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Abstract. In this paper, we study the relationship of some projection-
type methods for monotone nonlinear variational inequalities and inves-
tigate some improvements. If we refer to the Goldstein–Levitin–Polyak
projection method as the explicit method, then the proximal point
method is the corresponding implicit method. Consequently, the Korpe-
levich extragradient method can be viewed as a prediction-correction
method, which uses the explicit method in the prediction step and the
implicit method in the correction step. Based on the analysis in this
paper, we propose a modified prediction-correction method by using
better prediction and correction stepsizes. Preliminary numerical experi-
ments indicate that the improvements are significant.
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1. Introduction

Let Ω be a nonempty closed convex subset of Rn, and let F be a con-
tinuous monotone mapping from Rn into itself. The variational inequality
problem is to determine a vector u* ∈Ω such that

(VI(Ω, F )) (uAu*)TF (u*)¤0, ∀ u ∈Ω . (1)

Problem VI(Ω, F ) includes nonlinear complementarity problems (when
ΩGRn

C) and system of nonlinear equations (when ΩGRn); thus, it has
many important applications (Refs. 1–2). For solving variational inequality
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problems, besides Newton-like methods (e.g., Refs. 3–6), there are projec-
tion-type methods for linear variational inequalities (Refs. 7–10) and non-
linear variational inequalities (e.g., Refs. 11–17).

Our interest in this paper is to study the relationships between some
projection-type methods and then investigate some improvements. Even
though most projection methods are gradient-type methods and are some-
times inefficient, they are considerably simpler and well suited for large
sparse problems. Motivated by the Goldstein–Levitin–Polyak method (Refs.
11–12) and the proximal method (Ref. 18), which can be viewed as explicit
and implicit methods respectively, the extragradient method proposed by
Korpelevich (Refs. 14–15) can be referred to as a prediction-correction
method. From this point of view, we make some improvements to such
projection methods. For convenience, we consider only the projection under
the Euclidean norm and do not consider the projection under the general
G-norm. However, the general case can be added easily once the basic ideas
are clear.

The paper is organized as follows. In Section 2, we summarize some
basic concepts and consequent results. In Section 3–4, we study the explicit
and implicit methods, respectively. In Section 5, we analyze the convergence
property of the prediction-correction method. A modified prediction-
correction method is given in Section 6. In Section 7, we present some
numerical results to indicate that the improvements in the modified
prediction-correction method are significant. Some concluding remarks are
given in Section 8.

Throughout this paper, we assume that the operator F is monotone and
Lipschitz continuous on Ω, and that the solution set of VI(Ω, F ), denoted by
Ω*, is nonempty.

2. Preliminaries

Now, let us summarize first some basic concepts and their properties
that will be used in the subsequent sections. We use the concept of projec-
tion under the Euclidean norm; this will be denoted by PΩ( · ), i.e.,

PΩ(û)Gargmin{��ûAu�� �u ∈Ω }.

From the above definition, it follows that

{ûAPΩ[û]}T{wAPΩ[û]}⁄0, ∀ û ∈ Rn, ∀ w ∈Ω , (2)

(ûAw)T{PΩ(û)APΩ(w)}¤ ��PΩ(û)APΩ(w) ��2, ∀ û, w ∈ Rn. (3)
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Consequently, we have

��PΩ(û)APΩ(w) ��⁄ ��ûAw��, ∀ û, w ∈ Rn, (4)

��PΩ(û)Au��2⁄ ��ûAu��2A��ûAPΩ(û) ��2, ∀ u ∈Ω . (5)

Lemma 2.1. See Ref. 19, p. 267. Let βH0. Then, u* solves VI(Ω, F )
if and only if

u*GPΩ [u*AβF (u*)].

Denote

e(u, β)_uAPΩ [uAβF (u)]. (6)

Then, solving VI(Ω, F ) is equivalent to finding a zero point of e(u, β). The
next lemma states that ��e(u, β) �� is a nondecreasing function for βH0.

