Contraction Methods for Convex Optimization and monotone variational inequalities – No.13

Alternating direction method of multipliers in sense of customized PPA

Bingsheng He
Department of Mathematics
Nanjing University
hebma@nju.edu.cn

The context of this lecture is based on the manuscript [2]
1 Structured constrained convex optimization

We consider the following structured constrained convex optimization problem

\[
\min \{ \theta_1(x) + \theta_2(y) \mid Ax + By = b, \ x \in \mathcal{X}, \ y \in \mathcal{Y} \} \quad (1.1)
\]

where \(\theta_1(x) : \mathbb{R}^{n_1} \to \mathbb{R}, \ \theta_2(y) : \mathbb{R}^{n_2} \to \mathbb{R} \) are convex functions (but not necessarily smooth), \(A \in \mathbb{R}^{m \times n_1}, \ B \in \mathbb{R}^{m \times n_2} \) and \(b \in \mathbb{R}^m, \ \mathcal{X} \subset \mathbb{R}^{n_1}, \ \mathcal{Y} \subset \mathbb{R}^{n_2} \) are given closed convex sets.

The task of solving the problem (1.1) is to find an \((x^*, y^*, \lambda^*) \in \Omega\), such that

\[
\begin{align*}
\theta_1(x) - \theta_1(x^*) + (x - x^*)^T(-A^T \lambda^*) \geq 0, \\
\theta_2(y) - \theta_2(y^*) + (y - y^*)^T(-B^T \lambda^*) \geq 0, \\
(\lambda - \lambda^*)^T(Ax^* + By^* - b) \geq 0,
\end{align*}
\]

where \(\Omega = \mathcal{X} \times \mathcal{Y} \times \mathbb{R}^m \).
By denoting

\[u = \begin{pmatrix} x \\ y \end{pmatrix}, \quad w = \begin{pmatrix} x \\ y \\ \lambda \end{pmatrix}, \quad F(w) = \begin{pmatrix} -A^T \lambda \\ -B^T \lambda \\ Ax + By - b \end{pmatrix} \]

and

\[\theta(u) = \theta_1(x) + \theta_2(y), \]

the first order optimal condition (1.2) can be written in a compact form such as

\[w^* \in \Omega, \quad \theta(u) - \theta(u^*) + (w - w^*)^T F(w^*) \geq 0, \quad \forall w \in \Omega. \tag{1.3} \]

Note that the mapping \(F \) is monotone. We use \(\Omega^* \) to denote the solution set of the variational inequality (1.3). For convenience we use the notations

\[v = \begin{pmatrix} y \\ \lambda \end{pmatrix} \quad \text{and} \quad \mathcal{V}^* = \{ (y^*, \lambda^*) \mid (x^*, y^*, \lambda^*) \in \Omega^* \}. \]
Applied ADMM to the structure VI \((y^k, \lambda^k) \Rightarrow (y^{k+1}, \lambda^{k+1})\)

First, for given \((y^k, \lambda^k)\), \(\tilde{x}^k\) is the solution of the following problem

\[
\tilde{x}^k = \text{Argmin} \left\{ \begin{array}{c}
\theta_1(x) - (\lambda^k)^T (Ax + By^k - b) \\
+ \frac{\beta}{2} \|Ax + By^k - b\|^2
\end{array} \right\} \quad x \in \mathcal{X}
\] (1.4a)

Use \(\lambda^k\) and the obtained \(\tilde{x}^k\), \(\tilde{y}^k\) is the solution of the following problem

\[
\tilde{y}^k = \text{Argmin} \left\{ \begin{array}{c}
\theta_2(y) - (\lambda^k)^T (A\tilde{x}^k + By - b) \\
+ \frac{\beta}{2} \|A\tilde{x}^k + By - b\|^2
\end{array} \right\} \quad y \in \mathcal{Y}
\] (1.4b)

\[
\tilde{\lambda}^k = \lambda^k - \beta (A\tilde{x}^k + B\tilde{y}^k - b).
\] (1.4c)

The sub-problems (1.4a) and (1.4b) are separately solved.
Classical Alternating Direction Method of Multipliers:

$v^{k+1} = \tilde{v}^k.$

Ye-Yuan’s Alternating Direction Method of Multipliers:

$v^{k+1} = v^k - \alpha_k (v^k - \tilde{v}^k), \quad \alpha_k = \gamma \alpha_k^*, \quad \gamma \in (0, 2) \quad (1.5a)$

where

$$\alpha_k^* = \frac{\|v^k - \tilde{v}^k\|_H^2 + (\lambda^k - \tilde{\lambda}^k)^T B (y^k - \tilde{y}^k)}{\|v^k - \tilde{v}^k\|_H^2} \quad (1.5b)$$

and

$$\|v^k - \tilde{v}^k\|_H^2 = \beta \|B (y^k - \tilde{y}^k)\|^2 + \frac{1}{\beta} \|\lambda^k - \tilde{\lambda}^k\|^2.$$

The convergence of the classical alternating direction method and Ye-Yuan’s ADMM are demonstrated in Lecture 11.
Ye-Yuan’s ADMM vs Classical ADMM:

The iteration number of Ye-Yuan’s ADMM is less than the one of the classical ADMM. However, in Ye-Yuan’s ADMM, we need to calculate the step size length α_k^* in each iteration.

