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The context of this lecture is based on the manuscript [2]
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1 Structured constrained convex optimization

We consider the following structured constrained convex optimization problem

min {θ1(x) + θ2(y) |Ax + By = b, x ∈ X , y ∈ Y} (1.1)

where θ1(x) : <n1 → <, θ2(y) : <n2 → < are convex functions (but not

necessary smooth), A ∈ <m×n1 , B ∈ <m×n2 and b ∈ <m, X ⊂ <n1 ,

Y ⊂ <n2 are given closed convex sets.

The task of solving the problem (1.1) is to find an (x∗, y∗, λ∗) ∈ Ω, such that




θ1(x)− θ1(x∗) + (x− x∗)T (−AT λ∗) ≥ 0,

θ2(y)− θ2(y∗) + (y − y∗)T (−BT λ∗) ≥ 0,

(λ− λ∗)T (Ax∗ + By∗ − b) ≥ 0,

∀ (x, y, λ) ∈ Ω, (1.2)

where

Ω = X × Y × <m.
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By denoting

u =


 x

y


 , w =




x

y

λ


 , F (w) =




−AT λ

−BT λ

Ax + By − b




and

θ(u) = θ1(x) + θ2(y),

the first order optimal condition (1.2) can be written in a compact form such as

w∗ ∈ Ω, θ(u)−θ(u∗)+(w−w∗)TF (w∗) ≥ 0, ∀w ∈ Ω. (1.3)

Note that the mapping F is monotone. We use Ω∗ to denote the solution set of

the variational inequality (1.3). For convenience we use the notations

v =


 y

λ


 and V∗ = {(y∗, λ∗) | (x∗, y∗, λ∗) ∈ Ω∗}.
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Applied the ADM-based customized PPA to the problem (1.1)

From given vk = (yk, λk), the prediction step produces w̃k = (x̃k, ỹk, λ̃k).

The prediction step:

1. First, for given (yk, λk), x̃k is the solution of the following problem

x̃k = Argmin

{
θ1(x)− (λk)T (Ax + Byk − b)

+β
2 ‖Ax + Byk − b‖2

∣∣∣∣∣x ∈ X
}

(1.4a)

2. Set the multipliers by

λ̃k = λk − β(Ax̃k + Byk − b). (1.4b)

3. Finally, use the obtained x̃k and λ̃k, find ỹk by

ỹk = Argmin

{
θ2(y)− (λ̃k)T (Ax̃k + By − b)

+β
2 ‖Ax̃k + By − b‖2

∣∣∣∣∣y ∈ Y
}

(1.4c)
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As analyzed in the last chapter, we have

w̃k ∈ Ω, θ(u)−θ(ũk)+(w−w̃k)T {F (w̃k)+Q(ṽk−vk)} ≥ 0, ∀w ∈ Ω, (1.5)

where

Q =




0 0

βBT B −BT

−B 1
β Im


 and M =


 βBT B −BT

−B 1
β Im


 . (1.6)

The new iterate vk+1 is given by

vk+1 = vk − γ(vk − ṽk), γ ∈ (0, 2).

The generated sequence {vk} satisfies

‖vk+1 − v∗‖2M ≤ ‖vk − v∗‖2M − ‖vk − vk+1‖2M .
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2 Linearized ADM-based PPA Method

Note that the subproblems (1.4a) and (1.4c) in the last section are equivalent to

the problems

x̃k = Argmin
{
θ1(x) + β

2 ‖(Ax + Byk − b)− 1
β λk‖2∣∣x ∈ X}

(2.1a)

and

ỹk = Argmin
{
θ2(y) + β

2 ‖(Ax̃k + By − b)− 1
β λ̃k‖2∣∣y ∈ Y}

(2.1b)

respectively. In some structured optimization (1.1), the subproblem (2.1b) is easy

because B is usually a scalar matrix. However, to obtain the solution of the

subproblem (2.1a) is expensive in the case that A does not have a special form.

In this lecture, we suppose that only the solution of the problem

min
{

θ1(x) +
r

2
‖x− a‖2 |x ∈ X

}

has a closed form, and consider to linearize the quadratic function of the

subproblem (2.1a) ADM in sense of the customized PPA.
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2.1 Linearized alternating direction method

The prediction step:

1. First, for given (xk, yk, λk), solving the x subproblem to get x̃k by

x̃k = Argmin

( {
θ1(x) + βxT AT (Axk + Byk − b− 1

β λk)

+ r
2‖x− xk‖2 ∣∣ x ∈ X}

)
.