Lemma 2.2. For all u ∈ Rn and β̃¤βH0, it holds that

��e(u, β̃) ��¤ ��e(u, β) ��. (7)

Proof. We need to prove only that

e(u, β)T(e(u, β̃)Ae(u, β))¤0, ∀ β̃¤βH0. (8)

Substituting

w_PΩ [uAβ̃F (u)] and û_uAβF (u)

into (2) and using

PΩ [uAβF (u)]APΩ [uAβ̃F (u)]Ge(u, β̃)Ae(u, β),

we get

{[uAβF (u)]APΩ [uAβF (u)]}T{e(u, β̃)Ae(u, β)}¤0. (9)

It follows from (9) that

e(u, β)T{e(u, β̃)Ae(u, β)}¤βF (u)T{e(u, β̃)Ae(u, β)}. (10)

Setting

û_uAβF (u) and w_uAβ̃F (u)

in (3), we get

(β̃Aβ)F (u)T{e(u, β̃)Ae(u, β)}¤ ��e(u, β̃)Ae(u, β) ��2. (11)

Using (10)–(11), it follows that inequality (8) is true and the lemma is
proved. �
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Now, let us present a convergence theorem which is useful for various
methods studied in this paper.

Theorem 2.1. Let c0H0 be a constant, let l ∈ {0, 1} be a given integer,
let {βk} be a positive sequence, and let inf{βk}GβminH0. If the sequence
{uk} generated by a method satisfies

��ukC1Au*��2⁄ ��ukAu*��2Ac0 ��e(ukCl, βk) ��2, ∀ u* ∈Ω *, (12)

then {uk} converges to a solution point of VI(Ω, F ).

Proof. Let û be a solution of VI(Ω, F ). First, from (12), we get

∑
S

kG0

c0 ��e(ukCl, βk) ��2⁄ ��u0Aû��2,

and it follows from Lemma 2.2 that

lim
k→S

e(uk, βmin)G0.

Again, it follows from (12) that the sequence {uk} is bounded. Let ũ* be a
cluster point of {uk}, and let the subsequence {ukj} converge to ũ*. Because
e(u, βmin) is continuous,

e(ũ*, βmin)G lim
j→S

e(ukj, βmin)G0,

and thus ũ* is a solution of VI(Ω, F ). In the following, we prove that the
sequence {uk} has exactly one cluster point. Assume that ũ is another cluster
point, and denote

δ_ ��ũAũ*��H0.

Because ũ* is a cluster point of the sequence {uk}, there is a k0H0 such that

��uk0Aũ*��⁄δ�2.

On the other hand, since ũ* ∈Ω * and thus

��ukAũ*��⁄ ��uk0Aũ*��, ∀ k¤ k0 ,

it follows that

��ukAũ��¤ ��ũAũ*��A��ukAũ*��¤δ�2, ∀ k¤ k0 .

This contradicts the assumption; thus, the sequence {uk} converges to
ũ* ∈Ω *. �

Let

dist(u, Ω*)Ginf{��uAu*�� �u*∈Ω *}.
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Note that (12) implies

dist(ukC1, Ω*)⁄dist(u(k), Ω*)Ac0 ��e(ukCl, βk) ��2.

��e(u, βmin) �� is the error bound of VI(Ω, F ). If there exists a µH0 such that

dist(u, Ω*)⁄µ��e(u, βmin) ��, ∀ u, (13a)

with

dist(x, Ω*)⁄dist(u0, Ω*), (13b)

we can obtain the linear convergence from Theorem 2.1 immediately. In the
rest of this paper, for convergence analysis, we need only to pay our atten-
tion on the conditions of Theorem 2.1 for the generated sequence.

3. Goldstein–Levitin–Polyak Projection Method (Explicit Method)

Among the existing methods for nonlinear variational inequality prob-
lems, the simplest is the Goldstein–Levitin–Polyak projection method (Refs.
11–12), which starts with any u0 ∈Ω and updates iteratively ukC1 according
to the formula

(EM) ukC1GPΩ [ukAβkF (uk)], (14)

where βk is a chosen positive stepsize. This projection method can be viewed
as an explicit method because ukC1 occurs only on the left-hand side of Eq.
(14). Under the assumptions that F is Lipschitz continuous with a constant
LH0,

��F (u)AF (û) ��⁄L��uAû��, (15)

that F is uniformly strong monotone with a constant modulus τH0,

(uAû)T[F (u)AF (û)]¤τ ��uAû��2, (16)

and that the stepsize βk satisfies

0FβL⁄βk⁄βUF2τ �L2, (17)

the explicit method (14) is convergent. Namely, we have

1A2τβ kCβ2
kL

2F1,
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and using (15)–(16),

��ukC1Au*��2G��PΩ [ukAβkF (uk)]APΩ [u*AβkF (u*)]��2

⁄ �� (ukAu*)Aβk [F (uk)AF (u*)]��2

⁄ ��ukAu*��2A2βk (u
kAu*)T[F (uk)AF (u*)]

