk)} = 0. (2.13b)

Theorem 2.1 For given uk ∈ Ω and βk ≥ βL > 0, let vk ∈ Ω be an approxi-
mate solution of (1.3) with a certain accepting rule. Assume that the quadruplet
(d1(u

k, vk, ũk), d2(u
k, vk, ũk), ϕ(uk, vk, ũk), φ(uk, vk, ũk)) is effective and the se-

quence {uk} is generated by one of the primary methods. If the additional conditions
(2.13) are satisfied, then {uk} converges to some u∞ which is a solution point of
VI(Ω,F ).

Proof According to Propositions 2.1 and 2.2, for the sequence generated by the pri-
mary methods, we have

‖uk+1 − u∗‖2
G ≤ ‖uk − u∗‖2

G − φ(uk, vk, ũk), ∀u∗ ∈ Ω∗, (2.14)

where G is a positive definite matrix or the identity matrix. It follows from (2.14) that

lim
k→∞φ(uk, vk, ũk) = 0

and {uk} is bounded. Together with the condition (2.1d), it holds that

lim
k→∞‖uk − ũk‖ = 0. (2.15)

So, {ũk} is bounded also. Let u∞ be a cluster point of {ũk} and {ũkj } is a subsequence
which converges to u∞. The condition (2.1a) means that

ũkj ∈ Ω, (u′ − ũkj )T
{
d2(u

kj , vkj , ũkj ) − Gd1(u
kj , vkj , ũkj )

} ≥ 0, ∀u′ ∈ Ω.
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Table 1 The mapping F(u) in
VIs of the different types Type 1 Hu + q HT = H Linear & Symmetric

Type 2 Mu + q MT �= M Linear & Asymmetric

Type 3 ∇f (u) ∇2f (u) is symmetric Nonlinear & Symmetric

Type 4 F(u) ∇F(u) is asymmetric Nonlinear & Asymmetric

Since 0 < inf∞k=0 βk ≤ sup∞
k=0 βk < +∞, it follows from the continuity of F and the

additional condition (2.13) that

u∞ ∈ Ω, (u′ − u∞)T F (u∞) ≥ 0, ∀u′ ∈ Ω.

The above variational inequality indicates that u∞ is a solution of VI(Ω,F ). By
using (2.15) and limj→∞ ũkj = u∞, the subsequence {ukj } converges to u∞. Due
to (2.14), we have

‖uk+1 − u∞‖G ≤ ‖uk − u∞‖G

and {uk} converges to u∞. �

Remark 2.5 For the exact PPA which can be viewed as a primary method with the
quadruplet defined in Remark 2.3, it is easy to check that the additional conditions
are satisfied.

We divide the variational inequality (1.1) in four types according to the mapping
F(u) in VI(Ω,F ) as shown in Table 1.

From Sect. 3 to Sect. 6, we will investigate the applications of the unified frame-
work for VIs of the four different types with G = I . We construct the effective
quadruplet in the following procedure:

1. First, according to the basic equation of APPAs (1.7), we find the geminate direc-
tions d1(u

k, vk, ũk) and d2(u
k, vk, ũk) which satisfy condition (2.1a).

2. After getting this pair of directions, we try to find an ω(uk, vk, ũk) ∈ Rn such that

(ũ − u∗)T d2(u, v, ũ) ≥ ω(u, v, ũ) (2.16)

and then let

ϕ(u, v, ũ) = ω(u, v, ũ) + (u − ũ)T d1(u, v, ũ). (2.17)

In this way condition (2.1b) is satisfied straightforwardly.
3. Finally, we find the accepting rule to guarantee conditions (2.1c) and (2.1d) in the

unified framework.

3 Application to symmetric monotone linear VIs

From the basic equation of APPAs, this section derives the unified framework for the
symmetric linear variational inequality

u ∈ Ω, (u′ − u)T (Hu + q) ≥ 0, ∀u′ ∈ Ω, (3.1)
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where H ∈ Rn×n is symmetric positive semi-definite and q ∈ Rn. This symmetric
linear variational inequality is equivalent to the constrained quadratic programming

min

{
1

2
uT Hu + qT u | u ∈ Ω

}
. (3.2)

Since F(u) = Hu + q , the basic equation of form (1.7) is

ũ = PΩ [u − β(Hv + q)]. (3.3)

Under the unified framework, we will find an effective quadruplet (d1(u, v, ũ),
d2(u, v, ũ), ϕ(u, v, ũ), φ(u, v, ũ)) and its related accepting rule which satisfy con-
ditions (2.1) with G = I .

Condition (2.1a): The basic equation (3.3) can be rewritten as

ũ = PΩ {ũ − [β(Hv + q) − (u − ũ)].
By setting

d1(u, v, ũ) = u − ũ (3.4)

and

d2(u, v, ũ) = β(Hv + q), (3.5)

the geminate directions (d1(u, v, ũ), d2(u, v, ũ)) satisfy condition (2.1a).
Condition (2.1b): Since ũ ∈ Ω and H is positive semi-definite, we have

(ũ − u∗)T β(Hu∗ + q) ≥ 0, ∀u∗ ∈ Ω∗

and it can be rewritten as

(ũ − u∗)T β(Hv + q) ≥ (ũ − u∗)T βH(v − u∗), ∀u∗ ∈ Ω∗.

Note that the left-hand-side of above inequality is (ũ−u∗)T d2(u, v, ũ). Because H is
symmetric, using xT Hy ≥ − 1

2 (x − y)T H(x − y) to the right-hand-side of the above
inequality, we get1

(ũ − u∗)T d2(u, v, ũ) ≥ −1

2
(v − ũ)T βH(v − ũ), ∀u∗ ∈ Ω∗. (3.6)

By defining

ϕ(u, v, ũ) = ‖u − ũ‖2 − 1

2
(v − ũ)T βH(v − ũ), (3.7)

the triplet (d1(u, v, ũ), d2(u, v, ũ), ϕ(u, v, ũ)) satisfies the condition (2.1b).
Condition (2.1c): Since d1(u, v, ũ) = u − ũ, using the following accepting rule

(Accepting rule) (v − ũ)T βH(v − ũ) ≤ μ‖u − ũ‖2, μ ∈ (0,1) (3.8)

1The more tight inequality xT Hy ≥ − 1
4 ‖x − y‖2

H
may lead (ũ − u∗)T β(Hv + q) ≥ − 1

4 β‖v − ũ‖2
H

.
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and defining

φ(u, v, ũ) = (1 − μ)‖u − ũ‖2, (3.9)

we get

2ϕ(u, v, ũ) ≥ ‖d1(u, v, ũ)‖2 + φ(u, v, ũ),

thus the condition (2.1c) is satisfied.
Condition (2.1d): This follows from (3.9) directly with κ = (1 − μ).
Based on the above verification, we have proved the following theorem.