(2.2a)
2. Set the new multipliers by

λ̃k = λk − β(Ax̃k + Byk − b). (2.2b)

3. Finally, use the obtained x̃k and λ̃k, solving the y subproblem to get ỹk by

ỹk = Argmin
{

θ2(y) + β
2 ‖(Ax̃k + By − b)− 1

β λ̃k‖2
∣∣∣y ∈ Y

}
.

(2.2c)
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Request on the parameter r For given β > 0, r should satisfy

rI − βAT A º 0. (2.3)

The correction step: Update the new iterate wk+1 by

wk+1 = wk − γ(wk − w̃k), γ ∈ [1, 2). (2.4)

To get the new iterate wk+1, this method does not need to calculate the step size.

However, it needs to estimate the max-eigenvalue of AT A, i. e., λmax(AT A).

2.2 Analysis in the PPA framework

Note that the solution of (2.2a), x̃k satisfies

x̃k ∈ X , θ1(x)− θ1(x̃k) + (x− x̃k)T

{−AT λk+ βAT (Axk+Byk−b) + r(x̃k − xk)} ≥ 0, ∀x ∈ X .(2.5)
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Substituting λ̃k (see (2.2b)) in (2.5) (eliminating λk), we get

x̃k ∈ X , θ1(x)− θ1(x̃k) + (x− x̃k)T

{−AT λ̃k + (rI − βAT A)(x̃k − xk)
} ≥ 0, ∀x ∈ X . (2.6)

The solution of (2.2c), ỹk satisfies

ỹk ∈ Y, θ2(y)− θ2(ỹk) + (y − ỹk)T

{−BT λ̃k + βBT
(
Ax̃k + Bỹk − b

)} ≥ 0, ∀ y ∈ Y. (2.7)

Note that β(Ax̃k + Bỹk − b
)

= (λk − λ̃k) + βB(ỹk − yk) (see (2.2b)).

Substituting it in (2.7), we obtain

ỹk ∈ Y, θ2(y)− θ2(ỹk) + (y − ỹk)T

{−BT (2λ̃k − λk) + βBT B(ỹk − yk)
)} ≥ 0, ∀ y ∈ Y. (2.8)

From (2.2b) we have

(Ax̃k + Bỹk − b)−B(ỹk − yk) +
1
β

(λ̃k − λk) = 0. (2.9)
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Combining the inequalities (2.6), (2.8) and (2.9), we obtain

θ(u)− θ(ũk) +




x− x̃k

y − ỹk

λ− λ̃k




T






−AT λ̃k

−BT λ̃k

Ax̃k + Bỹk − b




+




(rI − βAT A) 0 0

0 βBT B −BT

0 −B 1
β
Im







x̃k − xk

ỹk − yk

λ̃k − λk







≥ 0, ∀w ∈ Ω.(2.10)

The last variational inequality can be written in form of

w̃k ∈ Ω, (w − w̃k)T {F (w̃k) + G(w̃k − wk)} ≥ 0, ∀w ∈ Ω, (2.11)

where

G =




(rI − βAT A) 0 0

0 βBT B −BT

0 −B 1
β Im


 (2.12)
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which is essential in the framework of the PPA contraction methods.

2.3 Convergence of the Linearized ADM-based PPA Method

Based on the analysis in the last subsection, we have the following lemma.

Lemma 2.1 Let w̃k = (x̃k, ỹk, λ̃k) ∈ Ω be generated by (2.2) from the given

wk = (xk, yk, λk). Then, we have

(w̃k − w∗)T G(wk − w̃k) ≥ 0, ∀w∗ ∈ Ω∗, (2.13)

where G is defined in (2.12).

Proof. Setting w = w∗ in (2.10), we get

(w̃k − w∗)T G(wk − w̃k) ≥ θ(ũk)− θ(u∗) + (w̃k − w∗)T F (w̃k).

