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In 2005, Nemirovski’s analysis indicates that the extragradient method has the O(1/t)

convergence rate for variational inequalities with Lipschitz continuous monotone operators.

For the same problems, in the last decades, we have developed a class of Fejér monotone

projection and contraction methods. Until now, only convergence results are available to

these projection and contraction methods, though the numerical experiments indicate that

they always outperform the extragradient method. The reason is that the former benefits

from the ‘optimal’ step size in the contraction sense. In this paper, we prove the

convergence rate under a unified conceptual framework, which includes the projection and

contraction methods as special cases and thus perfects the theory of the existing

projection and contraction methods. Preliminary numerical results demonstrate that the

projection and contraction methods converge twice faster than the extragradient method.

1 Introduction

Let Ω be a nonempty closed convex subset of ℜn, F be a continuous mapping from ℜn

to itself. The variational inequality problem, denoted by VI(Ω, F ), is to find a vector
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u∗ ∈ Ω such that

VI(Ω, F ) (u− u∗)TF (u∗) ≥ 0, ∀u ∈ Ω. (1.1)

Notice that VI(Ω, F ) is invariant when F is multiplied by some positive scalar β > 0. It is

well known that, for any β > 0,

u∗ is a solution of VI(Ω, F ) ⇐⇒ u∗ = PΩ[u
∗ − βF (u∗)], (1.2)

where PΩ(·) denotes the projection onto Ω with respect to the Euclidean norm, i.e.,

PΩ(v) = argmin{∥u− v∥ |u ∈ Ω}.

Throughout this paper we assume that the mapping F is monotone and Lipschitz

continuous, i.e.,

(u− v)T (F (u)− F (v)) ≥ 0, ∀u, v ∈ ℜn,

and there is a constant L > 0 (not necessary known), such that

∥F (u)− F (v)∥ ≤ L∥u− v∥, ∀u, v ∈ ℜn.
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Moreover, we assume that the solution set of VI(Ω, F ), denoted by Ω∗, is nonempty. The

nonempty assumption of the solution set, together with the monotonicity assumption of F ,

implies that Ω∗ is closed and convex (see pp. 158 in [3]).

Among the algorithms for monotone variational inequalities, the extragradient (EG) method

proposed by Korpelevich [9] is one of the attractive methods. In fact, each iteration of the

extragradient method can be divided into two steps. The k-th iteration of EG method

begins with a given uk ∈ Ω, the first step produces a vector ũk via a projection

ũk = PΩ[u
k − βkF (uk)], (1.3a)

where βk > 0 is selected to satisfy

βk∥F (uk)− F (ũk)∥ ≤ ν∥uk − ũk∥, ν ∈ (0, 1). (1.3b)

Since ũk is not accepted as the new iterate, for designation convenience, we call it as a

predictor and βk is named the prediction step size. The second step (correction step) of

the k-th iteration updates the new iterate uk+1 by

uk+1 = PΩ[u
k − βkF (ũk)], (1.4)

where βk is called the correction step size. The sequence {uk} generated by the
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extragradient method is Fejér monotone with respect to the solution set, namely,

∥uk+1 − u∗∥2 ≤ ∥uk − u∗∥2 − (1− ν2)∥uk − ũk∥2. (1.5)

For a proof of the above contraction property, the readers may consult [3] (see pp.

1115-1118 therein). Notice that, in the extragradient method, the step size of the prediction

(1.3a) and that of the correction (1.4) are equal. Thus the two steps seem like ‘symmetric’.

Because of its simple iterative forms, recently, the extragradient method has been applied

to solve some large optimization problems in the area of information science, such as in

machine learning [15], optical network [11] and speech recognition [12], etc. In addition,

Nemirovski [10] and Tseng [16] proved the O(1/t) convergence rate of the extragradient

method. Both in the theoretical and practical aspects, the interest in the extragradient

method becomes more active.

In the last decades, we devoted our effort to develop a class of projection and contraction

(PC) methods for monotone variational inequalities [5, 6, 8, 13]. Similarly as in the

extragradient method, each iteration of the PC methods consists of two steps. The

prediction step of PC methods produces the predictor ũk via (1.3) just as in the

extragradient method. The PC methods exploit a pair of geminate directions [7, 8] offered
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by the predictor, namely, they are

d(uk, ũk) = (uk − ũk)− βk(F (uk)− F (ũk)) and βkF (ũk). (1.6)

Here, both the directions are ascent directions of the unknown distance function
1
2
∥u− u∗∥2 at the point uk . Based on such directions, the goal of the correction step is

to generate a new iterate which is more closed to the solution set. It leads to choosing the

‘optimal’ step length

ϱk =
(uk − ũk)T d(uk, ũk)

∥d(uk, ũk)∥2 , (1.7)

and a relaxation factor γ ∈ (0, 2), the second step (correction step) of the PC methods

updates the new iterate uk+1 by

uk+1 = uk − γϱkd(u
k, ũk), (1.8)

or

uk+1 = PΩ[u
k − γϱkβkF (ũk)]. (1.9)

The PC methods (without line search) make one (or two) projection(s) on Ω at each

iteration, and the distance of the iterates to the solution set monotonically converges to

zero. According to the terminology in [1], these methods belong to the class of Fejér
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contraction methods. In fact, the only difference between the extragradient method and

one of the PC methods is that they use different step sizes in the correction step (see (1.4)

and (1.9)). According to our numerical experiments [6, 8], the PC methods always

outperform the extragradient methods.