2 ADMM based customized PPA

The k-th iteration of the proposed Alternating Direction Method of Multipliers in this section is also from a pair of (y^k, λ^k) to a new pair of (y^{k+1}, λ^{k+1}). In the prediction step, we generate a $\tilde{w}^k = (\tilde{x}^k, \tilde{y}^k, \tilde{\lambda}^k)$ which satisfies

$$\tilde{w}^k \in \Omega, \quad \theta(u) - \theta(\tilde{u}^k) + (w - \tilde{w}^k)^T \{F(\tilde{w}^k) + Q(\tilde{v}^k - v^k)\} \geq 0, \quad \forall w \in \Omega, \quad (2.1)$$

where Q is a 3×2 block matrix whose first row is zero, and the rest sub-matrix is symmetric and positive semi-definite. In details, the matrices Q and M have
the following forms

\[
Q = \begin{pmatrix}
0 & 0 \\
\beta B^T B & -B^T \\
-B & \frac{1}{\beta} I_m
\end{pmatrix}
\quad \text{and} \quad
H = \begin{pmatrix}
\beta B^T B & -B^T \\
-B & \frac{1}{\beta} I_m
\end{pmatrix}.
\] (2.2)

Note that the matrix \(H \) is symmetric and positive semidefinite. If we replace \(Q(\tilde{v}^k - v^k) \) by \(G(\tilde{w}^k - w^k) \) with a symmetric positive definite matrix \(G \), then (2.1) becomes a sub-problem of the proximal point algorithm. Thus, the method in this lecture is called the ADMM-based customized PPA or Alternating direction method in the sense of customized PPA.

2.1 Motivation

In the classical ADMM, the variable \(x \) is not a part of the state. \(\tilde{x}^k \) is only an intermediate result computed from the previous state \((y^k, \lambda^k)\). Note that \(\tilde{x}^k \) is
the minimizer of the augmented Lagrangian function with \(y = y^k \), i.e.,

\[
\tilde{x}^k = \text{Argmin}\{\theta_1(x) - (\lambda^k)^T(Ax + By^k - b) + \frac{\beta}{2} \|Ax + By^k - b\|^2 \mid x \in \mathcal{X}\}.
\]

(2.3)

Thus, we have \(\tilde{x}^k \in \mathcal{X} \) and

\[
\theta_1(x) - \theta_1(\tilde{x}^k) + (x - \tilde{x}^k)^T\{-A^T\lambda^k + \beta A^T(A\tilde{x}^k + By^k - b)\} \geq 0, \ \forall \ x \in \mathcal{X}.
\]

(2.4)

If we write the above variational inequality as

\[
\theta_1(x) - \theta_1(\tilde{x}^k) + (x - \tilde{x}^k)^T\{-A^T\lambda^k\} \geq 0, \ \forall \ x \in \mathcal{X},
\]

it implies that

\[
\tilde{\lambda}^k = \lambda^k - \beta(A\tilde{x}^k + By^k - b).
\]

(2.5)

According to the above definition, for any \(\tilde{y}^k \in \mathcal{Y} \), we have

\[
(A\tilde{x}^k + B\tilde{y}^k - b) - B(\tilde{y}^k - y^k) + \frac{1}{\beta}(\tilde{\lambda}^k - \lambda^k) = 0.
\]

(2.6)
Combining (2.4) and (2.6) together, we get \((\tilde{x}^k, \tilde{\lambda}^k) \in \mathcal{X} \times \mathbb{R}^m\),

\[
\theta_1(x) - \theta_1(\tilde{x}^k) \\
+ \left(x - \tilde{x}^k \right)^T \left\{ \left(\begin{array}{c} -A^T \tilde{\lambda}^k \\
A \tilde{x}^k + B \tilde{y}^k - b \end{array} \right) + \left(\begin{array}{cc} 0 & 0 \\
-B & \frac{1}{\beta} \end{array} \right) \left(\begin{array}{c} \tilde{y}^k - y^k \\
\tilde{\lambda}^k - \lambda^k \end{array} \right) \right\} \geq 0, \quad (2.7)
\]

for all \((x, \lambda) \in \mathcal{X} \times \mathbb{R}^m\). In order to get \(\tilde{w}^k \in \Omega\), such that

