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Abstract. In this paper, we study the relationship between the forward-backward splitting method and the
extra-gradient method for monotone variational inequalities. Both of the methods can be viewed as prediction-
correction methods. The only difference is that they use different search directions in the correction-step. Our
analysis explains theoretically why the extra-gradient methods usually outperform the forward-backward splitting
methods. We suggest some modifications for the two methods and numerical results are given to verify the
superiority of the modified methods.
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1. Introduction

Let � be a nonempty closed convex subset of Rn and F be a continuous monotone mapping
from Rn into itself. A variational inequality problem, denoted by VI(�, F), is to determine
a vector u∗ ∈ � such that

(u − u∗)T F(u∗) ≥ 0, ∀ u ∈ �. (1.1)

VI(�, F) problem includes nonlinear complementarity problems (when � = Rn
+) and

system of nonlinear equations (when � = Rn), and thus it has many important applications
[5, 7].

Among the existing methods for nonlinear variational inequality problems, the simplest
one is the Goldstein-Levitin-Polyak projection method [6, 17], which starts with any u0 ∈ �,
and iteratively updates uk+1 according to the formula

(Explicit Method) uk+1 = P�[uk − βk F(uk)], (1.2)

where βk is a chosen positive step size and P�(v) denotes the projection of v onto �. This
projection method can be viewed as an explicit method because uk+1 occurs only on the
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left-hand side of the Eq. (1.2). Under suitable assumptions, e.g., F is Lipschitz continuous
(with a constant L > 0):

‖F(u) − F(v)‖ ≤ L‖u − v‖

and uniformly strongly monotone (with a constant modulus τ > 0)

(u − v)T (F(u) − F(v)) ≥ τ‖u − v‖2,

and the step size βk satisfies

0 < βL ≤ βk ≤ βU <
2τ

L2
, (1.3)

the explicit method (1.2) is globally and linearly convergent. However, the efficiency of
this method depends on the estimations of the Lipschitz constant L and the uniform strong
monotone modulus τ . It is very expensive to estimate the modulus τ and the Lipschitz
constant L , even if F is an affine mapping. Hence, in practice, the explicit method (1.2) is
used only for well conditioned problems and, in general, uniformly strong monotonicity is
a necessary condition.

The forward-backward splitting method [27] and the extra-gradient method [15, 16] are
considerably simple projection-type methods in the literature that can overcome the draw-
back of the Goldstein-Levitin-Polyak method. They are applicable for solving monotone
variational inequalities (not necessary strongly monotone). For a given u ∈ �, let

p
def= P�[u − βF(u)]. (1.4)

Under the assumption

(A) β‖F(u) − F(p)‖ ≤ ν‖u − p‖, ν ∈ (0, 1), (1.5)

they both take p as a predictor. Then, the forward-backward splitting method generates the
new iterate via

(FB) u+
FB = P�[p + β(F(u) − F(p))], (1.6)

while the extra-gradient method [16] produces the new iterate by

(EG) u+
EG = P�[u − βF(p)]. (1.7)

The forward-backward splitting method (1.6) is a special case of the method given in [27]
by setting Jβ A = P�. The monotonicity-based analysis [27] can be used to discuss set-
valued operator F , provides more general methods and guarantees stronger convergence.
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Our interest in this paper, however, is only to compare the efficiencies of the forward-
backward splitting method (1.6) and the extra-gradient method (1.7). For any solution point
u∗ ∈ �∗, let

�FB := ‖u − u∗‖2 − ‖u+
FB − u∗‖2. (1.8)

and

�EG := ‖u − u∗‖2 − ‖u+
EG − u∗‖2. (1.9)

We will prove that for two suitably introduced amounts ϒFB and ϒEG,

�FB ≥ ϒFB := ϒ + ‖p + β(F(u) − F(p)) − u+
FB‖2, (1.10)

�EG ≥ ϒEG := ϒ + ‖p + β(F(u) − F(p)) − u+
EG‖2, (1.11)

and

ϒEG ≥ ϒFB + ‖u+
EG − u+

FB‖2, (1.12)

where

ϒ = ‖u − p‖2 − β2‖F(u) − F(p)‖2.

Moreover, it will be shown by an example that both the inequalities (1.10) and (1.11) are
tight. The main result (1.12) indicates that it is likely the extra-gradient method would be
better than the forward-backward splitting method.

The paper is organized as follows. In Section 2, we summarize some basic concepts and the
consequent results. Sections 3 and 4 study convergence behaviours of the forward-backward
splitting method and the extra-gradient method, respectively. Based on the analysis in
Sections 3 and 4, the main theoretical result is given in Section 5. In Section 6, we suggest
some improvements for both methods. In Section 7, we present some numerical results to
indicate that the improvements in the modified methods are significant. Some concluding
remarks are addressed in Section 8.

