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Abstract 

In this paper we introduce a new iterative scheme for the numerical solution of a class of linear 
variational inequalities. Each iteration of the method consists essentially only of a projection to a 
closed convex set and two matrix-vector multiplications. Both the method and the convergence proof 
are very simple. 
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1. Introduction 

We consider a class of  linear variational inequalities 

(LVI)  u~22, (v--u)T(Mu+q)>~O, for all v ~ 22, (1) 

where M ~  ~n×n is a positive semidefinite matrix (not necessarily symmetric), q ~ R n and 

J2 c ~n is a closed convex set. The linear complementarity problem 

(LCP) u>~O, (Mu+q)>>.O, uT(Mu+q)=O (2) 

is a special (LVI)  when 22 = { u ~ E ~1 u >~ 0}. Variational inequalities, linear complemen- 
tarity problems have played a significant role in mathematical programming. These subjects 

have been studied since the mid 1960's starting with the works of  Cottle, Dantzig [3] ,  
Lemke [9, 10] and developed by many others. There is already a substantial number of  

algorithms for the numerical solution of  linear complementarity problems and variational 

inequalities [ 1, 4-8,  12-15 ]. Our objective in this paper is to offer a new alternative iterative 

method for solving problem (1).  Let 22* denote the solution set of  (LVI)  and Pa(")  denote 
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the projection to ~ .  Throughout this paper we assume that ~ *  ~ ~ and the projection to 
is simple to carry out (e.g. when ,(2 is a general orthant, a box, a sphere, a cylinder or a 

subspace). 

2. The method 

It is well known [2],  that the linear variational inequality (1) is equivalent to the 
following linear projection equation 

(LPE) u = P ~ [ u - ( M u + q ) ] ,  (3) 

i.e., to solve (LVI)  is equivalent to finding a zero point of  the continuous nonsmooth 
function 

e(u)  := u - P a [ u  - (Mu + q )  ]. (4) 

We state our algorithm as follows: 

Projection and Contradiction Algorithm (PC Algorithm). 
Given u o ~ R n For k = 0,1 . . . . .  if uk ff g2*, then 

uk+ 1 = u k _  p (uk )d (uk ) ,  (5) 

where 

d(u k) = (MT + I ) e ( u  k) (6) 

and 

lie(u~) II = (7)  

Obviously, each iteration of the method consists essentially of  only a projection to ~ and 
the computation of Mu and MTe(u ) .  We call it a projection and contraction method because 

in each iteration a projection has to be carried out and the Euclidean distance of the iterates 
to the solution set monotonically converges to zero, which will be proved in the next section. 

3. Convergence 

Theorem 1. Let u* ~ f2*. Then 

( u -  u*) T ( I + M T ) e ( u )  >~ lie(u) I[ 2, for  all u ~ ~n (8) 

Proof. Since f 2 c ~  n is a closed convex set and u* ~ f2, we know by the properties of  a 

projection on a closed convex set [ 11, Appendix B] that 

{u* - P ~ ( v )  } T { v - - P ~ ( v )  } ~< 0, for all v ~ ~" .  
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By setting v := u -- (Mu + q) we obtain 

{ u * - P a [ u -  ( M u + q ) ]  } T{e(u) - ( M u + q ) }  <~0. 

It follows 

{P~[ u - (Mu + q) ] - u* } Te(u) >i {Pa[ u -- (Mu + q) ] - u*} "r(Mu + q) 

and 

(U -- U*) Te(u)  >/l ie(u)II  2+ {Pa[u - (mu  + q) l - u*} T(Mu +q) .  (9) 

Note that 

(u - u*) TMTe(u)  = e (u) T(Mu + q) -- e (u)  T(Mu* + q). (10) 

Adding (9) and (10) and usingM>~0, we get 

( u -  u*) T ( I + M T ) e ( u )  

>1 II e(u) II 2 + (u - u*) T(Mu + q) -- e (u)  T(Mu* + q) 

-- l ie(u)  112+ { P ~ [ u -  ( M u + q )  ] - u * } ' r ( M u *  +q)  + (u - -u* )  TM(u - -u  *) 

>1 II e(u) II 2 + {po[  u - (Mu + q) ] - u* } T (Mu* + q).  

