
Comput Optim Appl (2012) 51:681–708
DOI 10.1007/s10589-010-9373-z

Proximal-like contraction methods for monotone
variational inequalities in a unified framework II:
general methods and numerical experiments

Bingsheng He · Li-Zhi Liao · Xiang Wang

Received: 27 May 2009 / Published online: 23 November 2010
© Springer Science+Business Media, LLC 2010

Abstract Approximate proximal point algorithms (abbreviated as APPAs) are clas-
sical approaches for convex optimization problems and monotone variational in-
equalities. In Part I of this paper (He et al. in Proximal-like contraction methods for
monotone variational inequalities in a unified framework I: effective quadruplet and
primary methods, 2010), we proposed a unified framework consisting of an effective
quadruplet and a corresponding accepting rule. Under the framework, various exist-
ing APPAs can be grouped in the same class of methods (called primary or elementary
methods) which adopt one of the geminate directions in the effective quadruplet and
take the unit step size. In this paper, we extend the primary methods by using the
same effective quadruplet and the accepting rule. The extended (general) contraction
methods need only minor extra even negligible costs in each iteration, whereas hav-
ing better properties than the primary methods in sense of the distance to the solution
set. A set of matrix approximation examples as well as six other groups of numerical
experiments are constructed to compare the performance between the primary (ele-
mentary) and extended (general) methods. As expected, the numerical results show
the efficiency of the extended (general) methods are much better than that of the
primary (elementary) ones.
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1 Introduction

Let � be a nonempty closed convex subset of Rn and F be a continuous mapping
from Rn into itself. Variational inequality problem is to determine a vector u∗ ∈ �

such that

VI(�,F ) (u − u∗)T F (u∗) ≥ 0, ∀u ∈ �. (1.1)

For any β > 0, it is well known ([1], p. 267) that

u∗ is a solution of VI(�,F ) ⇐⇒ u∗ = P�[u∗ − βF(u∗)], (1.2)

where P�(·) denotes the projection onto � with respect to the Euclidean norm, i.e.,

P�(v) = argmin{‖u − v‖ | u ∈ �}.
For solving monotone variational inequality, a classical method is the proximal point
algorithm (abbreviated as PPA) [13], while extensive developments on approximate
proximal point algorithms (abbreviated as APPAs) are followed [3, 4]. In Part I of this
paper [12], we proposed a unified framework consisting of an effective quadruplet
and an accepting rule for APPAs. For a symmetric positive definite matrix G and a
scalar κ > 0, the effective quadruplet (d1(u

k, vk, ũk), d2(u
k, vk, ũk), ϕ(uk, vk, ũk),

φ(uk, vk, ũk)) satisfies

ũk = P�{ũk − [d2(u
k, vk, ũk),−Gd1(u

k, vk, ũk)]} (1.3a)

(ũk − u∗)T d2(u
k, vk, ũk) ≥ ϕ(uk, vk, ũk) − (uk − ũk)T Gd1(u

k, vk, ũk), (1.3b)

ϕ(uk, vk, ũk) ≥ 1

2
{‖d1(u

k, vk, ũk)‖2
G + φ(uk, vk, ũk)}, (1.3c)

and

φ(uk, vk, ũk) ≥ κ‖uk − ũk‖2. (1.3d)

In [12], many kinds of VIs and APPAs are studied under the unified framework. By
constructing the effective quadruplets and/or the accepting rules for those studied
APPAs, all of them can be grouped into the primary (elementary) methods, i.e.,

uk+1 = uk − d1(u
k, vk, ũk), for all positive definite G in (1.3), (1.4a)

uk+1 = P�[uk − d1(u
k, vk, ũk)], when G in (1.3) is the identity matrix, (1.4b)

and

uk+1 = P�[uk − d2(u
k, vk, ũk)], when G in (1.3) is the identity matrix. (1.4c)

A clear but important view of these three primary methods is that, all of these three
recursions adopt the unit step size. For the primary method (1.4a), we can construct
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extended methods with minor extra computational loads for a better step size. An
application is proposed to a kind of matrix approximation problems to compare the
proximal alternating directions method and its extended one. The numerical experi-
ments strongly demonstrate the efficiency of the extended method.

In case of G = I , both d1(u
k, vk, ũk) and d2(u

k, vk, ũk) are the descent direc-
tions of the distance function ‖u − u∗‖2 at the current point uk , and both pri-
mary methods (1.4b) and (1.4c) can be applied to solve VIs. It is interesting to
compare the performance of these two different directions. For this purpose, ac-
cording to the unified framework, we show lower bounds for the descent progress
‖uk − u∗‖2 − ‖uk+1 − u∗‖2 along these two directions. With the analysis on the
lower bounds, better directions as well as step sizes can be adopted. A series of pre-
liminary numerical experiments are constructed for comparing the performances with
different directions and step sizes. With selected step sizes and the better directions,
the efficiencies are improved significantly.

The projection mapping is a tool in the analysis of this paper. We list two used
properties of projections in Lemmas 1.1 and 1.2. The proof of Lemma 1.1 can be
found in textbooks, e.g., [2]. For a simple proof of Lemma 1.2, the readers can consult
[16].

Lemma 1.1 Let � ⊂ Rn be a closed convex set, then we have

‖u − P�(u′)‖2 ≤ ‖u − u′‖2 − ‖u′ − P�(u′)‖2, ∀u′ ∈ Rn,∀u ∈ �. (1.5)

Lemma 1.2 Let � ⊂ Rn be a closed convex set, u and d be any given vectors in Rn.
Then ‖P�(u − td) − u‖ is a non-decreasing function of t for t ≥ 0.

The rest of the paper is organized as follows. In Sect. 2, we propose a simple ex-
tended version of the primary method (1.4a) according to the same effective quadru-
plet. We then compare the proximal alternating directions method and its extended
version through a set of numerical experiments on a certain kind of matrix approx-
imation problems. The numerical results strongly demonstrate the efficiency of the
extended method. In Sect. 3, we present the general contraction methods, which gen-
eralize the descent directions used in the primary methods (1.4b) and (1.4c). Such
generalized descent directions can be any convex combination of the geminate direc-
tions. For the efficiency of the general methods, theoretical considerations are then
provided, which address the better and more reasonable directions as well as step
sizes. In Sect. 4, the theoretical results obtained in Sect. 3 are verified by a series
of numerical experiments for the four types of monotone VIs, see Table 2.1 in [12].
Finally, some concluding remarks are drawn in Sect. 5.

2 Simple extended contraction method and its numerical results

For the primary method (1.4a), the new iterate can be computed straightforwardly
with the obtained d1(u

k, vk, ũk) and the current point uk . It needs no additional pro-
jections, which are involved in the other two primary methods (1.4b) and (1.4c). In
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some cases, computing projections would be time consuming, e.g., the projection of
the symmetric matrix onto the positive semi-definite cone. In this section, we con-
sider the first kind primary methods (1.4a) and give its simple extension with the
application to the proximal alternating directions methods.

2.1 The extended contraction method

Under the unified framework, instead of the primary method (1.4a), we take the new
iterate by

(Extended contraction method) uk+1 = uk − γ α∗
k d1(u

k, vk, ũk), (2.1)

where

α∗
k = ϕ(uk, vk, ũk)

‖d1(uk, vk, ũk)‖2
G

and γ ∈ [1,2). (2.2)

Involving only a few extra computational loads for the step size, the extended method
needs no additional projections also. Note that from (1.3c) and (1.3d) we have

α∗
k ≥ 1

2
, (2.3)

whenever uk is not a solution point. With this lower bounded step size, the extended
contraction method has the following contraction property.