Throughout this paper we assume that the operator F is monotone and Lipschitz contin-
uous on �, and the solution set of VI(�, F), denoted by �∗, is nonempty.

2. Preliminaries

In the following, we state some basic concepts for the variational inequality, which are
useful in the following analysis. For convenience, we only consider the projection under the
Euclidean norm and do not consider the projection under the general G-norm. However,
the general case can be easily extended once the basic ideas are clear. Let F be a mapping
on �. F is said to be monotone on � if

(u − v)T (F(u) − F(v)) ≥ 0, ∀ u, v ∈ �.
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Notice that the variational inequality VI(�, F) is invariant when we multiply F by some
positive scalar β. Thus VI(�, F) is equivalent to the following projection equation (see [4])

u = P�[u − βF(u)].

Using (1.4), solving VI(�, F) is equivalent to finding a zero point of the residue function

e(u, β) := u − p. (2.1)

Another popular reformulation for VI(�, F) is the multi-valued equation

0 ∈ T (u) =: F(u) + N�(u), (2.2)

where N�(·) is the normal cone operator with respect to �, i.e.,

N�(u) :=
{ {w | (v − u)T w ≤ 0, ∀ v ∈ �} if u ∈ �,

∅ otherwise.
(2.3)

Note that N�(u) is a cone and hence βN�(u) = N�(u) for all u ∈ Rn and β > 0.
A basic property of the projection mapping is

(v − P�(v))T (P�(v) − u) ≥ 0, ∀ v ∈ Rn, ∀ u ∈ �. (2.4)

It follows that

‖P�(v) − u‖2 ≤ ‖v − u‖2 − ‖v − P�(v)‖2, ∀ v ∈ Rn, u ∈ �. (2.5)

Let u∗ ∈ �∗ be a solution. For any u ∈ Rn , since p = P�[u − βF(u)] ∈ � (see (1.4)), it
follows from (1.1) that

(FI1) βF(u∗)T {p − u∗} ≥ 0, ∀ u ∈ Rn. (2.6)

Setting v = u − βF(u) in inequality (2.4) and using (1.4), we obtain

(FI2) {(u − βF(u)) − p}T {p − u∗} ≥ 0, ∀ u ∈ Rn. (2.7)

Under the assumption that F is monotone we have

(FI3) {βF(p) − βF(u∗)}T {p − u∗} ≥ 0, ∀ u ∈ Rn. (2.8)

The above three fundamental inequalities (2.6)–(2.8) play a very important role in the
convergence analysis of projection type methods [9–13, 22–25]. Let

g(u, β) := βF(p) (2.9)
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and

d(u, β) := (u − p) − β(F(u) − F(p)). (2.10)

Adding FI1 and FI3 and using the notation of e(u, β), we get

(u − u∗)T g(u, β) ≥ (u − p)T g(u, β). (2.11)

Adding FI1, FI2 and FI3, we have

(u − u∗)T d(u, β) ≥ (u − p)T d(u, β). (2.12)

Moreover, the recursion of the forward-backward splitting method (1.6) can be written as

u+
FB = P�[u − d(u, β)] (2.13)

while the formula of the extra-gradient method (1.7) can be written as

u+
EG = P�[u − g(u, β)]. (2.14)

We define an amount which is useful in the coming analysis:

ϒ(α) := 2αe(u, β)T d(u, β) − α2‖d(u, β‖2. (2.15)

3. The general forward-backward splitting method

Using the formulation of the multi-valued equation for VI(�, F), the iterative scheme of
the Douglas-Rachford operator splitting method [3, 18] is

uk+1
DR = (I + βF)−1{(I + βN�)−1[I − βF] + βF}uk . (3.1)

Since N�(·) is the normal cone operator to �, (I +βN�)−1 is just the orthogonal projection
operator onto �. Formula (3.1) can be written as

uk+1 = P�[uk − βF(uk)] + β(F(uk) − F(uk+1)). (3.2)

Because uk+1 occurs on both sides of Eq. (3.2), using the terminology in numerical analysis,
the Douglas-Rachford operator splitting method can be viewed as an implicit method. Note
that if we use the Goldstein-Levitin-Polyak method (1.2) to make a prediction

ū = P�[u − βF(u)] = p (3.3)

and then use the Douglas-Rachford operator splitting method to make a correction

u+ = p + β(F(u) − F(p)), (3.4)
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then the resulting formula of the Prediction-Correction method can be written as (see
notation d(u, β) in (2.10))

u+
PC = u − d(u, β). (3.5)

Since

u+
FB = P�[u − d(u, β)],

the forward-backward splitting method can be viewed as a prediction-correction method.
Let us study the more general forward-backward splitting method of the following form

u+
FB(α) = P�[u − αd(u, β)]. (3.6)

