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The context of this lecture is based on the manuscript [2]
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1 Structured constrained convex optimization

We consider the following structured constrained convex optimization problem

min {0;(x) + 0s(y) | Ax + By=5b, z € X, y € Y} (1.1)

where 01 (z) : ™ — R, O2(y) : R — R are convex functions (but not
necessary smooth), A € R™*"1 B € R™*"2 andb € ™, X C k™,

Y C R™2 are given closed convex sets.

The task of solving the problem (1.1) is to find an (z*, y*, \*) € €2, such that

2

01 (z) — O1(x*) + (z — 2*) T (—ATX*) >0,
Y O2(y) —02(y") + (y —y" ) (=BTA) =20, V(z,y,A) e, (12)
(A= X1 (Az* + By* —b) >0,

\

where
Q=X x)Y xR
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By denoting
x — AT\
=", w=]| 4y |, Fw) = —BT
/ A Axr+ By —b
and

O(u) = 01(z) + 02(y),

the first order optimal condition (1.2) can be written in a compact form such as

w* € Q, 0(u)—0(u*)+(w—w*)'F(w*) >0, Vw € Q. (1.3)

Note that the mapping F' is monotone. We use {2* to denote the solution set of

the variational inequality (1.3). For convenience we use the notations

v = and V" ={(y",\")|(z",y", A7) € Q" }.



Applied the ADM-based customized PPA to the problem (1.1) '

From given v¥ = (y*, \¥), the prediction step produces w* = (Z*, 7%, A¥).

The prediction step:

1. First, for given (y*, A\¥), 2% is the solution of the following problem

_(\K\T k
" = Argmin b1 () BO\ ) (Aa;:ByQ b) r € X p (1.4a)
2. Set the multipliers by
A= \F — 3(Az* + ByF —b). (1.4b)

3. Finally, use the obtained Z* and M find 7" by

_(XK\T( p sk _
7" = Argmin 02(y) 5(>\~) (Az" + By — b)
+5[|AZ" + By — b||?

(TS y} (1.4c)
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As analyzed in the last chapter, we have

w* € Q, 0(u)—0(@")+(w—0") {F(@")+Q(@*—v")} >0, Vw € Q, (15

where
0 0
8BTB —BT
Q=| pBTB -BT and M = . (1.6)
1 —B %[m
—B Blm
The new iterate v*11 is given by
Pt = oF — y(0F = TF), v €(0,2).

The generated sequence {v"*} satisfies

Hvkz—l—l Uk:—i—l
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2 Linearized ADM-based PPA Method

Note that the subproblems (1.4a) and (1.4c) in the last section are equivalent to
the problems

7" = Argmin{0; (z) + gH(AZC + By* —b) — %)\k\ﬂx € X} (2.1a)
and
7" = Argmin{6:(y) + 51|(AZ" + By —b) — 2\*|*|ly € Y}  (2.1b)

respectively. In some structured optimization (1.1), the subproblem (2.1b) is easy
because B is usually a scalar matrix. However, to obtain the solution of the
subproblem (2.1a) is expensive in the case that A does not have a special form.
In this lecture, we suppose that only the solution of the problem

min {91(:1:) + ng —a|?|z e X}

has a closed form, and consider to linearize the quadratic function of the
subproblem (2.1a) ADM in sense of the customized PPA.
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2.1 Linearized alternating direction method

The prediction step:

1. First, for given (CUk, yk, )\k’), solving the o subproblem to get Tk by

% = Argmin {81 (%) + B AT (Az* + By® — b — 5)%) .
+ 5|z — " |2 } x € X}
(2.2a)
2. Set the new multipliers by

A= \F — 3(Az% + ByF —b). (2.2b)

3. Finally, use the obtained 7* and 5\’“ solving the i subproblem to get yjk by

7" = argmin {0 (y) + 51| (AZ" + By —b) — 5P|y € V]
(2.2¢)
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Request on the parameter r . For given 3 > 0, r should satisfy

rl — BAT A = 0. (2.3)

The correction step: Update the new iterate w**71 by

WPt = Wk — y(w® —@F), v €[1,2). (2.4)

k41

To get the new iterate w , this method does not need to calculate the step size.