Cβ2
k ��F (uk)AF (u*) ��2

⁄ (1A2τβ kCβ2
kL

2) ��ukAu*��2. (18)

Moreover, if {βk} is monotonically nonincreasing, then it follows from
Lemma 2.2 that

��e(ukC1, βkC1) ��2⁄ ��e(ukC1, βk) ��2

G��ukC1APΩ [ukC1AβkF (ukC1)]��2

G��PΩ [ukAβkF (uk)]APΩ [ukC1AβkF (ukC1)]��2

⁄ �� (ukAukC1)Aβk [F (uk)AF (ukC1)]��2

⁄ ��ukAukC1��2A2βk (u
kAukC1)T[F (uk)AF (ukC1)]

Cβ2
k ��F (uk)AF (ukC1) ��2

⁄ (1A2τβ kCβ2
kL

2) ��ukAukC1��2

G(1A2τβ kCβ2
kL

2) ��e(uk, βk) ��2. (19)

In other words, for fixed β satisfying (17), both sequences {��ukAu*��} and
{��e(uk, β) ��} are linearly convergent to zero globally. However, the efficiency
of this method depends on the estimations of the Lipschitz constant L and
the uniform strong monotone modulus τ . It is very expensive to estimate
the modulus τ and the Lipschitz constant L, even if F is an affine mapping.
Hence, in practice, the explicit method (14) is used only for well-conditioned
problems. Moreover, in general, a simple explicit projection method can be
used only for solving uniformly strong monotone variational inequalities.
This can be seen from the following example.

Example 3.1. Let

ΩGR2, F (u)GMu, MG�0 −1

1 0�. (20)

This linear variational inequality has a unique solution u*G0. When the
problem is solved by the explicit method (14), the recursion is

ukC1GukAβkMuk. (21)
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Since M is skew-symmetric and ��Mu��G��u��, from (21) we have

��ukC1��G11Cβ2
k ��uk��;

thus, the sequence {uk} generated by (21) is divergent when u0≠0.

4. Proximal-Point Algorithm (Implicit Method)

Another popular formulation for VI(Ω, F ) is the multivalued equation

0 ∈ T(u)G:F (u)CNΩ (u), (22)

where NΩ ( · ) is the normal cone operator to Ω, i.e.,

NΩ (u)_�{w� (ûAu)Tw⁄0, ∀ û ∈Ω }, if u ∈Ω ,

∅ , otherwise.
(23)

Note that NΩ (u) is a cone and hence

cNΩ (u)GNΩ (u), for all u ∈ Rn and cH0.

A classical method to solve this problem is the proximal point algorithm
(18), which starts with any vector u0 ∈Ω and updates iteratively ukC1 accord-
ing to the following recursion:

0 ∈ (ukC1Auk)Cα kT(ukC1),

where {α k} ⊂ [α min,S ), α minH0, is a sequence of scalars. This is equivalent
to

−[(ukC1Auk)Cα kF (u)] ∈ NΩ (ukC1).

In other words, for given uk ∈Ω , the new iterate ukC1 is obtained by
finding

u ∈Ω , (u′Au)T[(uAuk)Cα kF (u)]¤0, ∀ u′ ∈Ω . (24)

According to Lemma 1.1, ukC1 is the solution of

uGPΩ{uA[(uAuk)Cα kF (u)]};

thus,

(IM) ukC1GPΩ [ukAα kF (ukC1)], (25)

Because ukC1 occurs on both sides of Eq. (25), we call the method
implicit.

Recall that ukC1 is the solution of variational inequality problem (24).
Compared with the original variational inequality (1), problem (24) is well
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conditioned. By denoting

ū kC1_ukAα kF (ukC1),

we have

ukC1GPΩ (ū kC1).

Using (5), we obtain

��ukC1Au*��2⁄ ��ū kC1Au*��2A��ū kC1AukC1��2

G�� (ukAu*)Aα kF (ukC1) ��2

A�� (ukAukC1)Aα kF (ukC1) ��2

G��ukAu*��2A2α k (u
kC1Au*)TF (ukC1)

A��ukAukC1��2. (26)

But from the monotonicity of F and (1), we have

(ukC1Au*)TF (ukC1)¤ (ukC1Au*)TF (u*)¤0.