For convenience, we introduce the notation

u+
PC(α) = u − αd(u, β). (3.7)

Theorem 1. Let

�FB(α) := ‖u − u∗‖2 − ‖u+
FB(α) − u∗‖2 (3.8)

and

ϒFB(α) := ϒ(α) + ‖u+
PC(α) − u+

FB(α)‖2, (3.9)

where ϒ(α) is defined in (2.15). Then we have

�FB(α) ≥ ϒFB(α). (3.10)

Proof: Since u+
FB(α) = P�(u+

PC(α)) (see (3.6) and (3.7)) and u∗ ∈ �, it follows from (2.5)
that

‖u+
FB(α) − u∗‖2 ≤ ‖u+

PC(α) − u∗‖2 − ‖u+
PC(α) − u+

FB(α)‖2, (3.11)

and obtains consequently from (3.8) that

�FB(α) ≥ ‖u − u∗‖2 − ‖u+
PC(α) − u∗‖2 + ‖u+

PC(α) − u+
FB(α)‖2. (3.12)

Using (3.7) and (2.12) we get

‖uk − u∗‖2 − ‖u+
PC(α) − u∗‖2 ≥ 2αe(u, β)T d(u, β) − α2‖d(u, β)‖2,

and the theorem is proved.
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4. The general extra-gradient method

A classical method to solve the multi-valued Eq. (2.2) for VI(�, F) is the proximal point
algorithm [21], which starts with any vector u0 ∈ �, and iteratively updates uk+1 satisfying
the following requirement

0 ∈ (uk+1 − uk) + βk T (uk+1).

This is equivalent to

−((uk+1 − uk) + βk F(uk+1)) ∈ N�(uk+1).

In other words, for given uk ∈ �, the new iterate uk+1 is obtained via finding

u ∈ �, (u′ − u)T ((u − uk + βk F(u)) ≥ 0, ∀ u′ ∈ �. (4.1)

It means that uk+1 is the solution of

u = P�{u − [(u − uk) + βk F(u)]}

and thus

(Proximal point algorithm) uk+1 = P�[uk − βk F(uk+1)]. (4.2)

Because uk+1 occurs on both sides of Eq. (4.2), the proximal point algorithm can also be
viewed as an implicit method. Note that if we use the Goldstein-Levitin-Polyak method
(1.2) to make a prediction

ū = P�[u − βF(u)] (4.3)

and then use the proximal point algorithm to make a correction

u+ = P�[u − βF(ū)], (4.4)

the resulting formula is just the extra-gradient recursion

u+
EG = P�[u − g(u, β)].

Therefore, the extra-gradient method can also be viewed as a prediction-correction method.
Let us study the convergence of the general extra-gradient method of the following form

u+
EG(α) = P�[u − αg(u, β)]. (4.5)

Theorem 2. Let u+
PC(α) be defined in (3.7),

�EG(α) := ‖u − u∗‖2 − ‖u+
EG(α) − u∗‖2 (4.6)
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and

ϒEG(α) := ϒ(α) + ‖u+
PC(α) − u+

EG(α)‖2, (4.7)

where ϒ(α) is defined in (2.15). Then we have

�EG(α) ≥ ϒEG(α). (4.8)

Proof: Since u+
EG(α) = P�[u − αg(u, β)] and u∗ ∈ �, it follows from (2.5) that

‖u+
EG(α) − u∗‖2 ≤ ‖u − αg(u, β) − u∗‖2 − ‖u − αg(u, β) − u+

EG(α)‖2, (4.9)

and consequently we get

�EG(α) ≥ ‖u − u∗‖2 − ‖u − u∗ − αg(u, β)‖2 + ‖u − u+
EG(α) − αg(u, β)‖2.

By using (2.11) and a simple manipulation we obtain

�EG(α) ≥ ‖u − u+
EG(α)‖2 + 2αe(u, β)T g(u, β) − 2α(u − u+

EG(α))T g(u, β). (4.10)

Using g(u, β) = d(u, β) − {e(u, β) − βF(u)}, it follows that

�EG(α) ≥ 2αe(u, β)T g(u, β) + 2α(u − u+
EG(α))T {e(u, β) − βF(u)}

− α2‖d(u, β)‖2 + ‖(u − u+
EG(α)) − αd(u, β)‖2, (4.11)

which can be rewritten as

�EG(α) ≥ 2αe(u, β)T d(u, β) − α2‖d(u, β)‖2 + ‖(u − u+
EG(α)) − αd(u, β)‖2

+ 2α{u − u+
EG(α) − e(u, β)}T {e(u, β) − βF(u)}

= ϒEG(α) + 2α{u − u+
EG(α) − e(u, β)}T {e(u, β) − βF(u)}. (4.12)