Since F is monotone and w̃k ∈ Ω, it follows that

θ(ũk)−θ(u∗)+(w̃k−w∗)T F (w̃k) ≥ θ(ũk)−θ(u∗)+(w̃k−w∗)T F (w∗).
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The right hand side of the last inequality is non-negative because w̃k ∈ Ω and

w∗ ∈ Ω∗. the assertion follows directly. 2

Lemma 2.2 Let w̃k = (x̃k, ỹk, λ̃k) ∈ Ω be generated by (2.2) from the given

wk = (xk, yk, λk). Then, we have

(wk − w∗)T G(wk − w̃k) ≥ ‖wk − w̃k‖2G, ∀w∗ ∈ Ω∗, (2.14)

where G is defined in (2.12).

Proof. Assertion (2.14) follows from the last inequality directly. 2

Since G is symmetric and positive semi-definite, we have

wk − w̃k = 0 or G(wk − w̃k) = 0,

whenever ‖wk − w̃k‖2G = 0. Therefore, it follows from (2.10) that w̃k is a

solution of the variational inequality when ‖wk − w̃k‖2G = 0.

Theorem 2.1 Let w̃k = (x̃k, ỹk, λ̃k) ∈ Ω be generated by (2.2) from the given
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wk = (xk, yk, λk) and the new iterate wk+1 be given by (2.4). Then we have

‖wk+1−w∗‖2G ≤ ‖wk−w∗‖2G−γ(2−γ)‖wk−w̃k‖2G, ∀w∗ ∈ Ω∗. (2.15)

Proof. By using (2.4) and (2.14), we obtain

‖wk+1 − w∗‖2G
(2.4)= ‖(wk − w∗)− γ(wk − w̃k)‖2G

(2.14)
≤ ‖wk − w∗‖2G − 2γ‖wk − w̃k‖2G + γ2‖wk − w̃k‖2G
= ‖wk − w∗‖2G − γ(2− γ)‖wk − w̃k‖2G.

This is true for any w∗ ∈ Ω∗ and the theorem is proved. 2

The inequality (2.15) is essential for the convergence of the Linearized alternating

direction method. By using (2.4), the result of Theorem 2.1 can be written as

‖wk+1 − w∗‖2G ≤ ‖wk − w∗‖2G −
2− γ

γ
‖wk − wk+1‖2G, ∀w∗ ∈ Ω∗.
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3 Convergence rate of L-ADM-based C-PPA Method

Lemma 3.1 Let {wk} be the sequence generated by the customized PPA (2.2)

with (2.4). Then, we have

(w̃k − w̃k+1)T G{(wk − wk+1)− (w̃k − w̃k+1)} ≥ 0. (3.1)

Proof. Set w = w̃k+1 in (2.11), we have

θ(ũk+1)− θ(ũk) + (w̃k+1 − w̃k)T {F (w̃k) + G(w̃k − wk)} ≥ 0. (3.2)

Note that (2.11) is also true for k := k + 1 and thus we have

θ(u)−θ(ũk+1)+(w−w̃k+1)T {F (w̃k+1)+G(w̃k+1−wk+1)} ≥ 0, ∀w ∈ Ω.

Set w = w̃k in the above inequality, we obtain

θ(ũk)− θ(ũk+1) + (w̃k − w̃k+1)T {F (w̃k+1) + G(w̃k+1 − wk+1)} ≥ 0.

(3.3)
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Adding (3.2) and (3.3) and using the monotonicity of F , we get

(w̃k − w̃k+1)T G{(wk − wk+1)− (w̃k − w̃k+1)} ≥ 0.

we obtain (3.1) immediately. 2

Lemma 3.2 Let {wk} be the sequence generated by the customized PPA (2.2)

with (2.4). Then, we have

(wk − w̃k)T G{(wk − w̃k)− (wk+1 − w̃k+1)}
≥ 1

γ
‖(wk − w̃k)− (wk+1 − w̃k+1)‖2G. (3.4)

Proof. Adding the term ‖(wk −wk+1)− (w̃k − w̃k+1)‖2G to the both sides of

(3.1), we obtain

(wk − wk+1)T G{(wk − w̃k)− (wk+1 − w̃k+1)}
≥ ‖(wk − w̃k)− (wk+1 − w̃k+1)‖2G. (3.5)
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Substituting the term (wk −wk+1) in the left hand side of (3.5) by γ(wk − w̃k)
(see (2.4)), we obtain (3.4) and the lemma is proved. 2