Theorem 3.1 For solving problem (3.1), let the triplet (u, v, ũ) be defined in (3.3)
and the accepting rule (3.8) be satisfied. Then the quadruplet (d1(u, v, ũ), d2(u, v, ũ),

ϕ(u, v, ũ), φ(u, v, ũ)) given by

(The quadruplet)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d1(u, v, ũ) = u − ũ,

d2(u, v, ũ) = β(Hv + q),

ϕ(u, v, ũ) = ‖u − ũ‖2 − 1
2 (v − ũ)T βH(v − ũ),

φ(u, v, ũ) = (1 − μ)‖u − ũ‖2

(3.10)

is an effective quadruplet which fulfills conditions (2.1) with G = I .

According to Theorem 2.1, for the convergence of the primary methods, we need
only to verify the additional conditions (2.13).

Theorem 3.2 Let the conditions in Theorem 3.1 be satisfied. Then the sequence {uk}
generated by the primary methods converges to some u∞ which is a solution point of
problem (3.1).

Proof Since φ(uk, vk, ũk) = (1 − μ)‖uk − ũk‖2, it follows from Propositions 2.1
and 2.2 that

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − (1 − μ)‖uk − ũk‖2

and thus

lim
k→∞‖uk − ũk‖ = 0. (3.11)

Because d1(u
k, vk, ũk) = (uk − ũk), it follows that

lim
k→∞d1(u

k, vk, ũk) = 0

and condition (2.13a) holds. Note that

d2(u
k, vk, ũk) − βF(ũk) = d2(u

k, vk, ũk) − β(Hũk + q) = βH(vk − ũk).

From the symmetry and the positive semi-definiteness of H , the accepting rule (3.8)
and (3.11), we obtain

lim
k→∞H(vk − ũk) = 0

and thus condition (2.13b) is satisfied. The proof is complete. �
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Remark 3.1 Instead of (3.3) and (3.8), in the k-th iteration, we can set

ũk = PΩ [uk − βk(Huk + q)] (3.12a)

by choosing a suitable βk , such that

(uk − ũk)T βkH(uk − ũk) ≤ μ‖uk − ũk‖2, μ ∈ (0,1). (3.12b)

Note that

(uk − ũk)T βkH(uk − ũk) ≤ βkλmax‖uk − ũk‖2,

where λmax is the maximal eigenvalue of the symmetric positive semi-definite
matrix H . Therefore, to satisfy (3.12b), βk can always be selected as long as
βk ≤ μ/λmax with a certain positive lower bound (e.g. 0.1μ/λmax). In other words, if
the parameter βk is small enough, the accepting rule will be satisfied even if vk = uk

is taken as the approximate solution in the k-th iteration. In this case, the geminate
directions are given by

d1(u
k, vk, ũk) = uk − ũk and d2(u

k, vk, ũk) = βkH(uk + q). (3.12c)

A small β will guarantee that the accepting rule (3.12b) is satisfied. However, a too
small positive parameter β will lead to slow convergence. It should be noticed that,
in practical computation, the increase of parameter β is necessary when

(uk − ũk)T βkH(uk − ũk) � ‖uk − ũk‖2.

Hence, we suggest to use the following procedure for finding a suitable parameter βk .

Procedure 3.1 Finding βk to satisfy (3.12b). β0 = 1, μ = 0.9.

REPEAT: ũk = PΩ [uk − βk(Huk + q)].
If rk := (uk − ũk)T βkH(uk − ũk)

‖uk − ũk‖2
≥ μ, βk := βk ∗ 0.7 ∗ min{1, 1

rk
}.

UNTIL: (uk − ũk)T βkH(uk − ũk) ≤ μ‖uk − ũk‖2. (Accepting rule (3.12b))

ADJUST: βk+1 :=
{

βk ∗ μ ∗ 0.9/rk, if rk ≤ 0.3;
βk, otherwise.

Remark 3.2 When Ω = Rn, problem (3.2) is reduced to an unconstrained convex
quadratic optimization problem. In this case, the recursion of the steepest descent
method is

uk+1 = uk − αSD
k (Huk + q), (3.13)

where

αSD
k = ‖Huk + q‖2

(Huk + q)T H(Huk + q)
(3.14)

is the step size in the steepest descent method. Most recently, from numerous tests
we are surprised that the numerical performance is improved significantly via scaling
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the step-sizes αSD
k simply by a multiplier in [0.3, 0.9]. The experiments coincide with

the observations of Dai and Yuan [3].
For unconstrained convex quadratic programming, the recursion of the method

with selected parameter βk in this section is (see (3.12a))

uk+1 = uk − βk(Huk + q). (3.15)

Since βk satisfies the condition (3.12b). By a simple manipulation,

βk ≤ μ‖Huk + q‖2

(Huk + q)T H(Huk + q)
. (3.16)

The restriction 0.3 ≤ rk ≤ 0.9 in Procedure 3.1 leads to

βk ∈ [0.3αSD
k ,0.9αSD

k ].
Therefore, the methods can be viewed as the extension of the steepest descent meth-
ods with shortened step size to constrained convex quadratic optimization.

4 Application to asymmetric monotone linear VIs

From the basic equation of APPAs, this section turns to the linear variational inequal-
ity (without symmetry)

u ∈ Ω, (u′ − u)T (Mu + q) ≥ 0, ∀u′ ∈ Ω, (4.1)

where M ∈ Rn×n is positive semi-definite (but not necessarily symmetric) and q ∈
Rn. Since F(u) = Mu + q , the basic equation of form (1.7) is

ũ = PΩ [u − β(Mv + q)]. (4.2)

For the triplet (u, v, ũ) in (4.2), under the unified framework, we will find an effective
quadruplet (d1(u, v, ũ), d2(u, v, ũ), ϕ(u, v, ũ), φ(u, v, ũ)) and its related accepting
rule which satisfy conditions (2.1) with G = I .

Condition (2.1a): Equation (4.2) can be written as

ũ = PΩ {ũ − {[β(Mv + q) + βMT (v − ũ)] − [(u − ũ) + βMT (v − ũ)]}}. (4.3)

By defining

d1(u, v, ũ) = (u − ũ) + βMT (v − ũ) (4.4)

and

d2(u, v, ũ) = β(Mv + q) + βMT (v − ũ), (4.5)

the geminate directions (d1(u, v, ũ) and d2(u, v, ũ)) satisfy condition (2.1a).
Condition (2.1b): Since ũ ∈ Ω , we have

(ũ − u∗)T β(Mu∗ + q) ≥ 0, ∀u∗ ∈ Ω∗
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and consequently

(ũ − u∗)T β(Mv + q) ≥ (ũ − u∗)T βM(v − u∗)

= (v − u∗)T βMT (ũ − u∗), ∀u∗ ∈ Ω∗. (4.6)

Adding the identity

(ũ − u∗)T βMT (v − ũ) = (v − u∗)T βMT (v − ũ) − (v − ũ)T βMT (v − ũ)

to the both sides of (4.6), and using the definition of d2(u, v, ũ) and (v−u∗)T βMT ×
(v − u∗) ≥ 0, we obtain

(ũ − u∗)T d2(u, v, ũ) ≥ −(v − ũ)T βMT (v − ũ). (4.7)