Theorem 2.1 Assume that the quadruplet
(
d1(u

k, vk, ũk), d2(u
k, vk, ũk),

ϕ(uk, vk, ũk), φ(uk, vk, ũk)
)

is effective under a certain accepting rule and the se-
quence {uk} is generated by the extended method (2.1)–(2.2). Then we have

‖uk+1 − u∗‖2
G ≤ ‖uk − u∗‖2

G − γ (2 − γ )

2
ϕ(uk, vk, ũk), ∀u∗ ∈ �∗. (2.4)

Proof Since u∗ ∈ �, it follows from (2.1)–(2.2) and Lemma 2.1 in [12] that

‖uk+1 − u∗‖2
G = ‖uk − γ α∗d1(u, v, ũ) − u∗‖2

G

= ‖u − u∗‖2
G − 2γ α∗(u − u∗)T Gd1(u, v, ũ) + (γ α∗)2‖d1(u, v, ũ)‖2

G

≤ ‖u − u∗‖2
G − 2γ α∗ϕ(u, v, ũ) + (γ α∗)2‖d1(u, v, ũ)‖2

G

= ‖u − u∗‖2
G − γ (2 − γ )α∗ϕ(u, v, ũ).

The assertion (2.4) follows from the above inequality and α∗
k > 1

2 immediately. �

The convergence of the extended method can be proved as the proof of Theo-
rem 2.1 in [12]. We have shown in [12] that, both Solodov-Svaiter’s APPA (see Al-
gorithm 2 in [14]) and the proximal alternating directions method (see [9]) can be
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viewed as the primary method (1.4a). In [10], the updating form of Solodov-Svaiter’s
APPA is extended by

uk+1 = uk − αk(u
k − ũk).

This recursion is just the extended contraction method (2.1)–(2.2) related to the uni-
fied framework. Numerical experiments in [10] show that, such extended method is
much more efficient than its primary version, i.e., Solodov-Svaiter’s APPA. In this
section, the efficiency of the extended method can be reconfirmed by comparison
on the performance of the proximal alternating directions method and its extended
version.

2.2 Test problems and the equivalent structured variational inequality

As an application of the proximal alternating directions method in [12] (see Sect. 8
therein), we consider the matrix approximation problems arising from finance and
statistics. We form the test problems similarly as in [5]. Let HL,HU and C be given
n × n symmetric matrices, HL ≤ HU in element-wise. The problem considered in
this subsection is

min

{
1

2
‖X − C‖2

F | X ∈ Sn+ ∩ B

}
, (2.5)

where ‖ · ‖F is the matrix Fröbenius norm, i.e., ‖C‖F = (
∑n

i=1
∑n

j=1 |Cij |2)1/2,

Sn+ = {H ∈ Rn×n | HT = H,H 
 0}
is the semi-definite cone and

B = {H ∈ Rn×n | HL ≤ H ≤ HU }. (2.6)

Note that the matrix Fröbenius norm is induced by the inner product

〈A,B〉 = Trace(AT B).

We convert the problem (2.5) to the following equivalent one:

min 1
2‖X − C‖2

F + 1
2‖Y − C‖2

F

s.t X − Y = 0,

X ∈ Sn+, Y ∈ B.

(2.7)

The mathematical form of the equivalent structured variational inequality is to find

u =
⎛

⎝
X

Y

Z

⎞

⎠ ∈ �,

⎧
⎨

⎩

〈X′ − X, (X − C) − Z〉 ≥ 0,

〈Y ′ − Y, (Y − C) + Z〉 ≥ 0,

X − Y = 0,

∀u′ =
⎛

⎝
X′
Y ′
Z′

⎞

⎠ ∈ �, (2.8)

where

� = Sn+ × B × Rn×n. (2.9)
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2.3 Implementation of the proximal alternating directions method

If we use the proximal alternating directions method in [12] to solve the struc-
tured variational inequality (2.8)–(2.9), for given triplet uk = (Xk,Y k,Zk), ũk =
(X̃k, Ỹ k, Z̃k) is obtained by

X̃k ∈ Sn+, 〈X′ − X̃k, (X̃k − C) − [Zk − β(X̃k − Y k)] + r(X̃k − Xk)〉 ≥ 0,

∀X′ ∈ Sn+, (2.10a)

Ỹ k ∈ B, 〈Y ′ − Ỹ k, (Ỹ k − C) + [Zk − β(X̃k − Ỹ k)] + s(Ỹ k − Y k)〉 ≥ 0,

∀Y ′ ∈ B, (2.10b)

and

Z̃k = Zk − β(X̃k − Ỹ k). (2.10c)

Using the principle (1.2) and the special structures of (2.10a) and (2.10b), X̃k and Ỹ k

can be directly obtained by

X̃k = PSn+

{
1

1 + β + r
(βY k + Zk + C + rXk)

}
(2.11)

and

Ỹ k = PB

{
1

1 + β + s
(βX̃k − Zk + C + sY k)

}
, (2.12)

respectively. For given symmetric matrix A ∈ Rn×n, let the eigenvalue decomposition
be

A = V 	V T , (2.13)

where 	 = diag(λ1, . . . , λn). Then

PSn+(A) = V 	̃V T , (2.14)

where

	̃ = diag(λ̃1, . . . , λ̃n), λ̃i = max{0, λi}.
Note that the computational loads of (2.13) and (2.14) are about 9n3 and n3 flops,
respectively [6]. The projection PB(A) is easy to be carried out, namely, in element-
wise

PB(A) = max{HL,min{A,HU }}.
For this matrix optimization problem, using the notations in Sect. 8 of [12], we have

u =
⎛

⎝
X

Y

Z

⎞

⎠ and G =
⎛

⎝
rI

(β + s)I
1
β
I

⎞

⎠ . (2.15)
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According to the effective quadruplet defined in Theorem 8.1 of [12], for this problem

d1(u, v, ũ) = u − ũ, (2.16)

and

ϕ(u, v, ũ) = r‖X − X̃‖2
F + (β + s)‖Y − Ỹ‖2

F + 1

β
‖Z − Z̃‖2

F − 〈Y k − Ỹ k,Zk − Z̃k〉.
(2.17)

In line with primary method (1.4a),

uk+1 = uk − d1(u
k, vk, ũk).

Since d1(u, v, ũ) = u − ũ, the proximal alternating directions method adopts ũk as
the new iterate. And the iteration form can be written as

⎛

⎝
Xk+1

Y k+1

Zk+1

⎞

⎠ =
⎛

⎝
Xk

Y k

Zk

⎞

⎠ −
⎛

⎝
Xk − X̃k

Y k − Ỹ k

Zk − Z̃k

⎞

⎠ =
⎛

⎝
X̃k

Ỹ k

Z̃k

⎞

⎠ .

It is the computation of X̃k (which is about 10n3 flops) that the most time consuming
operation is among the computations of the above three new iterate matrices.

2.4 Implementation of the extended contraction method

Let (X̃k, Ỹ k, Z̃k) be generated by (2.10) from given (Xk,Y k,Zk). In line with the
extended contraction method with updating form (2.1)–(2.2), the new iterate is gen-
erated by

⎛

⎝
Xk+1

Y k+1

Zk+1

⎞

⎠ =
⎛

⎝
Xk

Y k

Zk

⎞

⎠ − γ α∗
k

⎛

⎝
Xk − X̃k

Y k − Ỹ k

Zk − Z̃k

⎞

⎠ . (2.18)

According to (2.2) and (2.15)–(2.17), we have

α∗
k = ‖uk − ũk‖2

G − 〈Y k − Ỹ k,Zk − Z̃k〉
‖uk − ũk‖2

G

where

‖uk − ũk‖2
G = r‖Xk − X̃k‖2

F + (β + s)‖Y k − Ỹ k‖2
F + 1

β
‖Zk − Z̃k‖2

F .