However, it needs to estimate the max-eigenvalue of AT A, i. e., Apax (AT A).

2.2 Analysis in the PPA framework

k

Note that the solution of (2.2a), " satisfies

" e X, O1(z) —01(Z") + (x — )T
{—AT N 1+ BAT (Ax® +By* —b) + (3" — 2"} >0, Vo € X.(25)



Substituting \¥ (see (2.2b)) in (2.5) (eliminating \¥), we get

Zi‘k c X, (91(33) — 01(:17;’“) + (x — sz)T
{—ATS\’“ + (rI — pAT A) (3% — CE‘k)} >0, VxeX. (2.6)

The solution of (2.2¢), " satisfies

7" €Y, ba(y) — 02(5°) + (y — )T
{-=B"\" 4+ 8BT(AZ" + B§" —b)} >0, Vye Y. (27

Note that B(AZ* + Bj* — b) = (\F — \F) + BB(7* — y*) (see (2.2b)).
Substituting it in (2.7), we obtain

7" €Y, O2(y) —02(5") + (y — )"
{(=BT@2N =)\ 4+ 8BTB(§" — "))} >0, Vye ). (28

From (2.2b) we have

(AZ" + B§" — b) — B(g" — y*) +
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Combining the inequalities (2.6), (2.8) and (2.9), we obtain

T, _
r — " — AT )k
O(u) — 0@+ | y—g* | 1 —BT)*
A—=Xe )\ Az 4 Bg* b
(rI — BATA) 0 0 #*— F )
+ 0 BBTB —BT || " —4¢" | >0, Vw € Q.(2.10)
\ k k
0 —B Sl J\ A" =AY/,

The last variational inequality can be written in form of

w* € Q, (w—d")T{F@") + G —wh)} >0, Yw e Q, (2.11)

where
(rl — BAT A) 0 0
G = 0 BTB —BT (2.12)
0 -B LI,
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which is essential in the framework of the PPA contraction methods.

2.3 Convergence of the Linearized ADM-based PPA Method

Based on the analysis in the last subsection, we have the following lemma.

Lemma 2.1 Letw” = (53"“, y*, S\k) € ) be generated by (2.2) from the given

wk = (2%, y*, \¥). Then, we have
(" — w")TG(w" —w*) >0, Yu* € QF, (2.13)
where (5 is defined in (2.12).
Proof. Setting w = w* in (2.10), we get
(0" — w)TG(w* — &%) > 0(@") — 0(u*) + (@ — w*)T F(ak).
Since F' is monotone and w" € €, it follows that

0(iF) — O(u*) + (0F —w*)T F(@*) > 0(i%) —0(u*) + (0" —w*)T F(w*).
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The right hand side of the last inequality is non-negative because w* € Q and
w* € ()*. the assertion follows directly. O

Lemma 2.2 Let " = (:’i:k, T 5\’“) € () be generated by (2.2) from the given

wk = (2%, y*, \¥). Then, we have

(w* — w)TG(w* — @) > |w® — %%, Yw* € QF, (2.14)
where (5 is defined in (2.12).

Proof. Assertion (2.14) follows from the last inequality direcily. [

Since G is symmetric and positive semi-definite, we have
w — " =0 o Gw® —a®) =0,

whenever ||w® — % ||% = 0. Therefore, it follows from (2.10) that w" is a
solution of the variational inequality when ||w"* — w*||Z, = 0.

Theorem 2.1 Let " = (:Tt’“, g~ \E ) € ) be generated by (2.2) from the given

XIvV-12



wk = (2%, Y, \¥) and the new iterate w**! be given by (2.4). Then we have

[w ! —w*|[& < [Jw* —w*||G—y(2-) |w* ~a@"||E, Yw* € Q. (2.15)

Proof. By using (2.4) and (2.14), we obtain

Jw* T — w*||Z
(2.4) -
= (w0 —w*) = y(w* —d")|F
2.14) k 112 ko ~k(2 o2k ~k(2
< w' —w'|g = 2v||w" - (g + ¥ |wt — 0|
= |lw* —w*||§ — (2 — )| — D" |Z.