Lemma 3.3 Let {wk} be the sequence generated by the customized PPA (2.2)

with (2.4). Then, we have

‖wk+1 − w̃k+1‖2G ≤ ‖wk − w̃k‖2G. (3.6)

Proof. Setting a = wk − w̃k and b = wk+1 − w̃k+1 in the identity

‖a‖2G − ‖b‖2G = 2aT G(a− b)− ‖a− b‖2G,

we obtain

‖wk − w̃k‖2G − ‖wk+1 − w̃k+1‖2G
= 2(wk − w̃k)T G{(wk − w̃k)− (wk+1 − w̃k+1)}

−‖(wk − w̃k)− (wk+1 − w̃k+1)‖2G.
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By using (3.4) to the first term of the right hand side of the last equality, we obtain

‖wk−w̃k‖2G−‖wk+1−w̃k+1‖2G ≥ 2− γ

γ
‖(wk−w̃k)−(wk+1−w̃k+1)‖2G.

The assertion of this lemma is proved. 2

Having the assertion (2.15) and Lemma 3.3, we are ready to present the O(1/t)
convergence rate of the customized PPA in the residue sense.

Theorem 3.1 Let {wk} be the sequence generated by the customized PPA (2.2)

with (2.4). Then, we have

‖wk − w̃k‖2G ≤ 1
(k + 1)γ(2− γ)

‖w0 − w∗‖2G, ∀w∗ ∈ Ω∗. (3.7)

Proof. First, it follows from (2.15) that

γ(2− γ)
∞∑

t=0

‖wt − w̃t‖2G ≤ ‖w0 − w∗‖2G, ∀w∗ ∈ Ω∗. (3.8)
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According to Lemma 3.3, the sequence {‖wt − w̃t‖2H} is non-increasing.

Therefore, we have

(k + 1)‖wk − w̃k‖2G ≤
k∑

i=0

‖wi − w̃i‖2G. (3.9)

The assertion of this theorem follows from (3.8) and (3.9) directly. 2

The solution set of the variational inequality VI(Ω, F, θ) is convex and closed.

Theorem 3.1 indicates that ADMM has O(1/k) iteration convergence rate. Let

d = inf{‖w0 − w∗‖G |w∗ ∈ Ω∗}.

For any given ε > 0, in order to enforce the error ‖wk − w̃k‖2G ≤ ε, according

to (3.7), it needs at most k = bd2/γ(2− γ)εc iterations.
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4 ADM-based Contraction Method

In ADM-based contraction methods, we use the w̃k generated by (2.2) to

construct a search direction.

4.1 Contraction Method

The prediction step of the contraction method in this subsection is the same as
(2.2). Therefore, we have (2.10) and rewrite it as

w̃k ∈ Ω, θ(u)− θ(ũk) +




x− x̃k

y − ỹk

λ− λ̃k




T






−AT λ̃k

−BT λ̃k

Ax̃k + Bỹk − b




+




rIn 0 0

0 βBT B −BT

0 −B 1
β
Im






(In − β

r
AT A)(x̃k − xk)

ỹk − yk

λ̃k − λk







≥0, ∀w ∈ Ω.
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Again, the above variational inequality can be written in form of

w̃k ∈ Ω, θ(u)− θ(ũk)

+(w − w̃k)T {F (w̃k) + Q(w̃k − wk)} ≥ 0, ∀w ∈ Ω, (4.1)

where

Q = HM, (4.2)

H =




rIn 0 0

0 βBT B −BT

0 −B 1
β Im


 (4.3)

and

M =




In − β
r AT A 0 0

0 In2 0

0 0 Im


 . (4.4)
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Request on the parameter r For given β > 0, r should satisfy

β‖AT A(xk − x̃k)‖ ≤ νr‖xk − x̃k‖, ν ∈ (0, 1). (4.5)

If the condition (2.3) is satisfied, i.e., rIn − βAT A Â 0, then the condition (4.5)

is hold. In conversely it is not true. A conservative estimate for ‖AT A‖ will leads

slow convergence. In the iteration process, we can check if the condition (4.5) is

satisfied. This section considers the contraction in H-norm, where H (defined in

(4.3)) is symmetric and positive semi-definite.

