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1 Structured constrained convex optimization

We consider the following structured constrained convex optimization problem

min {01 (x) + 02(y) | Ax+ By=5b, r € X, y € Y} (1.1)

where 01 () : ™' — R, O2(y) : R™? — R are convex functions (but not necessary
smooth), A € R™*"1, B R™ ™2 andb € N, X C R, Y C N2 are given
closed convex sets. It is clear that the split feasibility problem:

Findapoint £ € X suchthat Az € B,

can be formulated as a special problem of (1.1) with 61 (z) = 02(y) = 0. Find (x, y)
such that
{Az —y =0, z € X, y € B}. (1.2)

Let A be the Lagrangian multiplier for the linear constraints Ax + By = bin (1.1), the

Lagrangian function of this problem is

L(z,y, A) = 01(z) + 02(y) — A" (Az + By — b),



which is defined on X' x ) x R™. Let (z*, y™, A™) be an saddle point of the Lagrangian
function, then (z*, y™, A™) € € and it satisfies

’

Or(x) — 01(x") + (z — x™)" (—ATX") >0,
§ O2(y) —O2(y*) + (y—y") (=BTA) >0, V(z,y,A) e, (13
(A= X)) (Az" + By* —b) >0,

\

where
Q=X xYxR".
By denoting
x — AT\
u= "0, w=| 4 |, Fw) = —BT
/ A Axr+ By —b
and

O(u) = 01(x) + 02(y),

the first order optimal condition (1.3) can be written in a compact form such as
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w* € Q, O(u) — 0(u*) + (w — w*)'Fw*) >0, VweN. (1.4

Note that the mapping F' is monotone. We use {2* to denote the solution set of
the variational inequality (1.4). For convenience we use the notations

v = and V' ={(y",\")|(«",y",\*) € Q" }.

Augmented Lagrangian Method to structured COP '

Augmented Lagrangian Method is one of the atiractive methods for nonlinear optimization

as demonstrated in Chapter 17 of [21]. We try to use the Augmented Lagrangian Method
to solve (1.1) and set

M=(A,B) and U=XX).
Now, the problem (1.1) is rewritten as

min{f(u) | Mu =5, u € U}. (1.5)
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For given 8 > 0, the augmented Lagrangian function of (1.5) is
La(u, N) = 0(u) — XT (M —B) + 5| Mu —b]]*,

which defined on €2 = U x R Directly applied Augmented Lagrangian Method to the
problem (1.5), the k-th iteration begins with A, obtain

uw T = Argmin{ L4 (u, \*) |u € U}, (1.6)
and then update the new iterate by
AT = 2\F — g(Mu T —b). (1.7)
Note that w1 € U generated by (1.6) satisfies
0(u) — O(u ") + (u— " T {=MTN + M (MW — b)Y >0, Yu e U.
By using (1.7) in the last inequality, we obtain

e, 0(u)—0(uTh + (u—ukH)T(—MT)\kH) >0, Yuel. (1.8)
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Combining (1.8) and (1.7), we get w* ™! € Q and for any w € €, it holds that

T
k+1 T\ k+1
u—u —M = A 0
O(u) — O(u" ) + + > 0.
A — ARt MuFtt — b ST —0F)

Substituting w = w™ in the above variational inequality and using the notation of F'(w),
we get

()\k+1 _ >\*>T(>\k B )\k—l—l)
> B —w)TF@) o) — 0w} (1)
Using the monotonicity of F' and the fact
O(u" ) —0(u*) + (W —w*)T F(w*) >0,
we derive that the right hand side of (1.9) is non-negative. Therefore, we have
AT AT = XY >0, var e A™ (1.10)

It follows from (1.10) that

I =X 12 = O =A) + (A=A 12 > AP = A2+ AT = A2,
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We get the nice convergence property:

INTFE = X2 <A = )12 = AR = AR

Summarize the Augmented Lagrangian Method to structured COP .