This is true for any w* € €)* and the theorem is proved. O

The inequality (2.15) is essential for the convergence of the Linearized alternating
direction method. By using (2.4), the result of Theorem 2.1 can be written as

[t —w|E < ot —wt g - T [w® — "G, Ve e 0
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3 Convergence rate of L-ADM-based C-PPA Method

Lemma 3.1 Let {w"} be the sequence generated by the customized PPA (2.2)
with (2.4). Then, we have

(0% — T G{(wh — Wkt — (@F — @F )Y > 0. @)

k41

Proof. Set w = w in (2.11), we have

oty — 0(ak) + (W — oM T{F (@) + G(w" — w®)} > 0. (3.2)
Note that (2.11) is also true for k := k + 1 and thus we have

O(u)—0(@" ) +(w—a" TH{F (0" T +G (" —w* T} > 0, Yw € Q.

k

Set w = w" in the above inequality, we obtain

() — 0(a*+) + (@ — @ HT{R@) + G — w1} > 0

(3.3)



Adding (3.2) and (3.3) and using the monotonicity of F', we get
(?Ijk . ’Lbk+1)TG{(wk . wk—l—l) . (’U~Jk . wk—l—l)} > 0.

we obtain (3.1) immediately. U

Lemma 3.2 Let {w"} be the sequence generated by the customized PPA (2.2)
with (2.4). Then, we have

(wk L UNJk)TG{(wk L va)k) L (wk—i—l L ,ij—i—l)}

1 ) )
> ;”(wk — ") — (W =" T][Z. (3.4)

Proof. Adding the term || (w”® — w**1) — (w* — @**1)||% to the both sides of
(3.1), we obtain

(wk . wk—i—l)TG{(wk L ’Lbk) . (wk—l—l . wk—i—l)}

> (" — ") — (W — @2 (3.5)
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Substituting the term (w"* — w**1) in the left hand side of (3.5) by v(w”* — w*)
(see (2.4)), we obtain (3.4) and the lemma is proved. [

Lemma 3.3 Let {w*} be the sequence generated by the customized PPA (2.2)
with (2.4). Then, we have

L O e l [F (3.6)

k k+1  ~k+1

Proof. Setting a = w* — " and b = w W in the identity

lall& — [IbllE = 2a” G(a —b) — [la — b]&,

we obtain

|w® — " & — ™ ="

_ Z(wk ) {( k ~k) . (,wk—i—l - wk—l—l)}

—[l(w* = &%) — (W =@M
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By using (3.4) to the first term of the right hand side of the last equality, we obtain
N N 2—7 N N
Hwk—uﬁné—ﬂuﬁ+l—uﬁ+ﬂﬁ;2-—;—ﬂKwk—uﬁ)—ka+L—wk+UHé-

The assertion of this lemma is proved. O]

Having the assertion (2.15) and Lemma 3.3, we are ready to present the O(1/t)
convergence rate of the customized PPA in the residue sense.

Theorem 3.1 Let {w”} be the sequence generated by the customized PPA (2.2)
with (2.4). Then, we have

1
(k+1)v(2—7)

Proof. First, it follows from (2.15) that

lw® — @ ||E < lw® — w3, Vw*e Q. (37)

o

12— Dl =l < —wtE, Vet et @9
t=0
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According to Lemma 3.3, the sequence {||w® — w"||% } is non-increasing.
Therefore, we have

k
(k+ D) —@F|E <Y Jlw’ - @[3 (3.9)
i=0
The assertion of this theorem follows from (3.8) and (3.9) directly. [l

The solution set of the variational inequality VI(£2, F', #) is convex and closed.
Theorem 3.1 indicates that ADMM has O(1/k) iteration convergence rate. Let

d = inf{|juw® — w*||q |w* € QY.

For any given € > 0, in order to enforce the error ||w® — w*||%, < ¢, according
to (3.7), it needs at most k = |d?/v(2 — 7)e| iterations.
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4 ADM-based Contraction Method

In ADM-based contraction methods, we use the Nk generated by (2.2) to

construct a search direction.