Because Pa[u  - (Mu + q) ] ~ 12 and u* ~ 12", it follows that 

{Po[ u - (Mu + q) ] - u* } T(Mu* + q) >>- 0 

and the proof is complete. []  

Theorem 2. The sequence {u k } generated by the PC Algorithm for  (LVI) satisfies 

II u k + 1  - -  U *  II 2.<< II u ~ -  u* II 2 _  pC u ~)II e(u ~)II 2 for  all u* ~ 12". ( 11 ) 

Proof.  Using ( 5 ) - ( 8 )  we get 

II u~+~ - u* II 2 =  ilu k _  u* - p ( u k ) d ( u  k) II = 

= Ilu ~ -  u*ll 2 _ 2p(u k ) (u k _ u*) Td(uk) +pZ(uk)IId(u ~) II 2 

<.llu~-u*ll2-p(u~)lle(u~)ll2.  [] 

From (7),  p(u)  >/1 / IlM T + Ill 2 := c > 0. Then from ( 11 ) we get 

II u ~ + ~ - u * l l 2 ~ <  Iluk- u* ll 2 -  clle( u~) ll =, for  all u* ~12". (12) 

The function l ie(u)II measures how much u fails to be in 12". Eq. (12) states that we get a 
'big'  profit from an iteration, if II e (u)II is not too small; conversely, if we get a very small 

profit from an iteration, then lie(u)II is already very small and u k is a 'sufficiently good'  

approximation of  a u* ~ 12". 

Theorem 3. The sequence {u k} generated by the PC Algorithm for  (LVI)  converges to a 

solution point u*. 
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Proof. Let a be a solution of  (LVI) .  First, from (12) we have 

link- all ~< IIn°- all 

and the sequence {u k} is bounded. Also from (12) we get 

c ~  Ile(uk)ll ~< IIn°- all 2 
k = O  

and it follows that 

lim e(u ~) =0 .  
k ---* oo 

Let u* be a cluster point of  { u k } and the subsequence { u kj} converges to u*. Because e (u) 

is continuous, then 

e(u*) = lim e(u kj) = 0  
j---~ co 

and u* is a solution of  (LVI) .  Since u* E O* and 

Ilu k÷l -n*ll ~< l ink-  u*ll, 

the sequence { u k} has exactly a cluster point and 

lim u k = n*. []  

The following theorem will be proved under the assumption that 12 is a positive orthant 

(in this case the special LVI is a LCP).  

Theorem 4. I f  g2= {ulu>~0}, then the sequence {u k} generated by the PC Algorithm 
converges to a u* ~ 12" globally linearly. 

Proof.  It is easy to see that 12" is a closed convex set. Theorem 3 shows that { u k} converges 

to a solution point n* and 

{ u ~ } C ( n ~ " l  Ilu-u*ll ~< Ilu°-u*ll}- (13) 

From (12) we only need to prove that there exists an r />  0 so that 

Ile(u)ll ~>'O, for all u ~  {nk}. (14) 
II u -  u* II 

I f M = L  then it follows that u * = P a [ - q ]  and e ( u ) = u - n * ,  so (14) is trivially true. 

Therefore, in the following, we only need to consider the case when M v~ L For a ~ 12", let 

Z(ff) : = ( u ~ " l  Ilu-all < Ilff-u*ll} 

and 

T : -  U T(u-). 
f f ~  d'2 * 
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Because (12) is true for every solution point in g2* and { u k} converges to u*, it follows 

that 

{u~'} n r = O .  (15)  

We prove the assertion (15) by contradiction. Assume uJE~. {U k} and ui~ T(a) for some 

a e O*, say, II u J -  all = II a -  u* II - 2co, where eo > 0. Since { u k} converges to u*, then there 
exists a p  > 0, such that u j+p ~ { u k} and II uJ+P- u* II ~ ~o. It follows that 

IluJ+P-fill  > / I l l - u * l l -  I luJ+P- u*ll 

/> II u J -  fill + 2Eo - Eo 

= II u J -  all + Eo. 

Because a ~ f2*, the above fact contradicts (12).  Therefore, 

{u k} c a = =  { u ~ " l  Ilu-u*ll  ~ Ilu°-u*ll  } \Z.  

2 ~ = [ i l  I[u*-(Mu*+q)]il >0} ,  

6:={lin{i[u*-(Mu*+q)]i  [ [ ie ,~}  i fXv~¢,  
otherwise, 

So:={ueOI Ilu-u*ll~o <6/llI-MIl~InS 

Let 

and 

S•-'= { u ~  g21 Ilu - u*ll~ -- 6/III-MII~} AS. 

S 

SO $1 

"' . .8 i 

,/20 
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Without loss of  generality we can assume So cS .  Further let 

S1 "= S \So ,  

and for any u ~ S \ { u *  } 

lie(u) II 
w(u)  . -  I lu-  u* I--------~" 

It is clear that $1 is bounded and closed. Since $1 is compact and w ( u )  is a continuous 
function on S~, 

min{w(u) I u ES1 } := r />  0. 