Now we consider the last term on the right-hand-side of (4.12). Notice that

u − u+
EG(α) − e(u, β) = P�[u − βF(u)] − u+

EG(α). (4.13)

Setting v := u − βF(u) and u := u+
EG(α) in the basic inequality (2.4) of the projection

mapping, we get

{e(u, β) − βF(u)}T {P�[u − βF(u)] − u+
EG(α)} ≥ 0,

and therefore

{u − u+
EG(α) − e(u, β)}T {e(u, β) − βF(u)} ≥ 0. (4.14)
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Substituting (4.14) into (4.12), it follows that

�EG(α) ≥ ϒEG(α),

and the theorem is proved.

5. The main theoretical result

The assertions of Theorems 1 and 2 are similar. Since

ϒ(α) := 2αe(u, β)T d(u, β) − α2‖d(u, β)‖2,

it follows from Theorems 1 and 2 that both the general forward-backward splitting method
(3.6) and the general extra-gradient method (4.5) are contraction methods for any

α ∈
(

0,
2e(u, β)T d(u, β)

‖d(u, β)‖2

)
. (5.1)

Note that under Assumption (A) we have

e(u, β)T d(u, β) = ‖u − p‖2 − (u − p)T {βF(u) − βF(p)}
≥ (1 − v)‖u − p‖2. (5.2)

In addition, for any u 	∈ �∗, since

e(u, β)T d(u, β) = ‖u − p‖2 − (u − p)T {βF(u) − βF(p)}
>

1

2
‖u − p‖2 − (u − p)T {βF(u) − βF(p)} + 1

2
‖βF(u) − βF(p)‖2

= 1

2
‖d(u, β)‖2,

we have

τ (u, β) := e(u, β)T d(u, β)

‖d(u, β)‖2
>

1

2
. (5.3)

The following theorem gives a common result for both the general forward-backward split-
ting method (3.6) and the general extra-gradient method (4.5).

Theorem 3. Let d(u, β) and g(u, β) be given by (2.10) and (2.9), respectively, and

τ (u, β) = e(u, β)T d(u, β)

‖d(u, β)‖2
, α(u, β) = γ τ (u, β) and γ ∈ (0, 2). (5.4)
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For given uk ∈ �, β is chosen such that the assumption (A) is satisfied. Whenever the new
iterate uk+1 is generated by

uk+1 = P�[uk − α(uk, β)d(uk, β)] or uk+1 = P�[uk − α(uk, β)g(uk, β)],

we have

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − γ (2 − γ )(1 − ν)

2
‖e(uk, β)‖2, ∀ u∗ ∈ �∗. (5.5)

Proof: From Theorems 1 and 2 we have

‖uk − u∗‖2 − ‖uk+1 − u∗‖2 ≥ ϒ(α(uk, β)).

Using (2.15), (5.4), (5.3) and (5.2) we obtain

ϒ(α(uk, β)) = 2α(uk, β)e(uk, β)T d(uk, β) − (α(uk, β))2‖d(uk, β)‖2

= 2α(uk, β)e(uk, β)T d(uk, β) − (α(uk, β)γ e(uk, β)T d(uk, β)

= τ (uk, β)γ (2 − γ )e(uk, β)T d(uk, β)

≥ 1

2
γ (2 − γ )(1 − v)‖e(uk, β)‖2,

and the assertion is proved.

In general, Inequality (3.10) in Theorem 1 (resp. (4.8) in Theorem 2) is tight. This can
be seen from the following example. Let us consider a VI(�, F) with

� = R2, F(u) = Mu and M =
(

0 −1

1 0

)
.

This variational inequality is monotone and has a unique solution u∗ = 0. Note that

M2 = −I, and MT M = I.

For any u ∈ R2 and β ∈ (0, 1) we have

e(u, β) = βMu and d(u, β) = (I − βM)βMu = β2u + βMu.

Using uT Mu = 0 and ‖Mu‖ = ‖u‖ we get

e(u, β)T d(u, β) = β2‖u‖2 and ‖d(u, β)‖2 = β2(1 + β2)‖u‖2.

When the problem is solved by the general forward-backward splitting method (3.6) with
α ∈ (0, 2

1+β2 ), we have

‖u+
FB(α)‖2 = ‖(1 − αβ2)u − αβMu‖2 = (1 − 2αβ2 + α2β2(1 + β2))‖u‖2



COMPARISON OF TWO KINDS OF PREDICTION-CORRECTION METHODS 257

and

�FB(α) = (2αβ2 − α2β2(1 + β2))‖u‖2 = ϒFB(α).

