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1 Introduction

The variational inequality (VI) problem was originally introduced by Hartman and
Stampacchia in [1] for the study of partial differential equations; it has received
much attention from many researchers in different areas such as optimal control,
economics, game theory and transportation science. In the literature, projection-type
methods have been well studied for variational inequalities; they are particularly
efficient for some special scenarios where the involved projection can be easily com-
puted. We refer to [2] for a survey on projection methods in the variational inequality
context.

In this paper, we consider two projection methods for monotone linear variational
inequalities (LVI). The first one was proposed by Solodov and Tseng in [3]. The effi-
ciency of this method has been numerically verified in the literature, and its iterative
sequence has been proved to be strictly contractive with respect to the solution set of
LVI. Hence, its convergence follows from the standard analytic framework of con-
traction methods; see, e.g., Blum and Oettli in [4]. A special case of this method was
proposed by He in [5], and its linear convergence rate was also proved for the lin-
ear complementarity problem therein. Another representative projection method was
proposed by He in [6,7], whose step sizes are the same as those defined in [3], but it
utilizes different search directions and requires the computation of two projections at
each iteration.

Our main purpose is to analyze the convergence rates for both the mentioned
projection-type methods under mild assumptions. Indeed, if certain error bound
condition is assumed, the strict contraction property enables us to establish some
convergence rates in asymptotical sense immediately. In general, however, it is not
easy to verify error bound conditions even for LVI. We thus consider the possibility of
deriving the convergence rates without any error bound conditions. More specifically,
we want to derive the worst-case sublinear convergence rate measured by the iteration
complexity. This kind of convergence rate analysis based on the iteration complexity
traces back to [8], and it has received much attention from the literature. Furthermore,
our convergence rate analysis does not need to assume the boundedness of the feasible
set which is usually required by iteration complexity analysis of projection methods
for nonlinear variational inequalities; see the work [9] for the extragradient method
studied in [10]. Finally, we emphasize that we only focus on LVI in this paper and
do not discuss the iteration complexity analysis of projection methods for nonlinear
variational inequalities. We refer to, e.g., [9,11], for some insightful discussions in
this regard.

The rest of this paper is organized as follows. In Sect. 2, wemathematically state the
LVImodel and the projectionmethods to be discussed. Then, in Sect. 3, we summarize
some preliminaries that are useful for further analysis. We prove two lemmas in Sect.
4 that are crucial for establishing the main convergence rate results. In Sect. 5, we
present the main convergence rate results. Finally, some conclusions are drawn in
Sect. 6.
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2 Model and Projection Methods

We first present the LVI model and two projection methods to be discussed. LetΩ be a
closed convex subset ofRn , M ∈ Rn×n and q ∈ Rn . The linear variational inequality
problem, denoted by LVI(Ω, M, q), is to find a vector u∗ ∈ Ω such that

LVI(Ω, M, q) 〈u − u∗, Mu∗ + q〉 ≥ 0, ∀u ∈ Ω. (1)

We consider the case where the matrix M is positive semi-definite (but not necessar-
ily symmetric). Moreover, the solution set of (1), denoted by Ω∗, is assumed to be
nonempty.

It is well known (see, e.g., [12, p. 267]) that u∗ is a solution point of (1) if and only
if it satisfies the following projection equation

u∗ = P[Ω,G][u∗ − G−1(Mu∗ + q)], (2)

where G ∈ Rn×n is a symmetric positive definite matrix, and P[Ω,G](·) denotes the
projection onto Ω with respect to the G-norm:

P[Ω,G](v) = argmin{‖u − v‖G | u ∈ Ω},

and ‖u‖G = √
uT Gu for any u ∈ Rn . When G = I , we simply use the notation

PΩ(·) for P[Ω,I ](·). Moreover, for given u ∈ Rn , we denote

ũ = PΩ [u − (Mu + q)].

Hence, we have
ũk = PΩ [uk − (Muk + q)]. (3)

We further use the notation
e(uk) := uk − ũk . (4)

It follows from (2) that u is a solution point of LVI(Ω, M, q) if and only if u = ũ.
Then, naturally, the projection equation residual ‖e(uk)‖2 can be used to measure the
accuracy of an iterate uk to a solution point of LVI(Ω, M, q).

