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The context of this lecture is based on the paper [3]



1 Introduction

In this paper, we consider the general case of linearly constrained separable convex

programming with m > 3:

min Z;n:l 97, (CUZ)

Z;n:l A;x; = b; (1.1)
ri e Xy, 1=1,---,m;
where 6; : R — R (i = 1,...,m) are closed proper convex functions (not
necessarily smooth); X; C R™ (z = 1,...,m) are closed convex sets;
A; € R™ (4 =1,...,m) are given matrices and b € R' is a given vector.

Throughout, we assume that the solution set of (1.1) is nonempty.

In fact, even for the special case of (1.1) with m = 3, the convergence of the extended
ADM is still open. In the last lecture, we provided a novel approach towards the extension
of ADM for the problem (1.1). More specifically, we show that if a new iterate is generated

by correcting the output of the ADM with a Gaussian back substitution procedure, then the
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sequence of iterates is convergent to a solution of (1.1). The resulting method is called the
ADM with Gaussian back substitution (ADM-GbS).

Alternatively, the ADM-GbS can be regarded as a prediction-correction type method whose
predictor is generated by the ADM procedure and the correction is completed by a
Gaussian back substitution procedure. The main task of each iteration in ADM-GbS is to
solve the following sub-problem:

mm{@z(xl) -+ gHAzx@ — b7,||2 |£C7, c Xi}, 1=1,...,m. (1.2)

Thus, ADM-GbS is implementable only when the subproblems of (1.2) have their solutions
in the closed form. Again, each iteration of the proposed method in this lecture consists of
two steps—prediction and correction. In order to implement the prediction step, we only
assume that the x;-subproblem

min{0;(x;) + 2 ||z — al* |z e XY, i=1,...,m (1.3)
has its solution in the closed form.

The first-order optimality condition of (1.1) and thus characterize (1.1) by a variational
inequality (VI). As we will show, the VI characterization is convenient for the convergence

analysis to be conducted.
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By attaching a Lagrange multiplier vector A\ &€ R to the linear constraint, the Lagrange

function of (1.1) is:

L(acl,xg, ey T, )\) = Z (97,(33@) — )\T<Z A, — b), (1.4)
=1 1=1

which is defined on
W::Xlxng---mexéRl.

Let (:L’ik, Lo,y Lo, )\*) be a saddle point of the Lagrange function (1.4). Then we have
LAeé}%l(xiaxga"' 733:17)‘) S L(ZET,CU;, 7xj:n,7>\*>
< inEXi (i:1,...,m)(x17x27"wxm))‘*)'
Fori € {1,2,---,m}, we denote by 00;(x;) the subdifferential of the convex function

0;(x;) and by fi(xz;) € 00;(x;) a given subgradient of 0; (x;).

It is evident that finding a saddle point of L(x1, X2, ..., Zm, A) is equivalent to finding
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w* = (x7,x5, ..., Ty, A*) € W, such that

y

(1 —27)" {f(2]) — AT A"} > 0,

(2 — ) () — ATA} > 0,
A=) (0, Az —b) >0,

\

forallw = (:1:1, T2, , LTm, )\) € VV. More compactly, (1.5) can be written into
(w—w)"F(w*) >0, YweWw, (1.6a)
where

[ 2 \ [ filaen) — AT )

w an (w) Fo(m) — AT (1.6b)

Note that the operator F'(w) defined in (1.6b) is monotone due to the fact that 6;’s are all

convex functions. In addition, the solution set of (1.6), denoted by YV™, is also nonempty.



2 Linearized ADM with Gaussian back substitution

2.1

Linearized ADM Prediction
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Step 1. ADM step (prediction step). Obtain W* = (acl,xé“’, cee TR S\k) in the

forward (alternating) order by the following ADM procedure:

i

\

iy —argmin {61 (z1)+ gi Aiz1 + 1 — z7|? ‘ x1 € X}

¥ —argmin {Qi(xq;)—l— ql Az + | — :Cf||2

X EXZ'};

where ¢; = 5(23;11 Ajjj? + Z;n:z Ajm? —b).

A= 2F— BT AjEF —b).