\[
\left(\begin{array}{c} \theta_1(x) - \theta_1(\tilde{x}^k) + \\
\theta_2(y) - \theta_2(\tilde{y}^k) \end{array} \right) + \left(\begin{array}{c} x - \tilde{x}^k \\
y - \tilde{y}^k \\
\lambda - \tilde{\lambda}^k \end{array} \right)^T \left\{ \left(\begin{array}{c} -A^T \tilde{\lambda}^k \\
-B^T \tilde{\lambda}^k \\
A \tilde{x}^k + B \tilde{y}^k - b \end{array} \right) \right\} \geq 0, \quad \forall w \in \Omega, \quad (2.8)
\]
we need only to find \(\tilde{y}^k \in Y \), such that
\[
\tilde{y}^k \in Y, \quad (\theta_2(y) - \theta_2(\tilde{y}^k)) + (y - \tilde{y}^k)^T \left\{-B^T \tilde{\lambda}^k + B^T (\beta B (\tilde{y}^k - y^k) - (\tilde{\lambda}^k - \lambda^k)) \right\} \geq 0, \quad \forall \ y \in Y. \quad (2.9)
\]
By using (2.5), we have
\[
\beta B (\tilde{y}^k - y^k) - (\tilde{\lambda}^k - \lambda^k) = \beta \left(A \tilde{x}^k + B \tilde{y}^k - b \right).
\]
Thus, the variational inequality (2.9) is
\[
(\theta_2(y) - \theta_2(\tilde{y}^k)) + (y - \tilde{y}^k)^T \left\{-B^T \tilde{\lambda}^k + \beta B^T \left(A \tilde{x}^k + B \tilde{y}^k - b \right) \right\} \geq 0, \quad \forall \ y \in Y.
\]
For given \(\tilde{x}^k \) and the defined \(\tilde{\lambda}^k \) in (2.5), such a \(\tilde{y}^k \) can be obtained via solving the following convex optimization problem:
\[
\tilde{y}^k = \text{Argmin} \{ \theta_2(y) + \frac{\beta}{2} \| A \tilde{x}^k + B y - b - \frac{1}{\beta} \tilde{\lambda}^k \|^2 | y \in Y \}. \quad (2.10)
\]
The above analysis guides us to construct the ADMM based customized PPA.
2.2 The proposed ADMM based customized PPA

From given $v^k = (y^k, \lambda^k)$, the prediction step produces $w^k = (\tilde{x}^k, \tilde{y}^k, \tilde{\lambda}^k)$.

The prediction step:

1. First, for given (y^k, λ^k), \tilde{x}^k is the solution of the following problem

$$\tilde{x}^k = \text{Argmin}\{\theta_1(x) + \frac{\beta}{2} \|Ax + By^k - b - \frac{1}{\beta} \lambda^k\|^2 \mid x \in \mathcal{X}\} \quad (2.11a)$$

2. Set the multipliers by

$$\tilde{\lambda}^k = \lambda^k - \beta (A\tilde{x}^k + By^k - b). \quad (2.11b)$$

3. Finally, use the obtained \tilde{x}^k and $\tilde{\lambda}^k$, find \tilde{y}^k by

$$\tilde{y}^k = \text{Argmin}\{\theta_2(y) + \frac{\beta}{2} \|A\tilde{x}^k + By - b - \frac{1}{\beta} \tilde{\lambda}^k\|^2 \mid y \in \mathcal{Y}\} \quad (2.11c)$$

In the ADMM view of point, we generate the predictor in the order

$$\tilde{x}^k, \quad \tilde{\lambda}^k \quad \text{and} \quad \tilde{y}^k.$$
As illustrated in the motivation, we get (2.8). This variational inequality can be written in the form of

\[\tilde{w}^k \in \Omega, \ (w - \tilde{w}^k)^T \{ F(\tilde{w}^k) + Q(\tilde{v}^k - v^k) \} \geq 0, \ \forall w \in \Omega, \quad (2.12) \]

where \(Q \) is just the same matrix defined in (2.2). The above variational inequality is essential in the unified framework of the contraction methods.

The correction step: Update the new iterate \(v^{k+1} \) by

\[v^{k+1} = v^k - \gamma(v^k - \tilde{v}^k), \quad \gamma \in (0, 2). \quad (2.13) \]

To get the new iterate \(v^{k+1} \), this method does not need to calculate the step size.

2.3 Convergence of the ADMM in sense of customized PPA

Based on the analysis in the last subsection, we have the following lemma.

Lemma 2.1 Let \(\tilde{w}^k = (\tilde{x}^k, \tilde{y}^k, \tilde{\lambda}^k) \in \Omega \) be generated by (2.11) from the given
\(v^k = (y^k, \lambda^k)\). Then, we have

\[(\tilde{w}^k - w^*)^T Q(v^k - \tilde{v}^k) \geq 0, \ \forall w^* \in \Omega^*,\] (2.14)

where the matrix \(Q\) is defined in (2.2).