For the general extra-gradient method, since in this special example

e(u, β) − βF(u) = 0 and hence g(u, β) = d(u, β),

we have also �FG(α) = ϒEG(α), which means that Inequality (4.8) is tight in this example.
Nevertheless, the following theorem indicates that in each iterative step, we may expect

the general extra-gradient method (4.5) to get more progress than the general forward-
backward splitting method (3.6).

Theorem 4. Let ϒEG(α) and ϒFB(α) be defined as in Theorems 1 and 2. We have

ϒEG(α) − ϒFB(α) ≥ ‖u+
EG(α) − u+

FB(α)‖2. (5.6)

Proof: It follows from (3.9) and (4.7) that

ϒEG(α) − ϒFB(α) = ‖u+
PC(α) − u+

EG(α)‖2 − ‖u+
PC(α) − u+

FB(α)‖2. (5.7)

Note that (see (3.6) and (3.7))

u+
FB(α) = P�(u+

PC(α))

and u+
FB(α) ∈ �. Setting v = u+

PC(α) and u = u+
EG(α) in (2.5) we obtain

‖u+
FB(α) − u+

EG(α)‖2 ≤ ‖u+
PC(α) − u+

EG(α)‖2 − ‖u+
PC(α) − u+

FB(α)‖2. (5.8)

The assertion of this theorem follows directly from (5.7) and (5.8)

6. Modifications of the both methods

From the analysis of Sections 3 and 4, both the general forward-backward splitting method
and the general extra-gradient method can be viewed as prediction-correction methods that
use Goldstein-Levitin-Polyak formula to make a prediction. The difference is only in the cor-
rection step, in which the forward-backward splitting method utilizes the Douglas-Rachford
operator splitting formula [3, 18] while the extra-gradient method uses the proximal point
formula [21]. Nevertheless, both methods use the same step size in the correction step. In
this section, we discuss how to improve efficiency of such methods via choosing suitable
{βk} in the prediction step and {αk} in the correction step. The modifications are based on a
practical code of the extra-gradient method by Khobotov [15]. This technology provides an
acceptable βk satisfying Assumption (A) after reducing its value for a finite number of times
whenever the operator F is Lipschitz continuous. In each iteration, the final accepted step
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size is less than or equal to the probe step size. Moreover, the accepted step size βk in the
k-th iteration is taken as the probe step size in the (k + 1)-th iteration. Hence, the sequence
{βk} of the accepted step sizes is monotonically non-increasing. Since the sequence {βk}
generated by the basic extra-gradient method also satisfies the step rule in [27], our discus-
sion about the forward-backward splitting methods is obtained by substituting g(u, β) in
EG method by d(u, β).

6.1. Modifications under Assumption (A)

The analysis of this section is similar to which in [14] for extra-gradient method. It seems
that the step size αk in both (3.6) and (4.5) should depend on the current point uk and the
step size βk in the prediction step. This motivates our following analysis which aims at
finding a ‘best’ α for given uk and βk . The analysis is based on

�FB(α) = ‖u − u∗‖2 − ‖u+
FB(α) − u∗‖2 ≥ ϒFB(α),

�EG(α) = ‖u − u∗‖2 − ‖u+
EG(α) − u∗‖2 ≥ ϒEG(α),

ϒEG(α) ≥ ϒFB(α) ≥ ϒ(α),

and recall that

ϒ(α) = 2αe(u, β)T d(u, β) − α2‖d(u, β)||2. (6.1)

The right-hand-side of (6.1) is a quadratic function of α and it reaches its maximum at

α∗ = τ (u, β) where τ (u, β) = e(u, β)T d(u, β)

‖d(u, β)‖2
. (6.2)

Thus from (6.1) and (6.2) we have the maximum value of ϒ(α):

ϒ(α∗) = α∗e(u, β)T d(u, β) = τ (u, β) · e(u, β)T d(u, β). (6.3)

Based on the above analysis, for given u and β, the ‘ideal’ step size α∗
k in the correction step is

given by (6.2). However, in the above considerations, we ignored the part �k(F Bα)−ϒk(α)
(resp. �k(EGα) − ϒk(α)). To ensure a faster convergence, we use a relaxation factor γ ∈
[1, 2) but close to 2. Thus, in the correction step we take the step size

(Modification 1) αk = γ τ (uk, βk), γ ∈ [1, 2).

Instead of αk ≡ 1 in the basic FB and EG methods, we determine αk via Modification 1
and this requires only O(n) extra flops.

The sequence {βk} in the FB and EG methods is monotonically non-increasing. However,
this may cause a slow convergence if

rk := βk‖F(uk) − F(P�[uk − βk F(uk)])‖
‖uk − P�[uk − βk F(uk)]‖
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is too small. In this situation, enlarging the probe step size β for the next iteration is
necessary. Therefore, when we start the (k + 1)-th iteration, we take

(Modification 2) βk+1 :=



0.8ν

rk
βk if rk ≤ µ,

βk otherwise

where µ ∈ (0, 0.5) is a constant.

