凸优化和单调变分不等式的收缩算法

第十四讲: 定制 PPA 算法 意义的线性化交替方向法

Linearized alternating direction method in sense of the customized PPA

南京大学数学系 何炳生 hebma@nju.edu.cn

The context of this lecture is based on the manuscript [2]

1 Structured constrained convex optimization

We consider the following structured constrained convex optimization problem

 $\min \left\{ \theta_1(x) + \theta_2(y) \, | \, Ax + By = b, \ x \in \mathcal{X}, \ y \in \mathcal{Y} \right\} \quad (1.1)$

where $\theta_1(x): \Re^{n_1} \to \Re, \ \theta_2(y): \Re^{n_2} \to \Re$ are convex functions (but not necessary smooth), $A \in \Re^{m \times n_1}$, $B \in \Re^{m \times n_2}$ and $b \in \Re^m, \mathcal{X} \subset \Re^{n_1}$, $\mathcal{Y} \subset \Re^{n_2}$ are given closed convex sets.

The task of solving the problem (1.1) is to find an $(x^*, y^*, \lambda^*) \in \Omega$, such that

$$\begin{cases} \theta_1(x) - \theta_1(x^*) + (x - x^*)^T (-A^T \lambda^*) \ge 0, \\ \theta_2(y) - \theta_2(y^*) + (y - y^*)^T (-B^T \lambda^*) \ge 0, & \forall \ (x, y, \lambda) \in \Omega, \\ (\lambda - \lambda^*)^T (Ax^* + By^* - b) \ge 0, \end{cases}$$
(1.2)

where

$$\Omega = \mathcal{X} \times \mathcal{Y} \times \Re^m.$$

XIV - 3

By denoting

$$u = \begin{pmatrix} x \\ y \end{pmatrix}, \quad w = \begin{pmatrix} x \\ y \\ \lambda \end{pmatrix}, \quad F(w) = \begin{pmatrix} -A^T \lambda \\ -B^T \lambda \\ Ax + By - b \end{pmatrix}$$

and

$$\theta(u) = \theta_1(x) + \theta_2(y),$$

the first order optimal condition (1.2) can be written in a compact form such as

$$w^* \in \Omega, \ \theta(u) - \theta(u^*) + (w - w^*)^T F(w^*) \ge 0, \ \forall w \in \Omega.$$
 (1.3)

Note that the mapping F is monotone. We use Ω^* to denote the solution set of the variational inequality (1.3). For convenience we use the notations

$$v = \begin{pmatrix} y \\ \lambda \end{pmatrix}$$
 and $\mathcal{V}^* = \{(y^*, \lambda^*) \,|\, (x^*, y^*, \lambda^*) \in \Omega^*\}.$

Applied the ADM-based customized PPA to the problem (1.1)

From given $v^k = (y^k, \lambda^k)$, the prediction step produces $\tilde{w}^k = (\tilde{x}^k, \tilde{y}^k, \tilde{\lambda}^k)$.

The prediction step:

1. First, for given (y^k, λ^k) , \tilde{x}^k is the solution of the following problem

$$\tilde{x}^{k} = \operatorname{Argmin} \left\{ \begin{array}{c} \theta_{1}(x) - (\lambda^{k})^{T} (Ax + By^{k} - b) \\ + \frac{\beta}{2} \|Ax + By^{k} - b\|^{2} \end{array} \middle| x \in \mathcal{X} \right\}$$
(1.4a)

2. Set the multipliers by

$$\tilde{\lambda}^k = \lambda^k - \beta (A\tilde{x}^k + By^k - b).$$
(1.4b)

3. Finally, use the obtained \tilde{x}^k and $\tilde{\lambda}^k, \mbox{ find } \tilde{y}^k$ by

$$\tilde{y}^{k} = \operatorname{Argmin} \left\{ \begin{array}{c} \theta_{2}(y) - (\tilde{\lambda}^{k})^{T} (A \tilde{x}^{k} + B y - b) \\ + \frac{\beta}{2} \|A \tilde{x}^{k} + B y - b\|^{2} \end{array} \middle| y \in \mathcal{Y} \right\} \quad (1.4c)$$

As analyzed in the last chapter, we have

$$\tilde{w}^{k} \in \Omega, \ \theta(u) - \theta(\tilde{u}^{k}) + (w - \tilde{w}^{k})^{T} \{ F(\tilde{w}^{k}) + Q(\tilde{v}^{k} - v^{k}) \} \ge 0, \ \forall w \in \Omega, \ (1.5)$$

where

$$Q = \begin{pmatrix} 0 & 0 \\ \beta B^T B & -B^T \\ -B & \frac{1}{\beta} I_m \end{pmatrix} \text{ and } M = \begin{pmatrix} \beta B^T B & -B^T \\ -B & \frac{1}{\beta} I_m \end{pmatrix}.$$
(1.6)