For given \*, uf+1 = (zFT1 /*T1) is the solution of the following problem

01 (z) + 02(y) — (M) (Az 4+ By —b) |z € X
+5 Az + By — b])? yey

The new iterate' ML = NP — B(AzF+L 4 Byktl —p).
_Convergence. IAFFE = A*[2 < INE = A2 = AR = A2
Shortcoming ' The structure property is not used !

By using the augmented Lagrangian method for the structured problem (1.5), the k-th

(¥ yF 1) = Argmin

iteration is from A" to A**. The variable u = (x,y) is only an intermediate variable.



2 Alternating Direction Method

To overcome the shortcoming the ALM for the problem (1.1), we use the alternating
direction method. The main idea is splitting the subproblem (1.6) in two parts and only the
z-part is the intermediate variable. Thus the iteration begins with v° = (yo, )\0).

Applied ADM to the structured COP: (", \*) = (y*T1, AFT1)

First, for given (yk, Ak), 2" is the solution of the following problem

. k\T kE
T B e

T € X} (2.1a)

Use A¥ and the obtained =", 4" is the solution of the following problem

) 02(y) — (AT (Az™ + By —b)

k+1 2

= Argmin ey 2.1b

Y ° { +5)| Az" + By — b|? Y (&10)
A=\ — B(Az T + Byt —b). (2.1¢)

Advantages ' The sub-problems (2.1a) and (2.1b) are separately solved one by one.
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Remark 2.1 The sub-problems (2.1a) and (2.1b) is equivalent to

and

ZEHL = Argmin{@l(:c) + 2||(Az + By" —b) — 1X*|P|z € x}

y* ! = argmin{ 02 (y) + 51I(A" + By — b) = SAM|P |y € ¥}

respectively. Note that the equation (2.1c) can be written as

A= XN AL" T+ By* ™ — b))+ (AT =M1 >0, VA e R

1
B

Analysis ' Note that the solution of (2.1a) and (2.1b) satisfies

and

" e X, 0i(x) — 0 (") + (z — 2THT

{—AT)\’“ + BAT (A + By* — b)} >0, VeeX

vy ey, 6a(y) — 0y T + (w—y T
{—BT)\k + BBT (Az ! 4 Byt — b)} >0, Vy e,

(2.2a)

(2.2b)

(2.2c)

(2.3a)

(2.3b)
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respectively. Substituting AL (see (2.1¢)) in (2.3) (eliminating A¥in (2.3)), we get

Tt e x, 61(x) — 01" + (x — FTHT

{—AT)\kH + BAT B(y* — ka)} >0, Vx e X, (2.4a)
and

Yy e, 0a(y) -0 (") +(y—y" T {=BTA"1 >0, Vy € V. (2.4p)

For analysis convenience, we rewrite (2.4) as u* ™1 = (2", ¢* 1) € X x Y.
k+1 L k
T — —AT)\ +1 AT
O(u) — O(u ) + +3 B(y*" —y")
Yy — k+1 _BT)\k—}—l BT
0 0 ghtt — gk
+ >0, V(z,y) € X XY
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Combining the last inequality with (2.2c), we have w* ™! € Q and

T

o — kTl ( _ AT \k+1
H(U) o Q(U,k—l_l) + y — yk:—i—l < _BT)\k—l—l
)\ . )\k—|—1 \ A$k+1 4 Byk:—}—l . b
AT 0 0 L g \
+8| BT |B(* ="+ | BBTB 0 =0, @y
0 Y AT =
g-m J

for any w € (2. The above inequality can be rewritten as wFTt € O and

0(uw) — 0(u* ™) + (w — W) F(w

y—y"\ [ BB'B
A — APt 0

1V

T — iUk+1 T AT
k+1) + 5 y — yk+1 BT B(yk_yk+1>
A — Nl 0
0 k o k+1
1 yk yk YweQ (26
) AF— kL
B m



Xl-12

3 Convergence of ADM

Based on the analysis in the last section, we have the following lemma.