4.1 Contraction Method

The prediction step of the contraction method in this subsection is the same as
(2.2). Therefore, we have (2.10) and rewrite it as
T

r — "~ ( —AT )k
" e Q, Ou)—0@")+ | y—i* | ¢ —BT )k
A= M) (\A4z* + BgY —b
rl, 0 0 (In — BAT A)(&" — 2*)))
+| o pB'B —-B? gk — ¥ s >0, Yw € Q.
0 -B 1, AF P }

B



Again, the above variational inequality can be written in form of

where

and

w* € Q, O(u) — 0
~k\T

+w — ")

(@*)

(") + Q(@" — w*)} >0, Vw € Q,

Q= HM,

ril, 0
0 pBB'B

(4.1)

(4.2)

(4.3)

(4.4)
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Request on the parameter r . For given 8 > 0, r should satisfy

BIIAT A(z* — #%)|| < vr||a® — 7%, v e (0,1). (4.5)

If the condition (2.3) is satisfied, i.e., I,, — BAT A > 0, then the condition (4.5)
is hold. In conversely it is not true. A conservative estimate for || A% A|| will leads
slow convergence. In the iteration process, we can check if the condition (4.5) is
satisfied. This section considers the contraction in H-norm, where H (defined in
(4.3)) is symmetric and positive semi-definite.

4.2 Convergence of ADM-based contraction method

Based on the analysis in the last subsection, we have the following lemma.

Lemma 4.1 Letw* = (:Ttk, g~ S\k) € () be generated by (2.2) from the given

wk = (2%, y*, \¥). Then, we have

(0* — wH)TQ(w" —wk) >0, Vw* € QF, (4.6)
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where matrix () is defined in (4.2).
Proof. Setting w = w™ in (4.1), we get
(0" — w*)TQ(w"* — w") > 0(a")—0(u*) + (W*— w*)T F(a").
Since F' is monotone, it follows that
0(a")—0(u*) + (* — w*)T F(w")
> (a")—0(u*) + (0" — w)TF(w*) > 0.

The last inequality is due to w*T1 € Q and w* € O (see (1.3)). The lemma is
proved. [

Lemma 4.2 Letw* = (:’ik, Tha 5\":) € () be generated by (2.2) from the given
wk = (2%, y*, \¥). Then, we have

(w* — w*)T HM (wk — %) > p(w”, o), Vu* € Q*, 4.7
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where H is defined in (4.3) and
o(w”, ") = (w* — T HM (w* — @) (4.8)
Proof. It follows from (4.2) and (4.6) that
(w* — w)THM (w* — %) > (w* — &%) HM (w® — @F).

Assertion (4.7) and the definition of (w*, ") directly. O

Even though H is positive semi-definite, we still use ||w — /|| i to denote that

lw — s =/ (w — @) H(w — ).

4.3 The primary contraction methods

In the primary method, we take the unit step length and use

whtl = wh — M(wk — wk) (4.9)
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to update the new iterate whktl, According to (4.4), it can be written as

phtl Tk + gATA(x’lC — k)
yr | = Tk . (4.10)
e+l Xk

In the primary contraction method, only the x-part of the corrector is different
from the predictor. In the method of Section 2, we need r > 3|/ AL Al|. By
using the method in this section, we need only a r to satisfy the condition (4.5).

In practical computation, we try to use the average of the eigenvalues of 3A” A.

By using (4.7), we obtain

lw* —w* |13 = " —w* ||
= 2w’ —w)THM (w" — ") — | M(w* —@")[F
> 2p(wk,@*) — | M(wk — @)% (@11)
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Note that (see (4.8))

20(w*, ") — || M (w* —@")|F
= (w* —a")"'(M"H+ HM — M"HM)(w" — o").