The new iterate \boldsymbol{v}^{k+1} is given by

$$v^{k+1} = v^k - \gamma(v^k - \tilde{v}^k), \quad \gamma \in (0, 2).$$

The generated sequence $\{v^k\}$ satisfies

$$\|v^{k+1} - v^*\|_M^2 \le \|v^k - v^*\|_M^2 - \|v^k - v^{k+1}\|_M^2.$$

2 Linearized ADM-based PPA Method

Note that the subproblems (1.4a) and (1.4c) in the last section are equivalent to the problems

$$\tilde{x}^k = \operatorname{Argmin}\left\{\theta_1(x) + \frac{\beta}{2} \| (Ax + By^k - b) - \frac{1}{\beta}\lambda^k \|^2 | x \in \mathcal{X}\right\}$$
(2.1a)

and

$$\tilde{y}^k = \operatorname{Argmin}\left\{\theta_2(y) + \frac{\beta}{2} \| (A\tilde{x}^k + By - b) - \frac{1}{\beta}\tilde{\lambda}^k \|^2 | y \in \mathcal{Y}\right\}$$
(2.1b)

respectively. In some structured optimization (1.1), the subproblem (2.1b) is easy because B is usually a scalar matrix. However, to obtain the solution of the subproblem (2.1a) is expensive in the case that A does not have a special form. In this lecture, we suppose that only the solution of the problem

$$\min\left\{\theta_1(x) + \frac{r}{2}\|x - a\|^2 \,|\, x \in \mathcal{X}\right\}$$

has a closed form, and consider to linearize the quadratic function of the subproblem (2.1a) ADM in sense of the customized PPA.

2.1 Linearized alternating direction method

The prediction step:
1. First, for given
$$(x^k, y^k, \lambda^k)$$
, solving the x subproblem to get \tilde{x}^k by
 $\tilde{x}^k = \operatorname{Argmin} \left(\begin{cases} \theta_1(x) + \beta x^T A^T (Ax^k + By^k - b - \frac{1}{\beta} \lambda^k) \\ + \frac{r}{2} \|x - x^k\|^2 & | \ x \in \mathcal{X} \end{cases} \right).$
(2.2a)
2. Set the new multipliers by
 $\tilde{\lambda}^k = \lambda^k - \beta (A \tilde{x}^k + By^k - b).$
(2.2b)
3. Finally, use the obtained \tilde{x}^k and $\tilde{\lambda}^k$, solving the y subproblem to get \tilde{y}^k by
 $\tilde{y}^k = \operatorname{Argmin} \left\{ \theta_2(y) + \frac{\beta}{2} \| (A \tilde{x}^k + By - b) - \frac{1}{\beta} \tilde{\lambda}^k \|^2 \Big| y \in \mathcal{Y} \right\}.$
(2.2c)

Request on the parameter *r* $rI - \beta A^T A \succeq 0.$ (2.3)

The correction step: Update the new iterate w^{k+1} by $w^{k+1} = w^k - \gamma(w^k - \tilde{w}^k), \quad \gamma \in [1, 2).$ (2.4)

To get the new iterate w^{k+1} , this method does not need to calculate the step size. However, it needs to estimate the max-eigenvalue of $A^T A$, *i. e.*, $\lambda_{\max}(A^T A)$.

2.2 Analysis in the PPA framework

Note that the solution of (2.2a), \tilde{x}^k satisfies

$$\begin{split} \tilde{x}^k \in \mathcal{X}, \quad \theta_1(x) - \theta_1(\tilde{x}^k) + (x - \tilde{x}^k)^T \\ \{ -A^T \lambda^k + \beta A^T (Ax^k + By^k - b) + r(\tilde{x}^k - x^k) \} \ge 0, \ \forall \, x \in \mathcal{X}. \end{split}$$

Substituting $\tilde{\lambda}^k$ (see (2.2b)) in (2.5) (eliminating λ^k), we get

$$\tilde{x}^{k} \in \mathcal{X}, \quad \theta_{1}(x) - \theta_{1}(\tilde{x}^{k}) + (x - \tilde{x}^{k})^{T} \\ \left\{ -A^{T}\tilde{\lambda}^{k} + (rI - \beta A^{T}A)(\tilde{x}^{k} - x^{k}) \right\} \ge 0, \; \forall x \in \mathcal{X}.$$
 (2.6)

The solution of (2.2c), \tilde{y}^k satisfies

$$\tilde{y}^{k} \in \mathcal{Y}, \quad \theta_{2}(y) - \theta_{2}(\tilde{y}^{k}) + (y - \tilde{y}^{k})^{T} \\ \left\{ -B^{T}\tilde{\lambda}^{k} + \beta B^{T} \left(A\tilde{x}^{k} + B\tilde{y}^{k} - b \right) \right\} \ge 0, \quad \forall \ y \in \mathcal{Y}.$$
(2.7)

Note that $\beta(A\tilde{x}^k + B\tilde{y}^k - b) = (\lambda^k - \tilde{\lambda}^k) + \beta B(\tilde{y}^k - y^k)$ (see (2.2b)). Substituting it in (2.7), we obtain

$$\tilde{y}^{k} \in \mathcal{Y}, \quad \theta_{2}(y) - \theta_{2}(\tilde{y}^{k}) + (y - \tilde{y}^{k})^{T} \\ \left\{ -B^{T}(2\tilde{\lambda}^{k} - \lambda^{k}) + \beta B^{T}B(\tilde{y}^{k} - y^{k}) \right\} \geq 0, \quad \forall \ y \in \mathcal{Y}.$$
(2.8)