By defining

ϕ(u, v, ũ) = (u − ũ)T d1(u, v, ũ) − (v − ũ)T βMT (v − ũ), (4.8)

the inequality (4.7) becomes

(ũ − u∗)T d2(u, v, ũ) ≥ ϕ(u, v, ũ) − (u − ũ)T d1(u, v, ũ)

and thus the triplet (d1(u, v, ũ), d2(u, v, ũ), ϕ(u, v, ũ)) satisfies condition (2.1b).
Condition (2.1c): For d1(u, v, ũ) defined in (4.4) and ϕ(u, v, ũ) defined in (4.8),

by a straightforward manipulation, we get

2ϕ(u, v, ũ) − ‖d1(u, v, ũ)‖2

= 2(u − ũ)T d1(u, v, ũ) − ‖d1(u, v, ũ)‖2 − 2(v − ũ)T βMT (v − ũ)

= d1(u, v, ũ)T
(
2(u − ũ) − d1(u, v, ũ)

) − 2(v − ũ)T βMT (v − ũ)

= (
(u − ũ) + βMT (v − ũ)

)T (
(u − ũ) − βMT (v − ũ)

) − 2(v − ũ)T βMT (v − ũ)

= ‖u − ũ‖2 − {2(v − ũ)T βMT (v − ũ) + ‖βMT (v − ũ)‖2}. (4.9)

Let the approximate solution v be accepted when the accepting rule

(Accepting rule) 2(v − ũ)T βMT (v − ũ) + ‖βMT (v − ũ)‖2 ≤ μ‖u − ũ‖2,

μ ∈ (0,1) (4.10)

is satisfied. Then, we denote

φ(u, v, ũ) := (1 − μ)‖u − ũ‖2. (4.11)

It follows from (4.9), (4.10) and (4.11) that

2ϕ(u, v, ũ) ≥ ‖d1(u, v, ũ)‖2 + φ(u, v, ũ)

and thus condition (2.1c) is satisfied.
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Condition (2.1d): From (4.11) condition (2.1d) holds with κ = (1 − μ) .
Based on the above verification, we have proved the following theorem.

Theorem 4.1 For solving problem (4.1), let the triplet (u, v, ũ) be defined in
(4.2) and the accepting rule (4.10) be satisfied. Then the quadruplet (d1(u, v, ũ),

d2(u, v, ũ), ϕ(u, v, ũ), φ(u, v, ũ)) given by

(The quadruplet)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d1(u, v, ũ) = (u − ũ) + βMT (v − ũ),

d2(u, v, ũ) = β(Mv + q) + βMT (v − ũ),

ϕ(u, v, ũ) = (u − ũ)T d1(u, v, ũ) − (v − ũ)T βMT (v − ũ),

φ(u, v, ũ) = (1 − μ)‖u − ũ‖2

(4.12)
is an effective quadruplet which fulfills conditions (2.1) with G = I .

According to Theorem 2.1, for the convergence of the primary methods, we need
only to verify the additional conditions (2.13).

Theorem 4.2 Let the conditions in Theorem 4.1 be satisfied. Then the sequence {uk}
generated by the primary methods converges to some u∞ which is a solution point of
problem (4.1).

Proof We need only to verify the additional conditions (2.13). Since φ(uk, vk, ũk) =
(1 − μ)‖uk − ũk‖2, it follows from Propositions 2.1 and 2.2 that

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − (1 − μ)‖uk − ũk‖2

and thus

lim
k→∞‖uk − ũk‖ = 0. (4.13)

Since M is positive semi-definite, it follows from the accepting rule (4.10) that

‖βMT (vk − ũk)‖ ≤ μ‖uk − ũk‖2. (4.14)

Because d1(u
k, vk, ũk) = (uk − ũk) + βMT (vk − ũk), it follows from (4.13) and

(4.14) that

lim
k→+∞d1(u

k, vk, ũk) = 0

and the condition (2.13a) holds. Note that

d2(u
k, vk, ũk) − β(Mũk + q) = β(M + MT )(vk − ũk).

It follows from the accepting rule (4.10)

β(vk − ũk)T (M + MT )(vk − ũk) = 2β(vk − ũk)T MT (vk − ũk) ≤ μ‖uk − ũk‖2.

(4.15)
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From the symmetry and positive semi-definiteness of (M + MT ), (4.13) and
(4.15), we obtain

lim
k→∞(M + MT )(vk − ũk) = 0

and thus the condition (2.13b) is satisfied. �

Remark 4.1 Similar to Remark 3.2, we can take vk = uk as the approximate solution
in the k-th iteration. The accepting rule

2(uk − ũk)βkM
T (uk − ũk) + ‖βkM

T (uk − ũk)‖2 ≤ μ‖uk − ũk‖2, μ ∈ (0,1)

(4.16)
will be satisfied when the parameter βk is small enough.

Reconsidering that a too small positive parameter β will lead to slow convergence,
similar to Procedure 3.1, we will increase the parameter β when

2(uk − ũk)βkM
T (uk − ũk) + ‖βkM

T (uk − ũk)‖2 ≤ μ0‖uk − ũk‖2,

where μ0 is relative smaller than μ. In order to find a suitable parameter βk , the fol-
lowing procedure is recommended, in which we set μ0 = 0.3 based on our numerical
experiments.

Procedure 4.1 Finding βk to satisfy (4.16). β0 = 1, μ = 0.9.

REPEAT: ũk = PΩ [uk − βk(Muk + q)].
If rk := 2(uk − ũk)βkM

T (uk − ũk) + ‖βkM
T (uk − ũk)‖2

‖uk − ũk‖2
≥ μ,

βk := βk ∗ 0.7 ∗ min{1, 1
rk

}.

UNTIL: 2(uk − ũk)βkM
T (uk − ũk) + ‖βkM

T (uk − ũk)‖2 ≤ μ‖uk − ũk‖2.

(Accepting rule (4.16))

ADJUST: βk+1 :=
{

βk ∗ μ ∗ 0.9/rk if rk ≤ 0.3,

βk otherwise.

5 Application to symmetric monotone nonlinear VIs

In VI(Ω,F ), when F(u) is the gradient of a certain function, say f (u), the Jacobian
of F(u) (if it exists) is symmetric. In this sense, we call the related VI(Ω,F ) as
the symmetric VIs. In other words, the symmetric monotone nonlinear variational
inequality is equivalent to the differentiable convex optimization

min

{
1

2
f (u) | u ∈ Ω

}
. (5.1)



Proximal-like contraction methods for monotone variational inequalities 665

Since F(u) = ∇f (u), a basic property of the differentiable convex function is

f (v) ≥ f (u) + (v − u)T F (u), ∀u,v ∈ Rn. (5.2)

The basic equation of form (1.7) is

ũ = PΩ [u − βF(v)]. (5.3)

Under the unified framework, we will find an effective quadruplet (d1(u, v, ũ),

d2(u, v, ũ), ϕ(u, v, ũ), φ(u, v, ũ)) and its related accepting rule which satisfy con-
ditions (2.1) with G = I .