Stimulated by the complexity statement of the extragradient method, this paper shows the

O(1/t) convergence rate of the projection and contraction methods for monotone VIs.

Recall that Ω∗ can be characterized as (see (2.3.2) in pp. 159 of [3])

Ω∗ =
∩
u∈Ω

{
ũ ∈ Ω : (u− ũ)TF (u) ≥ 0

}
.

This implies that ũ ∈ Ω is an approximate solution of VI(Ω, F ) with the accuracy ϵ if it

satisfies

ũ ∈ Ω and inf
u∈Ω

{
(u− ũ)TF (u)

}
≥ −ϵ.

In this paper, we show that, for given ϵ > 0 and D ⊂ Ω, in O(L/ϵ) iterations the

projection and contraction methods can find a ũ such that

ũ ∈ Ω and sup
u∈D

{
(ũ− u)TF (u)

}
≤ ϵ. (1.10)

As a byproduct of the complexity analysis, we find why taking a suitable relaxation factor
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γ ∈ (1, 2) in the correction steps (1.8) and (1.9) of the PC methods can achieve the faster

convergence.

The outline of this paper is as follows. Section 2 recalls some basic concepts in the

projection and contraction methods. In Section 3, we investigate the geminate descent

directions of the distance function. Section 4 shows the contraction property of the PC

methods. In Section 5, we carry out the complexity analysis, which results in an O(1/t)

convergence rate and suggests using the large relaxation factor in the correction step of

the PC methods. In Section 6, we present some numerical results to indicate the efficiency

of the PC methods in comparison with the extragradient method. Finally, some conclusion

remarks are addressed in the last section.

Throughout the paper, the following notational conventions are used. We use u∗ to denote

a fixed but arbitrary point in the solution set Ω∗. A superscript such as in uk refers to a

specific vector and usually denotes an iteration index. For any real matrix M and vector v,

we denote the transpose by MT and vT , respectively. The Euclidean norm will be

denoted by ∥ · ∥.
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2 Preliminaries

In this section, we summarize the basic concepts of the projection mapping and three

fundamental inequalities for constructing the PC methods. Throughout this paper, we

assume that the projection on Ω in the Euclidean-norm has a closed form and it is easy to

be carried out. Since

PΩ(v) = argmin{1
2
∥u− v∥2 | u ∈ Ω},

according to the optimal solution of the convex minimization problem, we have

(v − PΩ(v))
T (u− PΩ(v)) ≤ 0, ∀ v ∈ ℜn,∀ u ∈ Ω. (2.1)

Consequently, for any u ∈ Ω, it follows from (2.1) that

∥u− v∥2 = ∥(u− PΩ(v))− (v − PΩ(v))∥2

= ∥u− PΩ(v)∥2 − 2(v − PΩ(v))
T (u− PΩ(v)) + ∥v − PΩ(v)∥2

≥ ∥u− PΩ(v)∥2 + ∥v − PΩ(v)∥2.
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Therefore, we have

∥u− PΩ(v)∥2 ≤ ∥u− v∥2 − ∥v − PΩ(v)∥2, ∀ v ∈ ℜn, ∀ u ∈ Ω. (2.2)

For given u and β > 0, let ũ = PΩ[u− βF (u)] be given via a projection. We say that

ũ is a test-vector of VI(Ω, F ) because

u = ũ ⇔ u ∈ Ω∗.

Since ũ ∈ Ω, it follows from (1.1) that

(FI-1) (ũ− u∗)TβF (u∗) ≥ 0, ∀u∗ ∈ Ω∗. (2.3)

Setting v = u− βF (u) and u = u∗ in the inequality (2.1), we obtain

(FI-2) (ũ− u∗)T
(
(u− ũ)− βF (u)

)
≥ 0, ∀u∗ ∈ Ω∗. (2.4)

Under the assumption that F is monotone we have

(FI-3) (ũ− u∗)Tβ
(
F (ũ)− F (u∗)

)
≥ 0, ∀u∗ ∈ Ω∗. (2.5)

The inequalities (2.3), (2.4) and (2.5) play an important role in the projection and

contraction methods. They were emphasized in [5] as three fundamental inequalities in the
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projection and contraction methods.

3 Predictor and the ascent directions

For given uk , the predictor ũk in the projection and contraction methods [5, 6, 8, 13] is

produced by (1.3). Because the mapping F is Lipschitz continuous (even if the constant

L > 0 is unknown), without loss of generality, we can assume that

infk≥0{βk} ≥ βL > 0 and βL = O(1/L). In practical computation, we can make an

initial guesses of β = ν/L and decrease β by a constant factor and repeat the procedure

whenever (1.3b) is violated.

For any but fixed u∗ ∈ Ω∗, (u− u∗) is the gradient of the unknown distance function
1
2
∥u− u∗∥2 in the Euclidean-norma at the point u. A direction d is called an ascent

direction of 1
2
∥u− u∗∥2 at u if and only if the inner-product (u− u∗)T d > 0.

aFor convenience, we only consider the distance function in the Euclidean-norm. All the results in

this paper are easy to extended to the contraction of the distance function in G-norm where G is a

positive definite matrix.
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3.1 Ascent directions by adding the fundamental inequalities

Setting u = uk , ũ = ũk and β = βk in the fundamental inequalities (2.3), (2.4) and

(2.5), and adding them, we get

(ũk − u∗)T d(uk, ũk) ≥ 0, ∀u∗ ∈ Ω∗, (3.1)

where

d(uk, ũk) = (uk − ũk)− βk

(
F (uk)− F (ũk)