Note that the computational load for α∗
k is 4n2. In comparison with the cost for getting

X̃k in (2.11), the extra work in the extended contraction method is negligible.

Remark 2.1 The procedures (2.10) and (2.18) are only provided for the comparison of
the primary proximal alternating directions method and its extended version with the
effective quadruplet proposed in Sect. 8 in [12]. For solving the similar optimization
problem (2.5) (with less than 5% inequality constraints on the off-diagonal elements),
the most recent method in [5] reported the better numerical performance.
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Table 1 Numerical results for
r = s = 1, β = 10 and γ = 1.5 n × n

Matrix
Primary Method Extended Method
Updating form (1.4a) Updating form (2.1)

n No. It CPU Sec. No. It CPU Sec.

100 71 1.07 46 0.85

200 67 4.08 44 2.97

500 79 40.44 49 28.28

1000 91 367.46 56 250.58

2.5 Numerical results

The tested problems have the following structures.

− The entries of diagonal elements of C are randomly generated in the interval
(0,2), the entries of off-diagonal elements of C are randomly generated in the
interval (−1,1).

− (HU)jj = (HL)jj = 1, and (HU)ij = −(HL)ij = 0.1, ∀i �= j , i, j = 1,2, . . . , n.

We take u0 = (X0, Y 0,Z0) = (In, In,0n) as the initial point in the tests. The code
was written in MATLAB and run on a Lenovo X200 Computer with 2.53 GHz. The
iteration is stopped whenever

max(abs(uk − ũk))

max(abs(u0 − ũ0))
≤ ε = 10−6.

For r = s = 1, β = 10 and the relaxation factor γ = 1.5, Table 1 reports the itera-
tion numbers and the CPU times of the two methods. Since the complexity of each
iteration is O(n3) (about 10n3), the CPU time is proportional to the product of the
iteration number by n3. From Table 1 we can find

It. No. of the extended contraction method

It. No. of the proximal alternating directions method
≈ 0.60.

The performance improvement by the extended contraction method is significant.
For these tested problems, Table 2 shows the influence of the different proximal

coefficients. The iteration numbers of the extended contraction method by using dif-
ferent relaxation factors are reported in Table 3. As the numerical experiences in [8,
11], a good experiential choice of the relaxation factor is γ ∈ [1.2,1.8].

3 The general contraction methods

In the case G = I , the primary methods (1.4b) and (1.4c) take the similar iterations.
Besides the primary methods, this section considers the construction of the general

1Since −S−1d(u, v, ũ, t) is a descent direction of ‖u − u∗‖2
S

for any given symmetric positive definite

matrix S, the analysis for the general case u(α, t) = P�,S [u − αS−1d(u, v, ũ, t)] is similar.
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Table 2 Iteration numbers for proximal coefficients r = s = 1 and different β

n × n Primary Method Extended Method

Matrix Updating form (1.4a) Updating form (2.1), γ = 1.5

n β = 2 β = 10 β = 30 β = 50 β = 2 β = 10 β = 30 β = 50

100 285 71 167 269 187 46 108 176

200 371 67 149 240 245 44 96 156

500 443 79 146 235 292 49 94 153

1000 499 91 149 240 329 56 95 156

Table 3 Iteration numbers for different relaxation factor γ with r = s = 1 and β = 10

Matrixn×n Extended method with updating form (2.1)

n γ = 0.8 γ = 1.0 γ = 1.2 γ = 1.5 γ = 1.8 γ = 1.9 γ = 2.0

100 85 71 57 46 69 145 div

200 82 67 54 44 71 147 div

500 97 79 63 49 69 145 div

1000 111 91 72 56 68 140 div

contraction methods. In the general methods, instead of d1(u, v, ũ) and/or d2(u, v, ũ),
we use their convex combination

d(u, v, ũ, t) = (1 − t)d1(u, v, ũ) + td2(u, v, ũ) t ∈ [0,1] (3.1)

as the search direction. Since G = I , it follows from Lemmas 2.1 and 2.2 in [12] that
−d(u, v, ũ, t) is a descent direction of the unknown distance function ‖u − u∗‖2 for
any u ∈ � \ �∗. Let the new iterate be given by

u(α, t) = P�[u − αd(u, v, ũ, t)]1. (3.2)

We discuss how to select a reasonable step length α and analyze which direction is
better. For these purposes, we define

θ(α, t) = ‖u − u∗‖2 − ‖u(α, t) − u∗‖2 (3.3)

as the progress function in the k-th iteration. In order to achieve more progress in each
iteration, the ideal thought is to maximize θ(α, t). Unfortunately, because θ(α, t) in-
volves the unknown vector u∗, we cannot maximize it directly. The following theo-
rem provides a lower bound for θ(α, t), namely, ϑ(α, t), which does not include the
unknown solution u∗.

Theorem 3.1 For any u∗ ∈ �∗, t ∈ [0,1] and α ≥ 0, we have

θ(α, t) ≥ ϑ(α, t), (3.4)
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Fig. 1 Geometric interpretation
of inequality (3.8) with G = I

where

ϑ(α, t) = q(α) + �(α, t), (3.5)

q(α) = 2αϕ(u, v, ũ) − α2‖d1(u, v, ũ)‖2 (3.6)

and

�(α, t) = ‖u(α, t) − [u − αd1(u, v, ũ)]‖2. (3.7)

Proof First, since u(α, t) = P�[u − αdl(u, v, ũ, t)] and u∗ ∈ �, it follows from (1.5)
that

‖u(α, t)−u∗‖2 ≤ ‖u−αd(u, v, ũ, t)−u∗‖2 −‖u−αd(u, v, ũ, t)−u(α, t)‖2. (3.8)

Consequently, using the definition of θ(α, t), we get

θ(α, t) ≥ ‖u − u∗‖2 − ‖u − αd(u, v, ũ, t) − u∗‖2 + ‖u − αd(u, v, ũ, t) − u(α, t)‖2

= ‖u − u(α, t)‖2 + 2α(u − u∗)T d(u, v, ũ, t) + 2α(u(α, t) − u)T d(u, v, ũ, t)

= 2α(u(α, t) − u∗)T d(u, v, ũ, t) + ‖u − u(α, t)‖2. (3.9)

Since G = I , it follows from Lemma 2.1 of [12] that

(u(α, t) − u∗)T d1(u, v, ũ) ≥ ϕ(u, v, ũ) + (u(α, t) − u)T d1(u, v, ũ).

In addition, setting u′ = u(α) in (2.8) of [12] and using G = I , we have

(u(α, t) − u∗)T d2(u, v, ũ) ≥ ϕ(u, v, ũ) + (u(α, t) − u)T d1(u, v, ũ).