This and (26) imply

��ukC1Au*��2⁄ ��ukAu*��2A��ukAukC1��2. (27)

Using (25) and (4), we have

��e(ukC1, α k) ��G��ukC1APΩ [ukC1Aα kF (ukC1)]��

G��PΩ [ukAα kF (ukC1)]APΩ [ukC1Aα kF (ukC1)]��

⁄ ��ukAukC1��, (28)

and (27) becomes

��ukC1Au*��2⁄ ��ukAu*��2A��e(ukC1, α k) ��2, ∀ u* ∈Ω *. (29)

By setting βGα , lG1, and c0G1 it follows from Theorem 2.1 that the
sequence {uk} produced by this implicit method converges to a solution
point u*. If the illustrative problem (20) is solved by the implicit method
(25), the recursion becomes

ukC1GukAα kMukC1, (30)

and we have

11Cα 2
k ��ukC1��G��uk��;

thus, the sequence {uk} generated by (30) converges to the solution point
u*G0 from any starting point u0.



JOTA: VOL. 112, NO. 1, JANUARY 2002 119

This implicit method is convergent whenever F is monotone and Ω* is
nonempty; however, it has to solve a well-conditioned variational inequality
of the form (24) at least approximately in each iteration.

5. Extragradient Method

Among the numerical solution methods for ordinary differential equa-
tions, besides the explicit methods (e.g., explicit Euler method) and implicit
methods (e.g., Adams–Moulton method), there are also prediction-correc-
tion methods, which use explicit methods in the prediction step and implicit
methods in the correction step. For VI(Ω, F ), the extragradient method
introduced by Korpelevich (Ref. 14) can be viewed as a prediction-correc-
tion method. It uses the Goldstein–Levitin–Polyak explicit method (14) to
make a prediction,

(P) ū kC1GPΩ [ukAβkF (uk)], (31)

and then uses the implicit scheme (24) to make a correction,

(C) ukC1GPΩ [ukAβkF (ū kC1)]. (32)

Substituting (31) into (32), the recursion of the Korpelevich method can be
rewritten as

(PC) ukC1GPΩ{ukAβkF (PΩ [ukAβkF (uk)])}. (33)

Under the assumption

��βkF (uk)AβkF (PΩ [ukAβkF (uk)]) ��

⁄ν ��ukAPΩ [ukAβkF (uk)]��, ν ∈ (0, 1), (34)

it was proved in Ref. 14 that the sequence {uk} generated by the Korpelevich
method satisfies

��ukC1Au*��2⁄ ��ukAu*��2A(1Aν2) ��e(uk, βk) ��2. (35)

Later, the extragradient method was extended by Khobotov (Ref. 15). The
framework of the Korpelevich–Khobotov method is outlined below.

Korpelevich–Khobotov Method (KK Method)

Step 0. Set β0G1, ν ∈ (0, 1), u0 ∈Ω , and kG0.

Step 1. Compute ū kC1GPΩ [ukAβkF (uk)].
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Step 2. If rk_βk ��F (uk)AF (ū kC1) �����ukAū kC1��⁄ν,

then set ukC1GPΩ [ukAβkF (ū kC1)],

βkC1Gβk , and kGkC1; go to Step 1.

Step 3. Reduce the value of βk via βk_ (2�3)βkmin{1, 1�rk};

set ū kC1GPΩ [ukAβkF (uk)]; go to Step 2.

The reducing rule for βk in Step 3 is of the Armijo type. If the mapping
F is Lipschitz continuous, then we can find a βkH0 such that rk⁄ν in finite
reduction substeps. In addition, under the Lipschitz continuity, it is easy to
prove that

inf{βk}GβminH0.

Thus, it follows from (35) and Theorem 2.1 that the sequence generated by
the KK method converges to a solution point of VI(Ω, F ).

6. Improvements In Prediction-Correction Methods

Now, we consider how to modify the KK method and improve the
efficiency of the prediction-correction methods. Our modifications include
the following two aspects:

Improvement 1: Selection of {α k}, correction stepsize.
Improvement 2: Selection of {βk}, prediction stepsize.