Proof. Setting \((x, y, \lambda) = (x^*, y^*, \lambda^*)\) in (2.8), we obtain

\[(\tilde{w}^k - w^*)^T Q(v^k - \tilde{v}^k) \geq \theta(\tilde{u}^k) - \theta(u^*) + (\tilde{w}^k - w^*)^T F(\tilde{w}^k).\] (2.15)

Since \(F\) is monotone and \(\tilde{w}^k \in \Omega\), it follows that

\[
\theta(\tilde{u}^k) - \theta(u^*) + (\tilde{w}^k - w^*)^T F(\tilde{w}^k) \\
\geq \theta(\tilde{u}^k) - \theta(u^*) + (\tilde{w}^k - w^*)^T F(w^*) \geq 0.
\]

The last inequality is due to \(\tilde{w}^k \in \Omega\) and \(w^* \in \Omega^*\) (see (1.3)). Therefore, the right hand side of (2.15) is non-negative and the lemma is proved. \(\square\)

Lemma 2.2 Let \(\tilde{w}^k = (\tilde{x}^k, \tilde{y}^k, \tilde{\lambda}^k) \in \Omega\) be generated by (2.11) from the given
\(\mathbf{v}^k = (\mathbf{y}^k, \lambda^k) \). Then, we have

\[
(\mathbf{v}^k - \mathbf{v}^*)^T \mathbf{H}(\mathbf{v}^k - \tilde{\mathbf{v}}^k) \geq \|\mathbf{v}^k - \tilde{\mathbf{v}}^k\|_H^2, \quad \forall \mathbf{v}^* \in \mathcal{V}^*,
\]

where \(\mathcal{M} \) is defined in (2.2).

Proof. Recall the matrices \(\mathbf{Q} \) and \(\mathbf{H} \) in (2.2). It follows from (2.14) that

\[
(\tilde{\mathbf{v}}^k - \mathbf{v}^*)^T \mathbf{H}(\mathbf{v}^k - \tilde{\mathbf{v}}^k) \geq 0, \quad \forall \mathbf{v}^* \in \mathcal{V}^*.
\]

Assertion (2.16) follows from the last inequality directly. \(\square \)

The matrix \(\mathbf{H} \) is symmetric and positive semi-definite. We still use \(\|\mathbf{v} - \tilde{\mathbf{v}}\|_H \) to denote that

\[
\|\mathbf{v} - \tilde{\mathbf{v}}\|_H = \sqrt{(\mathbf{v} - \tilde{\mathbf{v}})^T \mathbf{H}(\mathbf{v} - \tilde{\mathbf{v}})}.
\]

If \(\|\mathbf{v}^k - \tilde{\mathbf{v}}^k\|_H^2 = 0 \), because \(\mathbf{H} \) is symmetric and positive semi-definite, we have \(\mathbf{H}(\mathbf{v}^k - \tilde{\mathbf{v}}^k) = 0 \). In this case, \(\tilde{\mathbf{w}}^k \) is a solution of the variational inequality (see (1.2) and (2.8)). Thus, we can take \(\|\mathbf{v}^k - \tilde{\mathbf{v}}^k\|_H^2 \leq \epsilon \) as the stopping criterium in the iteration process.
Theorem 2.1 Let $\tilde{w}^k = (\tilde{x}^k, \tilde{y}^k, \tilde{\lambda}^k) \in \Omega$ be generated by (2.11) from the given $v^k = (y^k, \lambda^k)$ and the new iterate v^{k+1} be given by (2.13). Then we have
\[\|v^{k+1} - v^*\|^2_H \leq \|v^k - v^*\|^2_H - \gamma (2 - \gamma) \|v^k - \tilde{v}^k\|^2_H, \quad \forall \, v^* \in V^*. \quad (2.17) \]

Proof. By a simple manipulation, we obtain

\[
\begin{align*}
\|v^{k+1} - v^*\|^2_H & \overset{(2.16)}{=} \|(v^k - v^*) - \gamma (v^k - \tilde{v}^k)\|^2_H \\
& = \|v^k - v^*\|^2_H - 2\gamma (v^k - v^*)^T H (v^k - \tilde{v}^k) + \gamma^2 \|v^k - \tilde{v}^k\|^2_H \\
& \overset{(2.13)}{\leq} \|v^k - v^*\|^2_H - 2\gamma \|v^k - \tilde{v}^k\|^2_H + \gamma^2 \|v^k - \tilde{v}^k\|^2_H \\
& = \|v^k - v^*\|^2_H - \gamma (2 - \gamma) \|v^k - \tilde{v}^k\|^2_H.
\end{align*}
\]

This is true for any $v^* \in V^*$ and the theorem is proved. \qed

The inequality (2.17) is essential for the convergence of the proposed alternating direction method. The detailed convergence proof can be found in [2]. For the convergence rate of the customized PPA, the reader are refereed to [9].
2.4 Ensure the matrix H to be positive definite