)
, (3.2)

which is the same d(uk, ũk) defined in (1.6). It follows from (3.1) that

(uk − u∗)T d(uk, ũk) ≥ (uk − ũk)T d(uk, ũk). (3.3)

Note that, under the condition (1.3b), we have

2(uk − ũk)d(uk, ũk)− ∥d(uk, ũk)∥2

= d(uk, ũk)T {2(uk − ũk)− d(uk, ũk)}

= ∥uk − ũk∥2 − β2
k∥F (uk)− F (ũk)∥2

≥ (1− ν2)∥uk − ũk∥2. (3.4)
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Consequently, from (3.3) and (3.4) we have

(uk − u∗)T d(uk, ũk) ≥ 1

2

(
∥d(uk, ũk)∥2 + (1− ν2)∥uk − ũk∥2

)
.

This means that d(uk, ũk) is an ascent direction of the unknown distance function
1
2
∥u− u∗∥2 at the point uk .

3.2 Geminate ascent directions

To the direction d(uk, ũk) defined in (3.2), there is a correlative ascent direction

βkF (ũk). Use the notation of d(uk, ũk), the projection equation (1.3a) can be written as

ũk = PΩ{ũk − [βkF (ũk)− d(uk, ũk)]}. (3.5a)

It follows that ũk is a solution of VI(Ω, F ) if and only if d(uk, ũk) = 0. Assume that

there is a constant c > 0 such that

ϱk =
(uk − ũk)T d(uk, ũk)

∥d(uk, ũk)∥2 ≥ c, ∀k ≥ 0. (3.5b)
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In this paper, we call (3.5) with c > 0 the general conditions and the forthcoming analysis

is based of these conditions. For given uk , there are different ways to construct ũk and

d(uk, ũk) which satisfy the conditions (3.5) (see [8] for an example). If βk satisfies (1.3b)

and d(uk, ũk) is given by (3.2), the general conditions (3.5) are satisfied with c ≥ 1
2

(see

(3.4)). Note that an equivalent expression of (3.5a) is

ũk ∈ Ω, (u− ũk)T {βkF (ũk)− d(uk, ũk)} ≥ 0, ∀u ∈ Ω, (3.6a)

and from (3.5b) we have

(uk − ũk)T d(uk, ũk) = ϱk∥d(uk, ũk)∥2. (3.6b)

In fact, d(uk, ũk) and βkF (ũk) in (3.5a) are a pair of geminate directions and usually

denoted by d1(u
k, ũk) and d2(u

k, ũk), respectively. In this paper, we restrict

d2(u
k, ũk) to be F (ũk) times a positive scalar βk . If d(uk, ũk) = uk − ũk , then ũk

in (3.6a) is the solution of the subproblem in the k-th iteration when PPA applied to solve

VI(Ω, F ). Hence, the projection and contraction methods considered in this paper belong

to the prox-like contraction methods.

The following lemmas tell us that both the direction d(uk, ũk) (for uk ∈ ℜn) and F (ũk)
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(for uk ∈ Ω) are ascent directions of the function 1
2
∥u− u∗∥2 whenever uk is not a

solution point. The proof is similar to those in [7], for completeness sake of this paper, we

restate the short proofs.

Lemma 3.1 Let the general conditions (3.5) be satisfied. Then we have

(uk − u∗)T d(uk, ũk) ≥ ϱk∥d(uk, ũk)∥2, ∀uk ∈ ℜn, u∗ ∈ Ω∗. (3.7)

Proof. Note that u∗ ∈ Ω. By setting u = u∗ in (3.6a) (the equivalent expression of

(3.5a)), we get

(ũk − u∗)T d(uk, ũk) ≥ (ũk − u∗)TβkF (ũk) ≥ 0, ∀u∗ ∈ Ω∗.

The last inequality follows from the monotonicity of F and (ũk − u∗)TF (u∗) ≥ 0.

Therefore,

(uk − u∗)T d(uk, ũk) ≥ (uk − ũk)T d(uk, ũk), ∀u∗ ∈ Ω∗.

The assertion (3.7) is followed from the above inequality and (3.6b) directly. 2
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Lemma 3.2 Let the general conditions (3.5) be satisfied. If uk ∈ Ω, then we have

(uk − u∗)TβkF (ũk) ≥ ϱk∥d(uk, ũk)∥2, ∀u∗ ∈ Ω∗. (3.8)

Proof. Since (ũk − u∗)TβkF (ũk) ≥ 0, we have

(uk − u∗)TβkF (ũk) ≥ (uk − ũk)TβkF (ũk), ∀u∗ ∈ Ω∗.

Note that because uk ∈ Ω, by setting u = uk in (3.6a), we get

(uk − ũk)TβkF (ũk) ≥ (uk − ũk)T d(uk, ũk).

From the above two inequalities follows that

(uk − u∗)TβkF (ũk) ≥ (uk − ũk)T d(uk, ũk), ∀u∗ ∈ Ω∗.