Since d(u, v, ũ, t) is a convex combination of d1(u, v, ũ) and d2(u, v, ũ), it follows
from the above two inequalities that

(u(α, t) − u∗)T d(u, v, ũ, t) ≥ ϕ(u, v, ũ) + (u(α, t) − u)T d1(u, v, ũ). (3.10)

Substituting (3.10) into the right-hand-side of (3.9), we obtain

θ(α, t) ≥ 2αϕ(u, v, ũ) + 2α(u(α, t) − u)T d1(u, v, ũ) + ‖u − u(α, t)‖2

= 2αϕ(u, v, ũ) − α2‖d1(u, v, ũ)‖2 + ‖u − u(α, t) − αd1(u, v, ũ)‖2

= q(α) + �(α, t). (3.11)
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The proof is complete. �

In general, ϑ(α, t) is a tight lower bound of θ(α, t) (for an example, see [11]). Note
that ϑ(α, t) involves two parts. The first part, q(α), offers us the rule to determine the
step length and the second part, �(α, t), tells us how to choose the search directions.

3.1 Selecting reasonable step lengths and the convergence

When � = Rn and d(u, v, ũ,0) = d1(u, v, ũ), we have �(α,0) = 0 (see (3.2)) for
any α ≥ 0. Therefore, in the process of determining the step length α, we ignore
�(α, t) and use the function q(α) only. Note that q(α) (independent of t) is a
quadratic of α, it reaches its maximum at

α∗ = ϕ(u, v, ũ)

‖d1(u, v, ũ)‖2
. (3.12)

Clearly, α∗ is just the same as in the extended contraction method (2.2). For uk �∈ �∗,
it follows from condition (1.3c) and (1.3d) that

α∗ = ϕ(u, v, ũ)

‖d1(u, v, ũ)‖2
≥ ϕ(u, v, ũ)

‖d1(u, v, ũ)‖2 + φ(uk, vk, ũk)
≥ 1

2
.

The step size α∗ is only dependent on ϕ(u, v, ũ) and d1(u, v, ũ), regardless of which
convex combination factor t is selected. In other words, it is an ‘optimal’ unified step
size that we can use along various search directions.

Since some inequalities are used in the proof of Theorem 3.1, the ‘optimal’ step
size (3.12) is usually conservative for contraction methods. We can use a relaxation
factor γ ∈ (0,2) and the new iterate is updated by

uk+1 = P�[uk − γ α∗
kd(uk, vk, ũk, t)]. (3.13)

For updating form (3.13), using Theorem 3.1, by a simple manipulation we get

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − q(γ α∗
k )

= ‖uk − u∗‖2 − 2γ α∗
kϕ(uk, vk, ũk) + γ 2(α∗

k )2‖d1(u
k, vk, ũk)‖2

= ‖uk − u∗‖2 − γ (2 − γ )α∗
kϕ(uk, vk, ũk). (3.14)

Since α∗
k > 1

2 , from (3.14) we obtain

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − γ (2 − γ )

2
ϕ(uk, vk, ũk). (3.15)

As a conclusion, we get the following convergence results.

Theorem 3.2 For given uk ∈ � and βk ≥ βL > 0, assume that the quadruplet
(d1(u

k, vk, ũk), d2(u
k, vk, ũk), ϕ(uk, vk, ũk), φ(uk, vk, ũk)) is effective under a cer-

tain accepting rule and the sequence {uk} is generated by the general methods. In
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addition, if

lim
k→∞{d2(u

k, vk, ũk) − βkF (ũk)} = 0, (3.16)

then {uk} converges to some u∞ which is a solution point of VI(�,F ).

Proof Based on the proof of Theorem 2.1 in [12], we need only to verify

lim
k→∞d1(u

k, vk, ũk) = 0. (3.17)

From (3.14), it follows that

lim
k→∞ϕ(uk, vk, ũk) = 0

and (3.17) is satisfied due to the condition (1.3c). The proof is complete. �

According to our numerical experience, it is recommended to set γ ∈ [1,2). In-
stead of choosing a fixed γ ∈ (0,2), we could adopt a dynamical relaxation factor
γk = 1/α∗

k in (3.13),

uk+1 = P�[uk − d(uk, vk, ũk, t)]. (3.18)

For this updating form, it follows from (3.14) and (3.12) that

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − γ (2 − γ )α∗
kϕ(uk, vk, ũk)

= ‖uk − u∗‖2 − (
2 − 1/α∗

k

)
ϕ(uk, vk, ũk)

= ‖uk − u∗‖2 − (
2ϕ(uk, vk, ũk) − ‖d1(u, v, ũ)‖2)

≤ ‖uk − u∗‖2 − φ(uk, vk, ũk).

This is the same result as the ones in Propositions 2.1 and 2.2 in [12]. Thus (3.18)
can be viewed as a primary method.

3.2 Choosing the better directions

This subsection focuses on which direction is better for getting more progress in the
k-th iteration. Since the first part of ϑ(α, t), namely q(α), is independent of t (see
(3.6)), we need only to investigate the magnitude �(α, t) for different t ∈ [0,1].

Theorem 3.3 For any α ≥ 0 and t ∈ [0,1], �(α, t) is a nondecreasing function of t .
Especially, we have

�(α, t) − �(α,0) ≥ ‖u(α, t) − u(α,0)‖2, ∀α ≥ 0. (3.19)

Proof Note that d(u, v, ũ, t) in (3.1) can be rewritten as

d(u, v, ũ, t) = d1(u, v, ũ) + t (d2(u, v, ũ) − d1(u, v, ũ)), (3.20)
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and thus u(α, t) in (3.2) is

u(α, t) = P�{[u − αd1(u, v, ũ)] − tα[d2(u, v, ũ) − d1(u, v, ũ)]}.
By using the notation

ū(α) = u − αd1(u, v, ũ), (3.21)

we have (see (3.2))

u(α, t) = P�{ū(α) − tα[d2(u, v, ũ) − d1(u, v, ũ)]},
and (see (3.7))

�(α, t) = ‖P�{ū(α) − tα[d2(u, v, ũ) − d1(u, v, ũ)]} − ū(α)‖2.

It follows from Lemma 1.2 that �(α, t) is a nondecreasing function of t for t ≥ 0.
According to (3.7) and (3.21)

�(α, t) − �(α,0) = ‖u(α, t) − ū(α)‖2 − ‖u(α,0) − ū(α)‖2. (3.22)

Note that (see the notation (3.2), (3.20) and (3.21))

u(α,0) = P�[ū(α)]. (3.23)

Since u(α, t) ∈ �, by using (1.5) we obtain

‖u(α, t) − u(α,0)‖2 ≤ ‖ū(α) − u(α, t)‖2 − ‖ū(α) − u(α,0)‖2. (3.24)

The assertion of this theorem follows directly from (3.22) and (3.24). �

Theorem 3.3 indicates that in each iterative step, we may expect the contraction
methods using the direction d2(u, v, ũ) will get more progress than the one using
d1(u, v, ũ). Abide by the recommendation proposed in the previous subsection, the
new iterate should be updated by

uk+1 = P�[uk − γ α∗
k d2(u

k, vk, ũk)], (3.25)

where γ ∈ (0,2) and α∗
k is defined in (3.12). Note that any relaxation factor γ ∈ (0,2)

could be used in (3.25). Nevertheless, the experiments [8, 11] have shown that better
numerical results could be obtained by setting γ ∈ [1.8,1.95].