6.2. Improvements under new conditions

In fact, the method is well defined when α∗ = τ (u, β) > 0 (see (6.2) or [25]). In order
to guarantee τ (u, β) > 0 we need only to ensure (u − p)T β(F(u) − F(p)) < ‖u − p‖2.
In other words, Assumption (A) (i. e., β‖F(u) − F(p)‖ < ‖u − p‖, see (1.5)) is not
necessary for convergence. However, from numerical point of view, β‖F(u) − F(p)‖ ≈
‖u − p‖ is favorable for fast convergence. According to our numerical experiences, instead
of Assumption (A), we suggest to take the following condition (C):

(C)
(u − p)T β(F(u) − F(p))

‖u − p‖2
≤ 2

3
and

β‖F(u) − F(p)‖
‖u − p‖ ≤ 3

2
. (6.4)

By considering the above improvements, we obtain the following improved prediction-
correction methods.

The improved prediction-correction methods under Condition (C)

Step 0. Let β0 > 0, 0 < µ < 1 < v, u0 ∈ �, γ ∈ [1, 2) and k = 0.
Step 1. Set ūk = P�[uk − βk F(uk)].

Step 2. If (uk−ūk )T βk (F(uk )−F(ūk ))
‖uk−ūk‖2 ≤ 2

3 and rk := βk‖F(uk )−F(ūk )‖
‖uk−ūk‖ ≤ ν

then set e(uk, βk) = uk − ūk, g(uk, βk) = βk F(ūk),
d(uk, βk) = e(uk, βk) − βk F(uk) + g(uk, βk),

τk = e(uk ,βk )T d(uk ,βk )
‖d(uk ,βk )‖2 , αk = γ τk, Modification 1

uk+1 = P�[uk − αkd(uk, βk)], (in the forward-backward splitting method)

or
uk+1 = P�[uk − αk g(uk, βk)], (in the extra-gradient method).

βk :=
{

0.8v
rk

βk if rk ≤ µ,

βk otherwise,
Modification 2

βk+1 = βk and k := k + 1, go to Step 1.
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Step 3. Reduce the value of βk by βk := 3
4βk ∗ min {1, v

rk
},

set ūk = P�[uk − βk F(uk)] and go to Step 2.

Remark. Modification 2 is to avoid β‖F(u) − F(p)‖ � ‖u − p‖ while rk ≤ v is to avoid
β‖F(u) − F(p)‖ 
 ‖u − p‖. In this way we balance β‖F(u) − F(p)‖ and ‖u − p‖ in the
iteration process.

7. Numerical experiments

The purpose of this section is to verify the theoretical assertions via numerical experiments.

7.1. The first set of test examples

In order to see the effects of Modifications 1 and 2 under Assumption (A), we test a set of
nonlinear complementarity problems

u ≥ 0, F(u) ≥ 0, uT F(u) = 0 (7.1)

with the following different forms of the improved methods.

Methods of FB type Methods of EG type

• FBA (FB method under Assum. (A)) • EGA (EG method under Assum. (A))
• FBA1 (FBA with Modification 1) • EGA1 (EGA with Modification 1)
• FBA2 (FBA with Modification 2) • EGA2 (EGA with Modification 2)
• FBA12 (FBA with Modifications 1 & 2) • EGA12 (EGA with Modifications 1 & 2)

Note that in each iteration the computational costs of these methods are almost equal.
In our test problems we take

F(u) = D(u) + Mu + q, (7.2)

where D(u) and Mu + q are the nonlinear part and the linear part of F(u), respectively.
We form the linear part in the test problems similarly as in [8].1 The matrix M =

AT A + B, where A is an n × n matrix whose entries are randomly generated in the interval
(−5, +5) and a skew-symmetric matrix B is generated in the same way. The vector q is
generated from a uniform distribution in the interval (−500, 500). In D(u), the nonlinear
part of F(u), the components are D j (u) = d j ∗ arctan(u j ), where d j is a random variable
in (0, 1). A similar type of (small) problems was tested in [20] and [26].2 It is easy to see
that the Jacobian matrix of mapping F is positive semidefinite (not necessary symmetric)
and hence the problem is monotone. In details, by using the pseudo random numbers, we
form A, B, q and d via the following Matlab code:
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A=zeros(n,n); t=0; for i=1:n for j=1:n t=mod(t*31416+13846,46261);
A(i,j)=t*(10/46261)-5; end; end;