The assertion (3.8) is followed from the above inequality and (3.6b) directly. 2

Note that (3.7) holds for uk ∈ ℜn while (3.8) is hold only for uk ∈ Ω.
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4 Corrector in the contraction sense

Based on the pair of geminate ascent directions in (3.5), namely, d(uk, ũk) and

βkF (ũk), we use the one of the following corrector forms to update the new iterate uk+1:

(Correction of PC Method-I) uk+1
I = uk − γϱkd(u

k, ũk), (4.1a)

or

(Correction of PC Method-II) uk+1
II = PΩ[u

k − γϱkβkF (ũk)], (4.1b)

where γ ∈ (0, 2) and ϱk is defined in (3.5b). Note that the same step size length is used

in (4.1a) and (4.1b) even if the search directions are different. Recall that ũk is obtained

via a projection, by using the correction form (4.1b), we have to make an additional

projection on Ω in the PC methods. Replacing γϱk in (4.1b) by 1, it reduces to the update

form of the extragradient method (see (1.4)).

For any solution point u∗ ∈ Ω∗, we define

ϑI(γ) = ∥uk − u∗∥2 − ∥uk+1
I − u∗∥2 (4.2a)
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and

ϑII(γ) = ∥uk − u∗∥2 − ∥uk+1
II − u∗∥2, (4.2b)

which measure the profit in the k-th iteration. The following theorem gives a lower bound of

the profit function, the similar results were established in [6, 7, 8].

Theorem 4.1 For given uk , let the general conditions (3.5) be satisfied. If the corrector is

updated by (4.1a) or (4.1b), then for any u∗ ∈ Ω∗ and γ > 0, we have

ϑI(γ) ≥ q(γ), (4.3)

and

ϑII(γ) ≥ q(γ) + ∥uk+1
I − uk+1

II ∥2, (4.4)

respectively, where

q(γ) = γ(2− γ)ϱ2k∥d(uk, ũk)∥2. (4.5)

Proof. Using the definition of ϑI(γ) and uk+1
I (see (4.1a)), we have

ϑI(γ) = ∥uk − u∗∥2 − ∥uk − u∗ − γϱkd(u
k, ũk)∥2

= 2γϱk(u
k − u∗)T d(uk, ũk)− γ2ϱ2k∥d(uk, ũk)∥2. (4.6)
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Recalling (3.7), we obtain

2γϱk(u
k − u∗)T d(uk, ũk) ≥ 2γϱ2k∥d(uk, ũk)∥2.

Substituting it in (4.6) and using the definition of q(γ), we get ϑI(γ) ≥ q(γ) and the first

assertion is proved. Now, we turn to show the second assertion. Because

uk+1
II = PΩ[u

k − γϱkβkF (ũk)],

and u∗ ∈ Ω, by setting u = u∗ and v = uk − γϱkβkF (ũk) in (2.2), we have

∥u∗ − uk+1
II ∥2 ≤ ∥u∗ − (uk − γϱkβkF (ũk))∥2

−∥uk − γϱkβkF (ũk)− uk+1
II ∥2. (4.7)

Thus,

ϑII(γ) = ∥uk − u∗∥2 − ∥uk+1
II − u∗∥2

≥ ∥uk − u∗∥2 − ∥(uk − u∗)− γϱkβkF (ũk)∥2

+∥(uk − uk+1
II )− γϱkβkF (ũk)∥2

= ∥uk − uk+1
II ∥2 + 2γϱkβk(u

k+1
II − u∗)TF (ũk)

≥ ∥uk − uk+1
II ∥2 + 2γϱkβk(u

k+1
II − ũk)TF (ũk). (4.8)
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The last inequality in (4.8) follows from (ũk − u∗)TF (ũk) ≥ 0. Since uk+1
II ∈ Ω, by

setting u = uk+1
II in (3.6a), we get

(uk+1
II − ũk)T {βkF (ũk)− d(uk, ũk)} ≥ 0,

and consequently, substituting it in the right hand side of (4.8), we obtain

ϑII(γ) ≥ ∥uk − uk+1
II ∥2 + 2γϱk(u

k+1
II − ũk)T d(uk, ũk)

= ∥uk − uk+1
II ∥2 + 2γϱk(u

k − ũk)T d(uk, ũk)

−2γϱk(u
k − uk+1

II )T d(uk, ũk). (4.9)

To the two crossed term in the right hand side of (4.9), we have (by using (3.6b))

2γϱk(u
k − ũk)T d(uk, ũk) = 2γϱ2k∥d(uk, ũk)∥2,

and

−2γϱk(u
k − uk+1

II )T d(uk, ũk)

= ∥(uk − uk+1
II )− γϱkd(u

k, ũk)∥2

−∥uk − uk+1
II ∥2 − γ2ϱ2k∥d(uk, ũk)∥2,
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respectively. Substituting them in the right hand side of (4.9) and using

uk − γϱkd(u
k, ũk) = uk+1

I ,

we obtain

ϑII(γ) ≥ γ(2− γ)ϱ2k∥d(uk, ũk)∥2 + ∥uk+1
I − uk+1

II ∥2

= q(γ) + ∥uk+1
I − uk+1

II ∥2, (4.10)

and the proof is complete. 2

Note that q(γ) is a quadratic function of γ, it reaches its maximum at γ∗ = 1. In practice,

ϱk is the ‘optimal’ step size in (4.1) and γ is a relaxation factor. Because q(γ) is a lower

bound of ϑI(γ) (resp. ϑII(γ)), the desirable new iterate is updated by (4.1) with

γ ∈ [1, 2).