In the ADMM based customized PPA (2.11), the subproblem (2.11c) can be written as

$$\tilde{y}^k = \text{Argmin}\{\theta_2(y) + \frac{\beta}{2} \| By - p^k \|^2 \mid y \in \mathcal{Y}\}, \quad (2.18)$$

where

$$p^k = b + \frac{1}{\beta} \tilde{\lambda}^k - A \tilde{x}^k.$$

If we add an additional term $\frac{\delta \beta}{2} \| B(y - y^k) \|^2$ (with any small $\delta > 0$) to the objective function of the subproblem (2.11c), we will get \tilde{y}^k via

$$\tilde{y}^k = \text{Argmin}\{\theta_2(y) + \frac{\beta}{2} \| By - p^k \|^2 + \frac{\delta \beta}{2} \| B(y - y^k) \|^2 \mid y \in \mathcal{Y}\}.$$

By a manipulation, the solution point of the above subproblem is obtained via

$$\tilde{y}^k = \text{Argmin}\{\theta_2(y) + \frac{(1+\delta)\beta}{2} \| By - q^k \|^2 \mid y \in \mathcal{Y}\}, \quad (2.19)$$

where

$$q^k = \frac{1}{1+\delta}(p^k + \delta y^k).$$
In this way, the matrix Q in (2.12) will be modified to

$$Q = \begin{pmatrix}
0 & 0 \\
(1 + \delta)\beta B^T B & -B^T \\
-B & \frac{1}{\beta} I_m
\end{pmatrix},$$

and the related matrix H in (2.2) becomes

$$H = \begin{pmatrix}
(1 + \delta)\beta B^T B & -B^T \\
-B & \frac{1}{\beta} I_m
\end{pmatrix} = \begin{pmatrix}
\sqrt{\beta} B^T & 0 \\
0 & \sqrt{\frac{1}{\beta} I_m}
\end{pmatrix} \begin{pmatrix}
(1 + \delta)I & -I \\
-I & I_m
\end{pmatrix} \begin{pmatrix}
\sqrt{\beta} B & 0 \\
0 & \sqrt{\frac{1}{\beta} I_m}
\end{pmatrix}. \quad (2.20)$$

Thus, for any $\delta > 0$, H is positive definite when B is a full rank matrix. In other words, instead of (2.18), using (2.19) to get \tilde{y}^k, it will ensure the positivity of H theoretically. However, in practical computation, it works still well by using $\delta = 0$.
3 Application and Numerical Experiments

3.1 Applications to least-squares problems

We consider the following problem:

$$\min \left\{ \frac{1}{2} \| X - C \|_F^2 \mid X \in S^n_+ \cap S_B \right\}, \quad (3.1)$$

where

$$S^n_+ = \{ H \in \mathbb{R}^{n \times n} \mid H^T = H, \ H \succeq 0 \}. \quad (3.2)$$

and

$$S_B = \{ H \in \mathbb{R}^{n \times n} \mid H^T = H, \ H_L \leq H \leq H_U \}. \quad (3.3)$$

Use the following MATLAB Code to produce the matrices C, H_L and H_U

```matlab
rand(‘state’,0); C=rand(n,n); C=(C’+C)-ones(n,n)+eye(n);
% C is symmetric and C_{ij} is in (-1,1), C_{jj} is in (0,2)
HU=ones(n)*0.1; HL=-HU; for i=1:n HU(i,i)=1; HL(i,i)=1; end;
```
The problem is converted to the following equivalent one:

\[
\min \quad \frac{1}{2} \|X - C\|_2^2 + \frac{1}{2} \|Y - C\|_2^2 \\
\text{s.t} \quad X - Y = 0, \quad X \in S^n_+, \; Y \in S_B.
\]

The basic sub-problems in the ADMM based customized PPA

- For fixed \(Y^k \) and \(Z^k \),
 \[
 \tilde{X}^k = \text{Argmin}\left\{ \frac{1}{2} \|X - C\|_F^2 - \text{Tr}(Z^k X) + \frac{\beta}{2} \|X - Y^k\|_F^2 \mid X \in S^n_+ \right\}
 \]

- Set \(\tilde{Z}^k \) by
 \[
 \tilde{Z}^k = Z^k - \beta(\tilde{X}^k - Y^k).
 \]

- With fixed \(\tilde{X}^k \) and \(\tilde{Z}^k \),
 \[
 \tilde{Y}^k = \text{Argmin}\left\{ \frac{1}{2} \|Y - C\|_F^2 + \text{Tr}(\tilde{Z}^k Y) + \frac{\beta}{2} \|\tilde{X}^k - Y\|_F^2 \mid Y \in S_B \right\}
 \]
\(\tilde{X}^k\) can be directly obtained via

\[
\tilde{X}^k = P_{S^n_+} \left\{ \frac{1}{1 + \beta} (\beta \tilde{Y}^k + Z^k + C) \right\}.
\]
(3.3)

\[P_{S^n_+}(A) = U \Lambda^+ U^T, \quad [U, \Lambda] = \text{eig}(A), \quad \Lambda^+ = \max(\Lambda, 0). \]

