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1 Introduction

Let X’ be a convex closed set in *™*. The problem concerned in this note is the

constrained convex minimization problem
(P) min {f(z) | Az =b, x € X}, (1.1)

where f(x) : "™ — R is a differentiable convex function, A € R™*™ and b € R™.
Let A\ be the Lagrange multiplier to the linear constraints Az = b, the Lagrange function of

the problem (1.1) is
L(z,\) = f(z) — X\ (Az — b), (1.2)

which is defined on X x R"". The dual problem of (1.1) is

max ¢(\),

where

¢(A) = inf L(z, A).

Assuming that strong duality holds, the optimal values of the primal and dual problems are

the same. We can recover a primal optimal point ™ from a dual optimal point A* by
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solving
v = argmin{L(z,\")|z € X},

provided there is only one minimizer of L(CE, )\*) (this is the case if, for example, f is

strictly convex).

The dual problem can also be interpreted as

max, x Lz, ) = f(z) — M (Ax — b)
(D) (1.3)
st rzc X, (¢ —2)'V.L(z,\) >0, V' € X.

We denote the solution set of (1.3) by Q* = A™ x A*.

Dual feasible pair ' A pair of (x, \) is dual feasible of (1.3) if and only if

reX, (@ —x) (Vf(x)— A" X)) >0, Vo' € X. (1.4)

For any given A* € ™, we let " be defined as in (1.5a). Therefore, (2", \*) is a

feasible solution of (1.3). Note that (™, A™) is also dual feasible.
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The dual ascent method is the algorithm
2" .= argmin{L(z, \")|z € &}, (1.5a)
and then
A=\ — ap (A" —b), (1.5b)

where o, > 0 is the step size and will be discussed later. The first step (1.5a) is an
x-minimization step, and the second step (1.5b) is a dual variable update. In some
practical applications, the dual variable A can be viewed as a vector of prices, and the
A-update step is called a price update or price adjustment step. It is called dual ascent

since, with appropriate choice of «, the dual function increases in each step, i.e.,
BA"TT) > H(NY).
For any dual feasible pair (x, \), because
L(z",\") = f(z7) > f(z) + (¢" — 2)" V(=)

and

(z" —2)" (Vf(z) — A" X) >0,
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it follows that
L(x™,\") > L(x, \).

Thus, L(x™, A"™) is the maximal value of the dual problem (1.3). By setting
vk = L(z™, \*) — L(z", \"), (1.6)

the sequence {’Uk} is non-negative. This paper considers the convergence rate of the
non-negative sequence {vy } by the dual ascent method.

Assumption ' Throughout this paper, we assume that the function f () is uniformly

strict convex. In other words, there is a positive constant & > 0, such that

(x—2)" (Vf(z) = V(@) > pllz—2|°, Vz,i (1.7)

Lemma 1.1 Let (x, \) and (T, \) be any given dual feasible pairs. Under the assumption
(1.7), we have

1 .
|z — & < ;HAT(A—A)II- (1.8)

Proof. Since (z, \) and (&, \) be any given dual feasible pairs, thus we have

r e X, (:Y;—x)T(Vf(x) —AT)\) > 0,
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and
FeXx, (z—3) (VFf(@) —A"X) >0.
Adding the above two inequalities, we obtain
(z=2)" AT A=) > (z = 2) (Vf(2) = V() > pllz - 2,
and it follows the assertion (1.8) directly. [l

In other words, under the assumption that f is uniformly strict convex and differentiable,

the solution of (1.5a) is a Lipschitz continuous function of .

Lemma 1.2 For given \*, let 2* be given by (1.5a). Then for any feasible solution (x, \)
of the dual problem (1.3), we have

L(z", X"y — L(z,\) > (A = X" (A" —b). (1.9)

Proof. First, using the convexity of f we obtain
L(z", \*) — L(z, \)
= f@") = f2) + X (Az —b) — ()" (A" — )
> (" —2)"Vf()+ N (Az —b) — (V)T (A" —b).  (1.10)
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Since (x, \) is a feasible solution of the dual problem and 2% € X, setz’ = " in (1.4),
we obtain

(" — )"V (z) > (" —2)TA" XN = AT A" — 2).
Substituting it in the right hand side of (1.10), we obtain
L(z®, \*) — L(x, \)
> N A" — )+ X (Az —b) — V)T (42" —b)

= (A=XT(4z" —b).