Indeed, the projection equation characterization (2) for LVI(Ω, M, q) is the basis
of many algorithms in the literature, including the projection-type methods under our
discussion, see, e.g., [3,5,6] to just mention a few. Because of their easiness in imple-
mentation, modest demand on storage and relatively fast convergence, projection-type
methods are particularly efficient for the special scenario where the set Ω in (1) is
simple in sense of that the projection onto it can be easily computed. The first method
to be discussed is the projection method proposed in [5] and later generalized in [3]
to the G-norm (see Algorithm 2.1 therein). More specifically, its iterative scheme is

(Algorithm-I) uk+1 = uk − γα∗
k G

−1(I + MT )(uk − ũk), (5)
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where γ ∈]0, 2[ is a relaxation factor and the step size α∗
k is determined by

α∗
k = ‖uk − ũk‖2

‖G−1(I + MT )(uk − ũk)‖2G
. (6)

Obviously, for the step size α∗
k defined in (6), we have

α∗
k ≥ 1

‖(I + M)G−1(I + M)T ‖2 := αmin, (7)

where ‖·‖2 denotes the spectral norm of a matrix. Therefore, the step size sequence of
Algorithm-I is bounded away from zero; this is indeed an important property for both
theoretically ensuring the convergence and numerically resulting in fast convergence
for Algorithm-I. More specifically, as proved in [3], the sequence {uk} generated by
Algorithm-I satisfies the inequality

‖uk+1 − u∗‖2G ≤ ‖uk − u∗‖2G − γ (2 − γ )α∗
k‖uk − ũk‖2, (8)

where u∗ is an arbitrary solution point of LVI(Ω, M, q). Recall the fact that ‖uk −
ũk‖2 = 0 if and only if uk is a solution point of LVI(Ω, M, q). Thus, together with
the property (7), inequality (8) essentially means that the sequence {uk} is strictly
contractive with respect to the solution set of LVI(Ω, M, q).

In addition to Algorithm-I in (5), we consider another projection method

(Algorithm-II) uk+1 = P[Ω,G]
{
uk − γα∗

k G
−1

[(
Muk + q

)
+ MT

(
uk − ũk

)]}
,

(9)
where the step size α∗

k is also defined in (6). As for Algorithm-I, we will show later
(see Corollary 4.1) that the sequence {uk} generated by Algorithm-II also satisfies the
property (8) and thus its convergence is ensured. The special case of Algorithm-II with
Ω = Rn+ and G = I can be found in [7] and mentioned in [6], and its convergence
proof can be found in [13]. Also, Algorithm-II differs from Algorithm 2.3 in [3] in
that its step size is determined by (6) and thus it is bounded away from zero, while the
latter may tend to zero, see (2.14) on [3, p. 1821].

In this paper, we establish the worst-case O(1/t) convergence rate measured by
the iteration complexity for Algorithm-I and Algorithm-II, where t is the iteration
counter. More specifically, we will show that for a given ε > 0, by implementing
either Algorithm-I or Algorithm-II, we need at most O(1/ε) iterations to find an
approximated solution point of LVI(Ω, M, q) with an accuracy of ε. In our analysis,
we measure the accuracy of an approximated solution point of LVI(Ω, M, q) in two
ways. The first one is the restricted merit function of LVI(Ω, M, q):

sup
u∈D(v)

{〈v − u, Mu + q〉},
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where D(v) is some subset of Ω . The second one is simply the residual of the pro-
jection equation ‖e(u)‖2 as mentioned before. More details of the definition of an
ε-approximated solution point of LVI(Ω, M, q) can be found in Sect. 3.2.

3 Preliminaries

In this section we summarize some preliminaries useful for further analysis. Through-
out, the following notation is used. We use u∗ to denote a fixed but arbitrary point in
the solution set Ω∗ of LVI. A superscript such as in uk refers to a specific vector and
usually denotes an iteration index. For any real matrix M and vector v, we denote their
transposes by MT and vT , respectively. The Euclidean norm is denoted by ‖ · ‖.

3.1 Some Inequalities

We first recall several inequalities which will be frequently used in the upcoming
analysis. First, since

P[Ω,G](v) = argmin

{
1

2
‖u − v‖2G | u ∈ Ω

}
,

we have

〈v − P[Ω,G](v),G(u − P[Ω,G](v)〉 ≤ 0, ∀ v ∈ Rn,∀ u ∈ Ω. (10)

Let u∗ be any fixed solution point of LVI(Ω, M, q). Since ũk ∈ Ω , it follows from
(1) that

〈ũk − u∗, Mu∗ + q〉 ≥ 0, ∀ u∗ ∈ Ω∗.