Similarly, \(\tilde{Y}^k\) is given by

\[
\tilde{Y}^k = P_{S_B} \left\{ \frac{1}{1 + \beta} (\beta \tilde{X}^k - \tilde{Z}^k + C) \right\}. \quad \]
(3.4)

\[S_B = \{ H \mid H_L \leq H \leq H_U \}, \quad P_{S_B}(A) = \min(\max(H_L, A), H_U) \]

The most time consuming calculation is \([U, \Lambda] = \text{eig}(A), 9n^3\)
MATLAB Code – An iteration of the classical ADMM

\[Y_0 = Y; \quad Z_0 = Z; \quad k = k+1; \]
\[X = (Y_0*beta+Z_0+C)/(1+beta); \quad [V,D] = \text{eig}(X); \quad D = \text{max}(0,D); \]
\[X = (V*D)*V'; \]
\[Y = \text{min} \left(\text{max} \left((X*beta-Z_0+C)/(1+beta), HL \right), HU \right); \]
\[Z = Z_0-(X-Y)*beta; \]

MATLAB Code – An iteration of the new order ADMM

\[Y_0 = Y; \quad Z_0 = Z; \quad k = k+1; \]
\[X = (Y_0*beta+Z_0+C)/(1+beta); \quad [V,D] = \text{eig}(X); \quad D = \text{max}(0,D); \]
\[X = (V*D)*V'; \quad Z = Z_0-(X-Y_0)*beta; \]
\[Y = \text{min} \left(\text{max} \left((X*beta-Z+C)/(1+beta), HL \right), HU \right); \]

MATLAB Code – An iteration of the extended ADMM

\[Y_0 = Y; \quad Z_0 = Z; \quad k = k+1; \]
\[X = (Y_0*beta+Z_0+C)/(1+beta); \quad [V,D] = \text{eig}(X); \quad D = \text{max}(0,D); \]
\[X = (V*D)*V'; \quad Z = Z_0-(X-Y_0)*beta; \]
\[Y = \text{min} \left(\text{max} \left((X*beta-Z+C)/(1+beta), HL \right), HU \right); \]
\[Y = Y_0-(Y_0-Y)*1.5; \]
\[Z = Z_0-(Z_0-Z)*1.5; \]
Numerical results for problem (3.1)

\[C = \text{rand}(n,n); \quad C = (C' + C) - \text{ones}(n,n) + \text{eye}(n) \]

\[H_U = \text{ones}(n,n)/10; \quad H_L = -\text{ones}(n,n)/10; \quad H_U(jj) = H_L(jj) = 1. \]

Table 1. Numerical results

<table>
<thead>
<tr>
<th>(n \times n) Matrix</th>
<th>Classical ADMM</th>
<th>Customized PPA</th>
<th>Extended C-PPA</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n =)</td>
<td>No. It</td>
<td>CPU Sec.</td>
<td>No. It</td>
<td>CPU Sec.</td>
</tr>
<tr>
<td>100</td>
<td>46</td>
<td>1.39</td>
<td>44</td>
<td>1.37</td>
</tr>
<tr>
<td>200</td>
<td>50</td>
<td>3.07</td>
<td>50</td>
<td>3.05</td>
</tr>
<tr>
<td>500</td>
<td>48</td>
<td>25.50</td>
<td>49</td>
<td>24.52</td>
</tr>
<tr>
<td>800</td>
<td>51</td>
<td>110.18</td>
<td>50</td>
<td>107.29</td>
</tr>
<tr>
<td>1000</td>
<td>51</td>
<td>208.93</td>
<td>52</td>
<td>212.74</td>
</tr>
<tr>
<td>2000</td>
<td>55</td>
<td>1578.96</td>
<td>55</td>
<td>1579.68</td>
</tr>
</tbody>
</table>
3.2 Applications to image restoration

The mathematical form of the image restoration problem is

$$\min \| \| \nabla x \|_1 + \frac{\mu}{2} \| Kx - f \|^2,$$ \hspace{1cm} (3.5)

where $\mu > 0$ is trade-off; K is a blur operator and f is observed image.

