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Abstract. In this paper we introduce a new class of iterative methods for solving
the monotone variational inequalities

u∗ ∈ Ä, (u− u∗)T F(u∗) ≥ 0, ∀u ∈ Ä.

Each iteration of the methods presented consists essentially only of the computation
of F(u), a projection toÄ, v := PÄ[u−F(u)], and the mappingF(v). The distance
of the iterates to the solution set monotonically converges to zero. Both the methods
and the convergence proof are quite simple.

Key Words. Variational inequality, Monotone operator, Projection, Contraction.

AMS Classification. 90C30, 90C33, 65K05.

1. Introduction

Let Ä be a nonempty subset ofRn and letF be a mapping fromRn into itself. The
variational inequality problem, denoted by VI(Ä, F), is to find a vectoru∗ ∈ Ä such
that

VI(Ä, F) F(u∗)T (u− u∗) ≥ 0, ∀u ∈ Ä. (1)

Variational inequalities play a significant role in mathematical programming and this
subject has been studied by many researchers [1], [2], [9]–[11]. The interested reader
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may consult the survey paper by Harker and Pang [4] and the papers cited therein. In the
last several years we have developed some projection and contraction methods for solving
monotone linear variational inequalities (see [5]–[7]). Our objective in this paper is to
offer a new class of projection and contraction methods for solving monotone variational
inequalities, in whichÄ is a closed convex set and the mappingF is continuous and
monotone, i.e.,

[F(u)− F(v)]T (u− v) ≥ 0, ∀u, v ∈ Rn. (2)

Throughout this paper we assume that the solution set, denoted byÄ∗, is nonempty
and the projection onÄ, denoted byPÄ(·), is simple to carry out. In the following the
Euclidean norm is denoted by‖ · ‖, G denotes a symmetric positive definite matrix, and
‖u‖G denotes(uT Gu)1/2.

2. Some Fundamental Inequalities

Let PÄ(·) denote the projection toÄ. A basic property of the projection mapping is

(v − PÄ(v))
T (PÄ(v)− u) ≥ 0, ∀v ∈ Rn, ∀u ∈ Ä. (3)

It is well known [3] that the variational inequality VI(Ä, F) is equivalent to the following
projection equation:

(PE) u = PÄ[u− F(u)], (4)

i.e., to solve VI(Ä, F) is equivalent to finding a zero point of the residue function

e(u) := u− PÄ[u− F(u)]. (5)

Let u∗ ∈ Ä∗ be a solution. For anyu ∈ Rn, PÄ[u− F(u)] ∈ Ä. It follows from (1) that

F(u∗)T {PÄ[u− F(u)] − u∗} ≥ 0, ∀u ∈ Rn. (6)

Settingv = u− F(u) in inequality (3), we obtain

{e(u)− F(u)}T {PÄ[u− F(u)] − u∗} ≥ 0, ∀u ∈ Rn. (7)

Under the assumption thatF is monotone we have

{F(PÄ[u− F(u)])− F(u∗)}T {PÄ[u− F(u)] − u∗} ≥ 0, ∀u ∈ Rn. (8)

Inequalities (6)–(8) play an important role in projection and contraction methods.

3. Methods for Monotone Variational Inequalities

In this section we consider how to construct some projection and contraction methods
for monotone variational inequalities. Adding (6), (7), and (8), we obtain

{e(u)− [F(u)− F(PÄ[u− F(u)])]}T {(u− u∗)− e(u)} ≥ 0, ∀u ∈ Rn. (9)
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Denote

d(u) := e(u)− {F(u)− F(PÄ[u− F(u)])}. (10)

It follows from (9) that

(u− u∗)Td(u) ≥ e(u)Td(u). (11)

For convenience, first, we assume that

[F(u)− F(v)]T (u− v) ≤ (1− δ)‖u− v‖2, ∀u, v ∈ Rn, (12)

with δ ∈ (0, 1). Under this assumption we have

e(u)Td(u) = ‖e(u)‖2− e(u)T {F(u)− F(PÄ[u− F(u)])}
≥ δ‖e(u)‖2 (13)

and via (11) it follows that

(u− u∗)Td(u) ≥ δ‖e(u)‖2, ∀u ∈ Rn. (14)

Based on inequality (11), we can construct a class of projection and contraction (PC)
methods as follows.