Zr, —argmin {Gm(xm) + gl A + oz, — e |2 ‘ T € Xm} :

(2.1)
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The prediction is implementable due to the assumption (1.3) of this lecture and
arg min {Hi(a;i)+ g Aizi + 2z — i || |z € Xi}

—  argmin {ez-(xz-) + Tl — (2f — LATq))? |wi € Xi} .

Assumption 7;, 1 = 1,...,m is chosen that condition
rillw — & |° > BllAi(z; — &) (2.2)

is satisfied in each iteration.

In the case that A; = [,,,, we take ; = (3, the condition (2.2) is satisfied. Note that in

this case we have

1—1 m T
arg min {Qi(xi)—i— {B(Z A3+ Z Azl — b)} Az + g”xz — a:f“z}
j=1 j=i

x; EX,L'

71—1 m
. B Kk k IR
= argmin {Qz(acz)—l— 5” (jil Ajilj‘j —I—Azxz—l— E'—i_ AjiCj — b) — B)\ H .

(! (! =i 1



2.2 Correction by the Gaussian back substitution

To present the Gaussian back substitution procedure, we define the matrices:

[ nL, 0 0

BAS A1 raln,

BARAL o BARAn—1 Tl

Nm

\ 0 0 0 in )

0

and

1
H = diag(frlln1 T2l sTmdIn, BIZ)

Note that for 5 > 0 and r; > 0, the matrix M defined in (2.3) is a non-singular

(2.3)

(2.4)
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lower-triangular block matrix. In addition, according to (2.3) and (2.4), we have:

(L., 2ATA, .- 2 AT A, 0 )
0
e
HM" = n, ., 82— AT A, 0
Mm—1
0 0 I, 0
\ 0 - 0 0 L)
(2.5)

which is a upper-triangular block matrix whose diagonal components are identity matrices.
The Gaussian back substitution procedure to be proposed is based on the matrix
H™ M7 defined in (2.5).
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Step 2. Gaussian back substitution step (correction step). Correct the ADM output

W" in the backward order by the following Gaussian back substitution procedure and

generate the new iterate wr T

lle_ll\f‘F(u)l‘Cle — wk) = oz(fu?k — wk). (2.6)

Recall that the matrix H ~* M defined in (2.5) is a upper-triangular block matrix. The
Gaussian back substitution step (2.6) is thus very easy to execute. In fact, as we
mentioned, after the predictor is generated by the linearized ADM scheme (2.1) in the
forward (alternating) order, the proposed Gaussian back substitution step corrects the
predictor in the backward order. Since the Gaussian back substitution step is easy to
perform, the computation of each iteration of the ADM with Gaussian back substitution is
dominated by the ADM procedure (2.1).

To show the main idea with clearer notation, we restrict our theoretical discussion to the
case with fixed 3 > 0. The main task of the Gaussian back substitution step (2.6) can be
rewritten into

wt = w" —aM T HW" — a"). (2.7)

As we will show, — M ~ 1 H (w" — @") is a descent direction of the distance function
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Tlw — w*||& with G = MH~"M™" atthe point w = w” for any w* € W*. In this
sense, the proposed linearized ADM with Gaussian back substitution can also be regarded
as an ADM-based contraction method where the output of the linearized ADM scheme
(2.1) contributes a descent direction of the distance function. Thus, the constant v in (2.6)
plays the role of a step size along the descent direction —(w”® — @"). In fact, we can
choose the step size dynamically based on some techniques in the literature (e.g. [4]), and
the Gaussian back substitution procedure with the constant & can be modified accordingly

into the following variant with a dynamical step size:
H M (" —w") = yag (0" — w"), (2.8)

where
L | o L TS .
= 2wk — T % ’ @9)
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[ BATA, BATAs .- BATA, AT
BATA, BATAs - BATA, Af
Q= ; L S PRI
BALAL BALA2 -+ BALAL AL
\ A A2 An 3L

and v € (0, 2). Indeed, for any 3 > 0, the symmetric matrix () is positive semi-definite.
Then, for given w” and the W" obtained by the ADM procedure (2.1), we have that

m

1 -
lw* — @5 =Y rallal — &7+ S| A = A,
Pt p
and
m 1 2
k=il = 83 Aulet = a) + (0 =3
1=1

where the norm ||w||3; (||w]|%, respectively) is defined as w* Hw (w” Qu,

respectively). Note that the step size «/, defined in (2.9) satisfies o), > %



XVl - 13

3 Convergence of the Linearized ADM-GbS

In this section, we prove the convergence of the proposed ADM with Gaussian back
substitution for solving (1.1). Our proof follows the analytic framework of contractive type

methods. Accordingly, we divide this section into three subsections.