From (2.2b) we have

$$(A\tilde{x}^{k} + B\tilde{y}^{k} - b) - B(\tilde{y}^{k} - y^{k}) + \frac{1}{\beta}(\tilde{\lambda}^{k} - \lambda^{k}) = 0.$$
 (2.9)

Combining the inequalities (2.6), (2.8) and (2.9), we obtain

$$\theta(u) - \theta(\tilde{u}^{k}) + \begin{pmatrix} x - \tilde{x}^{k} \\ y - \tilde{y}^{k} \\ \lambda - \tilde{\lambda}^{k} \end{pmatrix}^{T} \begin{cases} \begin{pmatrix} -A^{T} \tilde{\lambda}^{k} \\ -B^{T} \tilde{\lambda}^{k} \\ A \tilde{x}^{k} + B \tilde{y}^{k} - b \end{cases}$$

$$+ \begin{pmatrix} (rI - \beta A^{T} A) & 0 & 0 \\ 0 & \beta B^{T} B & -B^{T} \\ 0 & -B & \frac{1}{\beta} I_{m} \end{pmatrix} \begin{pmatrix} \tilde{x}^{k} - x^{k} \\ \tilde{y}^{k} - y^{k} \\ \tilde{\lambda}^{k} - \lambda^{k} \end{pmatrix} \} \ge 0, \ \forall w \in \Omega.(2.10)$$

The last variational inequality can be written in form of

$$\tilde{w}^k \in \Omega, \ (w - \tilde{w}^k)^T \{ F(\tilde{w}^k) + G(\tilde{w}^k - w^k) \} \ge 0, \ \forall w \in \Omega,$$
 (2.11)

where

$$G = \begin{pmatrix} (rI - \beta A^{T}A) & 0 & 0 \\ 0 & \beta B^{T}B & -B^{T} \\ 0 & -B & \frac{1}{\beta}I_{m} \end{pmatrix}$$
(2.12)

which is essential in the framework of the PPA contraction methods.

2.3 Convergence of the Linearized ADM-based PPA Method

Based on the analysis in the last subsection, we have the following lemma.

Lemma 2.1 Let $\tilde{w}^k = (\tilde{x}^k, \tilde{y}^k, \tilde{\lambda}^k) \in \Omega$ be generated by (2.2) from the given $w^k = (x^k, y^k, \lambda^k)$. Then, we have

$$(\tilde{w}^k - w^*)^T G(w^k - \tilde{w}^k) \ge 0, \ \forall w^* \in \Omega^*,$$
 (2.13)

where G is defined in (2.12).

Proof. Setting $w = w^*$ in (2.10), we get

$$(\tilde{w}^k - w^*)^T G(w^k - \tilde{w}^k) \ge \theta(\tilde{u}^k) - \theta(u^*) + (\tilde{w}^k - w^*)^T F(\tilde{w}^k).$$

Since F is monotone and $\tilde{w}^k \in \Omega,$ it follows that

$$\theta(\tilde{u}^k) - \theta(u^*) + (\tilde{w}^k - w^*)^T F(\tilde{w}^k) \ge \theta(\tilde{u}^k) - \theta(u^*) + (\tilde{w}^k - w^*)^T F(w^*).$$

XIV - 12

The right hand side of the last inequality is non-negative because $\tilde{w}^k \in \Omega$ and $w^* \in \Omega^*$. the assertion follows directly. \Box

Lemma 2.2 Let $\tilde{w}^k = (\tilde{x}^k, \tilde{y}^k, \tilde{\lambda}^k) \in \Omega$ be generated by (2.2) from the given $w^k = (x^k, y^k, \lambda^k)$. Then, we have

$$(w^k - w^*)^T G(w^k - \tilde{w}^k) \ge \|w^k - \tilde{w}^k\|_G^2, \ \forall w^* \in \Omega^*,$$
 (2.14)

where G is defined in (2.12).

Proof. Assertion (2.14) follows from the last inequality directly. \Box

Since G is symmetric and positive semi-definite, we have

$$w^{k} - \tilde{w}^{k} = 0$$
 or $G(w^{k} - \tilde{w}^{k}) = 0$,

whenever $||w^k - \tilde{w}^k||_G^2 = 0$. Therefore, it follows from (2.10) that \tilde{w}^k is a solution of the variational inequality when $||w^k - \tilde{w}^k||_G^2 = 0$.