Condition (2.1a): The basic equation (5.3) can be rewritten as

ũ = PΩ {ũ − [βF(v) − (u − ũ)]}.
By setting

d1(u, v, ũ) = u − ũ (5.4)

and

d2(u, v, ũ) = βF(v), (5.5)

the geminate directions (d1(u, v, ũ), d2(u, v, ũ)) satisfy the condition (2.1a).
Condition (2.1b): Using the basic property of the differentiable convex function

(5.2), we have f (u∗) ≥ f (v) + (u∗ − v)T F (v) and thus

(v − u∗)F (v) ≥ f (v) − f (u∗).

Since ũ ∈ Ω and u∗ is a solution of the convex optimization problem (5.1), thus
f (ũ) ≥ f (u∗) and consequently

(v − u∗)F (v) ≥ f (v) − f (ũ) ≥ (v − ũ)T F (ũ), ∀u∗ ∈ Ω∗.

Again, the last inequality follows from (5.2). Adding (ũ − v)T F (v) to the both sides
of the above inequality and multiplying the positive factor β , we get

(ũ − u∗)T βF (v) ≥ −(v − ũ)T β(F (v) − F(ũ)), ∀u∗ ∈ Ω∗. (5.6)

Note that the left-hand-side of (5.6) is (ũ − u∗)T d2(u, v, ũ), by defining

ϕ(u, v, ũ) = ‖u − ũ‖2 − (v − ũ)T β(F (v) − F(ũ)), (5.7)

the triplet (d1(u, v, ũ), d2(u, v, ũ), ϕ(u, v, ũ)) satisfies the condition (2.1b).
Condition (2.1c): Since d1(u, v, ũ) = u − ũ, using the following accepting rule

(Accepting rule) (v − ũ)T 2β(F (v) − F(ũ)) ≤ μ‖u − ũ‖2, μ ∈ (0,1)

(5.8)
and defining

φ(u, v, ũ) = (1 − μ)‖u − ũ‖2, (5.9)
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we get

2ϕ(u, v, ũ) ≥ ‖d1(u, v, ũ)‖2 + φ(u, v, ũ),

thus the condition (2.1c) is satisfied.
Condition (2.1d): This follows from (5.9) directly with κ = (1 − μ).
Based on the above verification, we have proved the following theorem.

Theorem 5.1 For solving problem (1.1) whose mapping F is the gradient of a certain
convex function, let the triplet (u, v, ũ) be defined in (5.3) and the accepting rule
(5.8) be satisfied. Then the quadruplet (d1(u, v, ũ), d2(u, v, ũ), ϕ(u, v, ũ), φ(u, v, ũ))

given by

(The quadruplet)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d1(u, v, ũ) = u − ũ,

d2(u, v, ũ) = βF(v),

ϕ(u, v, ũ) = ‖u − ũ‖2 − (v − ũ)T β(F (v) − F(ũ)),

φ(u, v, ũ) = (1 − μ)‖u − ũ‖2

(5.10)
is an effective quadruplet which fulfills conditions (2.1) with G = I .

According to Theorem 2.1, for the convergence of the primary methods, we need
only to verify the additional conditions (2.13).

Theorem 5.2 Let the conditions in Theorem 5.1 be satisfied. Then the sequence {uk}
generated by the primary methods converges to some u∞ which is a solution point of
problem (1.1) when F is the gradient of certain convex function.

Proof Since φ(uk, vk, ũk) = (1 − μ)‖uk − ũk‖2, it follows from Propositions 2.1
and 2.2 that

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − (1 − μ)‖uk − ũk‖2

and thus

lim
k→∞‖uk − ũk‖ = 0. (5.11)

Because d1(u
k, vk, ũk) = (uk − ũk), it follows that

lim
k→+∞d1(u

k, vk, ũk) = 0

and the condition (2.13a) holds. Note that

d2(u
k, vk, ũk) − βF(ũk) = β(F (vk) − F(ũk)).

From the accepting rule (5.8) and (5.11), we obtain

lim
k→∞β(F (vk) − F(ũk)) = 0

and thus the condition (2.13b) is satisfied. The proof is complete. �
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Remark 5.1 Instead of (5.3) and (5.8), in the k-th iteration, we can set

ũk = PΩ [uk − βkF (uk)] (5.12a)

by choosing a suitable βk , such that

(uk − ũk)T 2βk(F (uk) − F(ũk)) ≤ μ‖uk − ũk‖2, μ ∈ (0,1). (5.12b)

In other words, if F is Lipschitz continuous, by setting a suitable small βk , the ac-
cepting rule will be satisfied even if vk = uk is taken as the approximate solution in
the k-th iteration. In this case, the geminate directions are given by

d1(u
k, vk, ũk) = uk − ũk and d2(u

k, vk, ũk) = βkF (uk). (5.12c)

A small β will guarantee that the accepting rule (5.12b) is satisfied. However, a
too small positive parameter β will lead to slow convergence. It should be noticed
that, in practical computation, the increase of parameter β is necessary when

(uk − ũk)T 2βk(F (uk) − F(ũk)) � ‖uk − ũk‖2.

Hence, we suggest to use the following procedure for finding a suitable parameter βk .

Procedure 5.1 Finding βk to satisfy (5.12b). β0 = 1, μ = 0.9.

REPEAT: ũk = PΩ [uk − βkF (uk)].
If rk := (uk − ũk)T 2βk(F (uk) − F(ũk))

‖uk − ũk‖2
≥ μ, βk := βk ∗ 0.7 ∗ min{1, 1

rk
}.

UNTIL: (uk − ũk)T 2βk(F (uk − F(ũk))‖ ≤ μ‖uk − ũk‖2. (Accepting rule (5.12b))

ADJUST: βk+1 :=
{

βk ∗ μ ∗ 0.9/rk if rk ≤ 0.3,

βk otherwise.

6 Application to nonlinear monotone VIs

We consider the nonlinear monotone variational inequality (1.1). The mapping F

in this section is nonlinear and ∇F (if it exists) is asymmetric. For the triplet
(u, v, ũ) in (1.7), under the unified framework, we will find an effective quadruplet
(d1(u, v, ũ), d2(u, v, ũ), ϕ(u, v, ũ), φ(u, v, ũ)) and its related accepting rule which
satisfy conditions (2.1).