4.2 Convergence of ADM-based contraction method

Based on the analysis in the last subsection, we have the following lemma.

Lemma 4.1 Let w̃k = (x̃k, ỹk, λ̃k) ∈ Ω be generated by (2.2) from the given

wk = (xk, yk, λk). Then, we have

(w̃k − w∗)T Q(wk − w̃k) ≥ 0, ∀w∗ ∈ Ω∗, (4.6)
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where matrix Q is defined in (4.2).

Proof. Setting w = w∗ in (4.1), we get

(w̃k − w∗)T Q(wk − w̃k) ≥ θ(ũk)−θ(u∗) + (w̃k− w∗)T F (w̃k).

Since F is monotone, it follows that

θ(ũk)−θ(u∗) + (w̃k − w∗)T F (w̃k)

≥ θ(ũk)−θ(u∗) + (w̃k − w∗)T F (w∗) ≥ 0.

The last inequality is due to wk+1 ∈ Ω and w∗ ∈ Ω∗ (see (1.3)). The lemma is

proved. 2

Lemma 4.2 Let w̃k = (x̃k, ỹk, λ̃k) ∈ Ω be generated by (2.2) from the given

wk = (xk, yk, λk). Then, we have

(wk − w∗)T HM(wk − w̃k) ≥ ϕ(wk, w̃k), ∀w∗ ∈ Ω∗, (4.7)
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where H is defined in (4.3) and

ϕ(wk, w̃k) = (wk − w̃k)T HM(wk − w̃k) (4.8)

Proof. It follows from (4.2) and (4.6) that

(wk − w∗)T HM(wk − w̃k) ≥ (wk − w̃k)T HM(wk − w̃k).

Assertion (4.7) and the definition of ϕ(wk, w̃k) directly. 2

Even though H is positive semi-definite, we still use ‖w − w̃‖H to denote that

‖w − w̃‖H =
√

(w − w̃)T H(w − w̃).

4.3 The primary contraction methods

In the primary method, we take the unit step length and use

wk+1 = wk −M(wk − w̃k) (4.9)
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to update the new iterate wk+1. According to (4.4), it can be written as




xk+1

yk+1

λk+1


 =




x̃k + β
r AT A(xk − x̃k)

ỹk

λ̃k


 . (4.10)

In the primary contraction method, only the x-part of the corrector is different

from the predictor. In the method of Section 2, we need r ≥ β‖AT A‖. By

using the method in this section, we need only a r to satisfy the condition (4.5).

In practical computation, we try to use the average of the eigenvalues of βAT A.

By using (4.7), we obtain

‖wk − w∗‖2H − ‖wk+1 − w∗‖2H
= 2(wk − w∗)T HM(wk − w̃k)− ‖M(wk − w̃k)‖2H
≥ 2ϕ(wk, w̃k)− ‖M(wk − w̃k)‖2H . (4.11)



XIV - 25

Note that (see (4.8))

2ϕ(wk, w̃k)− ‖M(wk − w̃k)‖2H
= (wk − w̃k)T

(
MT H + HM −MT HM

)
(wk − w̃k).

By using the structure of the matrices H and M , we obtain

MT H + HM −MT HM = H − (I −MT )H(I −M)

=




rIn 0 0

0 βBT B −BT

0 −B 1
β Im


−




r(β
r AT A)2 0 0

0 0 0

0 0 0


 .

Therefore,

2ϕ(wk, w̃k)− ‖M(wk − w̃k)‖2H
= ‖wk − w̃k‖2H − r

(
β2

r2

)‖AT A(xk − x̃k)‖2.
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Under the condition (4.5), we have

(
β2

r2

)‖AT A(xk − x̃k)‖2 ≤ ν2‖xk − x̃k‖2.

Consequently, we have

2ϕ(wk, w̃k)− ‖M(wk − w̃k)‖2H ≥ (1− ν2)‖wk − w̃k‖2H . (4.12)

Theorem 4.1 Let w̃k = (x̃k, ỹk, λ̃k) ∈ Ω be generated by (2.2) from the given

wk = (xk, yk, λk) and the new iterate wk+1 is given by (4.9). The sequence

{wk} generated by the elementary contraction method satisfies

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − (1− ν2)‖wk − w̃k‖2H . (4.13)

Theorem 4.1 is essential for the convergence of the primary contraction method.

