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Abstract. The classical alternating direction method of multipliers (ADMM) has been well studied

in the context of linearly constrained convex programming and variational inequalities where the

involved operator is formed as the sum of two individual functions without crossed variables. Re-

cently, ADMM has found many novel applications in diversified areas such as image processing

and statistics. However, it is still not clear whether ADMM can be extended to the case where

the operator is the sum of more than two individual functions. In this lecture, we present a little

changed ADMM for solving the linearly constrained separable convex optimization whose involved

operator is separable into three individual functions. The O(1/t) convergence rate of the pro-

posed methods is demonstrated.

Keywords: Alternating direction method, convex programming, linear constraint, separable struc-

ture, contraction method

1 Introduction

An important case of structured convex optimization problem is

min{θ1(x) + θ2(y) | Ax+ y = b, x ∈ X , y ∈ Y}, (1.1)
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where θ1 : <n → < and θ2 : <m → < are closed proper convex functions (not

necessarily smooth); A ∈ <m×n; X ⊆ <n and Y ⊆ <m are closed convex sets. The

alternating direction method of multipliers (ADMM), which dates back to [6] and is closely

related to the Douglas-Rachford operator splitting method [2], is perhaps the most popular

method for solving (1.1). More specifically, for given (yk, λk) in the k-th iteration, it

produces the new iterate in the following order:
xk+1 = Argmin

{
θ1(x)− (λk)TAx+ β

2
‖Ax+ yk − b‖2

∣∣ x ∈ X};

yk+1 = Argmin
{
θ2(y)− (λk)T y + β

2
‖Axk+1 + y − b‖2

∣∣ y ∈ Y};

λk+1 = λk − β(Axk+1 + yk+1 − b).

(1.2)

Therefore, ADMM can be viewed as a practical and structured-exploiting variant (split form

or relaxed form) of ALM for solving the separable problem (1.1), with the adaption of

minimizing the involved separable variables x and y separably in an alternating order. In

fact, the iteration (1.2) is from (yk, λk) to (yk+1, λk+1), x is only an auxiliary variable in

the iterative process. The sequence {(yk, λk)} generated by the recursion (1.2) satisfies
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(see Theorem 1 in [12] by setting fixed β and γ ≡ 1)

‖β(yk+1 − y∗)‖2 + ‖λk+1 − λ∗‖2

≤ ‖β(yk − y∗)‖2 + ‖λk − λ∗‖2 −
(
‖β(yk − yk+1)‖2 + ‖λk − λk+1‖2

)
.

Because of its efficiency and easy implementation, ADMM has attracted wide attention of

many authors in various areas, see e.g. [1, 7]. In particular, some novel and attractive

applications of ADMM have been discovered very recently, e.g. the total-variation problem

in image processing, the covariance selection problem and semidefinite least square

problem in statistics [11], the semidefinite programming problems§the sparse and

low-rank recovery problem in Engineering [14], and the matrix completion problem [1].

In some practical applications [4], the model is slightly more complicated than (1.1). The

mathematical form of the problem is

min{θ1(x) + θ2(y) + θ3(z)|Ax+ y + z = b, x ∈ X , y ∈ Y, z ∈ Z}, (1.3)

where θ1 : <n → <, θ2, θ3 : <m → < are closed proper convex functions (not

necessarily smooth); A ∈ <m×n; X ⊆ <n, Y,Z ⊆ <m are closed convex sets. It is

then natural to manage to extend ADMM to solve the problem (1.3), resulting in the
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following scheme:

xk+1 = Argmin
{
θ1(x)− (λk)TAx+ β

2
‖Ax+ yk + zk − b‖2

∣∣ x ∈ X};

yk+1 = Argmin
{
θ2(y)− (λk)T y + β

2
‖Axk+1 + y + zk − b‖2

∣∣ y ∈ Y};

zk+1 = Argmin
{
θ3(z)− (λk)T z + β

2
‖Axk+1 + yk+1 + z − b‖2

∣∣ z ∈ Z};

λk+1 = λk − β(Axk+1 + yk+1 + zk+1 − b),
(1.4)

and the involved subproblems of (1.4) are solved consecutively in the ADMM manner.

Unfortunately, with the (yk+1, zk+1, λk+1) offered by (1.4), the convergence of the

extended ADMM (1.4) is still open.

In this paper, we present a little changed alternating direction method for the problem (1.3).

Again, based on (yk+1, zk+1, λk+1) offered by (1.4), we set

(yk+1, zk+1, λk+1) := (yk+1 + (zk − zk+1), zk+1, λk+1). (1.5)

Note that the change of (1.5) is small. In addition, for the problem with two separable

operators, by setting zk = 0 for all k, the proposed method is just reduced to the

algorithm (1.2) for the problem (1.1). Therefore, we call the proposed method a little
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changed alternating direction method of multipliers for convex optimization with three

separable operators.

The outline of this paper is as follows. In Section 2, we convert the problem (1.3) to the

equivalent variational inequality and characterize its solution set. Section 3 shows the

contraction property of the proposed method. In Section 4, we define an auxiliary vector

and derive its main associated properties, and show theO(1/t) convergence rate of the

proposed method. Finally, some conclusions are made in Section 6.