3.1 Verification of the descent directions

In this subsection, we mainly show that —(wk — fcbk) is a descent direction of the function
|lw — w*||% at the point w = w” whenever " # w", where " is generated by the
ADM scheme (2.1), w™ € WW* and (G is a positive definite matrix.

(&%,..., %% S\k) be generated by the linearized ADM step (2.1)

from the given vectorw® = (%, ..., x% \¥). Then, we have

Lemma 3.1 Let 0®

" ew, (w— ") {do(w®, ") — di (w", 0"} >0, Ywew, @1
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where
[ L., 0 0\ bt )
ﬁAgAl TQITLQ xlg _ :%]5
dl(wk7 ~k):
BAT Ay - BATAn_i rpl.. O Tyn, — T
\ 0o 0o ap ) L X=X
(3.2)
(a7
AT .
do(w*, @") = F@")+ 8| | (O Aj(af —25)) (3.3)
AT Jj=1
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Proof. Since x; is the solution of (2.1), forz = 1, 2, ..., m, according to the optimality

condition, we have

Tp € Xiy (o — &) {fil@) — AT N — BOCIZ1 AT + YT Ay — b)]
+ri(F —xi)} >0, Va €X. (3.4)

By using the fact

e X, (xi— o) {fi(@) — ATV + AT (Y Aj(=h — 25))
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Summing the inequality (3.5) over7 = 1, ..., m, we obtain " € X and
T -
( T — Y \ (( f1(@F) — AT A" \ (AlT(Z;'n:l Aj(z5 — j?))\\
T2 — T8 f2(%5) — AF \F Ay (3T, Aj(af — 7))
X +5 _ 0
\om =75 ) (\ (@) — A\ AL Ak, —28)) )

(xl—ﬁj’f\T(qqfnl 0 0 0 \/xzf_iqu\
: zh — 75

Vv

BT Y L ey



for all z € X. Adding the following term

(%1—53‘]1{\
~k

\ A7

: )

AT(ZJ 1 Aj (azf - 5’5?))

Sk - ) )

to the both sides of (3.6), we get i € X andforallz € X,

Vv

(-3t

$2—£U2

T) —
f2(23) —

)
>
___
~
—
=
[
VN
8
I
=l
N—"

[

0

6AT (Z] 1 A (CL’?

\BAL (S50 Ay (o —
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[ —at | (k) - ATV 4 BAT (ST, A, (e -
2 =35 | | f2(35) - ATNS 4 BAT (L, Ay (2} — 7))

xmim Fn (FF, )' AR 4 BAL (30T A (2 — &5))
\ A-2 )\ AsE - b )
T

(m—fﬁ’f\ r( Tl(iﬁlf—fi'lf)\ ( 0 \\
vy — B ro(zh — #5) BAZ (30, Aj(=f — 25))
> { + A3.8)
2o — B ra(zk, — 25) | |BAL (7 Aj(ah — 38))

P U (AU o A U )

Use the notations of d; (w”®, w"*) and da (w", W), the assertion is proved. O
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Lemma 3.2 Let " = (f’f, 50']5, e ,:E,’il, 5\’“) be generated by the ADM step (2.1) from
the given vector w”® = (5, ..., x5, \*). Then, we have

(@ —w) dy(w”, %) > (A" =X (D A2 —15)), Yw e W, 39
71=1

where d1 (w”®, W") is defined in (3.2).
Proof. Since w™ € W, it follows from (3.1) that
(" — w) dy (w*, ") > (0* — w*) " da(w”, D). (3.10)
We consider the right-hand side of (3.10). By using (3.3), we get
™m ™m
k ~k\\T ~k * ~k *\ T ~k
— (Z Aj(zj — 7)) B(Z Aj(zF —z})) + (0" —w")" F(w")(3.11)
j=1 j=1