Lemma 3.1 Letw™ 1! = (a:k“, ka, )\k“) € (2 be generated by (2.1) from the

givenv® = (y*, \¥). Then, we have

(W — o) T H " =" > (W —w") ()t Y, @)
where
AT
ny",v"" =81 BT | Bly" -y (3.2)
0
and
BBTB 0
H = (3.3)
0 %Im
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Proof. Setting w = w™ in (2.6), and using H and n(y”*, y* 1), we get
(W — o) TH @ — o)
> (W - w*)Tn(yk’yk—{—l)
+0(u" ) — 0(u*) + (W — W F(w* . (3.4)

Since F' is monotone, it follows that
9<uk—|—1)_9(u*) _|_ (wk—l—l o w*)TF(wk—|—1>
> 0 T —0w") + (W —wh)T F(w*) > 0.

The last inequality is due to w* Tt € Q and w* € O (see (1.4)). Substituting it in (3.4),
the lemma is proved. [

Lemma 3.2 Letw" T = (ackH, ka, )\kH) € () be generated by (2.1) from the

given v® = (y*, \*). Then, we have

(W —w) (", ") = (W = AHT B -, @35)

and
N = A HT B — ") > 0. (3.6)
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Proof. By using 17(y", y* 1) (see (3.2)), Az* + By* = band (2.1c), we have
(W —w) n(y", ")
= (B —y")" 8{(Az""" + By*) — (42" + By")}
= (B —y")"p(Az" T + By*T! — b)
_ ()\k . )\k—i—l)TB(yk . yk—l—l).

Because (2.4b) is true for the k-th iteration and the previous iteration, we have
O2(y) — 024" ) + (y—y" ) {-B" A"} >0, Vyey, @7

and
02(y) — 02(y") + (y — ") {-B"A\*} >0, Vy e, (3.8)

Setting y = yk in (3.7)and y = yk+1 in (3.8), respectively, and then adding the two

resulting inequalities, we get

()\k . )\k+1)TB<yk . yk—l—l) > 0.

The assertion of this lemma is proved. ]



Even though H is positive semi-definite (see (3.3) when B is not full column rank), in this

lecture we use ||v — ||z to denote that
- - - . 1 <
lv =3l = (v—2)" H(v—0) = 8|Bly — §)[|” + EH)\ = AlI".

Lemma 3.3 Letw" ™ = (2"t yF Tt NF1) € Q) be generated by (2.1) from the

given v® = (y*, \*). Then, we have

(" — )T H@" ="t >0, Vo e V. (3.9)

Proof. The assertion follows (3.1), (3.5) and (3.6) directly. [

Theorem 3.1 Letw" ™! = (xk+1,yk+1, )\kH) € (2 be generated by (2.1) from the

givenv® = (y*, \¥). Then, we have

0" T — o™ |3 < 0" — o™ ||FH — [|0F =" 5, Vot e V. (3.10)
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Proof. By using (3.9), we have

I v = " =v") + (" ="
_ ||’Uk+1 — v ||H + 2(’Uk+1 . ’U*>TH(’Uk o vk—l—l)
o — "I

k—{—l

> 0" =0+ o =R,

and thus (3.10) is proved. []

The inequality (3.10) is essential for the convergence of the alternating direction method. It
tells us that the alternating direction method is a contraction method. Multiplying a factor
1/, it can be written as

2 2 2

B k+1 % B ko B k _ k+1
((ka Y i : W* =y |[BG —y") Vo eV,
ARFL )\

This result is included in Theorem 1 of [14] as a special case for fixed 5 and v = 1.