The detailed analysis for the two improvements is given below. First,
for a given uk ∈Ω , we use the prediction step,

(P) ū kC1GPΩ [ukAβkF (uk)], (36)

in which βk satisfies

��βk [F (uk)AF (ū kC1)]��⁄ν��ukAū kC1��, ν ∈ (0, 1), (37)

as in the KK method. Then, a correction step,

(C) ukC1GPΩ [ukAα kF (ū kC1)], (38)

is taken. It seems that the stepsize α k should depend on the current point
uk and the stepsize βk in the prediction step. This motivates the following
analysis which aims at finding a best α for given uk and βk.

For the convenience of the coming analysis, we replace uk and βk by u
and β, respectively. In addition, we use the notation

K(u, β)_F (PΩ [uAβF (u)]), (39)
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and then the new iterate of the prediction-correction method can be written
as

u(α )_PΩ [uAα K(u, β)]. (40)

Another useful notation in the coming analysis is

d(u, β)_e(u, β)Aβ[F (u)AK(u, β)]. (41)

Under Assumption (37), we have

e(u, β)Td(u, β)G��e(u, β) ��2Aβ e(u, β)T[F (u)AK(u, β)]

¤ (1Aν) ��e(u, β) ��2, (42)

e(u, β)Td(u, β)G��e(u, β) ��2Aβ e(u, β)T[F (u)AK(u, β)]

H(1�2) ��e(u, β) ��2Aβ e(u, β)T[F (u)AK(u, β)]

C(1�2)β2��F (u)AK(u, β) ��2

G(1�2) ��d(u, β) ��2. (43)

Now, let us observe the difference between ��uAu*��2 and ��u(α )Au*��2.
Denote

Θ(α )_ ��uAu*��2A��u(α )Au*��2. (44)

First, it follows from (5) and (40) that

��u(α )Au*��2⁄ ��uAα K(u, β)Au*��2A��uAα K(u, β)Au(α ) ��2.

Substituting this into (44), we obtain

Θ(α )¤2α (uAu*)T , K(u, β)

C��uAu(α ) ��2A2α [uAu(α )]TK(u, β). (45)

Now, we observe the first term on the right-hand side of the above
inequality. Since PΩ [ · ] ∈Ω , it follows from the definition of VI(Ω, F ) that

{PΩ [uAβF (u)]Au*}TF (u*)¤0. (46)

Under the assumption that F is monotone with respect to Ω, we obtain

{PΩ [uAβF (u)]Au*}T{F (PΩ [uAβF (u)])AF (u*)}¤0. (47)

Adding (46)–(47), and using the notation e(u, β) and K(u, β), we get

{(uAu*)Ae(u, β)}TK(u, β)¤0, ∀ u ∈ Rn, u* ∈Ω *.

Hence, we have

(uAu*)TK(u, β)¤e(u, β)TK(u, β). (48)
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Substituting (48) into (45), we get

Θ(α )¤2α e(u, β)TK(u, β)

C��uAu(α ) ��2A2α [uAu(α )]TK(u, β). (49)

From (49) and using the notation d(u, β) [see (41)], we obtain

Θ(α )¤2α e(u, β)TK(u, β)A(α 2�β2) ��d(u, β) ��2

C��[uAu(α )]A(α �β)d(u, β) ��2

C(2α �β) [uAu(α )]T{e(u, β)AβF (u)}. (50)

Now, we consider the last term on the right-hand side of (50). Notice that

uAu(α )Ge(u, β)C{PΩ [uAβF (u)]Au(α )}. (51)

By using

û_uAβF (u) and w_u(α )

in the basic inequality of the projection mapping (2), we get

{PΩ [uAβF (u)]Au(α )}T{e(u, β)AβF (u)}¤0. (52)

Inequalities (51)–(52) imply

[uAu(α )]T{e(u, β)AβF (u)}¤ e(u, β)T{e(u, β)AβF (u)};

thus, from (50) we have

Θ(α )¤ (2α �β) e(u, β)Td(u, β)A(α 2�β2) ��d(u, β) ��2. (53)

The right-hand side of (53) is a quadratic function of α and it reaches its
maximum at

α *Gβτ (u, β), (54)

where

τ (u, β)_e(u, β)Td(u, β)���d(u, β) ��2. (55)

Thus, from (53) and (54), we have

Θ(α *)¤ (α *�β) e(u, β)Td(u, β)

Gτ (u, β) · e(u, β)Td(u, β). (56)

Let γ ∈ (0, 2) be a relaxation factor, and let αGγ α*. Using (53), by a simple
manipulation we get

Θ(γ α*)¤γ (2Aγ )τ (u, β) · e(u, β)Td(u, β). (57)
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Note that it follows from (42)–(43) that

τ (u, β) · e(u, β)Td(u, β)H(1�2)(1Aν) ��e(u, β) ��2.