Condition (2.1a): The basic equation (1.7) can be written as

ũ = PΩ {ũ − {βF(ũ) − [(u − ũ) − β(F (v) − F(ũ))]}}. (6.1)

By setting

d1(u, v, ũ) = (u − ũ) − β(F (v) − F(ũ)) (6.2)

and

d2(u, v, ũ) = βF(ũ), (6.3)

the geminate directions (d1(u, v, ũ) and d2(u, v, ũ)) satisfy condition (2.1a).
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Condition (2.1b): Since ũ ∈ Ω , we have (ũ−u∗)T F (u∗) ≥ 0. Using (6.3) and the
monotonicity of F we have

(ũ − u∗)T d2(u, v, ũ) = (ũ − u∗)T βF (ũ) ≥ (ũ − u∗)T βF (u∗) ≥ 0. (6.4)

By letting

ϕ(u, v, ũ) = (u − ũ)T d1(u, v, ũ) (6.5)

the triplet (d1(u, v, ũ), d2(u, v, ũ), ϕ(u, v, ũ)) satisfies condition (2.1b).
Condition (2.1c): For d1(u, v, ũ) defined in (6.2) and ϕ(u, v, ũ) defined in (6.5),

we have

2ϕ(u, v, ũ) − ‖d1(u, v, ũ)‖2 = ‖u − ũ‖2 − β2‖F(v) − F(ũ)‖2. (6.6)

Let the approximate solution v be accepted when the following rule

(Accepting rule) β‖F(v) − F(ũ)‖ ≤ μ‖u − ũ‖, μ ∈ (0,1) (6.7)

is satisfied. Define

φ(u, v, ũ) = (1 − μ2)‖u − ũ‖2. (6.8)

Therefore,

2ϕ(u, v, ũ) ≥ ‖d1(u, v, ũ)‖2 + φ(u, v, ũ)

and thus the condition (2.1c) is satisfied.
Condition (2.1d): From (6.8) the condition (2.1d) holds with κ = (1 − μ2).
Based on the above verification, we have proved the following theorem.

Theorem 6.1 For solving problem (1.1), let the triplet (u, v, ũ) be defined in (1.7)
and the accepting rule (6.7) be satisfied. Then the quadruplet (d1(u, v, ũ), d2(u, v, ũ),
ϕ(u, v, ũ), φ(u, v, ũ)) given by

(The quadruplet)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d1(u, v, ũ) = u − ũ − β(F (v) − F(ũ)),

d2(u, v, ũ) = βF(ũ),

ϕ(u, v, ũ) = (u − ũ)T d1(u, v, ũ),

φ(u, v, ũ) = (1 − μ2)‖u − ũ‖2

(6.9)

is an effective quadruplet which fulfills conditions (2.1) with G = I .

Remark 6.1 If F is Lipschitz continuous, instead of (1.7) and (6.7) in the k-th itera-
tion, we can set

ũk = PΩ [uk − βkF (uk)] (6.10a)

by choosing a suitable βk , such that

βk‖F(uk) − F(ũk)‖ ≤ μ‖uk − ũk‖, μ ∈ (0,1). (6.10b)
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That is, if the parameter βk is small enough, the accepting rule will be satisfied even
if vk = uk is taken as the approximate solution in the k-th iteration. In this case, the
geminate directions are given by

d1(u
k, vk, ũk) = uk − ũk − β(F (uk) − F(ũk)) and d2(u

k, vk, ũk) = βF(ũk).

There are many primary methods in the literature which can be generated by the
quadruplet (d1(u, v, ũ), d2(u, v, ũ), ϕ(u, v, ũ), φ(u, v, ũ)) in (6.9). To mention a few,
see [9, 16, 19, 21].

– In fact, the updating form of the prediction-correction methods in [9] can be written
as

uk+1 = uk − d1(u
k, vk, ũk). (6.11)

– The method proposed in [19] is designed mainly for the point-to-set variational
inequality which includes the point-to-point variational inequalities considered in
this paper. When F is a point-to-point mapping, the hybrid projection-proximal
point algorithm [19] can be interpreted as the primary method

uk+1 = PΩ [uk − d1(u
k, vk, ũk)].

For v = u, the accepting rule (6.7) can be satisfied with a suitable β if F is Lipschitz
continuous.

– By setting JβA = PΩ , the forward-backward splitting method [21] generates the
new iterate via

(FB) unew
FB = PΩ [ũ + β(F (u) − F(ũ))] (6.12)

and it can be viewed as the primary method

uk+1 = PΩ [uk − d1(u
k, vk, ũk)]. (6.13)

– The extra-gradient method [15, 16] produces the new iterate by

(EG) unew
EG = PΩ [u − βF(ũ)] (6.14)

and it can be viewed as the primary method

uk+1 = PΩ [uk − d2(u
k, vk, ũk)]. (6.15)

The convergence results of these primary methods are consequences of Theorem 2.1.

Theorem 6.2 Let the conditions in Theorem 6.1 be satisfied. Then the sequence {uk}
generated by the primary method (6.13) or (6.15) converges to some u∞ which is a
solution point of VI(Ω,F ).
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Proof Due to Theorem 6.1 the quadruplet (d1(u, v, ũ), d2(u, v, ũ), ϕ(u, v, ũ),

φ(u, v, ũ)) in this section satisfies the condition (2.1). We only need to verify the
additional conditions (2.13). It follows from Propositions 2.1 and 2.2 that

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − (1 − μ2)‖uk − ũk‖2

and thus

lim
k→∞‖uk − ũk‖ = 0. (6.16)

From the accepting rule (6.7) and (6.16), it follows that

lim
k→∞‖d1(u

k, vk, ũk)‖ ≤ lim
k→∞{‖uk − ũk‖ + βk‖F(vk) − F(ũk)‖}

≤ lim
k→∞(1 + μ)‖uk − ũk‖ = 0.

The last additional condition holds because d2(u
k, vk, ũk) = βkF (ũk) (see (6.3)). All

the conditions in Theorem 2.1 are satisfied and thus {uk} converges to a solution point
of VI(Ω,F ). �

For the same reason of achieving faster convergence as mentioned in the previous
three sections, in practice, we increase the parameter β when

βk‖F(uk) − F(ũk)‖ � ‖uk − ũk‖.

The following procedure is recommended to find a suitable parameter βk .

Procedure 6.1 Finding βk to satisfy (6.10b). β0 = 1, μ = 0.9.

REPEAT: ũk = PΩ [uk − βkF (uk)].
If rk := βk‖F(uk) − F(ũk)‖

‖uk − ũk‖ ≥ μ, βk := βk ∗ 0.7 ∗ min{1, 1
rk

}.

UNTIL: βk‖F(uk) − F(ũk)‖ ≤ μ‖uk − ũk‖. (Accepting rule (6.10b))

ADJUST: βk+1 :=
{

βk ∗ μ ∗ 0.9/rk if rk ≤ 0.3,

βk otherwise.

Indeed, for the different types of monotone VIs in Table 1, we have constructed
their respective effective quadruplets and accepting rules. The key idea is to find
the geminate directions d1(u

k, vk, ũk) and d2(u
k, vk, ũk) which satisfy the condition

(2.1a) and to show that

(ũ − u∗)T d2(u, v, ũ) ≥ ω(u, v, ũ).

Table 2 lists the function ω(u, v, ũ) in Sects. 3–6 for the different types of VIs.



