
IX - 1

凸凸凸优优优化化化和和和单单单调调调变变变分分分不不不等等等式式式的的的收收收缩缩缩算算算法法法

第九讲:求解线性约束凸优化

基于对偶上升的自适应方法

Self-adaptive dual ascent method for
linearly constrained convex optimization

南京大学数学系 何炳生
hebma@nju.edu.cn

IX - 2

1 Introduction

Let X be a convex closed set in ℜn. The problem concerned in this note is the

constrained convex minimization problem

(P) min {f(x) |Ax = b, x ∈ X}, (1.1)

where f(x) : ℜn → ℜ is a differentiable convex function, A ∈ ℜm×n and b ∈ ℜm.

Let λ be the Lagrange multiplier to the linear constraints Ax = b, the Lagrange function of

the problem (1.1) is

L(x, λ) = f(x)− λT (Ax− b), (1.2)

which is defined on X × ℜm. The dual problem of (1.1) is

maxϕ(λ),

where

ϕ(λ) = inf
x∈X

L(x, λ).

Assuming that strong duality holds, the optimal values of the primal and dual problems are

the same. We can recover a primal optimal point x∗ from a dual optimal point λ∗ by

IX - 3

solving

x∗ = argmin{L(x, λ∗)|x ∈ X},

provided there is only one minimizer of L(x, λ∗) (this is the case if, for example, f is

strictly convex).

The dual problem can also be interpreted as

(D)
maxx,λ L(x, λ) = f(x)− λT (Ax− b)

s. t x ∈ X , (x′ − x)T∇xL(x, λ) ≥ 0, ∀x′ ∈ X .

(1.3)

We denote the solution set of (1.3) by Ω∗ = X ∗ × Λ∗.

Dual feasible pair A pair of (x, λ) is dual feasible of (1.3) if and only if

x ∈ X , (x′ − x)T (∇f(x)−ATλ) ≥ 0, ∀x′ ∈ X . (1.4)

For any given λk ∈ ℜm, we let xk be defined as in (1.5a). Therefore, (xk, λk) is a

feasible solution of (1.3). Note that (x∗, λ∗) is also dual feasible.

IX - 4

The dual ascent method is the algorithm

xk := argmin{L(x, λk)|x ∈ X}, (1.5a)

and then

λk+1 = λk − αk(Axk − b), (1.5b)

where αk > 0 is the step size and will be discussed later. The first step (1.5a) is an

x-minimization step, and the second step (1.5b) is a dual variable update. In some

practical applications, the dual variable λ can be viewed as a vector of prices, and the

λ-update step is called a price update or price adjustment step. It is called dual ascent

since, with appropriate choice of α, the dual function increases in each step, i.e.,

ϕ(λk+1) > ϕ(λk).

For any dual feasible pair (x, λ), because

L(x∗, λ∗) = f(x∗) ≥ f(x) + (x∗ − x)T∇f(x)

and

(x∗ − x)T (∇f(x)−ATλ) ≥ 0,

IX - 5

it follows that

L(x∗, λ∗) ≥ L(x, λ).

Thus, L(x∗, λ∗) is the maximal value of the dual problem (1.3). By setting

vk = L(x∗, λ∗)− L(xk, λk), (1.6)

the sequence {vk} is non-negative. This paper considers the convergence rate of the

non-negative sequence {vk} by the dual ascent method.

Assumption Throughout this paper, we assume that the function f(x) is uniformly

strict convex. In other words, there is a positive constant µ > 0, such that

(x− x̃)T
(
∇f(x)−∇f(x̃)

)
≥ µ∥x− x̃∥2, ∀x, x̃. (1.7)

Lemma 1.1 Let (x, λ) and (x̃, λ̃) be any given dual feasible pairs. Under the assumption

(1.7), we have

∥x− x̃∥ ≤ 1

µ
∥AT (λ− λ̃)∥. (1.8)

Proof. Since (x, λ) and (x̃, λ̃) be any given dual feasible pairs, thus we have

x ∈ X , (x̃− x)T
(
∇f(x)−ATλ

)
≥ 0,

IX - 6

and

x̃ ∈ X , (x− x̃)T
(
∇f(x̃)−AT λ̃

)
≥ 0.

Adding the above two inequalities, we obtain

(x− x̃)TAT (λ− λ̃) ≥ (x− x̃)T
(
∇f(x)−∇f(x̃)

)
≥ µ∥x− x̃∥2,

and it follows the assertion (1.8) directly. 2

In other words, under the assumption that f is uniformly strict convex and differentiable,

the solution of (1.5a) is a Lipschitz continuous function of λ.