Setting v = uk − (
Muk + q

)
, G = I and u = u∗ in (10), because of the notation ũk ,

we have

〈ũk − u∗, [uk − (Muk + q)] − ũk〉 ≥ 0, ∀ u∗ ∈ Ω∗.

Adding the last two inequalities together, we obtain

〈ũk − u∗, (uk − ũk) − M(uk − u∗)〉 ≥ 0, ∀ u∗ ∈ Ω∗,

and consequently

〈uk − u∗, (I + MT )(uk − ũk)〉 ≥ ‖uk − ũk‖2, ∀ u∗ ∈ Ω∗. (11)
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3.2 An ε-Approximated Solution Point of LVI(Ω, M, q)

To estimate the worst-case convergence rates measured by the iteration complexity for
Algorithm-I orAlgorithm-II, we need to precisely define an ε-approximated solution of
LVI(Ω, M, q). We will consider the following two definitions, which are based on the
variational inequality characterization and projection equation residual, respectively.

First, according to (2.3.2) in [2, p. 159], we know that Ω∗ is convex and it can be
characterized as follows:

Ω∗ =
⋂
u∈Ω

{
v ∈ Ω : 〈u − v, Mu + q〉 ≥ 0

}
.

Therefore, motivated by [14], we call v ∈ Ω an ε-approximated solution point of
LVI(Ω, M, q) in sense of the variational inequality characterization if it satisfies

v ∈ Ω and inf
u∈D(v)

{〈u − v, Mu + q〉} ≥ −ε,

where

D(v) = {u ∈ Ω | ‖u − v‖G ≤ 1}.

Later, we will show that for given ε > 0, after at most O(1/ε) iterations, both
Algorithm-I and Algorithm-II can find v such that

v ∈ Ω and sup
u∈D(v)

{〈v − u, Mu + q〉} ≤ ε. (12)

For the other definition, asmentioned, with e(u) defined in (4), ‖e(u)‖2 is ameasure
of the distance between the iterate u and the solution set Ω∗. We thus call v an ε-
approximated solution point of LVI(Ω, M, q) in sense of the projection equation
residual if ‖e(v)‖2 ≤ ε.

4 Two Lemmas

We consider Algorithm-I and Algorithm-II simultaneously because of the similarity in
their convergence rate analysis and they can be presented in a unified framework. In this
section, we show that the sequences generated by both Algorithm-I and Algorithm-II
satisfy one common inequality, which is indeed the key for estimating their conver-
gence rates measured by the iteration complexity. For notation simplicity, we define

qk(γ ) = γ (2 − γ )α∗
k‖uk − ũk‖2, (13)

where α∗
k is given by (6). Moreover, let us use the notation

D = M + MT ,

where M is the matrix in (1).
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In the following, we show that the sequence {uk} generated by either Algorithm-I
or Algorithm-II satisfies the inequality

γα∗
k 〈u − ũk, Mu + q〉 ≥ 1

2

(‖u − uk+1‖2G − ‖u − uk‖2G
) + 1

2
qk(γ ), ∀ u ∈ Ω,

(14)

where qk(γ ) is defined in (13). We present this conclusion in two lemmas.

Lemma 4.1 For given uk ∈ Rn, let ũk be defined by (3) and the new iterate uk+1 be
generated by Algorithm-I in (5). Then, the assertion (14) is satisfied.

Proof Setting v = uk − (Muk + q) in (10), and using ũk = PΩ [uk − (Muk + q)],
we have

〈u − ũk, (Muk + q) − (uk − ũk)〉 ≥ 0, ∀ u ∈ Ω.

This inequality can be rewritten as

〈u−ũk, (Mu + q)−M(u − ũk)+(M + MT )(uk − ũk) − (I + MT )(uk − ũk)〉 ≥ 0.