Theorem 2.1 Let $\tilde{w}^k = (\tilde{x}^k, \tilde{y}^k, \tilde{\lambda}^k) \in \Omega$ be generated by (2.2) from the given

$$w^{k} = (x^{k}, y^{k}, \lambda^{k})$$
 and the new iterate w^{k+1} be given by (2.4). Then we have
 $\|w^{k+1} - w^{*}\|_{G}^{2} \leq \|w^{k} - w^{*}\|_{G}^{2} - \gamma(2-\gamma)\|w^{k} - \tilde{w}^{k}\|_{G}^{2}, \ \forall w^{*} \in \Omega^{*}.$ (2.15)

Proof. By using (2.4) and (2.14), we obtain

$$\begin{aligned} \|w^{k+1} - w^*\|_G^2 \\ \stackrel{(2.4)}{=} & \|(w^k - w^*) - \gamma(w^k - \tilde{w}^k)\|_G^2 \\ \stackrel{(2.14)}{\leq} & \|w^k - w^*\|_G^2 - 2\gamma\|w^k - \tilde{w}^k\|_G^2 + \gamma^2\|w^k - \tilde{w}^k\|_G^2 \\ &= & \|w^k - w^*\|_G^2 - \gamma(2 - \gamma)\|w^k - \tilde{w}^k\|_G^2. \end{aligned}$$

This is true for any $w^* \in \Omega^*$ and the theorem is proved. \Box

The inequality (2.15) is essential for the convergence of the Linearized alternating direction method. By using (2.4), the result of Theorem 2.1 can be written as

$$||w^{k+1} - w^*||_G^2 \le ||w^k - w^*||_G^2 - \frac{2 - \gamma}{\gamma} ||w^k - w^{k+1}||_G^2, \ \forall w^* \in \Omega^*.$$

3 Convergence rate of L-ADM-based C-PPA Method

Lemma 3.1 Let $\{w^k\}$ be the sequence generated by the customized PPA (2.2) with (2.4). Then, we have

$$(\tilde{w}^k - \tilde{w}^{k+1})^T G\{(w^k - w^{k+1}) - (\tilde{w}^k - \tilde{w}^{k+1})\} \ge 0.$$
(3.1)

Proof. Set $w = \tilde{w}^{k+1}$ in (2.11), we have

$$\theta(\tilde{u}^{k+1}) - \theta(\tilde{u}^k) + (\tilde{w}^{k+1} - \tilde{w}^k)^T \{ F(\tilde{w}^k) + G(\tilde{w}^k - w^k) \} \ge 0.$$
 (3.2)

Note that (2.11) is also true for k := k + 1 and thus we have

$$\begin{split} \theta(u) - \theta(\tilde{u}^{k+1}) + (w - \tilde{w}^{k+1})^T \{ F(\tilde{w}^{k+1}) + G(\tilde{w}^{k+1} - w^{k+1}) \} &\geq 0, \ \forall \, w \in \Omega \\ \text{Set} \, w &= \tilde{w}^k \text{ in the above inequality, we obtain} \\ \theta(\tilde{u}^k) - \theta(\tilde{u}^{k+1}) + (\tilde{w}^k - \tilde{w}^{k+1})^T \{ F(\tilde{w}^{k+1}) + G(\tilde{w}^{k+1} - w^{k+1}) \} \geq 0. \end{split}$$
(3.3)

Adding (3.2) and (3.3) and using the monotonicity of F, we get

$$(\tilde{w}^k - \tilde{w}^{k+1})^T G\{(w^k - w^{k+1}) - (\tilde{w}^k - \tilde{w}^{k+1})\} \ge 0.$$

we obtain (3.1) immediately. \Box

Lemma 3.2 Let $\{w^k\}$ be the sequence generated by the customized PPA (2.2) with (2.4). Then, we have

$$(w^{k} - \tilde{w}^{k})^{T} G\{(w^{k} - \tilde{w}^{k}) - (w^{k+1} - \tilde{w}^{k+1})\} \\ \geq \frac{1}{\gamma} \|(w^{k} - \tilde{w}^{k}) - (w^{k+1} - \tilde{w}^{k+1})\|_{G}^{2}.$$
(3.4)

Proof. Adding the term $||(w^k - w^{k+1}) - (\tilde{w}^k - \tilde{w}^{k+1})||_G^2$ to the both sides of (3.1), we obtain

$$(w^{k} - w^{k+1})^{T} G\{(w^{k} - \tilde{w}^{k}) - (w^{k+1} - \tilde{w}^{k+1})\} \\ \geq \|(w^{k} - \tilde{w}^{k}) - (w^{k+1} - \tilde{w}^{k+1})\|_{G}^{2}.$$
(3.5)

Substituting the term $(w^k - w^{k+1})$ in the left hand side of (3.5) by $\gamma(w^k - \tilde{w}^k)$ (see (2.4)), we obtain (3.4) and the lemma is proved. \Box

Lemma 3.3 Let $\{w^k\}$ be the sequence generated by the customized PPA (2.2) with (2.4). Then, we have

$$\|w^{k+1} - \tilde{w}^{k+1}\|_G^2 \le \|w^k - \tilde{w}^k\|_G^2.$$
(3.6)