Lemma 1.2 For given λk , let xk be given by (1.5a). Then for any feasible solution (x, λ)

of the dual problem (1.3), we have

L(xk, λk)− L(x, λ) ≥ (λ− λk)T (Axk − b). (1.9)

Proof. First, using the convexity of f we obtain

L(xk, λk)− L(x, λ)

= f(xk)− f(x) + λT (Ax− b)− (λk)T (Axk − b)

≥ (xk − x)T∇f(x) + λT (Ax− b)− (λk)T (Axk − b). (1.10)

IX - 7

Since (x, λ) is a feasible solution of the dual problem and xk ∈ X , set x′ = xk in (1.4),

we obtain

(xk − x)T∇f(x) ≥ (xk − x)TATλ = λTA(xk − x).

Substituting it in the right hand side of (1.10), we obtain

L(xk, λk)− L(x, λ)

≥ λTA(xk − x) + λT (Ax− b)− (λk)T (Axk − b)

= (λ− λk)T (Axk − b).

The assertion of this lemma is proved. 2

2 Dual ascent method

We assume that f is strictly convex and thus, for any given λk , the x-minimization

problem (1.5a) has the unique solution xk . Note that this assumption does not hold in

many important applications, so dual ascent often cannot be used. As an example, if f is a

nonzero affine function of any component of x, then the x-minimization (1.5a) fails, since

IX - 8

L(x, λ) is unbounded below in x for most λ.

Dual Ascent Method(DAM)

Let (x0, λ0) be a pair of feasible solution of the dual problem (1.3).

For k = 0, 1, . . ., do: Given dual feasible pair (xk, λk), set

λk+1 = λk − βk(Axk − b), (2.1a)

and let

xk+1 = argmin {L(x, λk+1)
∣∣x ∈ X}. (2.1b)

The parameter βk is selected such that the dual feasible pairs (xk, λk) and

(xk+1, λk+1) satisfy the condition

(λk − λk+1)TA(xk − xk+1) ≤ ν

βk
∥λk − λk+1∥2, ν ∈ (0, 1). (2.1c)

Due to (1.8), by using Armijo-like line search to find a βk to satisfy (2.1c), there is a

βmin > 0 such that

inf
k
{βk} ≥ βmin.

Note that each pair (xk, λk) generated by the dual ascent method is dual feasible.

IX - 9

Lemma 2.1 Let {(xk, λk)} be the sequence generated by the dual ascent method (2.1).

Then we have

L(xk+1, λk+1)− L(xk, λk) ≥ 1− ν

βk
∥λk − λk+1∥2. (2.2)

Proof. Since the sequence {(xk, λk)} is dual feasible, by setting

(xk, λk) = (xk+1, λk+1) and (x, λ) = (xk, λk) in (1.9), we obtain

L(xk+1, λk+1)− L(xk, λk) ≥ (λk − λk+1)T (Axk+1 − b). (2.3)

It follows from (2.1c) that

(λk − λk+1)T (Axk+1 − b)

≥ (λk − λk+1)T (Axk − b)− ν

βk
∥λk − λk+1∥2. (2.4)

Note that from (2.1a) we have

(λk − λk+1)T (Axk − b) =
1

βk
∥λk − λk+1∥2. (2.5)

The assertion of this lemma is proved. 2

IX - 10

Lemma 2.2 Let {(xk, λk)} be the sequence generated by the dual ascent method (2.1).

Then for any λ∗ ∈ Λ∗, we have

∥λk+1−λ∗∥2 ≤ ∥λk−λ∗∥2+∥λk−λk+1∥2−2βk

(
L(x∗, λ∗)−L(xk, λk)

)
. (2.6)

Proof. It follows from (2.1a) that

∥λk+1 − λ∗∥2

= ∥(λk − λ∗)− (λk − λk+1)∥2

= ∥λk − λ∗∥2 + ∥λk − λk+1∥2 − 2(λk − λ∗)Tβk(Axk − b). (2.7)

In addition, because (x∗, λ∗) is dual feasible, by setting (x, λ) = (x∗, λ∗) in (1.9), we

obtain

(λk − λ∗)T (Axk − b) ≥ L(x∗, λ∗)− L(xk, λk). (2.8)

Substituting (2.8) in (2.7), the assertion follows directly. 2

Lemma 2.3 Let {(xk, λk)} be the sequence generated by the dual ascent method (2.1).