PC Methods for Monotone VI (under assumption (12)).
Let γ ∈ (0, 2) be a constant and letG be a symmetric and positive definite matrix.
Given an arbitraryu0. Fork = 0, 1, . . ., if uk /∈ Ä∗, then

uk+1 = uk − γρ(uk)g(uk), (15)

where

g(uk) = G−1d(uk) (16)

and

ρ(uk) = e(uk)Td(uk)

‖g(uk)‖2G
. (17)

If we takeG = I , then each iteration of the method consists essentially of only the
computation ofF(u), a projectionv := PÄ[u− F(u)], and the mappingF(v). We call
it a projection and contraction method because in each iteration a projection has to be
carried out and the distance of the iterates to the solution set monotonically converges
to zero.

Theorem 1. The sequence{uk} generated by the PC methods for monotone variational
inequality satisfies

‖uk+1− u∗‖2G ≤ ‖uk − u∗‖2G − γ (2− γ )ρ(uk)e(uk)Td(uk), ∀u∗ ∈ Ä∗. (18)
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Proof. Using (11), (13), and (14)–(17) by a simple computation.

Note that, for fixedG, it is possible to prove that the steplengthρ is bounded below.
Therefore, there is a constantτ > 0 (depend onγ , G, andδ), so that the sequence{uk}
generated by each projection and contraction method satisfies

‖uk+1− u∗‖2G ≤ ‖uk − u∗‖2G − τ · ‖e(uk)‖2, ∀u∗ ∈ Ä∗. (19)

As in [6], from inequality (19), it is easy to prove that the PC methods are globally
convergent if the solution set is nonempty.

For a general continuous monotone mappingF , assumption (12) may not be sat-
isfied. Note that the variational inequality VI(Ä, F) is invariant under multiplicationF
by some positive scalarβ. We denote

e(u, β) = u− PÄ[u− βF(u)] (20)

and

d(u, β) = e(u, β)− β[F(u)− F(PÄ(u− βF(u)))]. (21)

It follows that (see (11))

(u− u∗)Td(u, β) ≥ e(u, β)Td(u, β). (22)

Because the mappingF is continuous, we can use Armijo’s rule to find aβk > 0, such
that

βk{F(uk)− F(PÄ[uk − βk F(uk)])}Te(uk, βk) ≤ (1− δ)‖e(uk, βk)‖2. (23)

An equivalent expression of (23) is

e(uk, βk)
Td(uk, βk) ≥ δ‖e(uk, βk)‖2. (24)

In practice, we use the following methods.

PC Methods with Armijo’s Linesearch (without assumption (12)).
Let γ ∈ (0, 2), α, δ ∈ (0, 1), andβ > 0 be constant.
Given an arbitraryu0. Fork = 0, 1, . . ., if uk /∈ Ä∗, then
βk := β,
While e(uk, βk)

Td(uk, βk) < δ‖e(uk, βk)‖2 do βk := αβk end,
β := βk,
Set

uk+1 = uk − γρ(uk, β)g(uk, β), (25)

where

g(uk, β) = G−1d(uk, β) (26)

and

ρ(uk, β) = e(uk, β)Td(uk, β)

‖g(uk, β)‖2G
. (27)
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Corollary 1. The sequence{uk} generated by the PC methods with linesearch for
monotone variational inequality satisfies

‖uk+1− u∗‖2G ≤ ‖uk − u∗‖2G − γ (2− γ )δ · ρ(uk, βk)‖e(uk, βk)‖2, ∀u∗ ∈ Ä∗.
(28)

Proof. Using (22) and (24)–(27) by a simple computation.

Because the sequence{uk} generated by any contraction method is bounded and the
mappingF is continuous, it is possible to prove that there is aβmin > 0 such that, for
all k,

βk ≥ βmin

and the PC method with Armijo’s linesearch is well defined. Based on Corollary 1 we
can prove that the methods are globally convergent.

4. Relationship to Some Existing PC Methods

In the last several years we have developed some projection and contraction methods for
monotone linear variational inequalities (see [5]–[7]). IfF is a monotone affine mapping,
thenF(u) = Mu+ q, q ∈ Rn, andM ∈ Rn×n is a positive semidefinite matrix.

The method in [5] is based on using inequality (6), which can be rewritten as

{(Mu+ q)− M(u− u∗)}T {u− u∗ − e(u)} ≥ 0. (29)

It follows that

(u− u∗)T {MTe(u)+ (Mu+ q)} ≥ e(u)T (Mu+ q). (30)

Because

e(u)T (Mu+ q) ≥ ‖e(u)‖2, ∀u ∈ Ä,
the search direction of the method in [5] is based on

d(u) := MTe(u)+ (Mu+ q).