Proximal-like contraction methods for monotone variational inequalities 671

Table 2 The function
ω(u, v, ũ) in Sects. 3–6 for
different types of VIs

Section 3 ω(u, v, ũ) = −1/2(v − ũ)T βH(v − ũ) pointed in (3.6)

Section 4 ω(u, v, ũ) = −(v − ũ)T βMT (v − ũ) pointed in (4.7)

Section 5 ω(u, v, ũ) = −(v − ũ)T β(F (v) − F(ũ)) pointed in (5.6)

Section 6 ω(u, v, ũ) = 0 pointed in (6.4)

7 Effective quadruplet for Solodov-Svaiter’s APPA

For some existing APPAs and their accepting rules, we will find the effective quadru-
plets and point out that the existing methods are primary methods of the form (2.9a).
As in Sect. 6, the mapping F in this section is nonlinear and ∇F (if it exists) is
asymmetric. In the APPA for (1.1) proposed by Solodov and Svaiter, see Algorithm 2
in [20], the triplet (u, v, ũ) in (1.7) is accepted when

(Accepting rule) 
(u, v, ũ) ≤ μ‖u − v‖2, μ ∈ (0,1), (7.1a)

is satisfied, where


(u,v, ũ) = 2(v − ũ)T {(v − u) + βF(v)} − ‖v − ũ‖2. (7.1b)

Under the accepting rule (7.1), the point ũk was accepted as the new iterate uk+1 by
Solodov and Svaiter (see [20], pp. 385). For the triplet (u, v, ũ) in (1.7) satisfying
the accepting rule (7.1), we define the quadruplet (d1(u, v, ũ), d2(u, v, ũ), ϕ(u, v, ũ),
φ(u, v, ũ)) by setting

(The quadruplet)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d1(u, v, ũ) = u − ũ,

d2(u, v, ũ) = βF(v),

ϕ(u, v, ũ) = ‖u − ũ‖2 − (v − ũ)T βF (v),

φ(u, v, ũ) = (1 − μ)‖u − v‖2.

(7.2)

In the following, we show that this quadruplet is effective which satisfies conditions
(2.1) with G = I .

Condition (2.1a): The basic equation (1.7) can be written as

ũ = PΩ {ũ − [βF(v) − (u − ũ)]}. (7.3)

Using (7.2), the geminate directions (d1(u, v, ũ) and d2(u, v, ũ)) satisfy the condi-
tion (2.1a).

Condition (2.1b): Since v ∈ Ω and u∗ ∈ Ω∗, we have (v −u∗)T F (u∗) ≥ 0. From
the monotonicity of F we have

(v − u∗)T βF (v) ≥ 0.

Adding (ũ − v)T βF(v) to both sides of the above inequality, we get

(ũ − u∗)T βF (v) ≥ (ũ − v)T βF(v). (7.4)
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Note that the left-hand-side of (7.4) is

(ũ − u∗)T d2(u, v, ũ)

while the right-hand-side of (7.4) is

ϕ(u, v, ũ) − (u − ũ)T d1(u, v, ũ).

Thus the triplet (d1(u, v, ũ), d2(u, v, ũ), ϕ(u, v, ũ)) satisfies the condition (2.1b).
Condition (2.1c): It follows from (7.1) and the definition of φ(u, v, ũ) in (7.2)

that

2(v − ũ)T {(v − u) + βF(v)} − ‖v − ũ‖2 + φ(u, v, ũ) ≤ ‖u − v‖2

and consequently

2(v − ũ)T βF (v) + φ(u, v, ũ) ≤ ‖u − ũ‖2.

An equivalent form of the above inequality is

2‖u − ũ‖2 − 2(v − ũ)T βF (v) ≥ ‖u − ũ‖2 + φ(u, v, ũ). (7.5)

Note that the left-hand-side of (7.5) is 2ϕ(u, v, ũ) (see (7.2)), while the right-hand-
side of (7.5) is ‖d1(u, v, ũ)‖2 +φ(u, v, ũ). Therefore, the condition (2.1c) is satisfied.

Condition (2.1d): Since ũ = PΩ [u−βF(v)] and v ∈ Ω , it follows from (1.9) that

{[u − βF(v)] − ũ}T (v − ũ) ≤ 0

and thus

(v − ũ)T {(v − u) + βF(v)} ≥ ‖v − ũ‖2.

From (7.1b) and the above inequality we obtain


(u,v, ũ) ≥ ‖v − ũ‖2.

Together with the accepting rule (7.1), we get

‖v − ũ‖ ≤ √
μ‖u − v‖

and thus

‖u − ũ‖ ≤ ‖u − v‖ + ‖v − ũ‖ ≤ (1 + √
μ)‖u − v‖. (7.6)

Finally, from (7.6) and the definition of φ(u, v, ũ) in (7.2), we obtain

‖u − ũ‖2 ≤
(

1 + √
μ

1 − √
μ

)
φ(u, v, ũ)

and the condition (2.1d) holds with κ = (1 − √
μ)/(1 + √

μ).
Based on the above analysis, we have proved the following theorem.
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Theorem 7.1 For solving problem (1.1), let the triplet (u, v, ũ) be defined in (1.7)
and the accepting rule (7.1) be satisfied. Then the quadruplet (d1(u, v, ũ), d2(u, v, ũ),

ϕ(u, v, ũ), φ(u, v, ũ)) defined in (7.2) is an effective quadruplet which fulfills condi-
tions (2.1).

The convergence of this primary method is a consequence of Theorem 2.1.

Theorem 7.2 Let the conditions in Theorem 7.1 be satisfied. Then the sequence {uk}
generated by the primary methods converges to some u∞ which is a solution point of
VI(Ω,F ).

Proof Due to Theorem 7.1 the quadruplet (d1(u, v, ũ), d2(u, v, ũ), ϕ(u, v, ũ),

φ(u, v, ũ)) in (7.2) satisfies the condition (2.1). We need only to verify the additional
conditions (2.13). It follows from Propositions 2.1 and 2.2 that

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − (1 − μ)‖uk − vk‖2

and thus

lim
k→∞‖uk − vk‖ = 0. (7.7)

From (7.6) we know that

‖uk − ũk‖ ≤ ‖uk − vk‖ + ‖vk − ũk‖ ≤ (1 + √
μ)‖uk − vk‖. (7.8)

Because d1(u
k, vk, ũk) = uk − ũk (see the form in (7.2)), it follows from (7.7) and

(7.8) that

lim
k→+∞d1(u

k, vk, ũk) = 0.

From (7.6), (7.7) and the continuity of F , we get

lim
k→+∞{d2(u

k, vk, ũk) − βkF (ũk)} = βk lim
k→+∞(F (vk) − F(ũk)) = 0.

All the conditions in Theorem 2.1 hold, and {uk} converges to a solution point of
VI(Ω,F ). �

For the accepting rule (7.1) in APPAs for nonlinear VIs, the method proposed by
Solodov and Svaiter, see Algorithm 2 in [20], adopts ũk as the new iterate. Using
d1(u

k, vk, ũk) = uk − ũk defined in (7.2), it can be rewritten as

uk+1 = PΩ [uk − βkF (vk)] = ũk = uk − d1(u
k, vk, ũk).

Thus, using the unified framework, Solodov-Svaiter’s APPA is the primary me-
thod (2.9a).