Proof. Setting $a = w^k - \tilde{w}^k$ and $b = w^{k+1} - \tilde{w}^{k+1}$ in the identity

$$||a||_G^2 - ||b||_G^2 = 2a^T G(a-b) - ||a-b||_G^2,$$

we obtain

$$\begin{aligned} \|w^{k} - \tilde{w}^{k}\|_{G}^{2} - \|w^{k+1} - \tilde{w}^{k+1}\|_{G}^{2} \\ &= 2(w^{k} - \tilde{w}^{k})^{T} G\{(w^{k} - \tilde{w}^{k}) - (w^{k+1} - \tilde{w}^{k+1})\} \\ &- \|(w^{k} - \tilde{w}^{k}) - (w^{k+1} - \tilde{w}^{k+1})\|_{G}^{2}. \end{aligned}$$

By using (3.4) to the first term of the right hand side of the last equality, we obtain

$$\|w^{k} - \tilde{w}^{k}\|_{G}^{2} - \|w^{k+1} - \tilde{w}^{k+1}\|_{G}^{2} \ge \frac{2 - \gamma}{\gamma} \|(w^{k} - \tilde{w}^{k}) - (w^{k+1} - \tilde{w}^{k+1})\|_{G}^{2}.$$

The assertion of this lemma is proved.

Having the assertion (2.15) and Lemma 3.3, we are ready to present the O(1/t) convergence rate of the customized PPA in the residue sense.

Theorem 3.1 Let $\{w^k\}$ be the sequence generated by the customized PPA (2.2) with (2.4). Then, we have

$$\|w^{k} - \tilde{w}^{k}\|_{G}^{2} \leq \frac{1}{(k+1)\gamma(2-\gamma)} \|w^{0} - w^{*}\|_{G}^{2}, \quad \forall w^{*} \in \Omega^{*}.$$
(3.7)

Proof. First, it follows from (2.15) that

$$\gamma(2-\gamma)\sum_{t=0}^{\infty} \|w^t - \tilde{w}^t\|_G^2 \le \|w^0 - w^*\|_G^2, \quad \forall \, w^* \in \Omega^*.$$
(3.8)

According to Lemma 3.3, the sequence $\{\|w^t - \tilde{w}^t\|_H^2\}$ is non-increasing. Therefore, we have

$$(k+1)\|w^k - \tilde{w}^k\|_G^2 \le \sum_{i=0}^k \|w^i - \tilde{w}^i\|_G^2.$$
(3.9)

The assertion of this theorem follows from (3.8) and (3.9) directly.

The solution set of the variational inequality $VI(\Omega, F, \theta)$ is convex and closed. Theorem 3.1 indicates that ADMM has O(1/k) iteration convergence rate. Let

$$d = \inf\{\|w^0 - w^*\|_G \,|\, w^* \in \Omega^*\}.$$

For any given $\epsilon > 0$, in order to enforce the error $||w^k - \tilde{w}^k||_G^2 \le \epsilon$, according to (3.7), it needs at most $k = \lfloor d^2/\gamma(2-\gamma)\epsilon \rfloor$ iterations.

4 ADM-based Contraction Method

In ADM-based contraction methods, we use the \tilde{w}^k generated by (2.2) to construct a search direction.

4.1 Contraction Method

The prediction step of the contraction method in this subsection is the same as (2.2). Therefore, we have (2.10) and rewrite it as

$$\begin{split} \tilde{w}^{k} &\in \Omega, \quad \theta(u) - \theta(\tilde{u}^{k}) + \begin{pmatrix} x - \tilde{x}^{k} \\ y - \tilde{y}^{k} \\ \lambda - \tilde{\lambda}^{k} \end{pmatrix}^{T} \begin{cases} \begin{pmatrix} -A^{T} \tilde{\lambda}^{k} \\ -B^{T} \tilde{\lambda}^{k} \\ A \tilde{x}^{k} + B \tilde{y}^{k} - b \end{pmatrix} \\ &+ \begin{pmatrix} rI_{n} & 0 & 0 \\ 0 & \beta B^{T} B & -B^{T} \\ 0 & -B & \frac{1}{\beta} I_{m} \end{pmatrix} \begin{pmatrix} (I_{n} - \frac{\beta}{r} A^{T} A)(\tilde{x}^{k} - x^{k}) \\ \tilde{y}^{k} - y^{k} \\ \tilde{\lambda}^{k} - \lambda^{k} \end{pmatrix} \rbrace \geq 0, \; \forall w \in \Omega. \end{split}$$

Again, the above variational inequality can be written in form of

$$\tilde{w}^k \in \Omega, \ \theta(u) - \theta(\tilde{u}^k) + (w - \tilde{w}^k)^T \{ F(\tilde{w}^k) + Q(\tilde{w}^k - w^k) \} \ge 0, \ \forall w \in \Omega, \quad (4.1)$$

where

$$Q = HM,$$
(4.2)
$$H = \begin{pmatrix} rI_n & 0 & 0 \\ 0 & \beta B^T B & -B^T \\ 0 & -B & \frac{1}{\beta}I_m \end{pmatrix}$$
(4.3)

and

$$M = \begin{pmatrix} I_n - \frac{\beta}{r} A^T A & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & I_m \end{pmatrix}.$$
 (4.4)

Request on the parameter *r* For give

For given $\beta > 0$, r should satisfy

$$\beta \|A^T A (x^k - \tilde{x}^k)\| \le \nu r \|x^k - \tilde{x}^k\|, \quad \nu \in (0, 1).$$
(4.5)

If the condition (2.3) is satisfied, *i.e.*, $rI_n - \beta A^T A \succ 0$, then the condition (4.5) is hold. In conversely it is not true. A conservative estimate for $||A^T A||$ will leads slow convergence. In the iteration process, we can check if the condition (4.5) is satisfied. This section considers the contraction in H-norm, where H (defined in (4.3)) is symmetric and positive semi-definite.