4 The extended Alternating Direction Method

In the extended ADM, the k-th iteration begins with (y*, A*). However, we take the

solution of the classical ADM as a predictor, and denote it by (:'ék, gk, S\k)

1. First, for given (1", \*), " is the solution of the following problem

\KNT ko
7" = Argmin 01(z) ﬁo\) (A:C:_By2 b) r € X (4.1a)
-|-§|\A90—|—By —b”

2. Then, use )\k and the obtained fik, gk is the solution of the following problem

_k ) b2(y) — (\)(AZ" + By — b)
= Argmin ey 4.1b
s { oAzt + By — b2 | 10
3. Finally,
o=\ — B(AZ" + B§" —b). (4.1¢)

Based on the predictor (ik, ?jk, S\k) we consider how to produce the new iterate

k+1 __ k+1 k+1
AT

v = (y and drive it more close to the set V™.
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According to the same analysis in the last section (see (2.5)) we have (Z", §~, S\k) c

and
~k e Tk T
T — T — A"\ A
O(u) — 0(a*) + | y— 3" | ¢ _BT)\F +8| BT | Bly" — 3"
A= M) \\A4z" + Bg* —b 0
)
0 0 "
+ | BB'B 0 ~ > > 0, Yw € Q. (4.2)
AE 2k
0 %Im )

Based on the above analysis, we have the following lemma.

Lemma 4.1 Let " = (a”ck, Qk, S\k) € () be generated by (4.1) from the given

v* = (y*, A*). Then, we have

(T* — ") HE@" — %) > (@" —w) 'ny", §°), (4.3)
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where
AT
k ~k k -~k
ny",9)=p8| B" | Bly"—¢") (4.4)
0
and H is the same as defined in (3.3).
Proof. The prof is similar as those for Lemma 3.1 and thus omitted. O

Similarly as in (3.5), by using 7(y", §") (see (4.4)) and Az* + By* = b, we have

~

(" —w) ", %) = O\ = XHTB* - §%). (4.5)

Lemma 4.2 Letw"” = (&%, §", S\k) € () be generated by (4.1) from the given

v* = (y*, A¥). Then, we have

and
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Proof. It follows from (4.3) and (4.5) that

~

Assertion (4.6) follows from the last inequality and the definition of ¢ (v*, ¥*) and the

lemma is proved. [l

Now, we observe the right hand side of (4.6). Note that

(", %) = [lo* ="+ (A = AT B - §")
1 . 1 . <
= S|o" ="|EH + = IBBY" —§°) + (A" = A7
2 23
1 -
> 5\1& — "3 (4.8)

Ye-Yuan’s Alternating Direction Method I

Ye-Yuan'’s alternating direction method is a prediction-correction method. The predictor is

generated by (4.1). The correction step is to update the new iterate.



Correction ' Using the ik produced by (4.1), update the new iterate phTl by

T = F — ozk('vk — 1’3k), ap = yay,, v € (0,2) (4.9a)
where
k ~k
R G
— 4.9b
W= ok = or 1, 50

Usually, in comparison with the computational load for obtaining (5@"3, yjk’) in (4.1),

the calculation cost for step-size oz, is slight.

We obtain an essential inequality for convergence in the following theorem which was

proved by Ye and Yuan in [29].

Theorem 4.1 Let " = (:Ek, @k, S\k) € () be generated by (4.1) from the given

k+1

v = (y*, \¥) and the new iterate v*t* be given by (4.9). Then we have

* * 2 — D ¥ *
o = o < " =l = TE = vt eV
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Proof. By using (4.6) and (4.9), we obtain

[0 — o™ |7 = [V — 0" || %
= [0 = v* | — (0" = v") = yar (v* = &) ||
> 2yakp(v®, %) — ¥ (ak)?|lv* — 3* 1%
= (2 —=)(ep)?|v" — "%, (4.11)

In addition, it follows from (4.8) and (4.9b) that o, > % Substituting this fact in (4.11), the

theorem is proved. U

Convergence I Both (3.10) and (4.10) can be written as

B(y* —y)|I?
(AF = X%)

2

, Vot e V*.

2

B k:_~k:
< (y" —3")

B(y"t' —y*)
%(}\k—l—l — )

1
B
It leads to that

lim By" = By*  and lim \* = \*.

k— oo k— oo



5 Application and Numerical Experiments
5.1 Calibrating the correlation matrices

We consider to solve the following problem:
.1 n
m1n{§||X —C||7|X € St NS},

where

S" ={H e R""|H" =H, H > 0},

and
Sp={HeR""|H"=H, HL < H < Hy}.