2 The variational inequality characterization

Throughout, we assume that the solution set of (1.3) is not empty. The convergence

analysis is based on the tool of variational inequality. For this purpose, we define

W = X × Y × Z × <m.
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It is easy to verify that the convex programming problem (1.3) is characterized by the

following variational inequality: Find w∗ = (x∗, y∗, z∗, λ∗) ∈ W such that

θ1(x)− θ1(x∗) + (x− x∗)T (−ATλ∗) ≥ 0,

θ2(y)− θ2(y∗) + (y − y∗)T (−λ∗) ≥ 0,

θ3(z)− θ3(z∗) + (z − z∗)T (−λ∗) ≥ 0,

(λ− λ∗)T (Ax∗ + y∗ + z∗ − b) ≥ 0,

∀ w ∈ W,

(2.1)

or in the more compact form:

VI(W, F, θ) θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀ w ∈ W, (2.2)

where

θ(u) = θ1(x) + θ2(y) + θ3(z),
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and

u =


x

y

z

 , w =


x

y

z

λ

 , F (w) =


−ATλ

−λ

−λ

Ax+ y + z − b

 . (2.3)

Note that F (w) defined in (2.3) is monotone. Under the nonempty assumption on the

solution set of (1.3), the solution set of (2.2)-(2.3), denoted byW∗, is also nonempty.

The Theorem 2.3.5 in [5] provides an insightful characterization for the solution set of a

generic VI. This characterization actually provides us a novel and simple approach which

enables us to derive the O(1/t) convergence rate for the original ADMM in [13]. In the

following theorem, we specify this result for the derived VI(W, F, θ). Note that the proof

of the next theorem is an incremental extension of Theorem 2.3.5 in [5] and also Theorem

2.1 in [13]. But, we include all the details because of its crucial importance in our analysis.
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Theorem 2.1 The solution set of VI(W, F, θ) is convex and it can be characterized as

W∗ =
⋂
w∈W

{
w̄ ∈ W :

(
θ(u)− θ(ū)

)
+ (w − w̄)TF (w) ≥ 0

}
. (2.4)

Proof. Indeed, if w̄ ∈ W∗, according to (2.2) we have

θ(u)− θ(ū) + (w − w̄)TF (w̄) ≥ 0, ∀w ∈ W.

By using the monotonicity of F onW , this implies

θ(u)− θ(ū) + (w − w̄)TF (w) ≥ 0, ∀w ∈ W.

Thus, w̄ belongs to the right-hand set in (2.4).

Conversely, suppose w̄ belongs to the latter set. Let w ∈ W be arbitrary. The vector

w̃ = τw̄ + (1− τ)w

belongs toW for all τ ∈ (0, 1). Thus we have

θ(ũ)− θ(ū) + (w̃ − w̄)TF (w̃) ≥ 0. (2.5)
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Because θ(·) is convex and ũ = τ ū+ (1− τ)u, we have

θ(ũ) ≤ τθ(ū) + (1− τ)θ(u).

Substituting it in (2.5), we get

(θ(u)− θ(ū)) + (w − w̄)TF (τw̄ + (1− τ)w) ≥ 0

for all τ ∈ (0, 1). Letting τ → 1 yields

(θ(u)− θ(ū)) + (w − w̄)TF (w̄) ≥ 0.

Thus w̄ ∈ W∗. Now, we turn to prove the convexity ofW∗. For each fixed but arbitrary

w ∈ W , the set

{w̄ ∈ W : θ(ū) + w̄TF (w) ≤ θ(u) + wTF (w)}

is convex and so is the equivalent set

{w̄ ∈ W :
(
θ(u)− θ(ū)

)
+ (w − w̄)TF (w) ≥ 0}.

Since the intersection of any number of convex sets is convex, it follows that the solution

set of VI(W, F, θ) is convex. 2
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Theorem 2.1 thus implies that w̄ ∈ W is an approximate solution of VI(W, F, θ) with the

accuracy ε > 0 if it satisfies

θ(u)− θ(ū) + F (w)T (w − w̄) ≥ −ε, ∀ w ∈ W.

In this paper, we show that, for given ε > 0 and a substantial compact setD ⊂ W , after

t iterations of the proposed methods, we can find a w̄ ∈ W such that

ŵ ∈ W and sup
w∈D

{
θ(û)− θ(u) + (ŵ − w)TF (w)

}
≤ ε. (2.6)

The convergence rateO(1/t) of the proposed methods is thus established.

For convenience of coming analysis, we define the following matrices:

P =


βIm 0 0

βIm βIm 0

0 0 1
β
Im

 , D =


βIm 0 0

0 βIm 0

0 0 1
β
Im

 . (2.7)
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Note that for the above defined matrices M and D, we have

D−1P =


Im 0 0

Im Im 0

0 0 Im

 , P−TD =


Im −Im 0

0 Im 0

0 0 Im

 . (2.8)

3 Contraction property of the proposed method

In the alternating direction method, x is only the auxiliary variable in the iteration process.

For convenience of analysis, we use the notation

v = (y, z, λ),

which is a sub-vector of w. For w∗ ∈ W∗, we also define

V∗ := {v∗ = (y∗, z∗, λ∗) | (x∗, y∗, z∗, λ∗) ∈ W∗}.

In addition, we divide each iteration of the proposed method in two steps-the prediction

step and the correction step. From a given vk = (yk, zk, λk), we use
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w̄k = (x̄k, ȳk, z̄k, λ̄k) ∈ W to denote the solution of (1.4) and call it as the prediction

step.