The assertion of this lemma is proved. U

2 Dual ascent method

We assume that f is strictly convex and thus, for any given )\k, the x-minimization
problem (1.5a) has the unique solution " . Note that this assumption does not hold in
many important applications, so dual ascent often cannot be used. As an example, if f is a

nonzero affine function of any component of x, then the x-minimization (1.5a) fails, since
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L(x, \) is unbounded below in & for most .

Dual Ascent Method(DAM)
Let (z°, \°) be a pair of feasible solution of the dual problem (1.3).
Fork = 0,1, ..., do: Given dual feasible pair (xk’, )\k), set

AT =\ — B (Az" —b),

and let
" = argmin {L(x, \*T1) |z € X}

(", \*T1) satisfy the condition
14

()\k . )\k+1>TA<CCk . xk—l—l) S 5
k

INT = X120 v e (0,1).

(2.1a)

(2.1b)

The parameter [ is selected such that the dual feasible pairs (z", \*) and

(2.1¢)

Due to (1.8), by using Armijo-like line search to find a 3 to satisfy (2.1c), there is a
Bmin > 0 such that
I%f{ﬁk} > 5min-

Note that each pair (2", \*) generated by the dual ascent method is dual feasible.
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Lemma 2.1 Let {(x", \*)} be the sequence generated by the dual ascent method (2.1).
Then we have

1—v

Br

L(z®TH A — L(2®, \%) > [P (2.2)

Proof. Since the sequence { (2", \*)} is dual feasible, by setting
(", ) = ("t X ) and (2, \) = (2%, A\F) in (1.9), we obtain

LT N — L(®, 05 > (OF = A THT Az T —p). (2.3)
It follows from (2.1c) that

()\k o )\k—i_l)T(Afl?k—l—l o b)
1%
= (A= ATH (A" —b) = AT - AT, (2.4)

Note that from (2.1a) we have
1
(A" = N (AzF —b) = EW — A2 (2.5)

The assertion of this lemma is proved. [
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Lemma 2.2 Let {(x", \*)} be the sequence generated by the dual ascent method (2.1).
Then for any \* € A™, we have

AL < AR AP A A2 2280 (L™, A7)~ (", AY)). 26

Proof. It follows from (2.1a) that
A= AT
= (A" =27 = (" = AT
= A" = NP 4+ N = AP =200 = AT Br(42” — D). (27)
In addition, because (™, \™) is dual feasible, by setting (z, \) = (™, A\™) in (1.9), we

obtain

N =X (Az" —b) > L(z*, \*) — L(2", \"). (2.8)

Substituting (2.8) in (2.7), the assertion follows directly. U

Lemma 2.3 Let {(Cbk, AP )} be the sequence generated by the dual ascent method (2.1).
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Then for any \* € A*, we have
L el e 20| PN
28k (L(x", \*) — L(z" 1, "), (2.9)
Thus the sequence {\*} is Fejér monotone with respect to A* whenv < 1/2.
Proof. First, it follows from (2.6) that
L P e PPN
—285 (L(z" ) = L(z" T A 4 28, (L(2"\") = L(2" T A1) (2.10)
Using (2.2), we get
285 (L(x", A") — L2 AM) < —2(1 = v) A" = A2,
Substituting it in (2.10), we get the assertion (2.9). The Lemma is proved. [

Theorem 2.1 Let { (2", \*)} be the sequence generated by the dual ascent method
(2.1). Ifv < 1/2, the sequence {\*} is Fejér monotone with respect to A*. Moreover,