H 7t and Hy are given symmetric matrices.

Use the following Matlab Code to produce the matrices C', H;, and Hy

rand (' state’,0); C=rand(n,n); C=(C’"+C)-ones(n,n) + eye(n);

o O

%$%% C is symmetric and C_{ij} is in (-1,1), C_{33} is in
HU=ones (n,n)*0.1; HL=-HU; for i=1:n HU(i,1)=1; HL(4i,1)

(0,2) %%

=1, end;

The problem is converted to the following equivalent one: '
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min || X = C|I° + 3[Y - C°
st X—-Y =0, (5.2)
X eSSt Y eSs.

The basic sub-problems in alternating direction methods for the problem (5.2)

e Forfixed Y and Z*,

~

1 n
X* = mgmin{ 2| X — Clb — Te(2°X) + 2 X~ YF|3 | X € 57)
e With fixed X* and Z*,

- 1 .
YF = Argmin{EHY —C|7 + Te(Z2"Y) + gHX/lc ~Y|7|Y € Sg}

X* can be directly obtained via

xXkF=p !

sl y: (BY* + 2" + ). (5.3)
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Note that

Pgn (A) = UATU", where AT = max(A,0) and [U,A] = eig(A).

Similarly, Y¥*inis given by I

ko 1 ok ok
Y _PSB{1+B(6X Z"+C)}. (5.4)

SB — {H ‘ HL S H S HU}, PSB (A) = min(maX(HL,A),HU)

The most time consuming calculation is [U, A] = eig(A), 9n’

The main Matlab Code of an iteration in the Classical ADM

YO=Y; 20=2; k=k+1;
X=(YOxbeta+Z0+C) / (1l+beta) ;
[V,D]=eig (X); D=max (0,D) ; X=(V«D) *xV’;

Y=min (max ( (Xxbeta-z0+C) / (1+beta), HL), HU) ;
2=720—-(X-Y) xbeta;
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The main Matlab Code of an iteration in Ye-Yuan’s ADM

YO=Y; 20=27; k=k+1;
X=(YOxbeta+z0+C) / (1l+beta) ;

[V,D]=eig (X); D=max (0, D) ; X=(V*D) «xV’ ;

Y=min (max ( (X*beta-z0+C) / (1l+beta),b HL), HU) ;

$%%%%%%%% Calculating the step size 5%%%%%%%%%%%%%
EY=YO0-Y; EZ=(X-Y) xbeta;

Tl = EY(:)"*EY (:); T2 = EZ(:)"*EZ(:); TA=Tlxbeta + T2/beta
T2 = (EY(:)"*EZ(:));

alpha= (TA-T2) xgammaY/TA;

Y=Y0-EYxalpha; Z=720-EZ~*alpha;

Numerical results for problem (5.1)
C=rand(n,n); C=(C'+C)-ones(n,n) + eye(n)

Hy=ones(nn)*0.2; Hp =—Hy; Hu(jj) = Ho(jj)=1.



Numerical Results for calibrating correlation matrix (Using Matlab EIG)

1 X n Matrix Classical ADM Glowinski's ADM Ye-Yuan’s ADM
n = No. It | CPU Sec. No. It | CPU Sec. No. It | CPU Sec.
500 40 18.03 39 17.68 32 14.99
800 41 73.28 39 70.00 33 60.80
1000 43 141.69 42 138.30 34 114.67
1500 47 471.77 45 452 .22 41 419.70
2000 55 1254.01 53 1206.94 45 1035.38

Numerical Results for calibrating correlation matrix (Using MeXEIG)

n X n Matrix Classical ADM Glowinski’'s ADM Ye-Yuan’s ADM
n = No. It | CPU Sec. No. It | CPU Sec. No. It | CPU Sec.
500 40 5.57 39 5.38 32 4.67
800 41 18.13 39 17.15 33 15.13
1000 43 34.75 42 34.00 34 28.50
1500 47 123.77 45 117.87 41 110.17
2000 55 306.32 53 294.75 45 255.72
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It. No. of Ye-Yuan’s ADM 5}

It. No. of Classical ADM 6
It seems that Ye-Yuan’s Algorithm converges faster than primary ADM.