4.2 Convergence of ADM-based contraction method

Based on the analysis in the last subsection, we have the following lemma.

Lemma 4.1 Let $\tilde{w}^k = (\tilde{x}^k, \tilde{y}^k, \tilde{\lambda}^k) \in \Omega$ be generated by (2.2) from the given $w^k = (x^k, y^k, \lambda^k)$. Then, we have

$$(\tilde{w}^k - w^*)^T Q(w^k - \tilde{w}^k) \ge 0, \ \forall w^* \in \Omega^*,$$
(4.6)

where matrix Q is defined in (4.2).

Proof. Setting $w = w^*$ in (4.1), we get

$$(\tilde{w}^{k} - w^{*})^{T}Q(w^{k} - \tilde{w}^{k}) \ge \theta(\tilde{u}^{k}) - \theta(u^{*}) + (\tilde{w}^{k} - w^{*})^{T}F(\tilde{w}^{k}).$$

Since F is monotone, it follows that

$$\theta(\tilde{u}^k) - \theta(u^*) + (\tilde{w}^k - w^*)^T F(\tilde{w}^k)$$

$$\geq \theta(\tilde{u}^k) - \theta(u^*) + (\tilde{w}^k - w^*)^T F(w^*) \geq 0.$$

The last inequality is due to $w^{k+1} \in \Omega$ and $w^* \in \Omega^*$ (see (1.3)). The lemma is proved. \Box

Lemma 4.2 Let $\tilde{w}^k = (\tilde{x}^k, \tilde{y}^k, \tilde{\lambda}^k) \in \Omega$ be generated by (2.2) from the given $w^k = (x^k, y^k, \lambda^k)$. Then, we have

$$(w^k - w^*)^T HM(w^k - \tilde{w}^k) \ge \varphi(w^k, \tilde{w}^k), \ \forall w^* \in \Omega^*,$$
(4.7)

where H is defined in (4.3) and

$$\varphi(w^k, \tilde{w}^k) = (w^k - \tilde{w}^k)^T H M (w^k - \tilde{w}^k)$$
(4.8)

Proof. It follows from (4.2) and (4.6) that

$$(w^{k} - w^{*})^{T} HM(w^{k} - \tilde{w}^{k}) \ge (w^{k} - \tilde{w}^{k})^{T} HM(w^{k} - \tilde{w}^{k}).$$

Assertion (4.7) and the definition of $\varphi(w^k, \tilde{w}^k)$ directly. \Box

Even though H is positive semi-definite, we still use $\|w - \tilde{w}\|_H$ to denote that

$$\|w - \tilde{w}\|_H = \sqrt{(w - \tilde{w})^T H(w - \tilde{w})}.$$

4.3 The primary contraction methods

In the primary method, we take the unit step length and use

$$w^{k+1} = w^k - M(w^k - \tilde{w}^k)$$
(4.9)

to update the new iterate w^{k+1} . According to (4.4), it can be written as

$$\begin{pmatrix} x^{k+1} \\ y^{k+1} \\ \lambda^{k+1} \end{pmatrix} = \begin{pmatrix} \tilde{x}^k + \frac{\beta}{r} A^T A(x^k - \tilde{x}^k) \\ \tilde{y}^k \\ \tilde{\lambda}^k \end{pmatrix}.$$
 (4.10)

In the primary contraction method, only the x-part of the corrector is different from the predictor. In the method of Section 2, we need $r \geq \beta ||A^T A||$. By using the method in this section, we need only a r to satisfy the condition (4.5). In practical computation, we try to use the average of the eigenvalues of $\beta A^T A$.

By using (4.7), we obtain

$$\|w^{k} - w^{*}\|_{H}^{2} - \|w^{k+1} - w^{*}\|_{H}^{2}$$

$$= 2(w^{k} - w^{*})^{T} H M(w^{k} - \tilde{w}^{k}) - \|M(w^{k} - \tilde{w}^{k})\|_{H}^{2}$$

$$\geq 2\varphi(w^{k}, \tilde{w}^{k}) - \|M(w^{k} - \tilde{w}^{k})\|_{H}^{2}.$$
(4.11)