The prediction step in the k-th iteration (use ADMM manner):

Begin with given vk = (yk, zk, λk), generate w̄k = (x̄k, ȳk, z̄k, λ̄k) in the following

order:

x̄k = Argmin
{
θ1(x) +

β

2
‖(Ax+ yk + zk − b)− 1

β
λk‖2

∣∣ x ∈ X}, (3.1a)

ȳk = Argmin
{
θ2(y) +

β

2
‖(Ax̄k + y + zk − b)− 1

β
λk‖2

∣∣ y ∈ Y}, (3.1b)

z̄k = Argmin
{
θ3(z) +

β

2
‖(Ax̄k + ȳk + z − b)− 1

β
λk‖2

∣∣ z ∈ Z}, (3.1c)

λ̄k = λk − β(Ax̄k + ȳk + z̄k − b). (3.1d)

For the new iterative loop, we need only to produce vk+1 = (yk+1, zk+1, λk+1). Use

the notation of w̄k , the update form (1.5) can be written as
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The correction step: Update the new iterate vk+1 = (yk+1, zk+1, λk+1) by


yk+1

zk+1

λk+1

 =


yk

zk

λk

−


Im −Im 0

0 Im 0

0 0 Im




yk − ȳk

zk − z̄k

λk − λ̄k

 . (3.2)

Using the notation P−TD, the correction step can be written as

vk+1 = vk − P−TD(vk − v̄k).

We consider the general correction update form

vk+1 = vk − αP−TD(vk − v̄k), α ∈ (0, 1]. (3.3)

In other words, the update form (3.2) is a special case of (3.3) with α = 1. Taking

α ∈ (0, 1), the method is a special case of the method proposed in [10].
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3.1 Properties of the vector w̄k by the prediction step

We establish the following lemma.

Lemma 3.1 Let w̄k = (x̄k, ȳk, z̄k, λ̄k) be generated by the alternating

direction-prediction step (3.1a)–(3.1d) from the given vector vk = (yk, zk, λk). Then, we

have w̄k ∈ W and

θ(u)−θ(ūk)+(w− w̄k)T d(vk, w̄k) ≥ (v− v̄k)TP (vk− v̄k), ∀ w ∈ W, (3.4)

where

d(vk, w̄k) = F (w̄k) + η(vk, v̄k), (3.5)

η(vk, v̄k) =


AT

Im

Im

0

β
(
(yk − ȳk) + (zk − z̄k)

)
, (3.6)

and the matrix P is defined in (2.7).
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Proof. The proof consists of some manipulations. Recall (3.1a)–(3.1c). We have ūk ∈ U
and

θ1(x)− θ1(x̄k) + (x− x̄k)T (AT [β(Ax̄k + yk + zk − b)− λk]) ≥ 0,

θ2(y)− θ2(ȳk) + (y − ȳk)T (β(Ax̄k + ȳk + zk − b)− λk) ≥ 0,

θ3(z)− θ3(z̄k) + (z − z̄k)T (β(Ax̄k + ȳk + z̄k − b)− λk) ≥ 0,

for all u ∈ U . Using (3.1d), the above inequality can be written as

θ(u)−θ(ūk)+


x− x̄k

y − ȳk

z − z̄k


T

−AT λ̄k

−λ̄k

−λ̄k

+


βAT (yk−ȳk)+βAT (zk−z̄k)

β(zk − z̄k)

0


 ≥ 0.

(3.7)

Adding the following term
x− x̄k

y − ȳk

z − z̄k


T 

0

β(yk − ȳk)

β(yk − ȳk) + β(zk − z̄k)
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to the both sides of the last inequality, we get w̄k ∈ W and

θ(u)−θ(ūk)+


x− x̄k

y − ȳk

z − z̄k


T

−AT λ̄k

−λ̄k

−λ̄k

+


ATβ

(
(yk − ȳk) + (zk − z̄k)

)
β
(
(yk − ȳk) + (zk − z̄k)

)
β
(
(yk − ȳk) + (zk − z̄k)

)



≥


x− x̄k

y − ȳk

z − z̄k


T 

0

β(yk − ȳk)

β(yk − ȳk) + β(zk − z̄k)

 , ∀ u ∈ U . (3.8)

Because

Ax̄k + ȳk + z̄k − b =
1

β
(λk − λ̄k),

adding the equal terms

(λ− λ̄k)T (Ax̄k + ȳk + z̄k − b) and (λ− λ̄k)T
1

β
(λk − λ̄k)
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to the left side and right side of (3.8), respectively, we get w̄k ∈ W and

θ(u)−θ(ūk)+


x− x̄k

y − ȳk

z − z̄k

λ− λ̄k



T


−AT λ̄k

−λ̄k

−λ̄k

Ax̄k+ȳk+z̄k−b

+


ATβ

(
(yk − ȳk) + (zk − z̄k)

)
β
(
(yk − ȳk) + (zk − z̄k)

)
β
(
(yk − ȳk) + (zk − z̄k)

)
0




≥


y − ȳk

z − z̄k

λ− λ̄k


T 

β(yk − ȳk)

β(yk − ȳk) + β(zk − z̄k)

1
β

(λk − λ̄k)

 , ∀ w ∈ W.

Using the notations of F (w), d(vk, w̄k) and P , the assertion follows immediately and

the lemma is proved. 2

Lemma 3.2 Let w̄k = (x̄k, ȳk, z̄k, λ̄k) be generated by the alternating direction

prediction step (3.1a)–(3.1d) from the given vector vk = (yk, zk, λk). Then for all
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v∗ ∈ V∗, we have

(vk − v∗)TP (vk − v̄k)

≥ 1

2
‖vk − v̄k‖2D +

1

2
β‖(yk − ȳk) + (zk − z̄k) +

1

β
(λk − λ̄k)‖2, (3.9)

where the matrices P is defined in (2.7).