From Theorem 4.1 we obtain

∥uk+1 − u∗∥2 ≤ ∥uk − u∗∥2 − γ(2− γ)ϱ2k∥d(uk, ũk)∥2. (4.11)

Convergence result follows from (4.11) directly. Due to the property (4.11) we call the

methods which use different update forms in (4.1) PC Method-I and PC Method II,
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respectively. Note that the assertion (4.11) is derived from the general conditions (3.5). For

the PC methods using correction form (1.8) or (1.9), because ϱk > 1
2

, by using (3.6b) and

(1.3b), it follows from (4.11) that

∥uk+1 − u∗∥2 ≤ ∥uk − u∗∥2 − 1

2
γ(2− γ)(1− ν)∥uk − ũk∥2. (4.12)

5 Convergence rate of the PC methods

This section proves the convergence rate of the projection and contraction methods. Recall

that the base of the complexity proof is (see (2.3.2) in pp. 159 of [3])

Ω∗ =
∩
u∈Ω

{
ũ ∈ Ω : (u− ũ)TF (u) ≥ 0

}
. (5.1)

In the sequel, for given ϵ > 0 and D ⊂ Ω, we focus our attention to find a ũ such that

ũ ∈ Ω and sup
u∈D

(ũ− u)TF (u) ≤ ϵ. (5.2)

Although the PC Method I uses the update form (4.1a) and it does not guarantee that
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{uk} belongs to Ω, the sequence {ũk} ⊂ Ω in the PC methods with different corrector

forms. Now, we prove the key inequality of the PC Method I for the complexity analysis.

Lemma 5.1 For given uk ∈ ℜn, let the general conditions (3.5) be satisfied. If the new

iterate uk+1 is updated by (4.1a) with any γ > 0, then we have

(u− ũk)T γϱkβkF (ũk) +
1

2

(
∥u− uk∥2 − ∥u− uk+1∥2

)
≥ 1

2
q(γ), ∀u ∈ Ω,

(5.3)

where q(γ) is defined in (4.5).

Proof. Because (due to (3.6a))

(u− ũk)TβkF (ũk) ≥ (u− ũk)T d(uk, ũk), ∀u ∈ Ω,

and (see (4.1a))

γϱkd(u
k, ũk) = uk − uk+1,

we need only to show that

(u−ũk)T (uk−uk+1)+
1

2

(
∥u−uk∥2−∥u−uk+1∥2

)
≥ 1

2
q(γ), ∀u ∈ Ω. (5.4)

To the crossed term in the left hand side of (5.4), namely (u− ũk)T (uk − uk+1), using
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an identity

(a− b)T (c− d) =
1

2

(
∥a− d∥2 − ∥a− c∥2

)
+

1

2

(
∥c− b∥2 − ∥d− b∥2

)
,

we obtain

(u− ũk)T (uk − uk+1) =
1

2

(
∥u− uk+1∥2 − ∥u− uk∥2

)
+
1

2

(
∥uk − ũk∥2 − ∥uk+1 − ũk∥2

)
. (5.5)

By using uk+1 = uk − γϱkd(u
k, ũk) and (3.6b), we get

∥uk − ũk∥2 − ∥uk+1 − ũk∥2

= ∥uk − ũk∥2 − ∥(uk − ũk)− γϱkd(u
k, ũk)∥2

= 2γϱk(u
k − ũk)T d(uk, ũk)− γ2ϱ2k∥d(uk, ũk)∥2

= γ(2− γ)ϱ2k∥d(uk, ũk)∥2.

Substituting it in the right hand side of (5.5) and using the definition of q(γ), we obtain

(5.4) and the lemma is proved. 2

The both sequences {ũk} and {uk} in the PC method II belong to Ω. In the following
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lemma we prove the same assertion for PC method II as in Lemma 5.1.

Lemma 5.2 For given uk ∈ Ω, let the general conditions (3.5) be satisfied. If the new

iterate uk+1 is updated by (4.1b) with any γ > 0, then we have

(u− ũk)T γϱkβkF (ũk) +
1

2

(
∥u− uk∥2 − ∥u− uk+1∥2

)
≥ 1

2
q(γ), ∀u ∈ Ω,

(5.6)

where q(γ) is defined in (4.5).

Proof. For investigating (u− ũk)TβkF (ũk), we divide it in the terms

(uk+1 − ũk)T γϱkβkF (ũk) and (u− uk+1)T γϱkβkF (ũk).

First, we deal with the term (uk+1 − ũk)T γϱkβkF (ũk). Since uk+1 ∈ Ω, substituting

u = uk+1 in (3.6a) we get

(uk+1 − ũk)T γϱkβkF (ũk)

≥ γϱk(u
k+1 − ũk)T d(uk, ũk)

= γϱk(u
k − ũk)T d(uk, ũk)− γϱk(u

k − uk+1)T d(uk, ũk). (5.7)
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To the first crossed term of the right hand side of (5.7), using (3.6b), we have

γϱk(u
k − ũk)T d(uk, ũk) = γϱ2k∥d(uk, ũk)∥2.

To the second crossed term of the right hand side of (5.7), using the Cauchy-Schwarz

Inequality, we get

−γϱk(u
k − uk+1)T d(uk, ũk) ≥ −1

2
∥uk − uk+1∥2 − 1

2
γ2ϱ2k∥d(uk, ũk)∥2.

Substituting them in the right hand side of (5.7), we obtain

(uk+1 − ũk)T γϱkβkF (ũk) ≥ 1

2
γ(2− γ)ϱ2k∥d(uk, ũk)∥2 − 1

2
∥uk − uk+1∥2.