4 Numerical experiments

Based on the effective quadruplets in Sects. 3–6 of [12], this section compares the
primary methods and the related general methods described in Sect. 3. The quadru-
plets and the accepting rules will be satisfied by choosing a suitable parameter βk . In
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Table 4 The mapping F and the geminate directions d1 and d2 in [12]

Type F(u) d1(u,u, ũ) and which is given in d2(u,u, ũ) and which is given in

Type 1 Hu + q (u − ũ) (3.4) of [12] β(Hu + q) (3.5) of [12]

Type 2 Mu + q (u − ũ) + βMT (u − ũ) (4.4) of [12] β(Mu + q) + βMT (u − ũ) (4.5) of [12]

Type 3 ∇f (u) (u − ũ) (5.4) of [12] βF(u) (5.5) of [12]

Type 4 F(u) (u − ũ) − β(F (u) − F(ũ)) (6.2) of [12] βF(ũ) (6.3) of [12]

other words, set vk = uk in (1.6) of [12] and the basic equation of APPAs ((1.7) in
[12]) is simplified to

ũk = P�[uk − βkF (uk)].
Thus, the main computational load in each iteration of the methods is the evaluation
of the mapping F . In this case, the geminate directions d1(u,u, ũ) and d2(u,u, ũ) for
different types of VIs in [12] are reduced as in Table 4.

We differentiate the test methods by using the following abbreviations:

− L and NL are abbreviations for Linear VI and Nonlinear VI, respectively.
− The directions d1(u, v, ũ) and d2(u, v, ũ) are abbreviated as D1 and D2, respec-

tively;
− P and G denote the primary methods and the general methods, respectively.

Remark 4.1 The VIs of Types 1 and 3 are equivalent to the constrained convex opti-
mization problems and are called as symmetric VIs. For such problems, since

ũk = P�[uk − βkF (uk)], G = I

and

d1(u
k, vk, ũk) = uk − ũk,

the three update forms of the primary method are equal (see (1.4)). In other words,
uk+1 = ũk is the new iterate. Therefore, for such optimization problems, we suggest
only to use the primary methods. We use the abbreviations

SLD-P and SNLD-P

for the primary methods for symmetric linear VIs and symmetric nonlinear VIs, re-
spectively.

Remark 4.2 Only for the asymmetric VIs of Type 2 and 4, we test the primary meth-
ods and the general methods. All of the recursions are in the form

uk+1 = P�[uk − αkd(uk, vk, ũk)].
In the primary methods, αk ≡ 1, while in the general methods (see (3.12)),

αk = γ α∗
k , where α∗

k = ϕ(u, v, ũ)

‖d1(u, v, ũ)‖2
and γ = 1.8.
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Table 5 The functions ϕ(u,u, ũ) for asymmetric VIs

Type F(u) ϕ(u,u, ũ) and which is given in

Type 2 Mu + q ‖u − ũ‖2 (4.8) of [12]

Type 4 F(u) ‖u − ũ‖2 − (u − ũ)T β(F (u) − F(ũ)) (6.5) of [12]

Table 6 The marks of different methods for asymmetric VIs

Step size α VIs of Type 2 VIs of Type 4 VIs of Type 1 VIs of Type 3

d1(u, v, ũ) d2(u, v, ũ) d1(u, v, ũ) d2(u, v, ũ)

αk ≡ 1 LD1-P LD2-P NLD1-P NLD2-P SLD-P SNLD-P

αk = γα∗
k

LD1-G LD2-G NLD1-G NLD2-G – –

Table 7 The test order for VIs
of different types Test order VIs of Type F(u) In Sect.

1 Type 4 F(u) Sect. 4.1

2 Type 3 ∇f (u) Sect. 4.2

3 Type 2 Mu + q Sect. 4.3

4 Type 1 Hu + q Sect. 4.4

The functions ϕ(u,u, ũ) for asymmetric VIs in are restated in Table 5.
In conclusion, the abbreviations for different methods are listed in Table 6.
Because

{Symmetric Nonlinear VIs} ⊂ {Nonlinear VIs}

and

{Symmetric Linear VIs} ⊂ {Linear VIs},

the test order for VIs of different types is listed in Table 7.
We use No. it and No. F to denote the numbers of iterations and the evaluations

of the mapping F , respectively. The size of the tested problems is from 100 to 1000.
All codes are written in Matlab and run on a notebook computer. The iterations begin
with u0 = 0, β = 1 and stop as soon as

‖uk − P�[uk − F(uk)]‖∞
‖u0 − P�[u0 − F(u0)]‖∞

≤ 10−6.

4.1 The numerical results for nonlinear variational inequalities

Test examples of nonlinear VIs The mapping F(u) in the tested nonlinear VIs is
given by

F(u) = D(u) + Mu + q, (4.1)
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where D(u) : Rn → Rn is the nonlinear part, M is an n × n matrix, and q ∈ Rn is a
vector.

− In D(u), the nonlinear part of F(u), the components are

Dj(u) = dj · arctan(aj · uj ),

where a and d are random vectors2 whose elements are in (0,1).
− The matrix M in the linear part is given by M = AT A + B . A is an n × n matrix

whose entries are randomly generated in the interval (−5,+5), and B is an n × n

skew-symmetric random matrix (BT = −B) whose entries3 are in the interval
(−5,+5). Note that ∀x ∈ Rn,

xT Bx = (xT Bx)T = xT BT x = −xT Bx,

which implies xT Bx = 0. As a consequence, ∀x ∈ Rn, it holds that

xT Mx = xT AT Ax + xT Bx = ‖Ax‖2
2 ≥ 0,

which implies M is positive semi-definite.

It is clear that the mapping composed in this way is monotone. We construct the
following 6 sets of test examples by different combinations of � and q .

1. In the first set of test examples, � = Rn+ is the non-negative orthant. The elements
of vector q is generated from a uniform distribution in the interval (−1000,1000).

2. The second set of test examples is modified from the first set, the only difference is
� = {u ∈ Rn | 0 ≤ u ≤ b}. Each elements of b equals u∗

max by a positive factor less
than 1, where u∗

max is the maximal element of the solution of the related problem
in the first set.

3. The 3-rd set4 of test examples is similar to the first set. Instead of q ∈
(−1000,1000), the vector q is generated from a uniform distribution in the in-
terval (−1000,0).

4. The 4-th set of test examples is modified from the third set, the only difference is
� = {u ∈ Rn | 0 ≤ u ≤ b}. Each elements of b equals u∗

max by a positive factor less
than 1, where u∗

max is the maximal element of the solution of the related problem
in the 3-rd set.

5. The 5-th set of test examples has a known solution u∗ and � = Rn+. Let vector p

be generated from a uniform distribution in the interval (−10,10) and

u∗ = max(p,0). (4.2)

2A similar type of (small) problems was tested in [15] where the components of the nonlinear mapping
D(u) are Dj (u) = c · arctan(uj ).
3In the paper by Harker and Pang [7], the matrix M = AT A+B +D, where A and B are the same matrices
as what we use here, and D is a diagonal matrix with uniformly distributed random entries djj ∈ (0.0,0.3).
4In [7], the similar problems in the first set are called easy problems while the third set problems are called
hard problems.
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For given η > 0, by setting

w = η · max(−p,0) and q = w − (D(u∗) + Mu∗),

we have F(u∗) = D(u∗) + Mu∗ + q = w = η · max(−p,0). Since η > 0 and

(u∗)T F (u∗) = (
max(−p,0)

)T (
max(p,0)

) = 0,

we then have constructed a test problem

0 ≤ u ⊥ F(u) ≥ 0

with a known solution u∗ described in (4.2).
6. The 6-th set of test examples: The test problem has a known solution u∗ and

� = {u ∈ Rn | 0 ≤ uj ≤ 10, j = 1, . . . , n}
is a box. Let vector p be generated from a uniform distribution in the interval
(−5,15) and

u∗ = max(0,min(p,10)). (4.3)

For given η1, η2 > 0, by setting

w = max(−p,0) · η1 − max(p − 10,0) · η2,

we have

u∗ = P�[u∗ − w].
Therefore, in order to form a test problem

u = P�[u − F(u)]
with F(u) described in (4.1) and a known solution u∗ given in (4.3), we need only
to set

q = w − (D(u∗) + Mu∗).