Proof. Setting w = w∗ in (3.4) (notice that v∗ is a sub-vector of w∗), it yields that

(v̄k − v∗)TP (vk − v̄k) ≥
(
θ(ūk)− θ(u∗)

)
+ (w̄k − w∗)TF (w̄k)

+(w̄k − w∗)T η(vk, v̄k). (3.10)

Now, we deal with the last term in the right hand side of the inequality (3.10). By using the

notation of η(vk, v̄k), Ax∗ + y∗ + z∗ = b and (3.1d), we obtain

(w̄k − w∗)T η(vk, v̄k)

= β(Ax̄k + ȳk + z̄k −Ax∗ − y∗ − z∗)T {(yk − ȳk) + (zk − z̄k)}

= β(Ax̄k + ȳk + z̄k − b)T {(yk − ȳk) + (zk − z̄k)}

= (λk − λ̄k)T {(yk − ȳk) + (zk − z̄k)}.
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Substituting it in (3.10), we get

(v̄k − v∗)TP (vk − v̄k) ≥
(
θ(ūk)− θ(u∗)

)
+ (w̄k − w∗)TF (w̄k)

+(λk − λ̄k)T {(yk − ȳk) + (zk − z̄k)}. (3.11)

Since F is monotone, we have

θ(ūk)−θ(u∗)+(w̄k−w∗)TF (w̄k) ≥ θ(ūk)−θ(u∗)+(w̄k−w∗)TF (w∗) ≥ 0.

Substituting it in the right hand side of (3.11), we obtain

(v̄k − v∗)TP (vk − v̄k) ≥ (λk − λ̄k)T {(yk − ȳk) + (zk − z̄k)}.

It follows from the last equality that

(vk − v∗)TP (vk − v̄k)

≥(vk − v̄k)TP (vk − v̄k) + (λk − λ̄k)T {(yk − ȳk) + (zk − z̄k)}. (3.12)
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Observe the matrices P and D (see (2.7)), by a manipulation, the right hand side of (3.12)

can be written as

(vk − v̄k)TP (vk − v̄k) + (λk − λ̄k)T {(yk − ȳk) + (zk − z̄k)}

=


yk − ȳk

zk − z̄k

λk − λ̄k


T 

βIm
1
2
βIm

1
2
Im

1
2
βIm βIm

1
2
Im

1
2
Im

1
2
Im

1
β
Im




yk − ȳk

zk − z̄k

λk − λ̄k


=

1

2
‖vk − v̄k‖2D +

1

2
β‖(yk − ȳk) + (zk − z̄k) +

1

β
(λk − λ̄k)‖2.

Substituting it in the right hand side of (3.12), the assertion of this lemma is proved. 2

Whenever vk 6= v̄k , the right hand side of (3.9) is positive. For any positive definite matrix

H , (3.9) implies that

〈H(vk − v∗), H−1P (vk − v̄k)〉

≥ 1

2
‖vk − v̄k‖2D +

1

2
β‖(yk − ȳk) + (zk − z̄k) +

1

β
(λk − λ̄k)‖2,
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and H−1P (vk − v̄k) is an ascent direction of the distance function 1
2
‖v − v∗‖2H at the

point vk . By choosing

H = PD−1PT =

 βIm βIm 0

βIm 2βIm 0

0 0 1
β
Im

 , (3.13)

and using the matrix P−TD (see (2.8)), we have

H−1P = P−TD =

 Im −Im 0

0 Im 0

0 0 Im

 .

3.2 Correction and the contractive property

The alternating direction-prediction step begins with given vk = (yk, zk, λk). In fact x is

only the auxiliary variable in the iteration process. For the new loop, we need only to

produce vk+1 = (yk+1, zk+1, λk+1) and we call this step as the correction step.

Theorem 3.1 Let w̄k = (x̄k, ȳk, z̄k, λ̄k) be generated by the alternating
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direction-prediction step (3.1a)–(3.1d) from the given vector vk = (yk, zk, λk) and vk+1

be given by (3.3). Then we have

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − α(1− α)‖vk − v̄k‖2D

−αβ‖(yk − ȳk) + (zk − z̄k) +
1

β
(λk − λ̄k)‖2, ∀v∗ ∈ V∗, (3.14)

where H is defined in (3.13).

Proof. By using (3.3) and the definition of the matrix H , we have

‖vk − v∗‖2H − ‖vk+1 − v∗‖2H
= ‖vk − v∗‖2H − ‖(vk − v∗)− (vk − vk+1)‖2H
= ‖vk − v∗‖2H − ‖(vk − v∗)− αP−TD(vk − v̄k)‖2H
= 2α(vk − v∗)TP (vk − v̄k)− α2‖vk − v̄k‖2D.

Substituting (3.9) in the last equality, we get

‖vk − v∗‖2H − ‖vk+1 − v∗‖2H

≥ α(1− α)‖vk − v̄k‖2D + αβ‖(yk − ȳk) + (zk − z̄k) +
1

β
(λk − λ̄k)‖2.
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The assertion of this theorem is proved. 2

For any α ∈ (0, 1), it follows (3.14) that

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − α(1− α)‖vk − v̄k‖2D, ∀ v∗ ∈ V∗. (3.15)

The above inequality is essential for the global convergence of the method using update

form (3.3) with α ∈ (0, 1), see [10]. In fact, based on (3.15), the sequence {vk} is

bounded, we have

lim
k→∞

‖vk − v̄k‖2D = 0. (3.16)

Consequently the sequence {v̄k} is also bounded and it converges to a limit point v∞.