(5.8)

Now, we turn to treat of the term (u− uk+1)T γϱkβkF (ũk). Since uk+1 is updated by

(4.1b), uk+1 is the projection of
(
uk − γϱkβkF (ũk)

)
on Ω, it follows from (2.1) that{(

uk − γϱkβkF (ũk)
)
− uk+1}T (

u− uk+1) ≤ 0, ∀u ∈ Ω,

and consequently(
u− uk+1)T γϱkβkF (ũk) ≥

(
u− uk+1)T (uk − uk+1), ∀u ∈ Ω.

Using the identity aT b = 1
2
{∥a∥2 − ∥a− b∥2 + ∥b∥2} to the right hand side of the last



XIX - 27

inequality, we obtain(
u−uk+1)T γϱkβkF (ũk) ≥ 1

2

(
∥u−uk+1∥2 −∥u−uk∥2

)
+

1

2
∥uk −uk+1∥2.

(5.9)

Adding (5.8) and (5.9) and using the definition of q(γ), we get (5.6) and the proof is

complete. 2

For the different projection and contraction methods, we have the same key inequality

which is shown in Lemma 5.1 and Lemma 5.2, respectively. By setting u = u∗ in (5.3)

and (5.6), we get

∥uk − u∗∥2 − ∥uk+1 − u∗∥2 ≥ 2γϱkβk(ũ
k − u∗)TF (ũk) + q(γ).

Because (ũk − u∗)TF (ũk) ≥ (ũk − u∗)TF (u∗) ≥ 0 and

q(γ) = γ(2− γ)ϱ2k∥d(uk, ũk)∥2, it follows from the last inequality that

∥uk+1 − u∗∥2 ≤ ∥uk − u∗∥2 − γ(2− γ)ϱ2k∥d(uk, ũk)∥2.

This is just the form (4.11) in Section 4. In other words, the contraction property (4.11) of

PC methods is the consequent result of Lemma 5.1 and Lemma 5.2, respectively.
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For the convergence rate proof, we allow γ ∈ (0, 2]. In this case, we still have q(γ) ≥ 0.

By using the monotonicity of F , from (5.3) and (5.6) we get

(u− ũk)T ϱkβkF (u) +
1

2γ
∥u− uk∥2 ≥ 1

2γ
∥u− uk+1∥2, ∀u ∈ Ω. (5.10)

This inequality is essential for the convergence rate proofs.

Theorem 5.1 For any integer t > 0, we have a ũt ∈ Ω which satisfies

(ũt − u)TF (u) ≤ 1

2γΥt
∥u− u0∥2, ∀u ∈ Ω, (5.11)

where

ũt =
1

Υt

t∑
k=0

ϱkβkũ
k and Υt =

t∑
k=0

ϱkβk. (5.12)

Proof. Summing the inequality (5.10) over k = 0, . . . , t, we obtain(( t∑
k=0

ϱkβk

)
u−

t∑
k=0

ϱkβkũ
k
)T

F (u) +
1

2γ
∥u− u0∥2 ≥ 0, ∀u ∈ Ω.
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Using the notations of Υt and ũt in the above inequality, we derive

(ũt − u)TF (u) ≤ ∥u− u0∥2

2γΥt
, ∀u ∈ Ω.

Indeed, ũt ∈ Ω because it is a convex combination of ũ0, ũ1, . . . , ũt. The proof is

complete. 2

For given uk , the predictor ũk is given by (1.3a) and the prediction step size βk satisfies

the condition (1.3b). Thus, the general conditions (3.5) are satisfied with ϱk ≥ c = 1
2

. We

choose (4.1a) (for the case that uk is not necessary in Ω) or (4.1b) (for the case that

uk ∈ Ω) to generate the new iterate uk+1. Because ϱk ≥ 1
2

, infk≥0{βk} ≥ βL and

βL = O(1/L), it follows from (5.12) that

Υt ≥
t+ 1

2
βL ,

and thus the PC methods have O(1/t) convergence rate. For any substantial set

D ⊂ Ω, the PC methods reach

(ũt − u)TF (u) ≤ ϵ, ∀u ∈ D, in at most t =
⌈ D2

γβLϵ

⌉
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iterations, where ũt is defined in (5.12) and D = sup {∥u− u0∥ |u ∈ D}. This

convergence rate is in the ergodic sense, the statement (5.11) suggests us to take a larger

parameter γ ∈ (0, 2] in the correction steps of the PC methods.

6 Numerical experiments

This section is devoted to test the efficiency of the PC methods in comparison with the

extragradient method [9]. Under the condition (1.3b), we have ϱk > 1/2. If we

dynamically take γk = 1/ϱk in (4.1b), then it becomes

uk+1 = PΩ[u
k − βkF (ũk)], (6.1)

which is the update form of the extragradient method [9]. Because γkϱk ≡ 1, it follows

from (5.10) that

(u− ũk)TβkF (u) +
1

2
∥u− uk∥2 ≥ 1

2
∥u− uk+1∥2, ∀u ∈ Ω. (6.2)
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The results in Theorem 5.1 becomes

ũt =
1∑t

k=0 βk

t∑
k=0

βkũ
k ∈ Ω,

and

(ũt − u)TF (u) ≤ ∥u− u0∥2

2
(∑t

k=0 βk

) , ∀u ∈ Ω. (6.3)

The O(1/t) convergence rate follows from the above inequality directly. It should be

mentioned that the projection-type method for VI(Ω, F ) in [13] is a contraction method in

the sense of P -norm, where P is a positive definite matrix. In the Euclidean-norm, its

update form is (4.1a).

Test examples of nonlinear complementarity problems.