5.2 Application for Sparse Covariance Selection

For the details of applications in this subsection, please see the reference [30].

The problem '

min {Tr(XX) — log(det(X)) + pe’ | X|e | X € ST}, (5.5)

The equivalent problem: '

min  Tr(XX) — log(det(X)) + pe’ |Ye
st X—-Y =0, (5.6)
X e St.
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For given Y* and Z*, get (X*,Y*, Z¥) in the following procedure:

1. Forfixed Y* and Z%, X* is the solution of the following problem

min{Tr(XX) — log(det(X)) — Tr(Z*X) + gHX ~Y*|7 | X € ST}

~

2. Then, with fixed (X, Z*), Y is a solution of

min{pe’ |Y]e + Tr(Z°Y) + gHXk — Y%}

~

3. Finally, update Z* by

Solving the X subproblem for getting Xk, I

- 1 1 1 n
Xk = Argmin{iux—[y’“_B(Z—Z’“)]II%—B log(det(X)) | X € 57}, (5.8)




It should hold that X = 0 and thus X is the solution of matrix equation

o1 k 1,1
.X—O’—B@—Z))—?X = 0.
By setting
A:YV_HE—Tm
B
and using
[V, A] = eig(A)

in Matlab, we get

A=VAV', A =dag(\i,..., ).

(5.10)

(5.11)

In fact, the solution of matrix equation (5.9) should have the same eigenvectors as matrix

A.
X =VAV", A=dag(\i,..., ).
It follows from (5.9) that
1 x4
A-A—=A"1=0
s

(5.12)
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and thus

DY +\/)\2 4/5
)\j jzl,...,n.

Indeed, 5\3' > 0andthus X = 0 (see (5.12)).

The main computational load for getting X" is the eigenvalues-vectors decomposition in
(5.11).

Solving the Y subproblem for getting Y *: I

The first order condition for minimization problem

min{pe’ |Y]e + Tr(Z"Y) + gHXk ~ Y7}

IS
1
0 Loy +Y — (XF - 22M).
5 5]
In fact,
- 1 1
Y= (X" - sz) —P_,s[X" - sz],

Xl -
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where BY" = {X e R™"™| —
easy to be carried out !

% X %} The projection on a ‘box’ is very

5.3 Split feasibility problem and Matrix completion

Applying ADMM to the reformulated split feasibility problem (1.2), the k-th iteration begins
with (yk, )\k) € B x k™, and the new iterate is generated by the following procedure:

( b= Argmin{ 3| Az — (y* + N /B) |17 |z € A},

¢y = Pe[Ast — N /g),
)\k—|—1 — )\k . 5(A$k+1 . yk—l—l).

\

The z-subproblem is a problem of form min{ £ || Az — a||* | z € X'}. After getting
k—i—l (yk—l—l )\k—i—l)
’ Y

Matrix completion is to recover an unknown matrix from a sampling of its entries. For an

is obtained by a projection and an evaluation.

m X n matrix M, ) denotes the indices subset of the matrix

Q={(j)|ie{1,2,...,m}, je{1,2,....,n}}.
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The mathematical form of the considered problem is

min{ || X[, | Xij = Myj, (i) € Q)

where || X ||« is the nuclear norm of X [2]. It can convert to the following problem

minx,y || X[
s.t X—-Y =0,
Yij = Mi;, v (ij) € Q.

It belongs to the problem (1.1) and was successfully solved by the alternating direction

methods [4].

Simple iterative scheme -+ nice convergence properties
—> wide applications of ADMM in large scale optimization
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