Note that (see (4.8))

$$2\varphi(w^{k}, \tilde{w}^{k}) - \|M(w^{k} - \tilde{w}^{k})\|_{H}^{2}$$

= $(w^{k} - \tilde{w}^{k})^{T} (M^{T}H + HM - M^{T}HM) (w^{k} - \tilde{w}^{k}).$

By using the structure of the matrices ${\cal H}$ and ${\cal M},$ we obtain

$$\begin{split} M^{T}H + HM - M^{T}HM &= H - (I - M^{T})H(I - M) \\ &= \begin{pmatrix} rI_{n} & 0 & 0 \\ 0 & \beta B^{T}B & -B^{T} \\ 0 & -B & \frac{1}{\beta}I_{m} \end{pmatrix} - \begin{pmatrix} r(\frac{\beta}{r}A^{T}A)^{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \end{split}$$

Therefore,

$$2\varphi(w^{k}, \tilde{w}^{k}) - \|M(w^{k} - \tilde{w}^{k})\|_{H}^{2}$$

= $\|w^{k} - \tilde{w}^{k}\|_{H}^{2} - r(\frac{\beta^{2}}{r^{2}})\|A^{T}A(x^{k} - \tilde{x}^{k})\|^{2}.$

Under the condition (4.5), we have

$$\left(\frac{\beta^2}{r^2}\right) \|A^T A(x^k - \tilde{x}^k)\|^2 \le \nu^2 \|x^k - \tilde{x}^k\|^2.$$

Consequently, we have

$$2\varphi(w^k, \tilde{w}^k) - \|M(w^k - \tilde{w}^k)\|_H^2 \ge (1 - \nu^2) \|w^k - \tilde{w}^k\|_H^2.$$
(4.12)

Theorem 4.1 Let $\tilde{w}^k = (\tilde{x}^k, \tilde{y}^k, \tilde{\lambda}^k) \in \Omega$ be generated by (2.2) from the given $w^k = (x^k, y^k, \lambda^k)$ and the new iterate w^{k+1} is given by (4.9). The sequence $\{w^k\}$ generated by the elementary contraction method satisfies

$$\|w^{k+1} - w^*\|_H^2 \le \|w^k - w^*\|_H^2 - (1 - \nu^2)\|w^k - \tilde{w}^k\|_H^2.$$
 (4.13)

Theorem 4.1 is essential for the convergence of the primary contraction method. It will lead $\lim_{k\to\infty} \|w^k - \tilde{w}^k\|_H^2 = 0$ and

$$\lim_{k \to \infty} x^k = x^*, \qquad \lim_{k \to \infty} By^k = By^* \quad \text{ and } \quad \lim_{k \to \infty} \lambda^k = \lambda^*.$$

4.4 The general contraction methods

The general contraction method

For given w^k , we use

$$w(\alpha) = w^k - \alpha M(w^k - \tilde{w}^k)$$
(4.14)

to update the $\alpha\text{-dependent}$ new iterate. For any $w^*\in \Omega^*,$ we define

$$\vartheta(\alpha) := \|w^k - w^*\|_H^2 - \|w(\alpha) - w^*\|_H^2$$
(4.15)

and

$$q(\alpha) = 2\alpha\varphi(w^k, \tilde{w}^k) - \alpha^2 \|M(w^k - \tilde{w}^k)\|_H^2.$$
 (4.16)

Theorem 4.2 Let $w(\alpha)$ be defined by (4.14). For any $w^* \in \Omega^*$ and $\alpha \ge 0$, we have

$$\vartheta(\alpha) \ge q(\alpha).$$
(4.17)

Proof. It follows from (4.14) and (4.15) that

$$\vartheta(\alpha) = \|w^k - w^*\|_H^2 - \|(w^k - w^*) - \alpha M(w^k - \tilde{w}^k)\|_H^2$$

= $2\alpha (w^k - w^*)^T HM(w^k - \tilde{w}^k) - \alpha^2 \|M(w^k - \tilde{w}^k)\|_H^2.$

By using (4.7) and the definition of $q(\alpha)$, the theorem is proved. \Box

Note that $q(\alpha)$ in (4.16) is a quadratic function of α and it reaches its maximum at

$$\alpha^* = \frac{\varphi(w^k, \tilde{w}^k)}{\|M(w^k - \tilde{w}^k)\|_H^2}.$$
(4.18)

From (4.12) we know that under the condition (2.3), it holds that $\alpha_k^* \ge \frac{1}{2}$. In practical computation, we use

$$w^{k+1} = w^k - \gamma \alpha_k^* M(w^k - \tilde{w}^k),$$
 (4.19)

to update the new iterate with $\gamma \in [1,2).$ According to (4.15) and (4.17), we have

$$\|w^{k+1} - w^*\|_H^2 \le \|w^k - w^*\|_H^2 - q(\gamma \alpha_k^*).$$
(4.20)

Using (4.16) and (4.18), we obtain

$$q(\gamma \alpha_k^*) = 2\gamma \alpha_k^* \varphi(w^k, \tilde{w}^k) - (\gamma \alpha_k^*)^2 \|M(w^k - \tilde{w}^k)\|_H^2$$

= $\gamma(2 - \gamma) \alpha_k^* \varphi(w^k, \tilde{w}^k).$ (4.21)

Note that $\alpha_k^* > 1/2$ and (see (4.12))

$$\varphi(w^k, \tilde{w}^k) \ge \frac{1}{2} \left(\|M(w^k - \tilde{w}^k)\|_H^2 + (1 - \nu) \|w^k - \tilde{w}^k\|_H^2 \right).$$
(4.22)

Combining (4.20), (4.21) and (4.22), we get the following theorem for the general contraction method.