%% A is a random matrix and A {ij} is in (-5,5) %%
B=zeros(n,n); t=0; for i=1:n for j=i+1:n t=mod(t*42108+13846,46273);
B(i,j)=t*10/46273-5; B(j,i)= - B(i,j); end; end;

%% B is skew-symmetric and B {ij} is in (-5,5) %%
M= A’*A+B; t=0;
q=zeros(n,1); for j=1:n t=mod(t*45278+13846,46219); q(j)=t; end;
q=(q/46219 -0.5)*1000;

d=zeros(n,1); for j=1:n t=mod(t*45278+13846,46219); d(j)=t; end;
d=d/46219;

All codes are written in Matlab and run on a PIII-600 Acer notebook computer. We took
ν = 0.9 in Assumption (A), γ = 1.8 in Modification 1 and µ = 0.3 in Modification 2. The
computation begins with u0 = 0, β0 = 1 and stop as soon as ‖e(uk, 1)‖∞ ≤ 10−7. We test
the problems with n = 100, 200 and 500. The test results with methods of the FB type and
the EG type are reported in Tables 1 and 2, respectively.

First, in each case, the method of EG type needs fewer iterations than the corresponding
method of FB type, and this advantage of the EG method is even more obvious when
modifications 1 and/or 2 are taken. Second, we can see from Tables 1 and 2 that the
modifications 1 and 2 in both FB type methods and EG type methods are effective. They
reduce the numbers of iteration remarkably and lead to a rapid convergence. In fact, the
numerical results agree with the theoretical analysis.

Table 1. Numerical results for methods of the FB type.

Method FBA Method FBA1 Method FBA2 Method FBA12

n No. of it. CPU (sec.) No. of it. CPU (sec.) No. of it. CPU (sec.) No. of it. CPU (sec.)

100 737 1.21 488 0.83 670 1.10 357 0.66

200 1226 6.76 636 3.52 904 4.89 502 2.80

500 1158 30.60 671 17.91 983 26.47 534 14.56

Table 2. Numerical results for methods of the EG type.

Method EGA Method EGA1 Method EGA2 Method EGA12

n No. of it. CPU (sec.) No. of it. CPU (sec.) No. of it. CPU (sec.) No. of it. CPU (sec.)

100 731 1.21 383 0.72 562 0.94 305 0.55

200 844 4.61 460 2.53 804 4.40 438 2.48

500 1131 29.99 467 12.42 849 23.01 476 13.13



262 HE, YUAN AND ZHANG

Table 3. The coordinates of the 10 regular points in [28].

x-coordinate y-coordinate x-coordinate y-coordinate

b[1] 7.436490 7.683284 b[6] 1.685912 1.231672

b[2] 3.926097 7.008798 b[7] 4.110855 0.821114

b[3] 2.309469 9.208211 b[8] 4.757506 3.753666

b[4] 0.577367 6.480938 b[9] 7.598152 0.615836

b[5] 0.808314 3.519062 b[10] 8.568129 3.079179

7.2. The second test example

The purpose of our second test example is to indicate that the improved extra-gradient
method is applicable for some scientific problems. The problem is Example 1 in [28]
for finding the shortest network in a given full Steiner topology. In this example, P =
{b[1], . . . , b[10]} are given points in R2 (called regular points) whose coordinates are given
in Table 3. x[1], . . . , x[8] are the locations of the additional points (called Steiner points).
The points-edges connections of the network are depicted in figure 1.

Figure 1. The points-edges connections of Example 1 in [28].
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The mathematical form of the problem is

min
x[ j]∈R2

{∥∥x[1] − b[1]

∥∥
2 +

8∑
j=1

∥∥x[ j] − b[ j+1]

∥∥
2 + ∥∥x[8] − b[10]

∥∥
2

+
7∑

j=1

∥∥x[ j] − x[ j+1]

∥∥
2

}
(7.3)

For any d ∈ R2, since

‖d‖2 = max
ξ∈B2

ξ T d, where B = {ξ ∈ R2 | ‖ξ‖2 ≤ 1}, (7.4)

problem (7.3) is equivalent to the following min-max problem

min
x[ j]∈R2

max
z[i]∈B




zT
[1]

(
x[1] − b[1]

) +
8∑

j=1

zT
[ j+1]

(
x[ j] − b[ j+1]

)

+ zT
[10]

(
x[8] − b[10]

) +
7∑

j=1

zT
[ j+10]

(
x[ j] − x[ j+1]

)




, (7.5)

where z[i], i = 1, . . . , 17 are vectors in R2. In fact, z[i] is the dual variable ordered to edge
ei . The compact form of (7.5) is

min
x∈R

max
z∈B

zT (Ax − b) (7.6)

where

xT = (
xT

[1], . . . , xT
[8]

)T
, zT = (

zT
[1], . . . , zT

[17]

)T

R = R2 × · · · × R2, B = B × · · · × B,
(7.7)

A is block matrix which has form

A =




I2

I2

. . .