IX - 11

Then for any λ∗ ∈ Λ∗, we have

∥λk+1 − λ∗∥2 ≤ ∥λk − λ∗∥2 − (1− 2ν)∥λk − λk+1∥2

−2βk

(
L(x∗, λ∗)− L(xk+1, λk+1)

)
. (2.9)

Thus the sequence {λk} is Fejèr monotone with respect to Λ∗ when ν ≤ 1/2.

Proof. First, it follows from (2.6) that

∥λk+1 − λ∗∥2 ≤ ∥λk − λ∗∥2 + ∥λk − λk+1∥2

−2βk

(
L(x∗,λ∗)−L(xk+1,λk+1)

)
+ 2βk

(
L(xk,λk)−L(xk+1,λk+1)

)
.(2.10)

Using (2.2), we get

2βk

(
L(xk, λk)− L(xk+1, λk+1)

)
≤ −2(1− ν)∥λk − λk+1∥2.

Substituting it in (2.10), we get the assertion (2.9). The Lemma is proved. 2

Theorem 2.1 Let {(xk, λk)} be the sequence generated by the dual ascent method

(2.1). If ν ≤ 1/2, the sequence {λk} is Fejèr monotone with respect to Λ∗. Moreover,

L(x∗, λ∗)− L(xk, λk) ≤ 1

2kβmin
∥λ0 − λ∗∥2. (2.11)

IX - 12

Proof. Because L(x∗, λ∗)− L(xk+1, λk+1) > 0 and ν ≤ 1/2, it follows from (2.9)

that

∥λk+1 − λ∗∥2 < ∥λk − λ∗∥2,

whenever (xk, λk) ̸∈ Ω∗. Again, from (2.9) we obtain that

2βmin

(
L(x∗, λ∗)− L(xl+1, λl+1)

)
≤ ∥λl − λ∗∥2 − ∥λl+1 − λ∗∥2.

Summing the above inequality over j = 0, . . . , k − 1 and using the increasing property

of {L(xk, λk)}, the assertion (2.11) follows directly. 2

3 Iterations complexity
Theorem 3.1 Let {(xk, λk)} be the sequence generated by the dual ascent method

(2.1) and βk ≡ β. Then for any k ≥ 0 and (x∗, λ∗) ∈ X ∗ × Λ∗, we have

2kβ
(
L(xk, λk)− L(x∗, λ∗)

)
≥

k−1∑
j=0

(
2j(1− ν) + (1− 2ν)

)
∥λj − λj+1∥2 − ∥λ0 − λ∗∥2. (3.1)

IX - 13

Proof. It follows from (2.9) that, for all j ≥ 0, we have

2β(L(xj+1, λj+1)− L(x∗, λ∗))

≥ ∥λj+1 − λ∗∥2 − ∥λj − λ∗∥2 + (1− 2ν)∥λj − λj+1∥2.

Using the fact L(xj , λj)− L(x∗, λ∗) < 0, summing the above inequality over

j = 0, . . . , k − 1, we obtain

2β
(k−1∑
j=0

L(xj+1, λj+1)− kL(x∗, λ∗)
)

≥ ∥λk − λ∗∥2 − ∥λ0 − λ∗∥2 + (1− 2ν)

k−1∑
j=0

∥λj − λj+1∥2. (3.2)

By using Lemma 2.1 for k = j, we get

β(L(xj+1, λj+1)− L(xj , λj)) ≥ (1− ν)∥λj − λj+1∥2.

IX - 14

Multiplying the last inequality by 2j and summing over j = 0, . . . , k − 1, it follows that

2β

k−1∑
j=0

(
(j + 1)L(xj+1, λj+1)− L(xj+1, λj+1)− jL(xj , λj)

)

≥
k−1∑
j=0

2j(1− ν)∥λj − λj+1∥2,

which simplifies to

2β
(
kL(xk, λk)−

k−1∑
j=0

L(xj+1, λj+1)
)
≥

k−1∑
j=0

2j(1− ν)∥λj − λj+1∥2. (3.3)

Adding (3.2) and (3.3), we get

2kβ
(
L(xk, λk)− L(x∗, λ∗)

)
≥

k−1∑
j=0

(
2j(1− ν) + (1− 2ν)

)
∥λj − λj+1∥2 − ∥λ0 − λ∗∥2.