This and (57) imply

Θ(γ α*)H[γ (2Aγ )(1Aν)�2]��e(u, β) ��2, γ ∈ (0, 2). (58)

We summarize the analytical results of this section in the following
theorem.

Theorem 6.1 Let

d(u, β)_e(u, β)A{βF (u)AβF (PΩ [uAβF (u)])},

τ (u, β)Ge(u, β)Td(u, β)���d(u, β) ��2.

For given uk ∈Ω , βk is chosen such that

��βkF (uk)AβkF (PΩ [ukAβkF (uk)]) ��⁄ν��e(uk, βk) ��, ν ∈ (0, 1).

Then, the prediction-correction method

(PC) ukC1GPΩ{ukAα kF (PΩ [ukAβkF (uk)])},

with correction stepsize

α kGγ βkτ (uk, βk), γ ∈ (0, 2),

produces a new iterate which satisfies

��ukC1Au*��2⁄ ��ukAu*��2

A[γ (2Aγ )(1Aν)�2]��e(uk, βk) ��2, ∀ u* ∈Ω *. (59)

Note that the convergence assertion (35) of the Korpelevich method can be
derived directly from (57). Since τ (u, β)H1�2 [see (43) and (55)], we have

γ*_1�τ (u, β)G��d(u, β) ��2�e(u, β)Td(u, β) ∈ (0, 2). (60)

Let

α_γ*α *Gβ;

we get the Korpelevich method. It follows from (57), (41), (37) that

Θ(β)¤ (2Aγ*)e(u, β)Td(u, β)

G[2A��d(u, β) ��2�e(u, β)Td(u, β)] e(u, β)Td(u, β)

G2e(u, β)Td(u, β)A��d(u, β) ��2

G��e(u, β) ��2A��β[F (u)AK(u, β)]��2

¤ (1Aν2) ��e(u, β) ��2. (61)
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This is the main convergence result (35), which was proved by Korpelevich
in Ref. 14.

Based on the above analysis, for given u and β, the ideal stepsize in the
correction step α *k is given by (54). To ensure a faster convergence, we take
a relaxation factor γ ∈ (0, 2), but close to 2. Hence, instead of α kGβk , our
first improvement is that the stepsize in the correction step is

α kGγ kβkτ k , γ k ≡ 1.8.

Now, we discuss Improvement 2. The parameter sequence {βk} in the
KK method is monotonically nonincreasing. However, this may cause a
slow convergence if βk is taken too small. To avoid this situation, sometimes
increasing the stepsize in Step 2 is necessary.

By considering the above two improvements, we arrive at the following
improved prediction-correction method.

Improved Prediction-Correction Method (PC Method M1C2)

Step 0. Let β0G1, 0FµFνF1, u0 ∈Ω , γ G1.8, and kG0.

Step 1. Compute ū kC1GPΩ [ukAβkF (uk)].

Step 2. If rk_βk ��F (uk)AF (ū kC1) �����ukAū kC1��⁄ν, then set

e(uk, βk)GukAū kC1,

d(uk, βk)Ge(uk, βk)Aβk [F (uk)AF (ū kC1)],

α kGγ βk [e(u
k, βk)

Td(uk, βk)���d(uk, βk) ��2], (Improvement 1)

ukC1GPΩ [ukAα kF (ū kC1)],

βk_�(3�2)βk , if rk⁄µ,

βk , otherwise,
(Improvement 2)

βkC1Gβk , and kGkC1; go to Step 1.

Step 3. Reduce the value of βk via βk_ (2�3)βk ∗ min{1, 1�rk};
set ū kC1GPΩ [ukAβkF (uk)]; go to Step 2.

Remark 6.1. In comparison with the Korpelevich–Khobotov method,
we need some extra computation in Improvements 1 and 2 of the improved
method. Instead of α k ≡ βk , we determine α k via Improvement 1 and this
requires only O(n) flops. The computational cost in Improvement 2 of each
iteration is tiny and thus can be ignored.
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7. Numerical Experiments

Our main interest is in showing the advantages of the improved predic-
tion-correction method. In our numerical test, we considered the following
nonlinear complementarity problem:

(NCP) Find u ∈ Rn such that

u¤0, F (u)¤0, uTF (u)G0. (62)

This is a special case of VI(Ω, F ) with ΩGRn
C and the projection on Ω in

the sense of the Euclidean norm is very easy to carry out. For any
û ∈ Rn, PΩ [û] is defined componentwise as

(PΩ [û]) jG�û j , if û j¤0,

0, otherwise.