1
L(x Y )\ ) (CB 7)\ ) — 2k/8min

XY — X% (2.11)
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Proof. Because L(z*, \*) — L(z" ™, \*T1) > 0 and v < 1/2, it follows from (2.9)
that

k+1 * 12 k * 12
AT = AT < IAT = AT,
whenever (2, \*) & Q*. Again, from (2.9) we obtain that

2Bmin (L(x", A7) — L1 A1) < AL = A7[ = A7 — 272,

Summing the above inequality over 3 = 0, ..., k — 1 and using the increasing property
of {L(x", \¥)}, the assertion (2.11) follows directly. O

3 Iterations complexity

Theorem 3.1 Let { (2", \*)} be the sequence generated by the dual ascent method
(2.1) and Bx, = B. Thenforanyk > 0 and (™, \") € X" x A*, we have

QkB(L(:ck AP) — L(z*,\")

}—l

> (23 (1—v)+(1— QV)) A = N2 = A% = 2*))%. 81)

=0

Q.
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Proof. It follows from (2.9) that, for all 7 > 0, we have
2B(L(«" N7 = L(z", X))
> NN I = AP (= 20) IV = VTR

Using the fact L(z?, \?) — L(x*, A*) < 0, summing the above inequality over
7 =0,...,k— 1, we obtain

k—1
28 (Z L(z7T, MY kL(z", A*))
7=0
k—1
> A= AP N = NP (= 20) Y IV =N @32)
7=0

By using Lemma 2.1 for k = j, we get

BIL(@™, N7 = L(2?, X)) > (1= v)||¥ — N T|%.

IX -
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Multiplying the last inequality by 27 and summing over 7 = 0, ...,k — 1, it follows that

k—1
28 (G +DLE N = L N =L, V)

k—1

> > 2j(L=v)|N =N

3=0

which simplifies to

k—1 _
2B(kL R =3 L J“,xf“)) > 37 25(1 - )N - N2 89
J=0 )=

Adding (3.2) and (3.3), we get

2kB(L(x", A\") — L(z*, \"))
k—

> Z(Zj 1—u)+(1—2u>)|w N2 Z A0 — a2,

=0

H

Q.

The proof is complete. [
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& Infact, forany v € (O, 1), the iteration-complexity of the single projected gradient
method is O(1/k). For example, if v = 0.9, then

(1—-2v)+2j(1l—v)>0,Vj>4.
In this case, it follows from (3.1) that
2kB(L(z*, ") — L(z",\"))
<N =N S (v = D 2w = 1) IV = NP @4
Since v < 0.9, we have

Lix™ X7) = L 0 < o (I = WP+ 2S5V - 3 2). @

2k
Practical Condition ' In practical computation, instead of the condition (2.1c), we use
1BrA(@™ — 2" )| < wA" = X", v e (0,1) (3.6)

as the acceptance condition. It is clear that above condition is stronger than the condition

(2.1c). We use the following self-adaptive dual ascent method:

IX -
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Self-adaptive dual ascent method:

ri = || BeA(a® — )| /IIAF = A7)

while 7 > v

Br := 2Bk * min{1, %}

ri = [|Br A — 25| /IIAF = A,
end(while)
)\k—l—l — S\k
Iif 7. < pu then (i := Ok *x1.5, end(if)
Step2. Br+1 = Br and k=4k+ 1, gotoStep1.

Step 0. Set Bo = 1,v € (0,1), A\° € R™, 2° = argmin{L(z, \°)|x € X}.
For k = 0,1, ..., if the stopping criterium is not satisfied, do:
Step 1. A\¥ = A\ — Bp(Az® —b), #* = argmin{L(z, \*) |z € &},

M= 2P — B (Az* —b), &* = argmin{L(z, \*) |z € X},

KX ERFEFBEEE| If ) < i then Bg := Br *x 1.5

end(if)

KIEMERTH, ERNEZSBITELRM.