We take nonlinear complementarity problems (NCP) as the test examples. The mapping

F (u) in the tested NCP is given by

F (u) = D(u) +Mu+ q, (6.4)

where D(u) : ℜn → ℜn is the nonlinear part, M is an n× n matrix, and q ∈ ℜn is a

vector.
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• In D(u), the nonlinear part of F (u), the components are

Dj(u) = dj · arctan(aj · uj),

where a and d are random vectorsb whose elements are in (0, 1).

• The matrix M in the linear part is given by M = ATA+B. A is an n× n matrix

whose entries are randomly generated in the interval (−5,+5), and B is an n× n

skew-symmetric random matrix (BT = −B) whose entriesc are in the interval

(−5,+5).

It is clear that the mapping composed in this way is monotone. We construct the following 3

sets of test examples by choosing different vector q in (6.4).

1. In the first set of test examples, the elements of vector q is generated from a uniform

distribution in the interval (−500, 500).

bA similar type of (small) problems was tested in [14] where the components of the nonlinear map-

ping D(u) are Dj(u) = c · arctan(uj).
cIn the paper by Harker and Pang [4], the matrix M = ATA + B + D, where A and B are

the same matrices as what we use here, and D is a diagonal matrix with uniformly distributed random

entries djj ∈ (0.0, 0.3).
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2. The second setd of test examples is similar to the first set. Instead of

q ∈ (−500, 500), the vector q is generated from a uniform distribution in the interval

(−500, 0).

3. The third set of test examples has a known solution u∗ ∈ ℜn
+. Let vector p be

generated from a uniform distribution in the interval (−10, 10) and

u∗ = max(p, 0). (6.5)

By setting

w = max(−p, 0) and q = w − (D(u∗) +Mu∗),

we have F (u∗) = D(u∗) +Mu∗ + q = w = max(−p, 0). Thus,

(u∗)TF (u∗) =
(
max(p, 0)

)T (
max(−p, 0)

)
= 0.

In this way we constructed a test NCP with a known solution u∗ described in (6.5).

Implementation details.
dIn [4], the similar problems in the first set are called easy problems while the 2-nd set problems are

called hard problems.
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For given uk , we use (1.3) to produce ũk with ν = 0.9 in (1.3b). If

rk := βk∥F (uk)− F (ũk)∥/∥uk − ũk∥ is too small, it will lead slow convergence.

Therefore, if rk ≤ µ = 0.3, the trial parameter βk will be enlarged for the next iteration.

These ‘refined’ strategies are necessary for fast convergence. The following is the

implementation details.

Step 0. Set β0 = 1, u0 ∈ Ω and k = 0.

Step 1. ũk = PΩ[u
k − βkF (uk)],

rk :=
βk∥F (uk)− F (ũk)∥

∥uk − ũk∥ ,

while rk > ν

βk := 0.7 ∗ βk ∗min{1, 1
rk

}, ũk = PΩ[u
k − βkF (uk)]

rk :=
βk∥F (uk)− F (ũk)∥

∥uk − ũk∥ ,

end(while)

Use different forms ((6.1), (4.1a) or (4.1b)) to update uk+1.

If rk ≤ µ then βk := βk ∗ ν ∗ 0.9/rk , end(if)

Step 2. βk+1 = βk and k = k + 1, go to Step 1.
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The iterations begin with u0 = 0, β0 = 1 and stop as soon as

∥uk − PΩ[u
k − F (uk)]∥∞

∥u0 − PΩ[u0 − F (u0)]∥∞
≤ 10−6. (6.6)

Since both F (uk) and F (ũk) are involved in those methods recursions, each iteration of

the test methods needs at least 2 times of evaluations of the mapping F . We use No. It

and No. F to denote the numbers of iterations and the evaluations of the mapping F ,

respectively. The size of the tested problems is from 500 to 2000. All codes are written in

Matlab and run on a Lenovo X200 Computer with 2.53 GHz.

Comparison beteeen the extragradient method and the PC method II.

As mentioned in Section 4, replacing γϱk in (4.1b) by 1, the PC method II becomes the

extragradient method. According to the assertion in Theorem 4.1 and Theorem 5.1, we

take the relaxation factor γ = 2 in the PC method II. The test results for the 3 sets of NCP

are given in Tables 1-3, respectively.
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Table 1. Numerical results of the first set examples

Extra-Gradient Method PC Method II (γ = 2)

Problem uk+1 = PΩ[u
k − βkF (ũk)] uk+1 = PΩ[u

k − 2ϱkβkF (ũk)]

size n No. It No. F CPU Sec No. It No. F CPU Sec

500 496 1032 0.1626 224 490 0.0792

1000 439 917 1.5416 196 430 0.7285

2000 592 1236 7.8440 262 574 3.7305

Table 2. Numerical results of the second set examples

Extra-Gradient Method PC Method II (γ = 2)

Problem uk+1 = PΩ[u
k − βkF (ũk)] uk+1 = PΩ[u

k − 2ϱkβkF (ũk)]

size n No. It No. F CPU Sec No. It No. F CPU Sec

500 1157 2412 0.3921 510 1113 0.1938

1000 1197 2475 4.1946 533 1162 1.9350

2000 1487 3099 19.6591 669 1452 9.3591

Table 3. Numerical results of the third set examples
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Extra-Gradient Method PC Method II (γ = 2)

Problem uk+1 = PΩ[u
k − βkF (ũk)] uk+1 = PΩ[u

k − 2ϱkβkF (ũk)]

size n No. It No. F CPU Sec No. It No. F CPU Sec

500 633 1318 0.2109 279 610 0.0988

1000 700 1458 2.4544 308 673 1.1272

2000 789 1643 10.4436 346 756 4.8455

In the third test examples, as the stop criterium is satisfied, we have

∥uk − u∗∥∞ ≈ 2× 10−4 by using the both test methods. The PC Method II and the

extragradient method use the same direction but different step size in the correction step.