Remark 7.1 As long as the parameter βk is small enough, the accepting rules in the
last four sections (see (3.8), (4.10), (5.8) and (6.7)) will be satisfied even if vk = uk
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is taken as the approximate solution. In this way we get ũk by

ũk = PΩ [uk − βkF (uk)]. (7.9)

However, the accepting rule (7.1) cannot be satisfied by setting vk = uk for any
βk > 0. For u ∈ Ω \ Ω∗ and ũ = PΩ [u − βF(u)] �= u, it follows from (1.9) that

{[u − βF(u)] − ũ}T (u − ũ) ≤ 0

and thus

(u − ũ)T βF (u) ≥ ‖u − ũ‖2.

From the above inequality and (7.1b) we obtain


(u,u, ũ) ≥ ‖u − ũ‖2 > 0.

Thus the accepting rule 
(u,u, ũ) ≤ 0 (see (7.1a)) can never be satisfied.

8 Effective quadruplet for proximal alternating directions methods

In this section, we define the effective quadruplet of the unified framework for prox-
imal alternating directions methods. Consider the variational inequality problem:

(x∗, y∗) ∈ D,

{
(x − x∗)T f (x∗) ≥ 0,

(y − y∗)T g(y∗) ≥ 0,
∀(x, y) ∈ D,

where

D = {(x, y)|x ∈ X , y ∈ Y , Ax − y = 0},
A ∈ Rm×n, X ⊂ Rn and Y ⊂ Rm are given nonempty closed convex sets, f : X →
Rn and g : Y → Rm are monotone operators. By attaching a Lagrange multiplier
vector λ ∈ Rm to the linear constraints Ax − y = 0, this problem can be explained
equivalently as the following form: Find

u ∈ Ω,

⎧
⎨

⎩

(x′ − x)T {f (x) − AT λ} ≥ 0,

(y′ − y)T {g(y) + λ} ≥ 0,

Ax − y = 0,

∀u′ ∈ Ω (8.1)

where

Ω = X × Y × Rm.

The problem (8.1) is referred as a structured variational inequality (SVI for
short) [12]. The compact form is

u ∈ Ω, (u′ − u)T F (u) ≥ 0, ∀u′ ∈ Ω,
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where

F(u) =
⎛

⎝
f (x) − AT λ

g(y) + λ

Ax − y

⎞

⎠ . (8.2)

From the current point u = (x, y,λ), the new iterate ũ of the proximal point algorithm
is the solution of the following variational inequality:

ũ ∈ Ω,

⎛

⎝
x′ − x̃

y′ − ỹ

λ′ − λ̃

⎞

⎠

T ⎧
⎨

⎩

⎛

⎝
f (x̃) − AT λ̃

g(ỹ) + λ̃

Ax̃ − ỹ

⎞

⎠ +
⎛

⎝
r(x̃ − x)

s(ỹ − y)

β−1(λ̃ − λ)

⎞

⎠

⎫
⎬

⎭
≥ 0, ∀u′ ∈ Ω,

(8.3)
where r, s, β−1 > 0 are called the proximal coefficients. By using the notation of
F(u) (see (8.2)) and Ω = X × Y × Rm (in particular, (Ax̃ − ỹ) + β−1(λ̃ − λ) = 0),
(8.3) can be rewritten as

x̃ ∈ X , (x′ − x̃)T
{
f (x̃) − AT [λ − β(Ax̃ − ỹ)] + r(x̃ − x)

} ≥ 0, ∀x′ ∈ X ,

(8.4a)

ỹ ∈ Y , (y′ − ỹ)T
{
g(ỹ) + [λ − β(Ax̃ − ỹ)] + s(ỹ − y)

} ≥ 0, ∀y′ ∈ Y ,

(8.4b)

λ̃ = λ − β(Ax̃ − ỹ). (8.4c)

The shortcoming of (8.4) is that subproblems (8.4a) and (8.4b) need to be solved
jointly. In order to overcome this disadvantage, the proximal alternating directions
method [11] generates ũk = (x̃k, ỹk, λ̃k) ∈ Ω via the following procedure: First find
an x̃k ∈ X such that

x̃k ∈ X ,

(x′ − x̃k)T
{
f (x̃k) − AT [λk − β(Ax̃k − yk)] + r(x̃k − xk)

} ≥ 0,

∀x′ ∈ X . (8.5a)

Then find a ỹk ∈ Y such that

ỹk ∈ Y , (y′ − ỹk)T
{
g(ỹk)+[λk −β(Ax̃k − ỹk)]+ s(ỹk − yk)

} ≥ 0, ∀y′ ∈ Y .

(8.5b)
Finally, update λ̃k via

λ̃k = λk − β(Ax̃k − ỹk). (8.5c)

The only difference between (8.4) and (8.5) is to substitute ỹk (in (8.4a)) by yk

(in (8.5a)). Since (8.4) is a PPA updating form, the proximal alternating directions
method (8.5) can be viewed as an approximate proximal point algorithm for the struc-
tured variational inequality (8.1). Note that the alternating directions method in [7, 8]
is an extreme case of (8.5) which does not have the proximal terms r(x̃k − xk) and
s(ỹk − yk).
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By a simple manipulation, (8.5) can be written as: ũ = (x̃, ỹ, λ̃) ∈ Ω ,

⎛

⎝
x′ − x̃

y′ − ỹ

λ′ − λ̃

⎞

⎠

T ⎧
⎨

⎩

⎛

⎝
f (x̃) − AT λ̃

g(ỹ) + λ̃

Ax̃ − ỹ

⎞

⎠ + β

⎛

⎝
−AT (y − ỹ)

(y − ỹ)

0

⎞

⎠ +
⎛

⎝
r(x̃ − x)

(β + s)(ỹ − y)

β−1(λ̃ − λ)

⎞

⎠

⎫
⎬

⎭
≥ 0,

∀u′ ∈ Ω.

By using the notation of F(u), a compact form of the proximal alternating directions
method is

ũ ∈ Ω, (u′ − ũ)T {(F(ũ) + η(u, ũ)
) + G(ũ − u)} ≥ 0, ∀u′ ∈ Ω, (8.6)

where

η(u, ũ) = β

⎛

⎝
−AT (y − ỹ)

(y − ỹ)

0

⎞

⎠ (8.7)

and

G =
⎛

⎝
rIn

(β + s)Im

β−1Im

⎞

⎠ . (8.8)

To force G to be positive definite, r , β and (β + s) should be positive. For conve-
nience, however, we set r, s and β > 0.

According to (1.2), since ũ is a solution of (8.6), we have

ũ = PΩ {ũ − [F(ũ) + η(u, ũ) + G(ũ − u)]}. (8.9)

Although v is degenerated, we can still regard (F (ũ)+η(u, ũ)+G(ũ−u))+ (u− ũ)

as F(v). Then, we can follow the unified framework to construct the accepting rule
and the effective quadruplet for this proximal alternating directions method. The con-
vergence analysis is also a descendant to Theorem 2.1 with verifying the two addi-
tional conditions (2.1a) and (2.1b) under our following proposed accepting rule and
effective quadruplet.