By using the structure of the matrices H and M, we obtain

M'H+HM -M"HM =H— (I -M")H(I - M)

rl, 0 0 r(2ATA)2 0 0
— 0 pBBT™B —-BT |- 0 0 0
0 —B %Im 0 0 0

Therefore,

2p(w", ") — | M (w® —@%)||5
= Jw* - ¥} - r )| AT AR - )2



Under the condition (4.5), we have
G AT Alah — 34|12 < o2l — 3|2
Consequently, we have
2p(w", &%) — [ M(w® —@")|F = (1 - v?)[lw* —@"F. @12

Theorem 4.1 Let " = (:z:k T Ak) e ) be generated by (2.2) from the given

k k4

wk = (2%, y* \F) and the new iterate w*** is given by (4.9). The sequence

{wk} generated by the elementary contraction method satisfies

Jw™ = wff < Jw® —w | - (=)t — @G @13

Theorem 4.1 is essential for the convergence of the primary contraction method.

ltwilllead  limg o0 [[w* — @0F||%, =0 and

lim z* = z*, lim By*® = By*  and lim AF = \*.

k— o0 k— o0 k— o0
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4.4 The general contraction methods

The general contraction method ' For given wk we use

w(o) = w® — aM (w* — &%) (4.14)

to update the cv-dependent new iterate. For any w™* € 2*, we define
d(a) = |w* — w7 — lw(a) —w* | (4.15)
and
¢(a) = 200(w®, W) — || M (w" — %) ||%. (4.16)

Theorem 4.2 Letw(«) be defined by (4.14). For any w* € Q* and o > 0, we
have
Ha) > q(a). (4.17)
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Proof. It follows from (4.14) and (4.15) that

Ia) = [lw* —w'|F — (" —w) - aM(w" —a")|F

= 20(w® —w)THM(w® — %) — o®||M (w® — @")||%.

By using (4.7) and the definition of ¢(«), the theorem is proved. O

Note that ¢(«v) in (4.16) is a quadratic function of «v and it reaches its maximum at

) ip(wk, W)

M (wk — a1

Qo (4.18)

From (4.12) we know that under the condition (2.3), it holds that oz}z > % In

practical computation, we use
wh T = wh — yaf M (w® — "), (4.19)
to update the new iterate with v € [1, 2). According to (4.15) and (4.17), we have

Wt — wlf < w® = w*F = alyai). (4.20)
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Using (4.16) and (4.18), we obtain

a(vai) = 2yage(w®, @%) = (yap)? [ M (w* —o")|F
= (2 — Y)Wk, a"). (4.21)

Note that o}, > 1/2 and (see (4.12))

N 1 N N
p(w®, %) = o (M (w* — a5 + (1= v)w® —a¥|F). @22
Combining (4.20), (4.21) and (4.22), we get the following theorem for the general

contraction method.

Theorem 4.3 The sequence {w" = (2%, y*, \¥)} generated by the general
contraction method (4.19) satisfies

H,wk—l—l 7(2 T /7)(1 o V)
4

—wlly < - wtE - |w® — "I

2 — -
S22 st - ) 429

The inequality (4.23) in Theorem 4.3 is essential for the convergence of the
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general contraction method.

On the other hand, by using (4.18) and (4.19), we have

ded) = (2 - aje(wt,a)
@ IME - )
= Tk - 424
g

According to (4.15), (4.17) and the above inequality, we have

Theorem 4.4 The sequence {w" = (z*,y"*, \*)} generated by the general
contraction method (4.19) satisfies

2_
|t — w*||% < b — w5 — b — wF L. (4.25)

Especially, by taking v = 1 in (4.19), then we have

W — wff < w® — | = [lw® — Wt
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Remark ' If we dynamically take v, = 1/}, because a* > 1/2, we have
Y € (0,2) and vy = 1. In this way, we get the primary contraction method.
According to (4.25), since v = 1/047;, we have

W —wff < w® —w [ = (20p = Dfw” —w . (@4.26)

Based on the above inequality, by using (4.18) and (4.9), we derive

lw® —w* |3 = lw*™ —w* ||
> (20 — Dlw® — w5
_ 290(10 ~k) T ”M(wk wk)l‘%[ Hwk . wk:-l—lu%{

1M (wh — %)
k

= 2p(w",@") — [ M(w" —a")|F,

the same result as (4.11). Finally, from the last inequality, we can obtain the

assertion in Theorem 4.1 for the primary contraction method.
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