HIOE, 1K
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4 Applications of the self-adaptive dual-ascent

method

G FER, — MR ATIIA 1 BXTFRF IEEXEFEFR AT X 56 %
(Correlation Matrix). 345 EHIMFREEFE C, 3k FHR TS C lEEHIEAIIEX
36, B FERIANXZ

min{%”X _C|% | diag(X) = e, X € ST} @)
Hp e RIRBIMNPERHA 1B n-HEM@E, ST Rnn x n IEFEHNES. [0
w0 (4.1) R (1) EFERAR ML IR, B AT Al = 1.
A 2z € R EAZFRAER diag(X) =e HJ Lagrange e+
FE M #E PPA B EK R (4.1), BAMCERT WEMUHAY § 4.1
SHAER 2~ 77 X AER:

1 n
min{ || X - Cll7 — (") (diag(X) — e)| X € ST} (4.2)



FielER (4.2) KGR ERMOE: (L AFM e

min{2 || X — (C + diag(z"))[}1X € 57},
FE AR EE RNk iR
XF = Argmin{%“X — A|p| X € ST} (4.3)
)@ (4.3) WA ZESIMHEECRIET N4

X F Dual Ascent Method, Bk X F R AL HEREITHEMN \°, EKR—
4™ Dual feasible pair (z*, \*), E rh

z* = Argmin{L(z, \*)|z € X}.
ENFRBIERARZ 4.2, RIMNIAZEEBER X",

RN A E R G EZH T LT E. 7 Matlab F2FE P, SHFREEFESSHEE S R, &
5FF mexeig FI2F. i IR 25 R 3RAA, 311X —3E(0]FH, Dual Ascent Method LE 58
PO HY Customized PPA X E{R—{ZEA.
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Code 5.A. Matlab code for Creating the test examples

o\

Comparison the two different methods $%$%%%%%%%%%%%

DEMO

=1 }

X is positive semi-definite, X_{3j7j}

o\°

14

tol=1le-6
%% Generating the given matrix C
rand (' state’,0);

C

clc

close all;

’

clear

o\°

14

14

500

n

o\°

o\°

4

randn (' state’, 0)

o\°

- ones (n,n) + eye(n);

C=(C’"+C)

14

rand (n, n)

% (06)

(0,2)

C_{3jj} in

(-1,1) for i\ne 7,

{iJ} in

C_

%% C 1s symmetric,

o\°

o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\

o\°

Extende PPA with mexeig %%

Run

o\°
o\

% (9)
(10)

Given Parameter

[}
©°7o°

LN

= 1.5

gamma

1.01/r;
(n,C,r,s,tol,gamma)

S

r = 2.0;
PPA_G

o\°
o\°

o\°
o\°

o\°
o\°

o\°
o\°
o\

(12)

Given Parameter % (13)

Run Dual—-Ascent Method

beta=1.0

[}
)

[}
©° 7o

’

(14)

(n,C,beta, tol)

Dual A

o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\
o\°
o\°
o\°
o\°
o\

& BB XTFREERE C, STEITTIE (0,2) 28], IEEXAITE (—1,1) Z (8.



Code 5.1 Matlab Code of the Extended PPA

%% Extended PPA for calibrating correlation matrix
function PPA_G(n,C,r,s,tol, gamma)

X = eye(n); y = zeros(n,1); tic; %% The initial iterate
stopc=1; k=0;
while (stopc>tol && k<=100) %% Beginning of an Iteration
if mod(k,1)==0; fprintf (’k=%3d epsm=%9.3e\n’,k,stopc); end;
X0 = X; v0 = vy; k=k+1;
vt = y0 - (diag(X0)-ones(n,1))/s;
A =(X0xr + C + diag(yt*2-y0))/ (1+r);
[V,D] = mexeig(A); D = max(0,D); XT = (VxD)+*V’; %% mexeig
EX = X0-XT; EY = y0-yt;
ex = max (max (abs (EX))); ey = max(abs(EY));

stopc= max (ex,ey);