The equivalent problem:

$$\min \| \| y \|_1 + \frac{\mu}{2} \| Kx - f \|^2$$ \hspace{1cm} (3.6)

s. t. $\nabla x = y$,

This is a problem of form (1.1) where \mathcal{X}, \mathcal{Y} are full spaces,

$$\theta_1(x) = \frac{\mu}{2} \| Kx - f \|^2,$$

$$\theta_2(y) = \| \| y \|_1,$$

$$A = \nabla, \quad B = -I \quad \text{and} \quad b = 0.$$
The augmented Lagrangian function

\[L_A(x, y, \lambda) = \|y\|_1 + \frac{\mu}{2} \|Kx - f\|^2 - \lambda^T (\nabla x - y) + \frac{\beta}{2} \|\nabla x - y\|^2, \]

where \(\lambda \) is Lagrange multiplier and \(\beta \) is the penalty parameter.

For given \((y^k, \lambda^k)\), get \((\tilde{x}^k, \tilde{y}^k, \tilde{\lambda}^k)\) as follows:

1. \(\tilde{x}^k\) is the solution of the following least square problem

\[\tilde{x}^k = \arg\min_x \left\{ \frac{\mu}{2} \|Kx - f\|^2 - (\lambda^k)^T (\nabla x - y^k) + \frac{\beta}{2} \|\nabla x - y^k\|^2 \right\}. \]

2. Set \(\tilde{\lambda}^k\) by

\[\tilde{\lambda}^k = \lambda^k - \beta (\nabla \tilde{x}^k - y^k). \]

3. Finally, with fixed \((\tilde{x}^k, \tilde{\lambda}^k), \tilde{y}^k\) are solutions of

\[\tilde{y}^k = \arg\min_y \left\{ \|y\|_1 - (\tilde{\lambda}^k)^T (\nabla \tilde{x}^k - y) + \frac{\beta}{2} \|\nabla \tilde{x}^k - y\|^2 \right\}. \]
Solving the x subproblem for getting \tilde{x}^k:

$$(\beta \nabla^T \nabla + \mu K^T K)\tilde{x}^k = \nabla^T (\beta y^k + \lambda^k) + \mu K^T f.$$

- If ∇ and K satisfy some periodic boundary conditions, they can be factored by Fourier transform as $\nabla = \mathcal{F}^{-1} \Lambda_D \mathcal{F}$ and $K = \mathcal{F}^{-1} \Lambda_K \mathcal{F}$.

- If ∇ and K satisfy some reflective boundary conditions, they can be factored by discrete cosine transform as $\nabla = \mathcal{C}^{-1} \Lambda_D \mathcal{C}$ and $K = \mathcal{C}^{-1} \Lambda_K \mathcal{C}$.

Solving the y subproblem for getting \tilde{y}^k:

$$\tilde{y}^k = \text{shrink}_{\frac{1}{\beta}} \left(\nabla \tilde{x}^k - \frac{\tilde{\lambda}^k}{\beta} \right),$$

where

$$\text{shrink}_c(v) = v - \min(c, \|v\|) \frac{v}{\|v\|}.$$
Note that

\[\text{shrink}_c(v) = v - P_{B^c_2}(v) \quad \text{where} \quad B^c_2 = \{v \in \mathbb{R}^n : \|v\|_2 \leq c\}.\]

MATLAB Code – An iteration of the classical ADMM

```matlab
%% step 1 \(x^{(k+1)}\)  
Temp = PTx(beta*v1+lbd11) + PTy(beta*v2+lbd12) + HTx0;
un = real(ifft2(fft2(Temp)./MDu));

%% step 2 \(y^{(k+1)}\)
dxun = Px(un);
dyun = Py(un);
sk1 = dxun - lbd11/beta;
sk2 = dyun - lbd12/beta;
nsk = sqrt(sk1.^2 + sk2.^2); nsk(nsk==0)=1;
nsk = max(1-1./(beta*nsk),0);
vn1 = sk1.*nsk;
vn2 = sk2.*nsk;

%% update \(\lambda\)
lbdn11 = lbd11 - beta*(dxun - vn1);
lbdn12 = lbd12 - beta*(dyun - vn2);

%% New iterative point
u = un; v1 = vn1; v2 = vn2; lbd11 = lbdn11; lbd12 = lbdn12;
```
MATLAB Code – An iteration of the new order ADMM

% step 1 x^{k+1}

Temp = PTx(beta*v1+lbd11) + PTy(beta*v2+lbd12) + HTx0;
un = real(ifft2(fft2(Temp)./MDu));
dxun = Px(un);
dyun = Py(un);

% update \lambda

lbdn11 = lbd11 - beta*(dxun - v1);
lbdn12 = lbd12 - beta*(dyun - v2);

% step 2 y^{k+1}

sk1 = dxun - lbdn11/beta;
sk2 = dyun - lbdn12/beta;
nsk = sqrt(sk1.^2 + sk2.^2);
nsk(nsk==0)=1;
nsk = max(1-1./(beta*nsk),0);
vn1 = sk1.*nsk;
vn2 = sk2.*nsk;