On the other hand, due to Lemma 3.1, we have

θ(u)− θ(ūk) + (w − w̄k)TF (w̄k)

≥ −(w − w̄k)T η(vk, v̄k) + (v − v̄k)TP (vk − v̄k), ∀ w ∈ W. (3.17)

From (3.16) and (3.17) we can derive v∞ ∈ V∗ and the induced w∞ is a solution of

VI(W, F, θ).
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4 Convergence rate in an ergodic sense

The convergence in the last section is only for α ∈ (0, 1) with update form (3.3). Since

(1.5), namely, the little changed alternating direction method of multipliers, is equivalent to

(3.2) with α = 1, it follows from Theorem 3.1 that

‖vk+1−v∗‖2H ≤ ‖vk−v∗‖2H−β‖(yk−ȳk)+(zk−z̄k)+
1

β
(λk−λ̄k)‖2, ∀v∗ ∈ V∗.

The sequence {‖vk − v∗‖H} is monotonically non-increasing. However, we have not

obtained the global convergence in the contraction sense. This section, however, shows

that the method using update form (3.2) has convergence rate O(1/t) for all α ∈ (0, 1]

in an ergodic sense.

According to Theorem 2.1, for given ε > 0 and a substantial compact setD ⊂ W , our

task is to find a w̃ such that (see (2.6))

w̃ ∈ W and sup
w∈D

{
θ(ũ)− θ(u) + (w̃ − w)TF (w)

}
≤ ε,

in O(1/ε) iterations. Generally, our complexity analysis follows the line of [3, 13], but

instead of using w̄k directly, we need first to introduce an auxiliary vector.
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The additional auxiliary vector

w̃k =


x̃k

ỹk

z̃k

λ̃k

 , where ũk = ūk (4.1a)

and

λ̃k = λ̄k − β
(
(yk − ȳk) + (zk − z̄k)

)
. (4.1b)

In order to rewrite the assertion in Lemma 3.1 in form of w̃, we need the following lemmas

to express the terms d(vk, w̄k) and P (vk − v̄k) in form of wk and w̃k .

Lemma 4.1 For the w̃k defined in (4.1) and the w̄k generated by (3.1), we have

d(vk, w̄k) = F (w̃k), (4.2)

where d(vk, w̄k) defined in (3.5). In addition, it holds that

P (vk − v̄k) = Q(vk − ṽk), (4.3)
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where

Q =


βIm 0 0

βIm βIm 0

−Im −Im 1
β
Im

 . (4.4)

Proof. Since ũk = ūk and λ̃k = λ̄k − β
(
(yk − ȳk) + (zk − z̄k)

)
, we have

β
(
(yk − ȳk) + (zk − z̄k)

)
= λ̄k − λ̃k. (4.5)

Substituting it in the notation of η(vk, v̄k) (see (3.6)), we get

d(vk, w̄k) = F (w̄k) + η(vk, v̄k)

=


−AT λ̄k

−λ̄k

−λ̄k

Ax̄k + ȳk + z̄k − b

+


AT

I

I

0

 (λ̄k − λ̃k) = F (w̃k).
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The last equation is due to (x̄k, ȳk, z̄k) = (x̃k, ỹk, z̃k). The equation (4.1b) implies

1

β
(λk − λ̄k) =

1

β
(λk − λ̃k)−

(
(yk − ȳk) + (zk − z̄k)

)
=

1

β
(λk − λ̃k)−

(
(yk − ỹk) + (zk − z̃k)

)
.

Using the matrix P (see (2.7)), (4.1a) and the last equation, we obtain

P (vk − v̄k) =


βIm 0 0

βIm βIm 0

0 0 1
β
Im




yk − ȳk

zk − z̄k

λk − λ̄k



=


βIm 0 0

βIm βIm 0

−Im −Im 1
β
Im




yk − ỹk

zk − z̃k

λk − λ̃k

 = Q(vk − ṽk).

Thus (4.3) holds and the lemma is proved. 2

By using (4.2), the assertion in Lemma 3.1 can be rewritten accordingly in the following

lemma.
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Lemma 4.2 Let w̄k = (x̄k, ȳk, z̄k, λ̄k) be generated by the alternating

direction-prediction step (3.1a)–(3.1d) from the given vector vk = (yk, zk, λk) and w̃k

be defined by (4.1). Then we have w̃k ∈ W and

θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TP (vk − v̄k), ∀w ∈ W. (4.6)

Proof. The assertion follows from (3.4), (4.2) and (4.1). 2

Now, we are ready to prove the key inequalities for the convergence rate of the proposed

method, which are given in the following lemmas.

Lemma 4.3 Let w̄k = (x̄k, ȳk, z̄k, λ̄k) be generated by the alternating

direction-prediction step (3.1a)–(3.1d) from the given vector vk = (yk, zk, λk) and w̃k

be defined by (4.1). If the new iterate vk+1 is updated by (3.3), then we have(
θ(u)− θ(ũk)

)
+ (w − w̃k)TF (w̃k) +

1

2
(‖v − vk‖2H − ‖v − vk+1‖2H)

≥ 1

2
(‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H), ∀w ∈ W, (4.7)

where matrix H is defined in (3.13).
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Proof. According to the update form (3.3), we have

vk − v̄k = D−1PT (vk − vk+1).

Substituting it into the right hand side of (4.6) and using PD−1PT = H , we obtain

θ(u)−θ(ũk)+(w−w̃k)TF (w̃k) ≥ (v− ṽk)TH(vk−vk+1), ∀w ∈ W. (4.8)

By setting

a = v, b = ṽk, c = vk, and d = vk+1,

in the identity

(a− b)TH(c− d) =
1

2
(‖a− d‖2H − ‖a− c‖2H) +

1

2
(‖c− b‖2H − ‖d− b‖2H),

we obtain

(v − ṽk)TH(vk − vk+1)

=
1

2
(‖v − vk+1‖2H − ‖v − vk‖2H) +

1

2
(‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H).