X = X0-EXxgamma; y = y0-EY*xgamma;
end %% End of an Iteration
toc
TB = max (abs (diag(X-eye (n))));

fprintf (" k=%3d epsm=%9.3e TB=%8.5f\n\n’,k, stopc, TB) ;

3 (1)
5 (2)
5 (3)
5 (4)
% (5)
% (6)
3(7)
% (8)
% (9)
% (10)
$(11)
$(12)
5 (13)
$(14)
3(15)
5 (16)
$(17)
% (18)
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Code 5.2 Matlab Code of Dual Ascent Method

%% Dual—-Ascent—-Method, Dual variable =z
function Dual_A(n,C,beta,tol)
z=zeros(n,1); tic; %% The initial iterate
A= C + diag(z); [V,D]=mexeig (A); D=max(0,D); X=(V*D) «xV’;
r=1; k=0; 1=0; stopc=1;
while (stopc>tol && k<=60) %% Beginning of an Iteration
gz= diag(X)-ones(n,1); stopc=max (abs (gz) ) ;
k= k+1; 1=1+1;
dz=gzxbeta; zt=z-dz; A= C + diag(zt);
[V,D]=mexeig (A); D=max(0,D); XT=(V*xD) xV’;
df=(diag(X)-diag (XT) ) xbeta; r=norm (df) /norm(dz) ;

while r>0.9
beta=0.8+beta; 1=1+1;

dz=gzxbeta; zt=z-dz; A= C + diag(zt);
[V,D]=mexeig (A); D=max(0,D); XT=(V*D) xV’ ;
df=(diag (X)-diag (XT) ) xbeta; r=norm (df) /norm(dz) ;
end;
z = zt; X=XT; if r <0.6 beta=betax1.5; end;

o\

% End of an Iteration
toc; fprintf (’ k=%4d epsm=%9. 3e 1=%4d \n’,k,stopc,1);

end;

e e e e e e e e e o\° o\° o\° o\° o\° o\° o\° o\° o\

O W O 1 o O x W DN P O W 0 J o U b W DN B+

o0 o o o o o o o o° o° o°
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SEPERZIECIRR 4.1) FEEEXRe=10"*
n X n Matrix Extended PPA Dual-Ascent Method
n = No. It | CPU Sec. | No. It No. of Solving CPU Sec.
Sub-Prob (2.1b)
100 18 0.11 11 11 0.07
200 21 0.36 12 12 0.21
500 22 3.41 12 12 1.80
800 24 12.65 13 13 7.05
1000 25 24.75 13 13 12.51
1500 30 93.74 13 13 42.42
2000 34 241.25 14 14 103.85

The dual ascent method converges much faster than the extended PPA.

CPU. Time of the dual ascent method

CPU. Time of the extended PPA

55% n < 1000
45% n > 1000
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SEPERZIEIDIRR 4.1) FEEEKe=10"F
n X n Matrix Extended PPA Dual-Ascent Method
n = No. It | CPU Sec. | No. It No. of Solving CPU Sec.
Sub-Prob (2.1b)
100 26 0.16 14 14 0.09
200 29 0.50 17 17 0.29
500 32 4.96 17 17 2.54
800 35 18.45 19 19 10.29
1000 36 35.64 17 17 18.75
1500 44 137.50 18 18 58.74
2000 50 354.78 20 20 148.36

The dual ascent method converges much faster than the extended PPA.

CPU. Time of the dual ascent method

CPU. Time of the extended PPA

55%
45%

n < 1000
n > 1000
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5 An accelerated two-steps dual ascent method

According to the basic idea of Nesterov [6], we can construct the accelerated two-steps
dual ascent method. Besides { A"}, it generates an auxiliary sequence {n*}.