The proof is complete. 2

IX - 15

♣ In fact, for any ν ∈ (0, 1), the iteration-complexity of the single projected gradient

method is O(1/k). For example, if ν = 0.9, then

(1− 2ν) + 2j(1− ν) ≥ 0, ∀ j ≥ 4.

In this case, it follows from (3.1) that

2kβ
(
L(x∗, λ∗)− L(xk, λk)

)
≤ ∥λ0 − λ∗∥2 +

∑3
l=0

(
(2ν − 1) + 2l(ν − 1)

)
∥λj − λj+1∥2. (3.4)

Since ν ≤ 0.9, we have

L(x∗, λ∗)− L(xk, λk) ≤ 1

2kβ

(
∥λ0 − λ∗∥2 + 4

5

∑3
l=0∥λ

j − λj+1∥2
)
. (3.5)

Practical Condition In practical computation, instead of the condition (2.1c), we use

∥βkA(xk − xk+1)∥ ≤ ν∥λk − λk+1∥, ν ∈ (0, 1) (3.6)

as the acceptance condition. It is clear that above condition is stronger than the condition

(2.1c). We use the following self-adaptive dual ascent method:

IX - 16

Self-adaptive dual ascent method:

Step 0. Set β0 = 1, ν ∈ (0, 1), λ0 ∈ ℜm, x0 = argmin{L(x, λ0)|x ∈ X}.
For k = 0, 1, . . ., if the stopping criterium is not satisfied, do:

Step 1. λ̃k = λk − βk(Axk − b), x̃k = argmin{L(x, λ̃k) |x ∈ X},

rk := ∥βkA(xk − x̃k)∥/∥λk − λ̃k∥,

while rk > ν

βk := 2
3
βk ∗min{1, 1

rk
},

λ̃k = λk − βk(Axk − b), x̃k = argmin{L(x, λ̃k) |x ∈ X},

rk := ∥βkA(xk − x̃k)∥/∥λk − λ̃k∥,

end(while)

λk+1 = λ̃k ,

If rk ≤ µ then βk := βk ∗ 1.5, end(if)

Step 2. βk+1 = βk and k = k + 1, go to Step 1.

采用上述程序但略去 If rk ≤ µ then βk := βk ∗ 1.5 end(if) 的做法,将大

大增加迭代步数,有时甚至导致计算失败.

IX - 17

4 Applications of the self-adaptive dual-ascent

method

在统计学中,一个对角元均为 1的对称半正定矩阵称为相关性矩阵
(Correlation Matrix).对给定的对称矩阵 C ,求 F -模下与 C距离最近的相关

性矩阵,其数学表达式是

min{1
2
∥X − C∥2F | diag(X) = e, X ∈ Sn

+}, (4.1)

其中 e表示每个分量都为 1的 n-维向量, Sn
+表示 n× n正半定锥的集合.问

题 (4.1)是形如 (1.1)的等式约束凸优化问题,其中 ∥ATA∥ = 1.

我们用 z ∈ ℜn作为等式约束 diag(X) = e 的 Lagrange乘子.

用用用第第第四四四讲讲讲的的的 PPA算算算法法法求求求解解解问问问题题题 (4.1),具体做法可见第四讲的 § 4.1.

对给定的 zk ,产生 X̃k的方法是:

min{1
2
∥X − C∥2F − (zk)T (diag(X)− e)|X ∈ Sn

+}. (4.2)

IX - 18

子子子问问问题题题 (4.2)求求求解解解的的的具具具体体体做做做法法法:化为等价问题

min{1
2
∥X − (C + diag(zk))∥2F |X ∈ Sn

+}.

因此我们只要考虑如何求解

X̃k = Argmin
{1
2
∥X −A∥2F |X ∈ Sn

+

}
. (4.3)

问题 (4.3)的解法在第四讲里已经作了介绍.

采用 Dual Ascent Method,每步迭代中最大的花费是要对给定的 λk ,生成一

个 Dual feasible pair (xk, λk),其中

xk = Argmin{L(x, λk)|x ∈ X}.

这个子问题的形式就是 (4.2),我们只是将它的解及成Xk .

我们对不同的方法进行对比计算.在 Matlab程序中,对称矩阵特征值分解,都

使用 mexeig子程序.试验结果表明,对这一类问题, Dual Ascent Method比第

四讲的 Customized PPA还要快一倍左右.