Substituting it in the right hand side of (4.8) and by a manipulation, we get (4.7) and the

lemma is proved. 2
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Lemma 4.4 Let w̄k = (x̄k, ȳk, z̄k, λ̄k) be generated by the alternating direction

prediction step (3.1a)–(3.1d) from the given vector vk = (yk, zk, λk) and w̃k be defined

by (4.1). If the new iterate vk+1 is updated by (3.3), then we have

‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H =
α

β
‖λk − λ̃k‖2 + α(1− α)‖vk − v̄k‖2D. (4.9)

where matrix H is defined in (3.13).

Proof. In view of the update form (3.3) and H = PD−1PT , we have

‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H

= ‖vk − ṽk‖2H − ‖vk − ṽk + (vk+1 − vk)‖2H

= ‖vk − ṽk‖2H − ‖vk − ṽk − αP−TD(vk − v̄k)‖2H

= 2α(vk − ṽk)TP (vk − v̄k)− α2‖P−TD(vk − v̄k)‖2H

= 2α(vk − ṽk)TP (vk − v̄k)− α2‖vk − v̄k‖2D. (4.10)
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By using the relation in the equation (4.3) and the matrix Q (see (4.4)), we obtain

2(vk − ṽk)TP (vk − v̄k)

= 2(vk − ṽk)TQ(vk − ṽk)

= (vk − ṽk)T (Q+QT )(vk − ṽk)

=


yk − ỹk

zk − z̃k

λk − λ̃k


T 

2βIm βIm −Im
βIm 2βIm −Im
−Im −Im 2

β
Im




yk − ỹk

zk − z̃k

λk − λ̃k


= β‖(yk − ỹk) + (zk − z̃k)− 1

β
(λk − λ̃k)‖2 + ‖vk − ṽk‖2D. (4.11)

Because ỹk = ȳk and z̃k = z̄k , it follows from and (4.5) that

β‖(yk − ỹk) + (zk − z̃k)− 1

β
(λk − λ̃k)‖2 =

1

β
‖λk − λ̄k‖2. (4.12)

Combining (4.10), (4.11) and (4.12) together, we obtain

‖vk−ṽk‖2H−‖vk+1−ṽk‖2H = α
( 1

β
‖λk−λ̄k‖2+‖vk−ṽk‖2D

)
−α2‖vk−v̄k‖2D.

(4.13)
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Again, because ỹk = ȳk and z̃k = z̄k , we have

1

β
‖λk − λ̄k‖2 + ‖vk − ṽk‖2D =

1

β
‖λk − λ̃k‖2 + ‖vk − v̄k‖2D.

Substituting it in the right hand side of (4.13), we get

‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H =
α

β
‖λk − λ̃k‖2 + α(1− α)‖vk − v̄k‖2D,

and thus the proof is complete. 2

Combining the assertions in Lemma 4.3 and Lemma 4.4, we have proved the key

inequality for the proposed method, namely,(
θ(u)−θ(ũk)

)
+(w−w̃k)TF (w̃k)+

1

2
(‖v−vk‖2H−‖v−vk+1‖2H) ≥ 0, ∀w ∈ W.

(4.14)

Note that the above inequality is true for any α ∈ (0, 1]. Having the key inequalities in the

above lemmas, theO(1/t) rate of convergence (in an ergodic sense) can be obtained

easily.
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Theorem 4.1 For any integer t > 0, we have a w̃t ∈ W which satisfies(
θ(ũt)− θ(u)

)
+ (w̃t − w)TF (w) ≤ 1

2(t+ 1)
‖v − v0‖2H , ∀w ∈ W,

where

w̃t =
1

t+ 1

t∑
k=0

w̃k.

Proof. Since F (·) is monotone, it follows (4.14) that(
θ(u)−θ(ũk)

)
+(w−w̃k)TF (w)+

1

2
(‖v−vk‖2H−‖v−vk+1‖2H) ≥ 0, ∀w ∈ W,

or, equivalently,(
θ(ũk)−θ(u)

)
+(w̃k−w)TF (w)+

1

2
(‖v−vk+1‖2H−‖v−vk‖2H) ≤ 0, ∀w ∈ W.

Summing the above inequality over k = 0, . . . , t, we obtain

t∑
k=0

(
θ(ũk)−θ(u)

)
+
( t∑
k=0

w̃k−
t∑

k=0

w
)T
F (w)+

1

2
(‖v−vt+1‖2H−‖v−v0‖2H) ≤ 0.
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Dropping the term ‖vt+1 − v0‖2G, we get

( 1

t+ 1

t∑
k=0

θ(ũk)−θ(u)
)
+
( 1

t+ 1

t∑
k=0

w̃k−w
)T
F (w) ≤ ‖v − v

0‖2H
2(t+ 1)

, ∀w ∈ W.

(4.15)

By incorporating the notation of w̃t and using

θ(ũkt ) ≤ 1

t+ 1

t∑
k=0

θ(ũk) (due to the convexity of θ(u))

it follows from (4.15) that(
θ(ũt)− θ(u)

)
+ (w̃t − w)TF (w) ≤ ‖v − v

0‖2H
2(t+ 1)

, ∀w ∈ W.