IX-24

A two-steps dual ascent method
Step 0. Take B > 0, \' € R™. Setn' = A\, t; = 1.
Step k. (k > 1) With given (A\*, n*), produce the dual feasible pair (:1:7’3, n*) and let

AT =k Bk(A:E,,]; —b), (5.1a)

then generate the new dual feasible pair (ka, )\kH). The step size B should ensure

the two dual feasible pairs, (:U,’l“,, n") and ("1, A1) o satisfy

1
(" = A" Ay — ™) < o In" = A% (5.1b)
2Bk
Set
77k+1 R (tk: — 1) ()\k;—|—1 B )\k)’ (5.1¢)
tk+1
where

1+ /14482
5 .

41 = (5.1d)




The method is called two-steps dual ascent method because each iteration consists of two
steps. The k-th iteration begins with (A, n*), the first step (5.1a) produces A* ™! and the
second one (5.1c) updates nkH. In each iteration, it needs at least to produce two dual

feasible pairs, namely

(xf;, n®) and (2T AR,
It is assumed that the positive sequence { 8% } is non- increasing. We show that the
proposed two-steps dual ascent method is convergent with the iteration-complexity

O(1/k?). The proof is similar as those in [1].

Lemma 5.1 Let \*T! pe given by (5.1a) and the step size condition (5.1b) be satisfied.

Then we have

28k (L(z" T XY — L(z, )
> = AP 2 =T =N, YA e R (52

Proof. By using (1.9), for any feasible solution (x, \) of the dual problem (1.3), we get

L(zy,n™) — L(z, \) > (A —n")" (Azf — b).
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Due to (5.1a), we have

A=) (Azy —b) = {A=X"TH+ O =" (Ax) —b)
I NN S RN RN S N

" = X",

and consequently

1 1
L(wn,n") = L(z,A) > = (A = X" (0" = A — —In" = A*|°. (5.3
B Bk
Again, by setting k := k + 1 and (z,\) = (L, n") in (1.9), we obtain

L") = Ly, ")
> (0" = AT (A" — )
= (" = A" (A2 —b) = Az, — 2"}

n

=l = NP = (= AT Al - 0t

Y

Lk ykr1g2
—In" — A . 5.4
TR | (5.4)



Adding (5.3) and (5.4),
Lz, )\k“) — L(z,\)
> (= At = A - a2

Bk 25k
1 k+1 k412
= —(=1)"0" - A )+—Hn — A" (5.5)
Br
The above inequality can be rewritten as (5.2) and the lemma is proved. [l

To derive the iteration-complexity of the two-steps projected gradient method, we need to

prove some properties of the corresponding sequence.

Lemma 5.2 The sequences {\*} and {n"} generated by the proposed two-steps dual

ascent method satisfy
2Bktivr — 2Bk y1thyrvipn > luHE = (W), VE > 1, (5.6)

where vy := L(x*, \*) — L(z" T, A" and u® := tp NPT — (8 — 1)AF — \*.
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)\k:—l—l

Proof. By using Lemma 5.1 fork + 1, x = and z = \" we get

26k+1 (L($k+2, )\k—{—Z) o L($k+1, )\k—l—l))
> ||nk—|—1 o )\k—|—2||2 + 2(}\k—|—2 o nk+1)T<77k+1 . )\k—f—l)

Y

and

2B+1 (L(2" T2 N2 — L(z™, \"))
2 an—l—l . )\k—i—QHQ + 2(>\k—|—2 . nk+1)T<nk—|—1 o )\*)

Using the definition of vg, we get
2811 (vk —vg1) > [T = AP 2T gt T (T A (57)
and

—2Bk1vks1 > 0" = AP 420 = THT (T = A (s9)
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To get a relation between vy, and Vi1, we multiply (5.7) by (41 — 1) and add it to (5.8):

28k+1 ((tk—i—l — Doy, — tk+1vk+1)
>t [Nt

_|_2(>\k—|—2_ nk+1)T(tk+1nk—|—1_ (topr — 1)>\k—|—1_ )\*).
Multiplying the last inequality by ¢x41 and using
tr = tiﬂ — tra1 (and thus trp+1 = (1 + m)/Q asin (5.1d)),
which yields