IX - 19

Code 5.A. Matlab code for Creating the test examples

%%%% DEMO Comparison the two different methods %%%%%%%%%%%%%

%%% min { (1/2)|X-C|ˆ2 | X is positive semi-definite, X_{jj}=1 } %%%

clear; close all; clc; %(1)

n = 500; tol=1e-6; %(2)

%% Generating the given matrix C %(3)

rand(’state’,0); randn(’state’,0); %(4)

C=rand(n,n); C=(C’+C) - ones(n,n) + eye(n); %(5)

%% C is symmetric, C_{ij} in (-1,1) for i\ne j, C_{jj} in (0,2) %(6)

%%% %(7)

%% Run Extende PPA with mexeig %% %(8)

r = 2.0; s = 1.01/r; gamma = 1.5; %% Given Parameter %(9)

PPA_G(n,C,r,s,tol,gamma) %(10)

%%% %(11)

%% Run Dual-Ascent Method %(12)

beta=1.0; %% Given Parameter %(13)

Dual_A(n,C,beta,tol) %(14)

%%

生成的对称矩阵 C ,对角元在 (0, 2)之间,非对角元在 (−1, 1)之间.

IX - 20

Code 5.1 Matlab Code of the Extended PPA
%%% Extended PPA for calibrating correlation matrix %(1)

function PPA_G(n,C,r,s,tol,gamma) %(2)

X = eye(n); y = zeros(n,1); tic; %% The initial iterate %(3)

stopc=1; k=0; %(4)

while (stopc>tol && k<=100) %% Beginning of an Iteration %(5)

if mod(k,1)==0; fprintf(’k=%3d epsm=%9.3e\n’,k,stopc); end; %(6)

X0 = X; y0 = y; k=k+1; %(7)

yt = y0 - (diag(X0)-ones(n,1))/s; %(8)

A =(X0*r + C + diag(yt*2-y0))/(1+r); %(9)

[V,D] = mexeig(A); D = max(0,D); XT = (V*D)*V’; %% mexeig %(10)

EX = X0-XT; EY = y0-yt; %(11)

ex = max(max(abs(EX))); ey = max(abs(EY)); %(12)

stopc= max(ex,ey); %(13)

X = X0-EX*gamma; y = y0-EY*gamma; %(14)

end %% End of an Iteration %(15)

toc %(16)

TB = max(abs(diag(X-eye(n)))); %(17)

fprintf(’k=%3d epsm=%9.3e TB=%8.5f\n\n’,k,stopc,TB); %(18)

IX - 21

Code 5.2 Matlab Code of Dual Ascent Method
%%% Dual-Ascent-Method, Dual variable z %(1)

function Dual_A(n,C,beta,tol) %(2)

z=zeros(n,1); tic; %% The initial iterate %(3)

A= C + diag(z); [V,D]=mexeig(A); D=max(0,D); X=(V*D)*V’; %(4)

r=1; k=0; l=0; stopc=1; %(5)

while (stopc>tol && k<=60) %% Beginning of an Iteration %(6)

gz= diag(X)-ones(n,1); stopc=max(abs(gz)); %(7)

k= k+1; l=l+1; %(8)

dz=gz*beta; zt=z-dz; A= C + diag(zt); %(9)

[V,D]=mexeig(A); D=max(0,D); XT=(V*D)*V’; %(10)

df=(diag(X)-diag(XT))*beta; r=norm(df)/norm(dz); %(11)

while r>0.9 %(12)

beta=0.8*beta; l=l+1; %(13)

dz=gz*beta; zt=z-dz; A= C + diag(zt); %(14)

[V,D]=mexeig(A); D=max(0,D); XT=(V*D)*V’; %(15)

df=(diag(X)-diag(XT))*beta; r=norm(df)/norm(dz); %(16)

end; %(17)

z = zt; X=XT; if r <0.6 beta=beta*1.5; end; %(18)

end; %% End of an Iteration %(19)

toc; fprintf(’ k=%4d epsm=%9.3e l=%4d \n’,k,stopc,l); %(20)

IX - 22

矩阵校正问题 (4.1) 精度要求 ε = 10−4

n× n Matrix Extended PPA Dual-Ascent Method

n = No. It CPU Sec. No. It No. of Solving
Sub-Prob (2.1b)

CPU Sec.