% New iterative point

u = un; v1 = vn1; v2 = vn2; lbd11 = lbdn11; lbd12 = lbdn12;
MATLAB Code – An iteration of the extended C-PPA

%%% step 1 \(x^{(k+1)} \) %%%
Temp = PTx(beta*v1+lbd11) + PTy(beta*v2+lbd12) + HTx0;
un = real(ifft2(fft2(Temp)./MDu));
dxun = Px(un);
dyun = Py(un);

%%% update \(\lambda \) %%%
lbdn11 = lbd11 - beta * (dxun - v1);
lbdn12 = lbd12 - beta * (dyun - v2);

%%% step 2 \(y^{(k+1)} \) %%%
sk1 = dxun - lbd11/beta;
sk2 = dyun - lbd12/beta;
nsk = sqrt(sk1.^2 + sk2.^2); nsk(nsk==0)=1;
nsk = max(1-1./(beta * nsk),0);
v1n = sk1.*nsk;
v2n = sk2.*nsk;

%%% New iterative point %%%
u = un;
v1 = v1 - gamma*(v1-vn1);
v2 = v2 - gamma*(v2-vn2);
lbd11 = lbd11 - gamma*(lbd11-lbdn11);
lbd12 = lbd12 - gamma*(lbd12-lbdn12);
Numerical results for image restoration

\[
I = \text{double}(\text{imread('chart.tiff'))}/255; \quad I = \text{double}(\text{imread('house.png'))}/255; \\
h = \text{fspecial('disk',7);} \quad x0 = \text{imfilter}(I,h,'circular')+0.02*\text{randn(size(I))};
\]

Figure 1: Original and degraded images. Left: Chart. Right: House
Figure 2: Performances of ADMM and two variants methods on TV-l2. Left: Chart. Right: House.
Figure 3: Performances of Algorithm 2 with different values of γ for Chart. Top: fixed γ. Bottom: random generated γ.
Figure 4: Restorations. From left column to right column: ADMM, new order ADMM, and the extended new order ADMM.
Table 1: Numerical comparisons of the classical ADMM (ADMM), the customized PPA and the extended customized PPA for TV-l^2 image restoration.

<table>
<thead>
<tr>
<th></th>
<th>Chart</th>
<th>House</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADMM</td>
<td>C-PPA</td>
</tr>
<tr>
<td>$\gamma = 1$</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>$\gamma = 1.8$</td>
<td>2.32</td>
<td>2.29</td>
</tr>
<tr>
<td>SNR</td>
<td>19.01</td>
<td>19.01</td>
</tr>
</tbody>
</table>

SNR = $20 \log_{10} \frac{\|x\|}{\|x-I\|}$, where x is restoration and I is original image.

It seems that the new order ADMM is so good as the classical one. However, the extended-ADMM converges much faster than the other both ADMMs.

Remark

For solving the structured convex optimization problem (1.1), the
classical alternating direction method is described in (1.4) and then the new iterate is updated by \((y^{k+1}, \lambda^{k+1}) = (\tilde{y}^k, \tilde{\lambda}^k)\).

In [7], it was shown that the ADMM is the application of the Douglas-Rachford splitting method [13] to the dual of (1.1). Then, in [4], Eckstein and Bertsekas demonstrated that the Douglas-Rachford splitting method is a special form of the proximal point algorithm (PPA) in [14], and inspired by the relaxed PPA in [8], they proposed the generalized alternating direction method of multipliers

\[
\begin{align*}
 x^{k+1} &= \arg\min \left\{ \theta_1(x) - x^T A^T \lambda^k + \frac{\beta}{2} \| A x + B y^k - b \|^2 \mid x \in X \right\}, \\
 y^{k+1} &= \arg\min \left\{ \theta_2(y) - y^T B^T \lambda^k + \frac{\beta}{2} \| [\alpha A x^{k+1} - (1 - \alpha)(B y^k - b)] + B y - b \|^2 \mid y \in Y \right\}, \\
 \lambda^{k+1} &= \lambda^k - \beta \left\{ [\alpha A x^{k+1} - (1 - \alpha)(B y^k - b)] + B y^{k+1} - b \right\},
\end{align*}
\]

(3.7)

where the parameter \(\alpha \in (0, 2)\) is a relaxation factor. The numerical efficiency of the recursion (3.7) with an over-relaxed choice of \(\alpha\), especially \(\alpha \in [1.5, 1.8]\) empirically, has been shown in [5, 6]. Some of young researcher told me that the
numerical behaviors of the customized PPA based ADMM (2.11)-(2.13) are almost the same as the relaxed ADMM (3.7). It seems possible to prove the equivalence of the two methods [3]. We emphasize here that the explanation of this lecture is in the frame of our lecture series. Use such explanation, it is easy to prove the contraction and the $O(1/t)$ convergence rate of the customized PPA based ADMM and its linearized variant, for details, see the next lecture.

References