The tested methods and the numerical results For nonlinear variational inequalities,
we test the problems by using the accepting rule (5.10) in [12] which is fulfilled by
Procedure 5.1 in [12]. The quadruplet (d1(u, v, ũ), d2(u, v, ũ), ϕ(u, v, ũ), φ(u, v, ũ))

is described in (5.9) in [12] with v = u. It is worth observing the effectiveness of
different search directions and the different step-size rules. Thus, we compare the
convergence behaviors of the following 4 methods:

NLD1-P, NLD2-P, NLD1-G and NLD2-G.

Since both F(uk) and F(ũk) are involved in those methods recursions, each iteration
of the test methods needs at least 2 times of evaluations of the mapping F . The
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Table 8 Numerical results for nonlinear VIs of the 1-st set examples

Problem Method NLD1-P Method NLD2-P Method NLD1-G Method NLD2-G max element

size n No. It No. F No. It No. F No. It No. F No. It No. F of u∗

100 466 1011 391 815 236 490 200 434 5.1207

200 640 1361 568 1184 316 668 282 611 3.3988

500 697 1471 596 1244 343 728 310 672 1.4260

800 565 1203 483 999 278 589 259 546 0.8282

1000 601 1265 520 1086 297 631 267 580 0.5933

Table 9 Numerical results for nonlinear VIs of the 2-nd set examples

Problem Method NLD1-P Method NLD2-P Method NLD1-G Method NLD2-G The vector b

size n No. It No. F No. It No. F No. It No. F No. It No. F in u ∈ [0, b]

100 576 1243 473 986 285 591 243 527 4.0

200 676 1441 594 1237 329 695 296 641 3.0

500 730 1547 627 1302 361 764 325 704 1.0

800 713 1527 624 1296 358 755 350 727 0.6

1000 787 1663 677 1411 384 814 349 757 0.5

Table 10 Numerical results for nonlinear VIs of the 3-rd set examples

Problem Method NLD1-P Method NLD2-P Method NLD1-G Method NLD2-G max element

size n No. It No. F No. It No. F No. It No. F No. It No. F of u∗

100 952 2021 884 1841 478 1018 448 969 14.437

200 1189 2246 1105 2296 594 1270 561 1214 9.0339

500 1453 3000 1402 2922 733 1571 711 1538 3.7623

800 1434 2952 1344 2802 730 1560 683 1478 2.5715

1000 1532 3159 1424 2968 772 1652 720 1557 2.4738

test results for the 6 sets of nonlinear variational inequalities are given in Tables 8–
13. Because u∗ in the 5-th and 6-th sets of test examples is known, the difference
‖uk − u∗‖ is reported when the stopping criterium is satisfied.

The numerical results coincide with our theoretical results and analysis.

− In both of the primary methods and general methods, the methods with direction
d2(u, v, ũ) require fewer iterations than the corresponding methods with direction
d1(u, v, ũ). In particular,

Computational load of NLD2-P

Computational load of NLD1-P
,

Computational load of NLD2-G

Computational load of NLD1-G
< 95%.
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Table 11 Numerical results for nonlinear VIs of the 4-th set examples

Problem Method NLD1-P Method NLD2-P Method NLD1-G Method NLD2-G The vector b

size n No. It No. F No. It No. F No. It No. F No. It No. F in u ∈ [0, b]

100 932 1961 837 1741 453 958 418 904 10.0

200 1346 2767 1246 2593 682 1457 635 1374 6.0

500 1723 3554 1626 3390 875 1873 830 1795 3.0

800 1759 3619 1639 3416 889 1898 830 1795 2.0

1000 1962 4046 1850 3855 994 2127 940 2032 2.0

Table 12 Numerical results for nonlinear VIs of the 5-th set examples

Problem Method NLD1-P Method NLD2-P Method NLD1-G Method NLD2-G The bounds of

size n No. It No. F No. It No. F No. It No. F No. It No. F ‖uk − u∗‖∞

100 762 1550 670 1393 379 804 337 730 2.0e−6

200 964 1972 869 1812 478 1017 442 957 8.0e−7

500 969 1962 868 1809 487 1031 442 956 3.0e−7

800 1030 2106 928 1933 526 1120 470 1017 1.6e−7

1000 1026 2074 926 1928 518 1101 473 1023 1.2e−7

Table 13 Numerical results for nonlinear VIs of the 6-th set examples

Problem Method NLD1-P Method NLD2-P Method NLD1-G Method NLD2-G The bounds of

size n No. It No. F No. It No. F No. It No. F No. It No. F ‖uk − u∗‖∞

100 1221 2507 1141 2374 618 1318 573 1238 2.0e−7

200 1157 2406 1052 2191 571 1216 533 1153 7.0e−8

500 1433 2908 1311 2729 723 1535 665 1437 3.0e−8

800 1312 2683 1212 2524 654 1391 613 1324 1.8e−8

1000 1133 2311 1034 2152 564 1198 521 1126 1.2e−8

− For the methods adopting the same direction, the general methods converge much
faster than the primary methods.

Computational load of NLD1-G

Computational load of NLD1-P
,

Computational load of NLD2-G

Computational load of NLD2-P
∈ [0.5,0.55].

Therefore, for nonlinear variational inequalities, we suggest to use the method
NLD2-G with γ = 1.8.

4.2 The numerical results for symmetric nonlinear variational inequalities

Test examples of Symmetric Nonlinear VIs Since the nonlinear part of F(u), namely
D(u) in (4.1), is symmetric, the test problems of symmetric nonlinear variational in-
equalities in this subsection are formed by deleting the asymmetric part of the matrix



700 B. He et al.

Table 14 Numerical results for symmetric NL-VIs of the 1-st set examples

Problem Method NLD1-G Method NLD2-G Method SNLD-P max element

size n No. It No. F No. It No. F No. It No. F of u∗

100 235 485 205 445 113 146 5.1150

200 292 618 252 546 125 181 3.2853

500 345 732 308 667 142 202 1.4302

800 278 589 526 538 110 158 0.8389

1000 293 623 267 580 122 172 0.6027

M , in (4.1). In details,

F(u) = D(u) + Mu + q, M = AT A.

In these test problems, the Jacobian of F(u) is symmetric and F(u) can be viewed as
the gradient of a certain convex function. The other data in the test problems are the
same as those described in Sect. 4.1.

The tested methods and the numerical results We use the accepting rule (5.8) in [12]
which is fulfilled by Procedure 5.1 in [12]. The quadruplet (d1(u, v, ũ), d2(u, v, ũ),
ϕ(u, v, ũ), φ(u, v, ũ)) is described in (5.10) in [12] with v = u. Because

{Symmetric nonlinear VIs} ⊂ {Nonlinear VIs},

and the general contraction methods outperform the primary methods, we test the
symmetric nonlinear problems with the method for nonlinear problem

NLD1-G and NLD2-G.

It is worth comparing the effectiveness of the following 3 methods:

NLD1-G, NLD2-G and SNLD-P.