Therefore, using the notation M + MT = D and the Cauchy–Schwarz inequality, we
have

〈u − ũk, Mu + q〉
≥ 〈u − ũk, M(u − ũk) − (M + MT )(uk − ũk) + (I + MT )(uk − ũk)〉
= 〈u − ũk, (I + MT )(uk − ũk)〉 + 1

2
‖u − ũk‖2D − 〈u − ũk, D(uk − ũk)〉

≥ 〈u − ũk, (I + MT )(uk − ũk)〉 − 1

2
‖uk − ũk‖2D.

Moreover, it follows from (5) that

γα∗
k (I + MT )(uk − ũk) = G(uk − uk+1).

Thus, we obtain

γα∗
k 〈u − ũk, Mu + q〉 ≥ 〈u − ũk,G(uk − uk+1)〉 − γα∗

k

2
‖uk − ũk‖2D. (15)

For the crossed term in the right-hand side of (15): 〈u− ũk,G(uk − uk+1)〉, it follows
from the identity

〈a − b,G(c − d)〉 = 1

2

(
‖a − d‖2G − ‖a − c‖2G

)
+ 1

2

(
‖c − b‖2G − ‖d − b‖2G

)
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that

〈u − ũk,G(uk − uk+1)〉
= 1

2

(
‖u − uk+1‖2G − ‖u − uk‖2G

)
+ 1

2

(
‖uk − ũk‖2G − ‖uk+1 − ũk‖2G

)
. (16)

Now, we treat the second part of the right-hand side of (16). Using (5), we get

‖uk − ũk‖2G − ‖uk+1 − ũk‖2G
= ‖uk − ũk‖2G − ‖(uk − ũk) − γα∗

k G
−1(I + MT )(uk − ũk)‖2G

= 2γα∗
k 〈uk − ũk, (I + MT )(uk − ũk)〉 − (

γα∗
k

)2 ‖G−1(I + MT )(uk − ũk)‖2G
= 2γα∗

k‖uk − ũk‖2 + γα∗
k‖uk − ũk‖2D

− (γ α∗
k )2‖G−1(I + MT )(uk − ũk)‖2G . (17)

Recall the definition of α∗
k in (6). It follows from (17) that

(
γα∗

k

)2 ‖G−1(I + MT )(uk − ũk)‖2G = γ 2α∗
k‖uk − ũk‖2,

and consequently,

‖uk − ũk‖2G − ‖uk+1 − ũk‖2G = γ (2 − γ )α∗
k‖uk − ũk‖2 + γα∗

k‖uk − ũk‖2D.

Substituting it into the right-hand side of (16) and using the definition of qk(γ ), we
obtain

〈u − ũk,G(uk − uk+1)〉
= 1

2

(
‖u − uk+1‖2G − ‖u − uk‖2G

)
+ 1

2
qk(γ ) + γα∗

k

2
‖uk − ũk‖2D. (18)

Adding (15) and (18) together, we get the assertion (14) and the theorem is proved. ��
Then, we prove the assertion (14) for Algorithm-II in the following lemma.

Lemma 4.2 For given uk ∈ Rn, let ũk be defined by (3) and the new iterate uk+1 be
generated by Algorithm-II (9). Then, the assertion (14) is satisfied.

Proof It follows from Cauchy–Schwarz inequality that

〈u − ũk, Mu + q〉 − 〈u − ũk, (Muk + q) + MT (uk − ũk)〉
= 〈u − ũk, M(u − uk) − MT (uk − ũk)〉
= 〈u − ũk, M(u − ũk) − (M + MT )(uk − ũk)〉
= 1

2
‖u − ũk‖2D − 〈u − ũk, D(uk − ũk)〉

≥ −1

2
‖uk − ũk‖2D .
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Consequently, we obtain

γα∗
k 〈u − ũk, Mu + q〉

≥
〈
u − ũk, γ α∗

k [(Muk + q) + MT (uk − ũk)]
〉
− γα∗

k

2
‖uk − ũk‖2D. (19)

Now we investigate the first term in the right-hand side of (19) and divide it into the
following two terms, namely

〈
uk+1 − ũk, γ α∗

k [(Muk + q) + MT (uk − ũk)]
〉

(20a)

and 〈
u − uk+1, γ α∗

k [(Muk + q) + MT (uk − ũk)]
〉
. (20b)

First, we deal with term (20a). Let us set v = uk − (Muk + q) in (10). Since ũk =
PΩ [uk − (Muk + q)] and uk+1 ∈ Ω , it follows that

〈uk+1 − ũk, Muk + q〉 ≥ 〈uk+1 − ũk, uk − ũk〉.