. . .

I2

I2

I2 −I2

. . .
. . .

I2 −I2




and b =




b[1]

b[2]

...

...

b[9]

b[10]

0
...

0




. (7.8)
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Let (x∗, z∗) ∈ X × B be any solution of (7.6), it follows that

zT (Ax∗ − b) ≤ z∗T (Ax∗ − b) ≤ z∗T (Ax − b), ∀ x ∈ R, z ∈ B.

Thus, (x∗, z∗) is a solution of the following variational inequality:

x∗ ∈ R, z∗ ∈ B2,

{
(x − x∗)T (AT z∗) ≥ 0, ∀ x ∈ R,

(z − z∗)T (−Ax∗ + b) ≥ 0, ∀ z ∈ B,
(7.9)

The compact form of (7.9) is the following linear variational inequality:

LVI(�, M, q) u∗ ∈ �, (u − u∗)T (Mu∗ + q) ≥ 0, ∀ u ∈ �, (7.10)

Table 4. Part of the output of the improved extra-gradient method with x0 = 0 for Example 1 in [28].

Iteration Network-cost ‖e(u)‖ Iteration Network-cost ‖e(u)‖

1 67.4046273974 3.2e + 000 80 25.3560680147 2.1e–007

20 25.6180798312 2.3e–001 100 25.3560677830 2.8e–009

40 25.3585237874 1.4e–003 106 25.3560677800 7.7e–010

60 25.3560897957 1.6e–005 116 25.3560677794 9.3e–011

Figure 2. The shortest network of Example 1 in [28] under l2-norm.
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where

u =
(

x

z

)
, M =

(
0 AT

−A 0

)
, q =

(
0

b

)
and � = R × B. (7.11)

Note that M is skew-symmetric and thus the linear variational inequality is monotone.
The improved method under Condition (C) was applied to solve the resulting LVI. We

took ν = 3
2 in Condition (C), γ = 1.5 in Modification 1 and µ = 0.6 in Modification 2. By

taking β0 = 1 and u0 = 0, the improved algorithm of EG type reached ‖e(u)‖2 ≤ 10−10 in
a total 116 iterations.

Since some Steiner points in the shortest network coincide with regular points, the prob-
lem is degenerate. Table 4 shows a part of the computer output in this experiment. For
the same problem, the start point in [28] was x0 = 0 and thus we have the same start
network-cost at the beginning of computation. The algorithm in [28] reached the final cost
25.3560677802 in 23 iterations, while our algorithm reaches this cost in 106 iterations (see

Table 5. Number of iterations of the improved EG and FB methods under conditions (C) for Example 2 with
different β0.

β0 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

Method EG type 128 128 128 126 116 127 127 127 127

Method FB type 143 143 143 138 146 145 145 145 145

Figure 3. Convergence tendency of the Steiner points.
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Table 4). It seems that we need about 4.5 times of the iterations that the interior point
algorithm needs. However, the cost of each iteration in our algorithm is much lower. So, it
shows that the method is applicable to some scientific problems.

The shortest network under l2-norm is depicted in figure 2. The convergence tendency of
the Steiner points of the iterates with the start point x0 = 0 is given in figure 3.

Similarly, under condition (C), the method of EG type needs fewer iterations than the
method of FB type. We tested this example with different start scaling parameters β0, and
the number of iterations of different methods are given in Table 5.

However, without the balancing strategy described in Section 6, the methods converge
extremely slowly when the starting parameter β0 is too large or too small.

8. Concluding remarks

We have investigated the relationship between the forward-backward splitting methods and
the extra-gradient methods for monotone variational inequalities. For a given uk ∈ �, both
methods take the same prediction step. Once the same prediction step size is determined,
the two methods have the same range (5.1) for the correction step size. The only difference
is that they use different search directions in the correction step. The computational costs
of the two methods in each iteration are almost equal. The proof of Theorem 4 (for the
general extra-gradient methods) is a little more complicated than the proof of Theorem 3
(for the general forward-backward splitting methods). Both the theoretical analysis and the
numerical experience show that in general we can not expect the forward-backward splitting
methods to have better performance than the extra-gradient methods. The preliminary nu-
merical experiments show that the improved extra-gradient method is applicable for some
scientific problems.
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Notes

1. In the paper by Harker and Pang [8], the matrix M = AT A + B + D, where A and B are the same matrices as
what we used here, and D is a diagonal matrix with uniformly distributed random variable d j j ∈ (0.0, 0.3).

2. In [20] and [26], the components of the nonlinear mapping D(u) are D j (u) = constant ∗ arctan(u j ).
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