Hence, the proof is complete. 2

For given substantial compact setD ⊂ W , we define

d = sup{‖v − v0‖H |w ∈ D},

where v0 = (y0, z0, λ0) is the initial point. Because %k ≥ 1
2

, it follows that Υt ≥ t+1
2

.
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After t iterations of the proposed method, we can find a w̃ ∈ W such that

sup
w∈D

{
θ(ũ)− θ(u)

)
+ (w̃ − w)TF (w)

}
≤ d2

2(t+ 1)
.

The convergence rateO(1/t) of the proposed method is thus proved.

5 Convergence rate in the non-ergodic sense

If we use (3.3) with α ∈ (0, 1) to update the new iterate, it follows from (3.15) that

∞∑
k=0

‖vk − v̄k‖2D ≤
1

α(1− α)
‖v0 − v∗‖2H ∀ v∗ ∈ V∗. (5.1)

This section will show that the sequence {‖vk − vk+1‖2D} is monotonically

non-increasing, i. e.,

‖vk+1 − v̄k+1‖2D ≤ ‖vk − v̄k‖2D, ∀ k ≥ 0. (5.2)
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Based on (5.1) and (5.2), we drive

‖vk − v̄k‖2D ≤
1

(k + 1)α(1− α)
‖v0 − v∗‖2H , ∀v∗ ∈ V∗. (5.3)

Since ‖vk − v̄k‖2D is viewed as the stopping criterion, we obtain the worst-case O(1/t)

convergence rate in a non-ergodic sense. An important relation in the coming proof is (see

(3.3))

PT (vk − vk+1) = αD(vk − v̄k), (5.4)

where the matrices P and D are given in (2.7). Lemma 4.2 enables us to establish an

important inequality in the following lemma.

Lemma 5.1 Let {vk} be the sequence generated by (3.3), the associated sequence

{w̃k} be defined by (4.1). Then, we have

(ṽk − ṽk+1)TQ{(vk − ṽk)− (vk+1 − ṽk+1)} ≥ 0, (5.5)

where Q is given defined in (4.4).

Proof. Set w = w̃k+1 in (4.6) and use (4.3), we obtain

θ(ũk+1)− θ(ũk) + (w̃k+1 − w̃k)TF (w̃k) ≥ (ṽk+1 − ṽk)TQ(vk − ṽk). (5.6)
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Note that (4.6) is also true for k := k + 1 and thus we have

θ(u)− θ(ũk+1) + (w − w̃k+1)TF (w̃k+1) ≥ (v − ṽk+1)TP (vk+1 − v̄k+1),

for all w ∈ Ω. Set w = w̃k in the above inequality and use (4.3), we get

θ(ũk)− θ(ũk+1) + (w̃k − w̃k+1)TF (w̄k+1) ≥ (ṽk − ṽk+1)TQ(vk+1 − ṽk+1).

Adding this inequality with (5.6), we get assertion (5.5) due to the monotonicity of F . 2

Lemma 5.2 Let the sequence {w̄k} be generated by (3.1), and {vk} be the sequence

updated by (3.3). Then, we have

α(vk − v̄k)TD{(vk − v̄k)− (vk+1 − v̄k+1)}

≥ 1

2
‖P (vk − v̄k)− P (vk+1 − v̄k+1)‖2(Q−T+Q−1), (5.7)

where the matrices P and D are given in (2.7) and Q is given defined in (4.4).

Proof. Adding the term

{(vk − ṽk)− (vk+1 − ṽk+1)}TQ{(vk − ṽk)− (vk+1 − ṽk+1)}
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to the both sides of (5.5), we get

(vk−vk+1)TQ{(vk−ṽk)−(vk+1−ṽk+1)} ≥ 1

2
‖(vk−ṽk)−(vk+1−ṽk+1)‖2(QT+Q).

(5.8)

By using (5.4) and (4.3), we have

(vk − vk+1)T = α(vk − v̄k)TDP−1,

and

{(vk − ṽk)− (vk+1 − ṽk+1)} = Q−1P{(vk − v̄k)− (vk+1 − v̄k+1)}.

Substituting them in (5.8), we obtain

α(vk − v̄k)TD{(vk − v̄k)− (vk+1 − v̄k+1)}

≥ 1

2
‖Q−1P (vk − v̄k)−Q−1P (vk+1 − v̄k+1)‖2(QT+Q). (5.9)

Because

Q−T (QT +Q)Q−1 = Q−T +Q−1,

the both right hand sides of (5.7) and (5.9) are equal. The assertion is proved. 2
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Finally, we are ready to show the assertion (5.2) in the following theorem.

Theorem 5.1 Let {v̄k} (3.1), {vk} be the sequence generated by (3.3). The sequence

{‖vk − vk+1‖2D} is monotonically non-increasing.

Proof. Setting a = (vk − v̄k) and b = (vk+1 − v̄k+1) in the identity

‖a‖2D − ‖b‖2D = 2aTD(a− b)− ‖a− b‖2D,

we obtain

‖vk − v̄k‖2D − ‖vk+1 − v̄k+1‖2D
=2(vk − v̄k)TD{(vk − v̄k)− (vk+1 − v̄k+1)} − ‖(vk − v̄k)− (vk+1 − v̄k+1)‖2D.

Inserting (5.7) into the first term of the right-hand side of the last equality, we obtain

‖vk − v̄k‖2D − ‖vk+1 − v̄k+1‖2D

≥ 1

α
‖P (vk − v̄k)− P (vk+1 − v̄k+1)‖2(Q−T+Q−1)

−‖P (vk − v̄k)− P (vk+1 − v̄k+1)‖2(P−TDP−1)

≥ ‖P (vk − v̄k)− P (vk+1 − v̄k+1)‖2{(Q−T+Q−1)−(P−TDP−1)}.
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Notice that (see (4.4) and (2.7))

(Q−T +Q−1)− (P−TDP−1) =


0 0 0

0 1
β
Im Im

0 Im βIm


is a positive semidefinite matrix, the assertion (5.2) follows immediately and the lemma is

proved. 2

With (5.1) and (5.2), we derived (5.3). The worst-case O(1/t) convergence rate in a

non-ergodic sense for the proposed method with α ∈ (0, 1) is proved.