100 18 0.11 11 11 0.07
200 21 0.36 12 12 0.21
500 22 3.41 12 12 1.80
800 24 12.65 13 13 7.05
1000 25 24.75 13 13 12.51
1500 30 93.74 13 13 42.42
2000 34 241.25 14 14 103.85

The dual ascent method converges much faster than the extended PPA.

CPU. Time of the dual ascent method

CPU. Time of the extended PPA
≤

 55% n < 1000

45% n ≥ 1000

IX - 23

矩阵校正问题 (4.1) 精度要求 ε = 10−6

n× n Matrix Extended PPA Dual-Ascent Method

n = No. It CPU Sec. No. It No. of Solving
Sub-Prob (2.1b)

CPU Sec.

100 26 0.16 14 14 0.09
200 29 0.50 17 17 0.29
500 32 4.96 17 17 2.54
800 35 18.45 19 19 10.29
1000 36 35.64 17 17 18.75
1500 44 137.50 18 18 58.74
2000 50 354.78 20 20 148.36

The dual ascent method converges much faster than the extended PPA.

CPU. Time of the dual ascent method

CPU. Time of the extended PPA
≤

 55% n < 1000

45% n ≥ 1000

IX - 24

5 An accelerated two-steps dual ascent method

According to the basic idea of Nesterov [6], we can construct the accelerated two-steps

dual ascent method. Besides {λk}, it generates an auxiliary sequence {ηk}.

A two-steps dual ascent method

Step 0. Take β > 0, λ1 ∈ Rn. Set η1 = λ1, t1 = 1.

Step k. (k ≥ 1) With given (λk, ηk), produce the dual feasible pair (xk
η, η

k) and let

λk+1 = ηk − βk(Axk
η − b), (5.1a)

then generate the new dual feasible pair (xk+1, λk+1). The step size βk should ensure

the two dual feasible pairs, (xk
η, η

k) and (xk+1, λk+1), to satisfy

(ηk − λk+1)TA(xk
η − xk+1) ≤ 1

2βk
∥ηk − λk+1∥2. (5.1b)

Set

ηk+1 = λk+1 +
(tk − 1

tk+1

)(
λk+1 − λk), (5.1c)

where

tk+1 =
1 +

√
1 + 4t2k
2

. (5.1d)

IX - 25

The method is called two-steps dual ascent method because each iteration consists of two

steps. The k-th iteration begins with (λk, ηk), the first step (5.1a) produces λk+1 and the

second one (5.1c) updates ηk+1. In each iteration, it needs at least to produce two dual

feasible pairs, namely

(xk
η, η

k) and (xk+1, λk+1).

It is assumed that the positive sequence {βk} is non- increasing. We show that the

proposed two-steps dual ascent method is convergent with the iteration-complexity

O(1/k2). The proof is similar as those in [1].

Lemma 5.1 Let λk+1 be given by (5.1a) and the step size condition (5.1b) be satisfied.

Then we have

2βk(L(x
k+1, λk+1)− L(x, λ))

≥ ∥ηk − λk+1∥2 + 2(λk+1 − ηk)T (ηk − λ), ∀λ ∈ ℜm. (5.2)

Proof. By using (1.9), for any feasible solution (x, λ) of the dual problem (1.3), we get

L(xk
η, η

k)− L(x, λ) ≥ (λ− ηk)T (Axk
η − b).

IX - 26

Due to (5.1a), we have

(λ− ηk)T (Axk
η − b) = {(λ− λk+1) + (λk+1 − ηk)}T (Axk

η − b)

=
1

βk
(λ− λk+1)(ηk − λk+1)− 1

βk
∥ηk − λk+1∥2,

and consequently

L(xk
η, η

k)− L(x, λ) ≥ 1

βk
(λ− λk+1)(ηk − λk+1)− 1

βk
∥ηk − λk+1∥2. (5.3)

Again, by setting k := k + 1 and (x, λ) = (xk
η, η

k) in (1.9), we obtain

L(xk+1, λk+1)− L(xk
η, η

k)

≥ (ηk − λk+1)T (Axk+1 − b)

= (ηk − λk+1)T {(Axk
η − b)−A(xk

η − xk+1)}

=
1

βk
∥ηk − λk+1∥2 − (ηk − λk+1)TA(xk

η − xk+1)

≥ 1

2βk
∥ηk − λk+1∥2. (5.4)

IX - 27

Adding (5.3) and (5.4),

L(xk+1, λk+1)− L(x, λ)

≥ 1

βk
(λ− λk+1)(ηk − λk+1)− 1

2βk
∥ηk − λk+1∥2

=
1

βk
(λ− ηk)T (ηk − λk+1) +

1

2βk
∥ηk − λk+1∥2. (5.5)

The above inequality can be rewritten as (5.2) and the lemma is proved. 2

To derive the iteration-complexity of the two-steps projected gradient method, we need to

prove some properties of the corresponding sequence.