(Accepting rule): (u, ũ) satisfies (8.6) with r, s and β > 0.

And, we define the effective quadruplet

(The quadruplet)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d1(u, v, ũ) = u − ũ,

d2(u, v, ũ) = F(ũ) + η(u, ũ),

ϕ(u, v, ũ) = ‖u − ũ‖2
G − (λ − λ̃)T (y − ỹ),

φ(u, v, ũ) = ‖u − ũ‖2
G − 2(λ − λ̃)T (y − ỹ),

(8.10)

which involves v in expressions to be coincident with Definition 2.1. In the follow-
ing we show that the quadruplet is effective which satisfies conditions (2.1) with G

defined in (8.8).



Proximal-like contraction methods for monotone variational inequalities 677

Condition (2.1a): Note that u and ũ in sub-problem (8.6) can be written as

ũ = PΩ{ũ − [(F (ũ) + η(u, ũ)) − G(u − ũ)]}. (8.11)

By combining (8.10) with (8.11), the geminate directions (d1(u, v, ũ) and d2(u, v, ũ))

satisfy the condition (2.1a).
Condition (2.1b): Using the monotonicity of F and (ũ−u∗)T F (u∗) ≥ 0 we have

(ũ − u∗)T F (ũ) ≥ 0. (8.12)

Since Ax∗ − y∗ = 0 and β(Ax̃ − ỹ) = λ − λ̃, we obtain

(ũ − u∗)T η(u, ũ) = (y − ỹ)T β(−Ax̃ + Ax∗ + ỹ − y∗)

= (y − ỹ)T (λ̃ − λ).

Thus, it follows from d2(u, v, ũ) in (8.10) and the above two inequalities that

(ũ − u∗)T d2(u, v, ũ) ≥ (y − ỹ)T (λ̃ − λ) = ϕ(u, v, ũ) − ‖d1(u, v, ũ)‖G. (8.13)

Thus, the triplet (d1(u, v, ũ), d2(u, v, ũ), ϕ(u, v, ũ)) satisfies the condition (2.1b).
Condition (2.1c): For d1(u, v, ũ) and ϕ(u, v, ũ) defined in (8.10), we have

2ϕ(u, v, ũ)−‖d1(u, v, ũ)‖2
G = ‖u− ũ‖2

G − 2(λ− λ̃)T (y − ỹ) = φ(u, v, ũ). (8.14)

Thus the condition (2.1c) follows from (8.14) directly.
Condition (2.1d): Because (β + s) · 1

β
> 1, there exists a constant ς > 0 such that

(β + s)‖yk − ỹk‖2 + 1

β
‖λ − λ̃‖2 − 2(λ − λ̃)T (y − ỹ) ≥ ς

(‖y − ỹ‖2 + ‖λ − λ̃‖2).

It follows from (8.8) and the definition of φ(u, v, ũ) (8.10) that

φ(u, v, ũ) ≥ r‖x − x̃‖2 + ς
(‖y − ỹ‖2 + ‖λ − λ̃‖2) ≥ min{r, ς}‖u − ũ‖2.

The condition (2.1d) holds with κ = min{r, ς}.
Based on the above analysis, we have proved the following theorem.

Theorem 8.1 For solving problem (8.1), let the duplet (u, ũ) be defined in (8.6).
Then the quadruplet (d1(u, v, ũ), d2(u, v, ũ), ϕ(u, v, ũ), φ(u, v, ũ)) given by (8.10)
is an effective quadruplet which fulfills conditions (2.1) with G defined in (8.8).

Theorem 8.2 Let the conditions in Theorem 8.1 be satisfied. Then the sequence {uk}
generated by the primary methods converges to some u∞ which is a solution point of
problem (8.1).

Proof We need only to verify the additional conditions (2.13). Since

φ(uk, vk, ũk) ≥ min{r, ς}‖uk − ũk‖2,
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it follows from Propositions 2.1 and 2.2 that

‖uk+1 − u∗‖2
G ≤ ‖uk − u∗‖2

G − min{r, ς}‖uk − ũk‖2

and thus

lim
k→∞‖uk − ũk‖ = 0. (8.15)

Because d1(u
k, vk, ũk) = (uk − ũk), it follows that

lim
k→+∞d1(u

k, vk, ũk) = 0

and the condition (2.13a) holds. Note that

d2(u
k, vk, ũk) − F(ũk) = η(uk, ũk).

It follows from (8.7) and (8.15) that

lim
k→∞{d2(u

k, vk, ũk) − F(ũk)} = 0

and thus the condition (2.13b) is satisfied. The proof is complete. �

9 Concluding remarks

In this paper, we introduce a unified framework for proximal-like contraction meth-
ods. The framework is based on an effective quadruplet along with an accepting rule.
For different types of monotone VIs in Sects. 3–6, we have constructed their respec-
tive effective quadruplets and accepting rules. With these effective quadruplets and
rules, various existing APPAs can be viewed as primary methods deduced by the
framework. By setting v = u, the important formulae are grouped in Tables 3 and 4.

Table 3 The mapping F and the geminate directions d1(u,u, ũ) and d2(u,u, ũ)

Sections F(u) d1(u,u, ũ) and which is given in d2(u,u, ũ) and which is given in

Section 3 Hu + q (u − ũ) (3.4) β(Hu + q) (3.5)

Section 4 Mu + q (u − ũ) + βMT (u − ũ) (4.4) β(Mu + q) + βMT (u − ũ) (4.5)

Section 5 ∇f (u) (u − ũ) (5.4) βF(u) (5.5)

Section 6 F(u) (u − ũ) − β(F (u) − F(ũ)) (6.2) βF(ũ) (6.3)

Table 4 The functions ω(u,u, ũ) and ϕ(u,u, ũ)

Section 3 − 1
2 (u − ũ)T βH(u − ũ) (3.6) ‖u − ũ‖2 − 1

2 (u − ũ)T βH(u − ũ) (3.7)

Section 4 −(u − ũ)T βMT (u − ũ) (4.7) ‖u − ũ‖2 (4.8)

Section 5 −(u − ũ)T β(F (u) − F(ũ)) (5.6) ‖u − ũ‖2 − (u − ũ)T β(F (u) − F(ũ)) (5.7)

Section 6 0 (6.4) ‖u − ũ‖2 − (u − ũ)T β(F (u) − F(ũ)) (6.5)
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For the two exiting popular methods, i.e., Solodov and Svaiter’s APPA and the
proximal alternating directions method, we present their respective effective quadru-
plets and accepting rules.

For our final remark, under our new unified framework, many existing proximal-
like methods can be generated directly and therefore viewed as a class of the primary
methods. At the same time, many new efficient methods (which can be viewed as the
extension of the primary ones) could be also constructed. In Part II of this paper [13],
we will show that those more efficient corresponding methods (called general or ex-
tended methods) can be constructed with only minor extra costs under the same effec-
tive quadruplet and accepting rule for each method. A set of numerical experiments
are tested. From the numerical results, the efficiencies of the general methods are
significant and convincing.
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