Theorem 4.3 The sequence $\{w^k = (x^k, y^k, \lambda^k)\}$ generated by the general contraction method (4.19) satisfies

$$\|w^{k+1} - w^*\|_{H}^{2} \leq \|w^{k} - w^*\|_{H}^{2} - \frac{\gamma(2-\gamma)(1-\nu)}{4}\|w^{k} - \tilde{w}^{k}\|_{H}^{2} - \frac{\gamma(2-\gamma)}{4}\|M(w^{k} - \tilde{w}^{k})\|_{H}^{2}.$$

$$(4.23)$$

The inequality (4.23) in Theorem 4.3 is essential for the convergence of the

general contraction method.

On the other hand, by using (4.18) and (4.19), we have

$$q(\gamma \alpha_{k}^{*}) = \gamma(2 - \gamma) \alpha_{k}^{*} \varphi(w^{k}, \tilde{w}^{k})$$

= $\gamma(2 - \gamma) (\alpha_{k}^{*})^{2} ||M(w^{k} - \tilde{w}^{k})||_{H}^{2}$
= $\frac{2 - \gamma}{\gamma} ||w^{k} - w^{k+1}||_{H}^{2}.$ (4.24)

According to (4.15), (4.17) and the above inequality, we have

Theorem 4.4 The sequence $\{w^k = (x^k, y^k, \lambda^k)\}$ generated by the general contraction method (4.19) satisfies

$$\|w^{k+1} - w^*\|_H^2 \le \|w^k - w^*\|_H^2 - \frac{2-\gamma}{\gamma}\|w^k - w^{k+1}\|_H^2.$$
(4.25)

Especially, by taking $\gamma = 1$ in (4.19), then we have

$$||w^{k+1} - w^*||_H^2 \le ||w^k - w^*||_H^2 - ||w^k - w^{k+1}||_H^2.$$

Remark If we dynamically take $\gamma_k = 1/\alpha_k^*$, because $\alpha^* > 1/2$, we have $\gamma_k \in (0, 2)$ and $\gamma_k \alpha_k^* \equiv 1$. In this way, we get the primary contraction method. According to (4.25), since $\gamma = 1/\alpha_k^*$, we have $\|w^{k+1} - w^*\|_H^2 \le \|w^k - w^*\|_H^2 - (2\alpha_k^* - 1)\|w^k - w^{k+1}\|_H^2$. (4.26)

Based on the above inequality, by using (4.18) and (4.9), we derive

$$\begin{split} \|w^{k} - w^{*}\|_{H}^{2} - \|w^{k+1} - w^{*}\|_{H}^{2} \\ &\geq (2\alpha_{k}^{*} - 1)\|w^{k} - w^{k+1}\|_{H}^{2} \\ &= \frac{2\varphi(w^{k}, \tilde{w}^{k}) - \|M(w^{k} - \tilde{w}^{k})\|_{H}^{2}}{\|M(w^{k} - \tilde{w}^{k})\|_{H}^{2}} \|w^{k} - w^{k+1}\|_{H}^{2} \\ &= 2\varphi(w^{k}, \tilde{w}^{k}) - \|M(w^{k} - \tilde{w}^{k})\|_{H}^{2}, \end{split}$$

the same result as (4.11). Finally, from the last inequality, we can obtain the assertion in Theorem 4.1 for the primary contraction method.

References

- [1] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Nov. 2010.
- [2] X.J. Cai, G.Y. Gu, B.S. He and X.M. Yuan, A relaxed customized proximal point algorithm for separable convex programming. http://www.optimization-online.org/DB_HTML/2011/08/3141.html
- [3] D. Gabay, "Applications of the Method of Multipliers to Variational Inequalities," in Augmented Lagrange Methods: Applications to the Solution of Boundary-valued Problems, M. Fortin and R. Glowinski, eds., North Holland, Amsterdam, The Netherlands, 299-331, 1983.
- [4] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems viafinite element approximations, Computers and Mathematics with Applications, 2:17-40, 1976.
- [5] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984.
- [6] B.S. He, A class of projection and contraction methods for monotone variational inequalities, Applied Mathematics and Optimization, 35, pp. 69-76, 1997.
- B.S. He, "Inexact implicit methods for monotone general variational inequalities", Math. Program. Vol. 86, Series
 A, pp. 199-217, 1999
- [8] B.S. He, L-Z Liao, D.R. Han and H. Yang, A new inexact alternating directions method for monotone variational inequalities, Math. Progr., 92, pp. 103-118, 2002
- B. S. He and M.-H. Xu, A general framework of contraction methods for monotone variational inequalities, Pacific J. Optimization, 4, 195-212, 2008.
- [10] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), pp. 877-898.