Lemma 5.2 The sequences {λk} and {ηk} generated by the proposed two-steps dual

ascent method satisfy

2βkt
2
kvk − 2βk+1t

2
k+1vk+1 ≥ ∥uk+1∥2 − ∥uk∥2, ∀k ≥ 1, (5.6)

where vk := L(x∗, λ∗)− L(xk+1, λk+1) and uk := tkλ
k+1 − (tk − 1)λk − λ∗.

IX - 28

Proof. By using Lemma 5.1 for k + 1, x = λk+1 and x = λ∗ we get

2βk+1

(
L(xk+2, λk+2)− L(xk+1, λk+1)

)
≥ ∥ηk+1 − λk+2∥2 + 2(λk+2 − ηk+1)T (ηk+1 − λk+1),

and

2βk+1

(
L(xk+2, λk+2)− L(x∗, λ∗)

)
≥ ∥ηk+1 − λk+2∥2 + 2(λk+2 − ηk+1)T (ηk+1 − λ∗).

Using the definition of vk , we get

2βk+1(vk−vk+1) ≥ ∥ηk+1−λk+2∥2+2(λk+1−ηk+1)T (ηk+1−λk+2), (5.7)

and

−2βk+1vk+1 ≥ ∥ηk+1 − λk+2∥2 + 2(λ∗ − ηk+1)T (ηk+1 − λk+2). (5.8)

IX - 29

To get a relation between vk and vk+1, we multiply (5.7) by (tk+1 − 1) and add it to (5.8):

2βk+1

(
(tk+1 − 1)vk − tk+1vk+1

)
≥ tk+1∥λk+2− ηk+1∥2

+2(λk+2− ηk+1)T
(
tk+1η

k+1− (tk+1 − 1)λk+1− λ∗).
Multiplying the last inequality by tk+1 and using

t2k = t2k+1 − tk+1

(
and thus tk+1 = (1 +

√
1 + 4t2k)/2 as in (5.1d)

)
,

which yields

2βk+1

(
t2kvk − t2k+1vk+1

)
≥ ∥tk+1(λ

k+2 − ηk+1)∥2

+2tk+1(λ
k+2 − ηk+1)T

(
tk+1η

k+1 − (tk+1 − 1)λk+1 − λ∗).
Applying the relation

∥a− b∥2 + 2(a− b)T (b− c) = ∥a− c∥2 − ∥b− c∥2

IX - 30

to the right-hand side of the last inequality with

a := tk+1λ
k+2, b := tk+1η

k+1, c := (tk+1 − 1)λk+1 + λ∗,

and using the fact 2βkt
2
kvk ≥ 2βk+1t

2
kvk (since {βk} is non-increasing), we get

2βkt
2
kvk − 2βk+1t

2
k+1vk+1

≥ ∥tk+1λ
k+2 − (tk+1 − 1)λk+1 − λ∗∥2

−∥tk+1η
k+1 − (tk+1 − 1)λk+1 − λ∗∥2.

In order to write the above inequality in the form (5.6) with

uk = tkλ
k+1 − (tk − 1)λk − λ∗,

we need only to set

tk+1η
k+1 − (tk+1 − 1)λk+1 − λ∗ = tkλ

k+1 − (tk − 1)λk − λ∗.

From the last equality we obtain

ηk+1 = λk+1 +
(tk − 1

tk+1

)
(λk+1 − λk).

This is just the form (5.1c) in the accelerated two-steps version of the dual ascent method

IX - 31

and the lemma is proved. 2

To proceed the proof of the main theorem, we need the following Lemma 5.3 and Lemma

5.4, which have also been considered in [1]. We omit their proofs as they are trivial.

Lemma 5.3 Let {ak} and {bk} be positive sequences of reals satisfying

ak − ak+1 ≥ bk+1 − bk ∀ k ≥ 1.

Then, ak ≤ a1 + b1 for every k ≥ 1.

Lemma 5.4 The positive sequence {tk} generated by

tk+1 =
1 +

√
1 + 4t2k
2

, with t1 = 1

satisfies

tk ≥ k + 1

2
, ∀ k ≥ 1.