It will lead limk→∞ ‖wk − w̃k‖2H = 0 and

lim
k→∞

xk = x∗, lim
k→∞

Byk = By∗ and lim
k→∞

λk = λ∗.
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4.4 The general contraction methods

The general contraction method For given wk, we use

w(α) = wk − αM(wk − w̃k) (4.14)

to update the α-dependent new iterate. For any w∗ ∈ Ω∗, we define

ϑ(α) := ‖wk − w∗‖2H − ‖w(α)− w∗‖2H (4.15)

and

q(α) = 2αϕ(wk, w̃k)− α2‖M(wk − w̃k)‖2H . (4.16)

Theorem 4.2 Let w(α) be defined by (4.14). For any w∗ ∈ Ω∗ and α ≥ 0, we

have

ϑ(α) ≥ q(α). (4.17)
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Proof. It follows from (4.14) and (4.15) that

ϑ(α) = ‖wk − w∗‖2H − ‖(wk − w∗)− αM(wk − w̃k)‖2H
= 2α(wk − w∗)T HM(wk − w̃k)− α2‖M(wk − w̃k)‖2H .

By using (4.7) and the definition of q(α), the theorem is proved. 2

Note that q(α) in (4.16) is a quadratic function of α and it reaches its maximum at

α∗ =
ϕ(wk, w̃k)

‖M(wk − w̃k)‖2H
. (4.18)

From (4.12) we know that under the condition (2.3), it holds that α∗k ≥ 1
2 . In

practical computation, we use

wk+1 = wk − γα∗kM(wk − w̃k), (4.19)

to update the new iterate with γ ∈ [1, 2). According to (4.15) and (4.17), we have

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − q(γα∗k). (4.20)
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Using (4.16) and (4.18), we obtain

q(γα∗k) = 2γα∗kϕ(wk, w̃k)− (γα∗k)2‖M(wk − w̃k)‖2H
= γ(2− γ)α∗kϕ(wk, w̃k). (4.21)

Note that α∗k > 1/2 and (see (4.12))

ϕ(wk, w̃k) ≥ 1
2
(‖M(wk − w̃k)‖2H + (1− ν)‖wk − w̃k‖2H

)
. (4.22)

Combining (4.20), (4.21) and (4.22), we get the following theorem for the general

contraction method.

Theorem 4.3 The sequence {wk = (xk, yk, λk)} generated by the general

contraction method (4.19) satisfies

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − γ(2− γ)(1− ν)
4

‖wk − w̃k‖2H

−γ(2− γ)
4

‖M(wk − w̃k)‖2H . (4.23)

The inequality (4.23) in Theorem 4.3 is essential for the convergence of the
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general contraction method.

On the other hand, by using (4.18) and (4.19), we have

q(γα∗k) = γ(2− γ)α∗kϕ(wk, w̃k)

= γ(2− γ)(α∗k)2‖M(wk − w̃k)‖2H
=

2− γ

γ
‖wk − wk+1‖2H . (4.24)

According to (4.15), (4.17) and the above inequality, we have

Theorem 4.4 The sequence {wk = (xk, yk, λk)} generated by the general

contraction method (4.19) satisfies

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − 2− γ

γ
‖wk − wk+1‖2H . (4.25)

Especially, by taking γ = 1 in (4.19), then we have

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − ‖wk − wk+1‖2H .
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Remark If we dynamically take γk = 1/α∗k, because α∗ > 1/2, we have

γk ∈ (0, 2) and γkα∗k ≡ 1. In this way, we get the primary contraction method.

According to (4.25), since γ = 1/α∗k, we have

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − (2α∗k − 1)‖wk − wk+1‖2H . (4.26)

Based on the above inequality, by using (4.18) and (4.9), we derive

‖wk − w∗‖2H − ‖wk+1 − w∗‖2H
≥ (2α∗k − 1)‖wk − wk+1‖2H
=

2ϕ(wk, w̃k)− ‖M(wk − w̃k)‖2H
‖M(wk − w̃k)‖2H

‖wk − wk+1‖2H
= 2ϕ(wk, w̃k)− ‖M(wk − w̃k)‖2H ,

the same result as (4.11). Finally, from the last inequality, we can obtain the

assertion in Theorem 4.1 for the primary contraction method.
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