Then, we look at the right-hand side of (3.11). Since i= YV, by using the monotonicity

of F', we have
(" — w)" F(a®) > o0.
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Because that

it follows from (3.11) that
~k s\ T k ~k k kNT k  ~k
(@" —w") ' da(w”, @) > (A" =X (D A;(=F - &) 612
Substituting (3.12) into (3.10), the assertion (3.9) follows immediately. [

Since (see (2.3) and (3.2))

dy (w”, 0") = M(w" — "), (3.13)
from (3.9) follows that
(@ —w*)" M(w® — @) > (A" = X)) Aj(af — &), Vw' e W
j=1
(3.14)

Now, based on the last two lemmas, we are at the stage to prove the main theorem.
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Theorem 3.1 (Main Theorem) Let " = (%%, ..., %%, 5\’“) be generated by the ADM
step (2.1) from the given vector w® = (%, ..., x%, \¥). Then, we have

1
2
where M, H, and () are defined in (2.3), (2.4) and (2.10), respectively.

~ 1 ~ %k %k
> ||w’“—w’“||?{+§||w’“—wk||é, Yw* e W, (3.15)

Proof First, it follows from (3.14) that

> (w" — @) MW" — ")+ A =N (D A;() — 7)), @3.16)

m
j=1

forallw™ € W*.
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Now, we treat the terms of the right hand side of (3.16). Using the matrix M (see (2.3)),

we have

(w* — ") M (" )

(azl—azl\T/ 110, 0 0\ (Lvlf—ffjlf
o= | | pata, 1, - | k-
h— @k | | BALAL o BALAn .y rnln, O || 7w @n

K AP — S‘k ) K 0 0 e 0

oy
NN
\
~
>~
>
|
PR
>
¥
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For the second term of the right-hand side of (3.16), by a manipulations, we obtain

OBEHC

=1
[k — i T(o 0 ... 0 0\ [at-z})
r5 — 7k 0O 0 ... 0 O] 25—z5

= E VO E . (3.18)
Tk — Zk 0O 0 ... 0 0] |azF —2zk
=) A A A o) =)



Adding (3.17) and (3.18) together, it follows that

m

(w* — &"T MW" — ") + (\F - ik)T(Z Aj(xd —27))

(

N | —

oh— &)
r5 — T4

T — T
\Ak—ﬁ)
(o — &k )
r5 — &5

Tk — Tk

v

( rllnl
BAL A,
BAL, A1

\ 4

(2T1]n1

BAL A,

BAL A4

\ A

=1

0 0 \

TQITLQ

Az Am 51 )
BAT A2 BATA,, A7
2ra1n, AT

BAL 1 Am
BAT A1 2rmI,, AL
Ao Am 27
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Use the notation of the matrices H, () and the condition (2.2) to the right-hand side of the

last equality, we obtain

(w* — T MW" — ") + N — X’“)T(Z Aj(xh — 21))

Lok kn2 L,k kg2
= Slw" =@M+ Sl - @R,
Substituting the last equality in (3.16), the theorem is proved. [

It follows from (3.15) that
_ . _ . 1 .
(MH'M" (w® —w*), M~ TH(@" —w")) < —§||wk — D" || P40
In other words, by setting
G=MH 'M", (3.19)

MH ™' M™" (w* — w™*) is the gradient of the distance function 3 ||w — w*||&, and

M~ H (%" — w") is a descent direction of 3 ||w — w*||% at the current point w"

whenever " # w",



XVl - 26

3.2 The contractive property

In this subsection, we mainly prove that the sequence generated by the proposed ADM
with Gaussian back substitution is contractive with respect to the set Y. Note that we
follow the definition of contractive type methods. With this contractive property, the
convergence of the proposed linearized ADM with Gaussian back substitution can be

easily derived with subroutine analysis.
Theorem 3.2 Letw" = (Z%,..., %%, S\k) be generated by the ADM step (2.1) from the

given vectorw® = (%, ... %  A\¥). Let the matrix G be given by (3.19). For the new

ft1 produced by the Gaussian back substitution (2.7), there exists a constant

co > 0 such that

iterate w

lw™ —w||E < lw® —w*||&—co(|w® —@" | E+|w" —@"[g), ¥ w" € W7,
(3.20)
where H and () are defined in (2.4) and (2.10), respectively.
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Proof. For G = M H *M7 and any o« > 0, we obtain