Now, we are ready to show that the proposed two-steps projected gradient method is

convergent with the rate O(1/k2).

Theorem 5.1 Let {λk} and {ηk} be generated by the proposed two-steps dual ascent

IX - 32

method . Then, for any k ≥ 1, we have

L(x∗, λ∗)− L(xk, λk) ≤ 2∥λ1 − λ∗∥2

βkk2
, ∀λ∗ ∈ Ω∗. (5.9)

Proof. Let us define the quantities

ak := 2βkt
2
kvk, bk := ∥uk∥2.

By using Lemma 5.2 and Lemma 5.3, we obtain

2βkt
2
kvk ≤ a1 + b1,

which combined with the definition vk and tk ≥ (k + 1)/2 (by Lemma 5.4) yields

L(x∗, λ∗)− L(xk+1, λk+1) = vk ≤ 2(a1 + b1)

βk(k + 1)2
≤ 2(a1 + b1)

βk+1(k + 1)2
. (5.10)

Since t1 = 1, and using the definition of uk given in Lemma 5.2, we have

a1 = 2β1t
2
1v1 = 2β1v1 = 2β1

(
L(x∗, λ∗)− L(x2, λ2)

)
,

and

b1 = ∥u1∥2 = ∥λ2 − λ∗∥2.

IX - 33

Setting λ = λ∗ and k = 1 in (5.2), we have

2β1(L(x
∗, λ∗)− L(x2, λ2)) ≤ 2(η1 − λ∗)T (η1 − λ2)− ∥η1 − λ2∥2

= ∥η1 − λ∗∥2 − ∥λ2 − λ∗∥2.

Therefore, we have

a1 + b1 = 2β1(L(x
∗, λ∗)− L(x2, λ2)) + ∥λ2 − λ∗∥2

≤ ∥η1 − λ∗∥2 − ∥λ2 − λ∗∥2 + ∥λ2 − λ∗∥2

= ∥λ1 − λ∗∥2.

Substituting it in (5.10), the assertion is proved. 2

Based on Theorem 5.1, for obtaining an ε-optimal dual solution (denoted by λ) in the

sense that L(x∗, λ∗)− L(x, λ) ≤ ε, the number of iterations required by the proposed

two- steps dual ascent method is at most ⌈C/
√
ε− 1⌉ where C = 2∥λ1 − λ∗∥2/β.

IX - 34

6 Conclusion remarks

According to my limited numerical experiences, it is very important to adjust the

parameter β in the self-adaptive dual ascent method in Section 3. A suitable

small β in (2.1a) will ensure the condition (2.1c) and the convergence. However, if

rk =
∥βkA(x

k − x̃k)∥
∥λk − λ̃k∥

≤ µ, (say µ = 0.4)

the parameter β should be to enlarge for the trial in the next iteration.

Notice that, in the convergence rate proof of the accelerated two-steps dual

ascent method, it is assumed that the nonnegative positive sequence {βk} is

non-increasing. This “non-increasing” assumption will destroy the convergence

behaviours in the practical computation.

IX - 35

References
[1] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J.

Imaging Science, 2 (2009), pp. 183-202.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed Optimization and Statistical Learning via the

Alternating Direction Method of Multipliers, Foundations and Trends in Machine Learning, 3 (2010), pp. 1-122.

[3] B. S. He, A class of projection and contraction methods for monotone variational inequalities, Applied

Mathematics and optimization, 35: pp. 69–76, 1997.

[4] B. S. He and L. Z. Liao, Improvements of some projection methods for monotone nonlinear variational

inequalities. Journal of Optimization Theory and Applications 112 (2002) 111-128.

[5] A. S. Nemirovsky and D. B. Yudin, Problem Complexity and Method Efficiency in Optimization,

Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, New York, 1983.

[6] Y. E. Nesterov, A method for solving the convex programming problem with convergence rate O(1/k2), Dokl.

Akad. Nauk SSSR, 269 (1983), pp. 543-547.

[7] Y. E. Nesterov, Gradient methods for minimizing composite objective function, CORE report 2007; available at

http://www.ecore.be/DPs/dp-1191313936.pdf.

[8] M.J.D. Powell, The Lagrange method and SAO with bounds on the dual variables, Dec. 2011, http://www.

optimization-online.org/DB FILE/2011/12/3295.pdf

[9] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, 14: pp.

877-898, 1976.