Adding the term 〈uk+1 − ũk, MT (uk − ũk)〉 to both sides in the above inequality, we
obtain

〈u − ũk, (Muk + q) + MT (uk − ũk)〉 ≥ 〈u − ũk, (I + MT )(uk − ũk)〉,

and it follows that

〈
uk+1 − ũk, γ α∗

k [(Muk + q) + MT (uk − ũk)]
〉

≥ γα∗
k 〈uk+1 − ũk, (I + MT )(uk − ũk)〉

= γα∗
k 〈uk − ũk, (I + MT )(uk − ũk)〉 − γα∗

k 〈uk − uk+1, (I + MT )(uk − ũk)〉
≥ γα∗

k‖uk − ũk‖2 + γα∗
k

2
‖uk − ũk‖2D

−γα∗
k

〈
uk − uk+1,

(
I + MT

) (
uk − ũk

)〉
. (21)

For the crossed term of the right-hand side in (21), using Cauchy–Schwarz inequality
and (6), we get

−γα∗
k 〈uk − uk+1, (I + MT )(uk − ũk)〉

= −
〈
uk − uk+1,G

[
γα∗

k G
−1(I + MT )(uk − ũk)

]〉

≥ −1

2
‖uk − uk+1‖2G − 1

2
γ 2 (

α∗
k

)2 ‖G−1(I + MT )(uk − ũk)‖2G
= −1

2
‖uk − uk+1‖2G − 1

2
γ 2α∗

k‖uk − ũk‖2.
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Substituting it into the right-hand side of (21) and using the notation qk(γ ), we obtain

〈
uk+1 − ũk, γ α∗

k [(Muk + q) + MT (uk − ũk)]
〉

≥ 1

2
qk(γ ) + γα∗

k

2
‖uk − ũk‖2D − 1

2
‖uk − uk+1‖2G . (22)

Now, we turn to treat term (20b). The update form of Algorithm-II (9) means that uk+1

is the projection of the vector
(
uk − γα∗

k G
−1[(Muk + q) + MT (uk − ũk)]) onto Ω .

Thus, it follows from (10) that

〈
(uk − γα∗

k G
−1[(Muk + q) + MT (uk − ũk)]) − uk+1,G(u − uk+1)

〉
≤ 0, ∀ u ∈ Ω,

and consequently

〈
u − uk+1, γ α∗

k [(Muk + q) + MT (uk − ũk)]
〉
≥ 〈u − uk+1,G(uk − uk+1)〉, ∀ u ∈ Ω.

Using the identity

〈a,Gb〉 = 1

2

{
‖a‖2G − ‖a − b‖2G + ‖b‖2G

}

for the right-hand side of the last inequality, we obtain

〈
u − uk+1, γ α∗

k [(Muk + q) + MT (uk − ũk)]
〉

≥ 1

2

(
‖u − uk+1‖2G − ‖u − uk‖2G

)
+ 1

2
‖uk − uk+1‖2G . (23)

Adding (22) and (23) together, we get

〈
u − ũk, γ α∗

k [(Muk + q) + MT (uk − ũk)]
〉

(24)

≥ 1

2

(
‖u − uk+1‖2G − ‖u − uk‖2G

)
+ 1

2
qk(γ ) + γα∗

k

2
‖uk − ũk‖2D. (25)

Finally, substituting it into (19), the proof is complete. ��

Based on Lemmas 4.1 and 4.2, the strict contraction property of the sequences
generated by Algorithm-I and Algorithm-II can be easily derived.We summarize them
in the following corollary.

Corollary 4.1 The sequence {uk} generated by either Algorithm-I or Algorithm-II is
strictly contractive with respect to the solution set Ω∗ of LVI(Ω, M, q).
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Proof In Lemmas 4.1 and 4.2, we have proved that the sequence {uk} generated by
either Algorithm-I or Algorithm-II satisfies inequality (14). Setting u = u∗ in (14)
where u∗ ∈ Ω∗ is an arbitrary solution point of LVI(Ω, M, q), we get

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G ≥ 2γα∗
k 〈ũk − u∗, Mu∗ + q〉 + qk(γ ).