[w® —w||& = Jw* T — W[l
= [lv" —w'||& — [(w* —w") —aM T H(w" - @")|¢
= 2a(w" —w)T MW" - a") - ®||w" — "% (3.21)

Substituting the result of Theorem 3.1 into the right-hand side of the last equation, we get

k * )2 k+1 * )2
Jw” —w[[g — |lw™" —wc
k ~k2 k ~k 2 2 k ~k 12
a([w” =@y + |lw* —@"|g) — a”|lw” —@" ||k
= a(l—a)|w" —@" ||z + al|w® — "3,

and thus

[ —w™||& < [lw® —w||g

—a((1 = a)|w® —a" |} + |w* —@"[|3), Vo' e W*.  (3.22)
Set co = a(1 — o). Recall that & € [0.5, 1). The assertion is proved. [

Corollary 3.1 The assertion of Theorem 3.2 also holds if the Gaussian back substitution is
(2.8).
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Proof. Analogous to the proof of Theorem 3.2, we have that

|w* —w & = 0™ —wlG

> 2yag(w® —w") M(w® —a") — (vai)*|w® — @5, (329

where a/, is given by (2.9). According to (2.9), we have that

. - 1 - -
ai, (lw* = @" %) = 5 (" — @"[|7 + w* —5"]3).

Then, it follows from the above equality and (3.15) that

[w* —w & = [lw* ™ — WG
k ~k k ~k
> yaj([lw" =@ + w® - @"([3)

I 5 ko o~k 2 ko o~k 2
L (et = @ + et - 23)

1 « kK ~k ko ~ky2
= 572 =yai(lw’ = o7 + " —@"[lg).
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Because «j, > % it follows from the last inequality that
Hwk—l—l .

1 - - * *
— 712 =) (W — 5+ ¥ - 3*)2), YwT e W, @29

Since v € (O, 2), the assertion of this corollary follows from (3.24) directly. U

wllg < [lw” —wllg

3.3 Convergence

The proposed lemmas and theorems are adequate to establish the global convergence of
the proposed ADM with Gaussian back substitution, and the analytic framework is quite

typical in the context of contractive type methods.

Theorem 3.3 Let {w"} and {10"} be the sequences generated by the proposed ADM

with Gaussian back substitution. Then we have
kY .
1. The sequence {w" } is bounded.

2. limp oo || — "] =0,



3. Any cluster point of {w"} is a solution point of (1.6).

4. The sequence {W"} converges to some w™ € W*.

Proof. The first assertion follows from (3.20) directly. In addition, from (3.20) we get

O
> colw” = a5 < [Jw” —wlg
k=0
and thus we get limy .o [|w”® — @*||3 = 0, and consequently
lim |jzf — & =0, i=2,...,m,
k—o0

and
lim [[A* —X\¥|| =o0.

k— oo

The second assertion is proved.

Substituting (3.25) into (3.5), fore = 1,2, ..., m, we have

7y € X, lim (v, — 30T {f1(2F) — ATN*)} >0, YV, € A

k— o0
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(3.25)

(3.26)

(3.27)



XVIil - 31

It follows from (2.1) and (3.26) that

lim () A;E7 —b) = 0. (3.28)
k— o0 et
Combining (3.27) and (3.28) we get
~k . ~k\T ~k
w'eW, lim(w-w") F(w")>0, YweW, (3.29)

k— oo

and thus any cluster point of {fu?k} is a solution point of (1.6). The third assertion is

proved.

It follows from the first assertion and limy, oo ||w® — @"||3; = 0 that {10"} is also
bounded. Let w™ be a cluster point of {10* } and the subsequence {7"7 } converges to
w°. It follows from (3.29) that

@ e W, lim (w—@")TF@") >0, YVweWw (3.30)

k— oo
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and consequently

/

(ws — )" { fi(@°) — ATA®} >0, Vo € Xy, i=1,...,m,

\ Z;nzl A3$§O —b=0.

This means that w™ € W™ is a solution point of (1.6) .

Since {w”} is Fejér monotone and limy, . oo ||w® — @"|| = 0, the sequence {w"}
cannot have other cluster point and {w" } converges to w™ € W*. O
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