The numerical results show that the PC method II is much efficient than the extragradient

method. Even if the PC methods need to calculate the step size ϱk in each iteration, while

the computational load required by the additional effort is significantly less than the

dominating task (the evaluations of F (uk) and F (ũk)). It is observed that

Computational load of PC Method II

Computational load of the extragradient method
< 50%.
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Comparison between PC method I and PC method II.

The different PC methods use the one of the geminate directions but the same step size in

their correction forms. In order to ensure ϑI(γ) > 0, we take γ = 1.9 in (4.1) for the both

update forms. The test results for the 3 sets of NCP are given in Tables 4-6, respectively.

Table 4. Numerical results of the first set examples

PC Method I (γ = 1.9) PC Method II (γ = 1.9)

Problem uk+1 = uk − γϱkd(u
k, ũk) uk+1 = PΩ[u

k − γϱkβkF (ũk)]

size n No. It No. F CPU Sec No. It No. F CPU Sec

500 294 625 0.1060 233 507 0.0885

1000 253 546 0.9451 204 445 0.7714

2000 334 704 4.5035 271 591 3.7896

Table 5. Numerical results of the second set examples
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PC Method I (γ = 1.9) PC Method II (γ = 1.9)

Problem uk+1 = uk − γϱkd(u
k, ũk) uk+1 = PΩ[u

k − γϱkβkF (ũk)]

size n No. It No. F CPU Sec No. It No. F CPU Sec

500 594 1273 0.2192 539 1170 0.2014

1000 635 1345 2.3151 559 1213 2.0908

2000 772 1641 10.4909 701 1518 9.7359

Table 6. Numerical results of the third set examples

PC Method I (γ = 1.9) PC Method II (γ = 1.9)

Problem uk+1 = uk − γϱkd(u
k, ũk) uk+1 = PΩ[u

k − γϱkβkF (ũk)]

size n No. It No. F CPU Sec No. It No. F CPU Sec

500 348 741 0.1328 295 642 0.1162

1000 368 782 1.3584 328 713 1.2441

2000 423 900 5.7394 370 803 5.1350

Between the PC methods, PC method II needs fewer iterations than PC method I, this
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evidence coincides with the assertions in Theorem 4.1 (see (4.3) and (4.4)). Thus, we

suggest to use PC method II when the projection on Ω is easy to be carried out. Otherwise

(when the projection is the dominating task in the iteration), we use PC method I because

its update form (4.1a) does not contain the projection.

7 Conclusions

In a unified framework, we proved the O(1/t) convergence rate of the projection and

contraction methods for monotone variational inequalities. The convergence rate is the

same as that for the extragradient method. In fact, our convergence rate include the

extragradient method as a special case. The complexity analysis in this paper is based on

the general conditions (3.5) and thus can be extended to a broaden class of similar

contraction methods. Preliminary numerical results indicate that the PC methods do

outperform the extragradient method.
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注注注记记记 我们用 PΩ(·)表示欧氏范数下在凸集 Ω上的投影.也就是说,对给定

的 v,

PΩ(v) = argmin{∥u− v∥ |u ∈ Ω}.

设 Ω ⊂ Rn是闭凸集,则对任意的 v ∈ ℜn,有

(v − PΩ(v))
T (u− PΩ(v)) ≤ 0, ∀u ∈ Ω. (7.1)

在求解单调变分不等式的投影收缩算法中,对给定的当前点 uk和 βk > 0,我

们利用投影

ũk = PΩ[u
k − βkF (uk)], (7.2)

生成一个预测点 ũk .在投影的基本性质 (7.1)中,令 v = uk − βkF (uk),根据

(7.2), ũk = PΩ(v),就有

ũk ∈ Ω, {[uk − βkF (uk)]− ũk}T (u− ũk) ≤ 0, ∀u ∈ Ω.

进而得到

ũk ∈ Ω, (u− ũk)TβkF (uk) ≥ (u− ũk)T (uk − ũk), ∀u ∈ Ω.
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两边都加上 −βk[F (uk)− F (ũk)], 就有

ũk ∈ Ω, (u− ũk)TβkF (ũk) ≥ (u− ũk)T d(uk, ũk), ∀u ∈ Ω, (7.3)

其中

d(uk, ũk) = (uk − ũk)− βk[F (uk)− F (ũk)] (7.4)

这种我们希望的形式. (7.3)表明 ũk是一个特定的变分不等式的解,它就是

(3.6a),或者说 (3.5a)的等价形式.

我们已经并且会进一步看到,对由凸优化来的变分不等式

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (7.5)

通过求解一些子问题,产生的预测点 w̃k是与 (7.3)类似的变分不等式

w̃k ∈ Ω, θ(u)−θ(ũk)+(w−w̃k)TF (w̃k) ≥ (w−w̃k)TH(wk−w̃k), ∀w ∈ Ω,

或者

w̃k ∈ Ω, θ(u)−θ(ũk)+(w−w̃k)TF (w̃k) ≥ (w−w̃k)THM(wk−w̃k), ∀w ∈ Ω,

的解.这是我们能把求变分不等式的方法移植到结构型凸优化的根本原因.
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