Without the trial computations for finding the suitable parameter βk , each iteration
of SNLD-P needs only one evaluation of the mapping F . The test results for the 6
sets of symmetric nonlinear variational inequalities are given in Tables 14–19. Also,
in the 5-th and 6-th sets of test examples, because u∗ is known, we also report the
difference ‖uk − u∗‖ when the stopping criterium is satisfied.

As in Sect. 4.1, the numerical results coincide with our theoretical results and
analysis.

− Again, the general method NLD2-G requires fewer iterations than NLD1-G.

Computational load of NLD2-G

Computational load of NLD1-G
< 0.95.
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Table 15 Numerical results for symmetric NL-VIs of the 2-nd set examples

Problem Method NLD1-G Method NLD2-G Method SNLD-P The vector b

size n No. It No. F No. It No. F No. It No. F in u ∈ [0, b]

100 299 630 265 575 156 187 4.0

200 307 649 274 593 140 194 3.0

500 351 713 319 691 181 246 1.0

800 356 751 340 710 167 222 0.6

1000 385 817 349 757 168 238 0.5

Table 16 Numerical results for symmetric NL-VIs of the 3-rd set examples

Problem Method NLD1-G Method NLD2-G Method SNLD-P max element

size n No. It No. F No. It No. F No. It No. F of u∗

100 617 1307 565 1222 249 336 17.2269

200 648 1386 609 1318 247 343 8.8365

500 738 1580 692 1497 318 427 3.8270

800 703 1502 657 1422 284 382 2.6666

1000 769 1666 725 1568 275 375 2.5822

Table 17 Numerical results for symmetric NL-VIs of the 4-th set examples

Problem Method NLD1-G Method NLD2-G Method SNLD-P The vector b

size n No. It No. F No. It No. F No. It No. F in u ∈ [0, b]

100 514 1079 462 998 210 299 12

200 779 1667 735 1590 294 406 6

500 929 1990 884 1912 362 486 3

800 869 1855 803 1737 296 408 2

1000 956 2046 910 1967 347 474 2

− For symmetric nonlinear VIs, the method SNLD-P converges much faster than the
method NLD2-G.

Computational load of SNLD-P

Computational load of NLD2-G
∈ [0.25,0.35],

it means that we should use symmetry when the mapping F is the gradient of
certain convex function.

4.3 The numerical results for asymmetric linear variational inequalities

Test examples of Linear VIs In the linear variational inequalities (4.1) in [12], the
mapping

F(u) = Mu + q. (4.4)
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Table 18 Numerical results for symmetric NL-VIs of the 5-th set examples

Problem Method NLD1-G Method NLD2-G Method SNLD-P The bounds of

size n No. It No. F No. It No. F No. It No. F ‖uk − u∗‖∞

100 419 890 374 810 190 275 1.4e−6

200 507 1078 464 1004 208 295 7.8e−7

500 491 1039 446 965 213 302 2.3e−7

800 524 1116 473 1023 233 330 1.0e−6

1000 522 1109 474 1025 220 311 1.3e−7

Table 19 Numerical results for symmetric NL-VIs of the 6-th set examples

Problem Method NLD1-G Method NLD2-G Method SNLD-P The bounds of

size n No. It No. F No. It No. F No. It No. F ‖uk − u∗‖∞

100 794 1695 723 1562 349 480 1.4e−7

200 619 1318 576 1067 286 394 5.6e−8

500 734 1560 684 1478 361 496 2.7e−8

800 654 1392 611 1320 291 391 1.6e−8

1000 570 1210 528 1141 243 333 1.1e−8

The test problems are formed by deleting the nonlinear part D(u) in (4.1). The other
data in the test problems are same as those described in Sect. 4.1.

The tested methods and the numerical results We use the accepting rule (4.17)
in [12] which is fulfilled by Procedure 4.1 in [12]. The quadruplet (d1(u, v, ũ),
d2(u, v, ũ), ϕ(u, v, ũ), φ(u, v, ũ)) is described in (4.13) in [12] with v = u. Because

{Linear VIs} ⊂ {Nonlinear VIs},

and the general contraction methods outperform the primary methods, we test the
linear problems with nonlinear methods

NLD1-G and NLD2-G.

In addition, by using the linearity, we use the methods

LD1-G and LD2-G.

It is worth comparing the effectiveness of the methods:

NLD1-G, NLD2-G, LD1-G and LD2-G.

Since both F(uk) and F(ũk) are involved in those methods recursions, each iteration
of the test methods needs at least 2 times of evaluations of the mapping F . The
test results for the 6 sets of (asymmetric) linear variational inequalities are given in
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Table 20 Numerical results for asymmetric LVIs of the 1-st set examples

Problem Method NLD1-G Method NLD2-G Method LD1-G Method LD2-G max element

size n No. It No. F No. It No. F No. It No. F No. It No. F of u∗

100 236 490 200 434 348 783 178 363 5.1242

200 315 666 282 611 520 1132 261 529 3.4029

500 342 726 310 672 596 1269 279 563 1.4266

800 278 589 259 546 417 964 228 463 0.8284

1000 296 629 267 580 470 1051 240 487 0.5933

Table 21 Numerical results for asymmetric LVIs of the 2-nd set examples

Problem Method NLD1-G Method NLD2-G Method LD1-G Method LD2-G The vector b

size n No. It No. F No. It No. F No. It No. F No. It No. F in u ∈ [0, b]

100 286 593 244 529 429 959 216 439 4.0

200 329 695 297 643 538 1182 273 553 3.0

500 359 760 325 704 618 1323 291 587 1.0

800 358 755 351 729 505 1235 287 580 0.6

1000 384 814 349 757 648 1406 312 631 0.5

Table 22 Numerical results for asymmetric LVIs of the 3-rd set examples

Problem Method NLD1-G Method NLD2-G Method LD1-G Method LD2-G max element

size n No. It No. F No. It No. F No. It No. F No. It No. F of u∗

100 479 1020 448 969 822 1792 432 874 14.449

200 595 1272 561 1214 927 2142 521 1047 9.0412

500 740 1586 711 1538 1293 2832 636 1301 3.7641

800 730 1560 684 1480 1256 2737 641 1296 2.5727

1000 771 1650 720 1557 1405 2963 665 1356 2.4747

Tables 20–25. In the 5-th and 6-th sets of test examples, because u∗ is known, the
difference ‖uk − u∗‖ is reported when the stopping criterium is satisfied.

Similarly to the previous two subsections, the numerical results coincide with our
theoretical results and analysis.

− Using the general methods for nonlinear VIs in Sect. 5 in [12] to solve the lin-
ear VIs, the method with direction d2(u, v, ũ) requires fewer iterations than the
corresponding methods with direction d1(u, v, ũ),

Computational load of NLD2-G

Computational load of NLD1-G
≈ 0.9.