For any u ~ So \  { u* }, there exists and u' ~ S~ c S~, such that 

u - u * = r ( u  ' - u * )  

with an r E  (0, 1). For this u, we distinguish the following cases: 

( 1 ) u* = 0 and (Mu* + q)i  = 0. Note that in this case [ u* - (Mu* + q) ] i = 0 and 

[ u -  ( M u + q )  ]i = r .  [ u ' -  (Mu '  + q )  ]i. 

It follows that 

{Psi[ u - (Mu  + q)  ] - Po[  u* - (Mu* + q)  ] }i 

= r .  { P a [  u' - ( M u '  + q )  ] - P a [  u* - ( M u *  + q )  ] }i. 

(2) u* >~ 6 and (Mu* + q)i  = 0. In this case [ u* - (Mu* + q)  ] ~>>. 6. According to the 
definitions of  So and S~) we have 

[ u ' - ( M u ' + q ) ] ~ > O  and [ u - ( M u + q ) ] ~ > O .  

It follows that 

{Pa[u '  - ( m u '  + q )  ] - P ~ [ u *  - (Mu* + q )  ] }i = [ ( I - m )  (u '  - u*) ]i 

and 

{Ps~[u-  (M u  + q)  ] - P s i [  u* - (Mu* + q)  ] }i = [ ( I - M )  (u - u*) ],. 

(3)  u* = O, ( Mu* + q) i >~ 6. In this case [ u* - ( Mu* + q)  ] i <~ - 6. Similary, according 
to the definitions of  So and SO we have 

[ u ' - ( M u ' + q ) ] i < < . O  and [ u - ( M u + q ) ] i < ~ O .  

It follows that 

{Pa[ u' - (Mu '  + q)  ] - Psi[ u* - (Mu* + q)  ] }i = 0 

and 

{ P a [ u -  ( M u + q )  ] - P a [ u *  - (Mu* + q )  ] }i =0.  

Therefore, for this u, from the above discussion we have 
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{Pal u - (Mu  + q)  ] - Pa[  u* - (Mu* + q)  ] } 

= r. {Ps~[u' - (Mu '  + q )  ] - P a [ u *  - (Mu* + q ) ]  } 

and thus 

e (u )  = e ( u )  - e ( u * )  

= u - u * -  { P a [ u -  ( M u + q )  ] - P a [ u * -  ( m u *  + q )  ] } 

= r ( u '  - u * )  - r .  { P s i [  u'  - ( M u '  + q )  ] - P a [  u*  - ( M u *  + q )  ] } 

= r ' e ( u ' ) .  

It follows that w ( u )  = w ( u ' )  and 

l i e ( u )  [[ 
>~7, for all u ~  {uk} • 

II u - u * II 

Therefore the PC Algorithm is globally linearly convergent for all starting 
uO~R n. [] 

vector 

4. Extensions and conclusions 

For 0 < 3'< 2, with the same direction d ( u )  and the same steplength p ( u ) ,  the sequence 
{ u k} generated by the iterative scheme 

uk+l = u k _  3"p(uk)d(u k) 

or  

uk+ 1 = p o [ u  k - 3"p(uk)d(u k) ] 

also converges to a solution point u*. Since we have proved that (u - u*)Xd(u)  >>, lie(u)II z 
for all u ~ R" in Theorem 1, a recommended choice of 3' would be >~ 1. 

The main advantages of our method are its simplicity and ability to handle the linear 

variational inequalities which might otherwise be excluded by some algorithms. Our method 
performs no transformation of the matrix elements. The method allows the optimal exploi- 
tation of the sparsity of the matrix M and may thus be efficient for large sparse problems. 
Since the method is easy to parallelise, it may be even more favorable for parallel compu- 
tation. 

However, in worse cases, the search direction (6) may lead to a slow convergence. 
Therefore, we suggest the following modified iterative scheme: 

uk+ l = u k _  y ( I + M )  - Xe(uk).  (16) 

Because e (u) is the residue of the linear projection equation (3), the modified method can 
be viewed as an extension of the damped-Newton's method for unconstrained optimization. 
Let G =  ( I + M ) T ( I + M ) .  Using (6),  (8) and (16), by a simple computation we get 
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[I u k + l  - u*  [[ 2 = fl ( I + M )  [ (u  k -  u* )  - T ( I + M )  - l e ( u k )  ] [[ 2 

= II ( I + M )  (u k -  u*) - ~,e(u ~) I[ 

= [[u k -  u* [I 2 _ 2 y ( u  k _  u * )  T ( I + M T ) e ( u k )  + YZlle(uk ) [[ z 

~< IJu k -  u*[I za - y ( 2  - y ) I l e ( u  k) II 2 

W i t h  t h e  s a m e  a p p r o a c h ,  w e  c a n  p r o v e  t h e  c o n v e r g e n c e  o f  th i s  m o d i f i e d  m e t h o d .  

( 1 7 )  
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