2811 (thvr — tis1Vk41)
> lte AT =)
+2tk+1(>\k—|—2 . nk+1)T(tk+1nk+1 L (tk-|_]_ . 1)>\k—|—1 . )\*)

Applying the relation

la —blI° +2(a = )" (b—c) = lla—cl| = [|b— |

IX-29



to the right-hand side of the last inequality with
a:=te i AT b=t = (e — DAFTE 40",
and using the fact 25ktivk > 25k+1thk (since { Bk } is non-increasing), we get

2BktRvk — 2Bk 1th1Vk 41
>tk AT = (b — DAMT X

—llthsan™™ =t — DATT = A2
In order to write the above inequality in the form (5.6) with

u =t N — (8 — DN — A7,
we need only to set

ter1n™ T — (b — DA = X = 05T — (4, — DAF — A"

From the last equality we obtain

tr — 1
77/7~<:+1 _ R ( k )(Ak—i—l _ )\k).
tk+1

This is just the form (5.1c¢) in the accelerated two-steps version of the dual ascent method
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and the lemma is proved. [

To proceed the proof of the main theorem, we need the following Lemma 5.3 and Lemma
5.4, which have also been considered in [1]. We omit their proofs as they are trivial.

Lemma 5.3 Let{ax} and {bx } be positive sequences of reals satisfying
ar — k41 Zbk+1_bk sz 1.
Then, ar < a1 + by forevery k > 1.

Lemma 5.4 The positive sequence {t}, } generated by

1+ +/1+ 4t
2

tk+1 = ; with t1 =1

satisfies

tkz%, V> 1.

Now, we are ready to show that the proposed two-steps projected gradient method is
convergent with the rate O(1/k?).

Theorem 5.1 Let {\"} and {n*} be generated by the proposed two-steps dual ascent

IX - 31



method . Then, forany k > 1, we have

2[IAT = A"|®
* * k k * *
L(x™ A7) — L(z",\") < B VAT e
Proof. Let us define the quantities

ar = 2Bithvr, by = |[u”)’

By using Lemma 5.2 and Lemma 5.3, we obtain

251&5%’016 < a1 + b1,

which combined with the definition v and t;, > (k + 1)/2 (by Lemma 5.4) yields

L(z*, X)) — L(z" T, A =y, <

Since t1 = 1, and using the definition of uy given in Lemma 5.2, we have

a; = 25115%?)1 = 2B1v1 = 201 (L(x*v Xk) _ L(x27 >‘2))7

and
by = [u'[|® = [|A% = A7||%.

2(a1 + b1) < 2(a1 + b1)
T Be(k+1)2 7 Brra(k+1)2

(5.9)

(5.10)
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Setting A = A* and k = 1 in (5.2), we have

281 (L(z*,\") — L(z*,2%) < 2(n" = X)) (' =A%) —|In" = X?|°
= It = A*|I2 = IA* = 22

Therefore, we have

ar+b1 = 2B1(L(z", X)) — L(z*, A7) 4+ [|]A° = X7||°
<t = AT = I = X I = AT
= A=A
Substituting it in (5.10), the assertion is proved. ]

Based on Theorem 5.1, for obtaining an £-optimal dual solution (denoted by \) in the
sense that L(x™, \") — L(x, \) < €, the number of iterations required by the proposed
two- steps dual ascent method is at most [C'/+/e — 1] where C' = 2||A" — \*||? /5.
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6 Conclusion remarks

According to my limited numerical experiences, it is very important to adjust the
parameter 3 in the self-adaptive dual ascent method in Section 3. A suitable
small 3 in (2.1a) will ensure the condition (2.1c) and the convergence. However, if

_ IBAGE - aM)]
Ak — 35|

< pu, (saypu=0.4)
the parameter (3 should be to enlarge for the trial in the next iteration.

Notice that, in the convergence rate proof of the accelerated two-steps dual
ascent method, it is assumed that the nonnegative positive sequence {3 } is
non-increasing. This “non-increasing” assumption will destroy the convergence

behaviours in the practical computation.
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