The methods in [6] and [7] are based on adding inequality (6) and (7), which yields

{e(u)− M(u− u∗)}T {(u− u∗)− e(u)} ≥ 0. (31)

From (31) it follows that

(u− u∗)T (I + MT )e(u) ≥ ‖e(u)‖2+ (u− u∗)T M(u− u∗), ∀u ∈ Rn. (32)

Based on inequality (32) we constructed a class of projection and contraction methods
[6], [7]. The search directions of these methods are

gl (u) = G−1(I + MT )e(u), (33)
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which can be viewed as straightforward extensions of the directions in traditional methods
for unconstrained optimization (see [7]). The recursion

uk+1 = uk − ρl (u
k)gl (u

k) (34)

with

ρl (u) =
‖e(u)‖2
‖gl (u)‖2G

(35)

produces a sequence{uk}, which isnot necessarilycontained in the feasible setÄ, but
satisfies

‖uk+1− u∗‖2G ≤ ‖uk − u∗‖2G − ρl (u
k)‖e(uk)‖2. (36)

All projection and contraction methods for monotone linear variational inequalities
in [5]–[7] are minimization methods without linesearch and their implementations are
very simple. In general, for monotone linear variational inequalities, instead of the meth-
ods in Section 3 of this paper, we prefer to use the methods presented in [5]–[7], which
do not need linesearch. However, it seems that the methods in [5]–[7] are not applicable
for general monotone variational inequalities.

The extra gradient method, which was proposed by Korpelevich [8], is applicable
for solving monotone variational inequalities. Under the assumption that

‖F(u)− F(v)‖ ≤ L‖u− v‖, (37)

his iterative scheme is

ûk = PÄ[uk − βF(uk)],

uk+1 = PÄ[uk − βF(ûk)]

with a constant 0< β < 1/L. For convenience, we can assume thatL < 1 and then
takeβ = 1. In this case Korpelevich’s scheme may be written as

uk+1 = PÄ[uk − gK (u
k)] (38)

with

gK (u) = F(PÄ[u− F(u)]). (39)

Although the convergence analysis of the extra gradient method in [8] is different from
the one in our papers, we can see that Korpelevich’s search direction is based on adding
inequalities (6) and (8), which yields

F(PÄ[u− F(u)])T {(u− u∗)− e(u)} ≥ 0 (40)

and it follows that

(u− u∗)T F(PÄ[u− F(u)]) ≥ e(u)T F(PÄ[u− F(u)]). (41)
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For u ∈ Ä, it follows from (3) thate(u)T F(u) ≥ ‖e(u)‖2 and

e(u)T F(PÄ[u− F(u)]) = e(u)T F(u)− e(u)T {F(u)− F(PÄ[u− F(u)])}
≥ e(u)T F(u)− ‖e(u)‖ · ‖F(u)− F(PÄ[u− F(u)])‖
≥ (1− L)‖e(u)‖2. (42)

Therefore, under the assumptionL < 1, the direction−gK (u) is a descent direction of
the function‖u− u∗‖2 for u ∈ Ä.

It is clear that the efficiency of Korpelevich’s method depends on the estimation
of the Lipschitz constant. Since a suitable estimation of the Lipschitz constant even
in the linear case is expensive, Sun’s modified method in [12], using Armijo’s one-
dimensional research, was a contribution to making Korpelevich’s method applicable
in practice. However, for ill-conditioned problems, the direction based on extragradient
may lead to very slow convergence, because we cannot expect the extragradient method
to be better than a method of the steepest descent type.

In the methods presented in this paper, we use the directiong(u, β) = G−1d(u, β),
which is based on adding the fundamental inequalities (6), (7), and (8). We would like
to point out that the computational amount of

gK (u) = F(PÄ[u− F(u)]) (in Korpelevich’s method)

and

d(u) = u− PÄ[u− F(u)] − F(u)+ F(PÄ[u− F(u)]) (in our method)

is almost equal. Under assumption (37), the inequality

(u− u∗)T gK (u) ≥ e(u)T F(PÄ[u− F(u)]) ≥ (1− L)‖e(u)‖2

is true only foru ∈ Ä, and the sequence{uk} generated by Korpelevich’s method (and
the modified method by Sun [12]) must be contained inÄ. However, the inequality

(u− u∗)Td(u) ≥ e(u)Td(u) ≥ (1− L)‖e(u)‖2

is true for allu ∈ Rn, and the sequence{uk} generated by our methods isnot necessarily
contained inÄ. The direction−g(u, β) = −G−1d(u, β) is a descent direction of the
function ‖u − u∗‖2G for all u ∈ Rn. This offers us more possibilities (by choosing
differentG) of constructing better search directions and more efficient methods (see [7]
for example).
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