In our test problem, we take

F (u)GD(u)CMuCq,

where D(u) and MuCq are the nonlinear part and the linear part of F (u),
respectively. We form the linear part MuCq similarly as in Ref. 20.4 The
matrix MGATACB, where A is an nBn matrix whose entries are randomly
generated in the interval (−5,C5) and a skew-symmetric matrix B is gener-
ated in the same way. The vector q is generated from a uniform distribution
in the interval (−500,C500) or (−500, 0). In D(u), the nonlinear part of F (u),
the components are Dj (u)Gaj ∗ arctan(uj) and aj is a random variable in
(0, 1). A similar type of the problem was tested in Refs. 21–22.5

In order to see the effects of Improvements 1 and 2, respectively, we
test the same problem with the following different methods:

KK Method: original Korpelevich–Khobotov method.
PC Method M1 : KK method with Improvement 1.
PC Method M2 : KK method with Improvement 2.
PC Method M1C2 : KK method with Improvements 1 and 2, the im-

proved prediction-correction method described in Section 6.

In all tests, we choose νG0.9 and the parameter µG0.4 in Improve-
ment 2. All codes were written in Matlab and run on a PIII-600 Acer note-
book computer. We tested problems with dimensions nG100, 200, 500. For

4In the paper by Harker and Pang (Ref. 20), the matrix MGATACBCD, where A and B are
the same matrices as here, and D is a diagonal matrix with uniformly distributed random
variable djj ∈ (0.0, 0.3).

5In Refs. 21–22, the components of nonlinear mapping D(u) are Dj (u)Gconst ∗ arctan(uj).



JOTA: VOL. 112, NO. 1, JANUARY 2002126

our test problem, all methods started at the same u0 ∈ (0, 10) and stopped as
soon as ��e(uk, 1) ��S⁄10−7. To obtain more stable results, we did run each
test case 5 times. The average numbers of iterations and the computation
times of these methods for problem with different sizes are given in the
following tables.

Table 1. Numerical results for NCP easy problems, q ∈ (−500, 500).

KK Method PC Method M1 PC Method M2 PC Method M1C2

n Nit CPU (s) Nit CPU (s) Nit CPU (s) Nit CPU (s)

100 893 1.14 476 0.67 616 0.81 342 0.48
200 1116 5.56 579 3.09 726 3.86 408 2.26
500 1154 30.41 625 16.46 731 19.70 413 11.27

Table 2. Numerical results for NCP hard problems, q ∈ (−500, 0).

KK Method PC Method M1 PC Method M2 PC Method M1C2

n Nit CPU (s) Nit CPU (s) Nit CPU (s) Nit CPU (s)

100 1762 2.24 1026 1.43 1362 1.82 776 1.10
200 1980 9.67 1028 5.45 1400 7.41 786 4.31
500 2354 60.84 1328 32.21 1728 47.77 1003 27.68

From the numerical results, we find that both Improvements 1 and 2
are effective. The computational costs in each iteration of the methods are
almost equal. For such quasi-randomly constructed test problem, we can
observe from the above two tables that

total computational load of PC Method M1

total computational load of KK Method
F0.60,

total computational load of PC Method M2

total computational load of KK Method
F0.80,

total computational load of PC Method M1C2

total computational load of KK Method
F0.45.

With a tiny extra computation, the efficiency of the prediction-correction
methods is improved significantly. In addition, for a set of similar problems,
it seems that the iteration numbers are not very sensitive to the problem
size.

8. Conclusions

For solving VI(Ω, F ) problems, we have studied the relationship of
some projection-type methods and suggested how to improve the efficiency
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of these methods. The essence of the relationship is similar to those in com-
putational schemes for ordinary differential equations. From this point of
view, all methods discussed in this paper can be viewed as one-step methods
for VI(Ω, F ) problems. A further question is whether there exist multistep
methods for VI (Ω, F ) problems as in numerical methods for ordinary
differential equations. This question remains to be explored.
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