By using (5.4), we can also use ‖vk − vk+1‖H ≤ ε as the stop criterion. Since

H = PD−1PT ,

we have

‖vk − v̄k‖2D =
1

α2
‖D−1PT (vk − vk+1)‖2D =

1

α2
‖vk − vk+1‖2H .
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Therefore, the assertions (5.1) and (5.3) can be rewritten as

∞∑
k=0

‖vk − vk+1‖2H ≤
α

(1− α)
‖v0 − v∗‖2H ∀ v∗ ∈ V∗, (5.10)

and

‖vk − vk+1‖2H ≤
α

(k + 1)(1− α)
‖v0 − v∗‖2H , ∀v∗ ∈ V∗, (5.11)

respectively.

6 Conclusions

Because of the attractive efficiency of the well-known alternating direction method (ADM), it

is of strong desire to extend the ADMM to the linearly constrained convex programming

problem with three separable operators. The convergence of the direct extension of the

ADMM to the problem with 3 separable parts, however, is still open. The method proposed

in this lecture (with update form (3.2)) is convergent and its variety to the direct extension

of ADMM is tiny. We proved its O(1/t) convergence rate in an ergodic sense. The
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O(1/t) non-ergodic convergence rate is also proved for the method using update form

(3.3) with α ∈ (0, 1).

Appendix. Why the direct extension of ADMM performs well in practice ?

In this appendix, we try to explain why the direct extension of ADMM performs well in

practice. If we use the direct extension of ADMM, then wk+1 = w̄k and thus the relation

(3.11) can be written as

(vk+1 − v∗)TP (vk − vk+1)

≥
(
θ(uk+1)− θ(u∗)

)
+ (wk+1 − w∗)TF (wk+1)

+(λk − λk+1)T {(yk − yk+1) + (zk − zk+1)}. (A.1)

Note that M is not symmetric, but MT +M is positive definite. Again, using

w̄k = wk+1, the third part of (3.7) is

zk+1 ∈ Z, θ3(z)− θ3(zk+1) + (z − zk+1)T (−λk+1) ≥ 0, ∀ z ∈ Z.

It holds also for the previous iteration, thus we have

zk ∈ Z, θ3(z)− θ3(zk) + (z − zk)T (−λk) ≥ 0, ∀ z ∈ Z.
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Setting z = zk and z = zk+1 in the above two sub-VIs, respectively, and then add the

two resulting inequalities, we obtain

(λk − λk+1)T (zk − zk+1) ≥ 0. (A.2)

Since (wk+1 − w∗)TF (wk+1) = (wk+1 − w∗)TF (w∗) and

P = D +


0 0 0

βIm 0 0

0 0 0

 , (see (2.7))

it follows from (A.1) and (A.2) that

(vk+1 − v∗)TD(vk − vk+1) ≥ (λk − λk+1)T (yk − yk+1) + ∆k (A.3)

where

∆k =
(
θ(uk+1)−θ(u∗)

)
+(wk+1−w∗)TF (w∗)+(zk+1−z∗)Tβ(yk+1−yk).

(A.4)
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Therefore, by using (A.3), we obtain

‖vk − v∗‖2D − ‖vk+1 − v∗‖2D
= ‖(vk+1 − v∗) + (vk − vk+1)‖2D − ‖vk+1 − v∗‖2D
= 2(vk+1 − v∗)TD(vk − vk+1) + ‖vk − vk+1‖2D
≥ ‖vk − vk+1‖2D + 2(λk − λk+1)T (yk − yk+1) + 2∆k. (A.5)

Because

D =


βIm 0 0

0 βIm 0

0 0 1
β
Im

 and v =


y

z

λ


it follows that

‖vk − vk+1‖2D + 2(λk − λk+1)T (yk − yk+1)

= β‖zk − zk+1‖2 + β‖(yk − yk+1) +
1

β
(λk − λk+1)‖2. (A.6)



XVII - 46

Substituting (A.6) and (A.3) in the right hand side of (A.5), we obtain

‖vk − v∗‖2D − ‖vk+1 − v∗‖2D

= β‖zk − zk+1‖2 + β‖(yk − yk+1) +
1

β
(λk − λk+1)‖2

+2{
(
θ(uk+1)− θ(u∗)

)
+ (wk+1 − w∗)TF (w∗)}

+2(zk+1 − z∗)Tβ(yk+1 − yk). (A.7)

In the right hand side of (A.7), the terms

β‖zk − zk+1‖2 + β‖(yk − yk+1) +
1

β
(λk − λk+1)‖2,

and

2(θ(uk+1)− θ(u∗)
)

+ 2(wk+1 − w∗)TF (w∗)

are non-negative. However, we do not know whether the last term of the right hand side of

(A.7), i.e.

2(zk+1 − z∗)Tβ(yk+1 − yk)

is non-negative. It is pity that we can not show that the right hand side of (A.7) is positive. It

seems that the direct extension of ADMM performs well because the right hand side of
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(A.7) is positive in practice.

If the right hand side of (A.7) is positive, then the sequence {‖vk − v∗‖D} is Fejèr

monotone and has the contractive property.
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