Because 〈ũk − u∗, Mu∗ + q〉 ≥ 0, it follows from the last inequality and (13) that

‖uk+1 − u∗‖2G ≤ ‖uk − u∗‖2G − γ (2 − γ )α∗
k‖uk − ũk‖2,

which means that the sequence {uk} generated by either Algorithm-I or Algorithm-II
is strictly contractive with respect to the solution set Ω∗. The proof is complete. ��

5 Estimates on Iteration Complexity

In this section, we estimate the worst-case convergence rates measured by the itera-
tion complexity for Algorithm-I and Algorithm-II. We discuss both the ergodic and
nonergodic senses.

5.1 Iteration Complexity in the Ergodic Sense

We first derive the worst-case convergence rates measured by the iteration complexity
in the ergodic sense. For this purpose, we need the definition of an ε-approximated
solution point of LVI(Ω, M, q) in sense of the variational inequality characterization
(12).

Theorem 5.1 Let the sequence {uk} be generated by either Algorithm-I or Algorithm-
II starting from u0, and ũk be given by (3). For any integer t > 0, let

ũt = 1

Υt

t∑
k=0

α∗
k ũ

k and Υt =
t∑

k=0

α∗
k . (26)

Then, it holds that

〈ũt − u, Mu + q〉 ≤ ‖u − u0‖2G
2αminγ (t + 1)

, ∀u ∈ Ω. (27)

Proof Note that Lemmas 4.1 and 4.2 still hold for any γ > 0; the strict contraction
in Corollary 4.1 is guaranteed for γ ∈]0, 2[. In this proof, we can slightly extend the
restriction of γ to γ ∈]0, 2]. Clearly, for this case, we still have qk(γ ) ≥ 0. It follows
from the positivity of M , (13) and (14) that

〈u − ũk, α∗
k (Mu + q)〉 + 1

2γ
‖u − uk‖2G ≥ 1

2γ
‖u − uk+1‖2G , ∀ u ∈ Ω.
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Summarizing the above inequality over k = 0, . . . , t , we obtain

〈(
t∑

k=0

α∗
k

)
u −

t∑
k=0

α∗
k ũ

k, Mu + q

〉
+ 1

2γ
‖u − u0‖2G ≥ 0, ∀u ∈ Ω.

Then, using the notation of Υt and ũt in the above inequality, we derive

〈ũt − u, Mu + q〉 ≤ ‖u − u0‖2G
2γΥt

, ∀u ∈ Ω. (28)

Indeed, ũt ∈ Ω because it is a convex combination of the iterates ũ0, ũ1, . . . , ũt .
Because of α∗

k ≥ αmin (see (7)), it follows from (26) that

Υt ≥ (t + 1)αmin.

Substituting it into (28), the proof is complete. ��
The next theorem shows clearly the worst-case O(1/t) convergence rate measured

by the iteration complexity in the ergodic sense for Algorithm-I and Algorithm-II.

Theorem 5.2 For any ε > 0 and u∗ ∈ Ω∗, with an initial iterate u0, either

Algorithm-I or Algorithm-II requires no more iterations than
⌈

d
2αminγ ε

⌉
to produce an

ε-approximated solution point of LVI(Ω, M, q) in sense of the variational inequality
characterization (12), where

d := 3 + 9‖u0 − u∗‖2G + 6‖G‖2‖u0 − u∗‖2G
γ (2 − γ )αmin

. (29)

Proof For u ∈ D(ũt ), it follows from Cauchy–Schwarz inequality and the convexity
of ‖ · ‖2G that

‖u − u0‖2G ≤ 3‖u − ũt‖2G + 3‖u0 − u∗‖2G + 3‖ũt − u∗‖2G
≤ 3 + 3‖u0 − u∗‖2G + 3 max

0≤k≤t
‖ũk − u∗‖2G

≤ 3 + 3‖u0 − u∗‖2G + 6 max
0≤k≤t

‖uk − u∗‖2G
+6 max

0≤k≤t
‖uk − ũk‖2G . (30)

On the other hand, it follows from (8) that

‖uk − u∗‖2G ≤ ‖u0 − u∗‖2G (31)

and

‖uk − ũk‖2 ≤ ‖u0 − u∗‖2G
γ (2 − γ )α∗

k
≤ ‖u0 − u∗‖2G

γ (2 − γ )αmin
. (32)
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Because of the inequality