− For the general methods with either direction d1(u, v, ũ) or direction d2(u, v, ũ)

for linear VIs in Sect. 4 in [12], the method with direction d2(u, v, ũ) converges
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Table 23 Numerical results for asymmetric LVIs of the 4-th set examples

Problem Method NLD1-G Method NLD2-G Method LD1-G Method LD2-G The vector b

size n No. It No. F No. It No. F No. It No. F No. It No. F in u ∈ [0, b]

100 453 958 418 904 775 1680 415 840 10.0

200 684 1461 640 1385 1207 2593 589 1183 6.0

500 875 1873 830 1795 1553 3349 768 1555 3.0

800 894 1909 835 1806 1590 3397 781 1576 2.0

1000 995 2129 940 2032 1819 3852 875 1767 2.0

Table 24 Numerical results for asymmetric LVIs of the 5-th set examples

Problem Method NLD1-G Method NLD2-G Method LD1-G Method LD2-G The bounds of

size n No. It No. F No. It No. F No. It No. F No. It No. F ‖uk − u∗‖∞

100 379 804 334 723 544 1268 320 646 2.0e−6

200 478 1017 442 957 796 1754 416 840 8.0e−7

500 487 1031 442 956 710 1667 417 840 3.0e−7

800 525 1118 470 1017 841 1859 442 905 1.6e−7

1000 518 1101 473 1023 880 1904 412 861 1.2e−7

Table 25 Numerical results for asymmetric LVIs of the 6-th set examples

Problem Method NLD1-G Method NLD2-G Method LD1-G Method LD2-G The bounds of

size n No. It No. F No. It No. F No. It No. F No. It No. F ‖uk − u∗‖∞

100 617 1316 573 1238 1062 2301 553 1120 2.0e−7

200 572 1218 533 1153 983 2137 505 1022 7.0e−8

500 724 1537 666 1439 1226 2666 613 1251 3.0e−8

800 657 1398 616 1331 1029 2361 570 1161 1.8e−8

1000 565 1200 521 1126 947 2074 493 997 1.2e−8

much faster than the corresponding method with direction d1(u, v, ũ),

Computational load of LD2-G

Computational load of LD1-G
≈ 0.5.

− For linear VIs, the general method with direction d2(u, v, ũ) in Sect. 4 in [12]
requires fewer iterations than the corresponding method in Sect. 5 in [12],

Computational load of LD2-G

Computational load of NLD2-G
≈ 0.9.

The method LD2-G converges faster than all other tested methods, which implies
that we should use the linearity when the variational inequality is linear.
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Table 26 Numerical results for symmetric LVIs of the 1-st set examples

Problem Method NLD2-G Method LD2-G Method SLD-P max element

size n No. It No. F No. It No. F No. It No. F of u∗

100 205 445 185 375 74 103 5.1184

200 256 555 232 471 83 116 3.2891

500 308 667 279 563 97 123 1.4308

800 256 538 226 459 139 160 0.8391

1000 267 580 210 497 134 160 0.6028

4.4 The numerical results for symmetric linear variational inequalities

Test examples of Linear VIs In the symmetric linear variational inequalities (3.1) in
[12], the mapping

F(u) = Hu + q. (4.5)

The test problems are formed by H = AT A. The other data in the test problems are
the same as those described in Sect. 4.3.

The tested methods and the numerical results We use the accepting rule (3.12)
in [12] which is fulfilled by Procedure 3.1 in [12]. The quadruplet (d1(u, v, ũ),
d2(u, v, ũ), ϕ(u, v, ũ), φ(u, v, ũ)) is described in (3.10) in [12] with v = u. Because

{Symmetric Linear VIs} ⊂ {Linear VIs} ⊂ {Nonlinear VIs},

and the general contraction methods outperform the primary methods, we test the
symmetric linear problems with the methods for nonlinear and asymmetric linear
problems

NLD2-G and LD2-G.

In addition, by using the symmetry, we use the method

SLD-P.

It is worth comparing the effectiveness of the following 3 methods:

NLD2-G, LD2-G and SLD-P.

Without the trial computations for finding the suitable parameter βk , each iteration of
SLD-P needs only one evaluation of the mapping F (here is Hu+q). The test results
for the 6 sets of symmetric linear variational inequalities are given in Tables 26–31.
Also, in the 5-th and 6-th sets of test examples, because u∗ is known, we also report
the difference ‖uk − u∗‖ when the stopping criterium is satisfied.

As in the previous three subsections, the numerical results coincide with our theo-
retical results and analysis.
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Table 27 Numerical results for symmetric LVIs of the 2-nd set examples

Problem Method NLD2-G Method LD2-G Method SLD-P The vector b

size n No. It No. F No. It No. F No. It No. F in u ∈ [0, b]

100 377 817 345 704 115 157 4.0

200 468 1013 436 890 164 223 3.0

500 602 1303 553 1112 153 204 1.0

800 510 1104 475 957 137 192 0.6

1000 585 1266 547 1103 184 240 0.5

Table 28 Numerical results for symmetric LVIs of the 3-rd set examples

Problem Method NLD2-G Method LD2-G Method SLD-P max element

size n No. It No. F No. It No. F No. It No. F of u∗

100 566 1224 531 1068 163 220 17.2432

200 609 1318 577 1159 182 251 8.8438

500 692 1497 638 1298 150 209 3.8289

800 658 1424 613 1244 289 349 2.6678

1000 725 1568 674 1362 161 219 2.5832

Table 29 Numerical results for symmetric LVIs of the 4-th set examples

Problem Method NLD2-G Method LD2-G Method SLD-P The vector b

size n No. It No. F No. It No. F No. It No. F in u ∈ [0, b]

100 461 999 426 867 146 198 12

200 839 1814 793 1600 166 225 6

500 830 1795 786 1577 172 236 3

800 859 1858 806 1628 230 292 2

1000 1008 2179 956 1928 267 352 2

− For symmetric linear VIs, the general method LD2-G requires fewer iterations
than NLD2-G.

Computational load of LD2-G

Computational load of NLD2-G
< 0.95,

this means that we should use the linearity if the variational inequality is linear.
− For symmetric linear VIs, the method SLD-P converges much faster than the

method LD2-G.

Computational load of SLD-P

Computational load of LD2-G
∈ [0.20 − 0.25],

it means that we should use symmetry when the linear VIs are symmetric.
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Table 30 Numerical results for symmetric LVIs of the 5-th set examples

Problem Method NLD2-G Method LD2-G Method SLD-P The bounds of

size n No. It No. F No. It No. F No. It No. F ‖uk − u∗‖∞

100 370 802 352 715 151 190 2.0e−6

200 464 1004 438 881 170 219 8.0e−7

500 446 965 417 857 174 230 3.0e−7

800 477 1032 451 909 179 225 1.6e−7

1000 474 1025 430 883 150 197 1.2e−7

Table 31 Numerical results for symmetric LVIs of the 6-th set examples

Problem Method NLD2-G Method LD2-G Method SLD-P The bounds of

size n No. It No. F No. It No. F No. It No. F ‖uk − u∗‖∞

100 725 1566 704 1415 208 274 2.0e−6

200 577 1248 513 1067 189 253 8.0e−7

500 684 1478 634 1287 204 268 3.0e−7

800 612 1322 555 1145 216 270 1.6e−7

1000 528 1141 492 1003 155 210 1.2e−7

5 Concluding remarks

In this paper, we first extend the primary methods proposed in Part I of this paper
[12] to more efficient ones (called extended methods) under our framework [12]. The
extended methods need only minor extra costs. As an application, we test a matrix
approximation problem to compare the efficiency of the proximal alternating direc-
tions method and its extended version. From the numerical results, the improvement
on the efficiency of the extended method is significant and convincing.

Then in case of G = I , following the unified framework, we introduce the ex-
tended and general contraction methods. In such methods, we can use the convex
combinations of the geminate directions in the quadruplet as the search directions
with selected step lengths. Besides the theoretical comparisons on the efficiency of
the different directions and step lengths, we present numerous numerical results con-
firming our theoretical results clearly. From the numerical results, the numbers of the
iterations and function evaluations are reduced significantly for the general contrac-
tion methods. Our numerical experiments also indicate that, special properties such
as symmetry, linearity, etc., should be considered in solving these problems.
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