‖uk − ũk‖2G ≤ ‖G‖2‖uk − ũk‖2,

it follows from (30), (31) and (32) that

‖u − u0‖2G ≤ 3 + 9‖u0 − u∗‖2G + 6‖G‖2‖u0 − u∗‖2G
γ (2 − γ )αmin

= d. (33)

This, together with (27), completes the proof of the theorem. ��

Remark 5.1 Recall that v ∈ Ω is called an ε-approximated solution point of
LVI(Ω, M, q) in sense of the variational inequality characterization if it satisfies (12).
Replacing D(v) with Ω in (12), we obtain the standard merit function

sup
u∈Ω

{〈v − u, Mu + q〉},

which has been widely used in the literature, e.g., [9,10]. Moreover, if Ω is bounded,
it follows from (28) that

sup
u∈Ω

{〈ũt − u, Mu + q〉} ≤ d

2αminγ (t + 1)
,

where d = sup{‖u − u0‖2G | u ∈ Ω}. Then, for any ε > 0, with an initial iterate

u0, either Algorithm-I or Algorithm-II requires no more iterations than
⌈

d
2αminγ ε

⌉
to

produce an ε-approximated solution in sense of

sup
u∈Ω

{〈ũt − u, Mu + q〉} ≤ ε.

5.2 Iteration Complexity in a Nonergodic Sense

In this subsection, we derive theworst-case O(1/t) convergence ratesmeasured by the
iteration complexity in a nonergodic sense for Algorithm-I and Algorithm-II. For this
purpose, we need the definition of an ε-approximated solution point of LVI(Ω, M, q)

in sense of the projection equation residual characterization mentioned in Sect. 3.2.
The worst-case O(1/t) convergence rates in a nonergodic sense for Algorithm-I

and Algorithm-II are proved in the following theorem.

Theorem 5.3 For any ε > 0 and u∗ ∈ Ω∗, with an initial iterate u0, either

Algorithm-I or Algorithm-II requires no more iterations than
⌈ ‖u0−u∗‖2G

αminγ (2−γ )ε

⌉
to obtain

an ε-approximated solution point of LVI(Ω, M, q) in the sense of ‖e(uk)‖2 ≤ ε.
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Proof Summarizing inequality (8) over k = 0, 1, . . . , t and using the inequality αk ≥
αmin, we derive that ∞∑

k=0

‖e(uk)‖2 ≤ ‖u0 − u∗‖2G
αminγ (2 − γ )

. (34)

This implies

(t + 1) min
0≤k≤t

‖e(uk)‖2 ≤
t∑

k=0

‖e(uk)‖2 ≤ ‖u0 − u∗‖2G
αminγ (2 − γ )

,

which proves this theorem. ��
Indeed, the worst-case O(1/t) convergence rates in a nonergodic sense established

in Theorem 5.3 can be easily refined as an o(1/t) order. We summarize it in the
following corollary.

Corollary 5.1 Let the sequence {uk} be generated by either Algorithm-I or Algorithm-
II; e(uk) be defined in (4). For any integer t > 0, it holds that

min
0≤k≤t

‖e(uk)‖2 = o(1/t), as t → ∞ (35)

Proof Notice that

t

2
min
0≤k≤t

‖e(uk)‖2 ≤
t∑

i=� t
2 �+1

‖e(uk)‖2 → 0 (36)

as t → ∞, where equation (36) holds due to (34) and Cauchy principle. The proof is
complete. ��

6 Conclusions

We study the iteration complexity of two projection methods for monotone linear
variational inequalities and derive their worst-case convergence rates measured by the
iteration complexity in both the ergodic and nonergodic senses. The proofs critically
depend on the strict contraction property of the sequences generated by these two pro-
jection methods. Our analysis is conducted under mild assumptions, and the derived
worst-case convergence rates are sublinear.We do not need any error bound conditions
which are usually required by projection methods for deriving asymptotically linear
convergence rates, nor the boundedness restriction onto the feasible setwhich is usually
required by estimating iteration complexity-based convergence rates for some algo-
rithms to solve nonlinear variational inequalities. It is interesting to consider extending
our analysis to projection-type methods for nonlinear variational inequalities such as
the extragradient methods in [10] and the modified forward–backward methods in
[15]. We leave this topic as a future work.
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