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Preface
The beauty of mathematics is not exclusive to pure mathematics. In the research on op-

timization methods, we consistently strive for simplicity and unity. Simplicity encourages
others to use the methods, while unity provides a sense of aesthetic satisfaction. Many convex
optimization problems encountered in science and engineering involve linear constraints. By
introducing the multipliers, these problems can be transformed into finding the saddle points
of their Lagrange functions. A saddle point acts as a balance between two conflicting interests;
solving it iteratively is akin to negotiation, requiring both sides to move toward each other. The
equivalent mathematical expression of a saddle point is a variational inequality. Building on
this idea, over the past decade, using basic university mathematics and general optimization
principles, we have proposed a unified framework for a splitting contraction algorithm, with a
particularly simple convergence proof. Some of the work based on this framework has been
praised by renowned international scholars as “Very Simple Yet Powerful” and “Elegant”.

Our recent work shows that the framework not only has a simple convergence proof but also
reveals a clear approach to constructing algorithms. For convex optimization problems with
multi-block separable linear constraints, one only needs to understand the basic process of
Gaussian elimination for solving the system of linear equations to design a series of splitting
contraction methods. “Splitting” means that each iteration step is implemented by solving
relatively simple subproblems, while “contraction” refers to the iterative points converging
increasingly closer to the solution set. Each method we painstakingly put together in the past is
a special case within this series of methods that can now be designed. Our experience confirms
once again that the algorithms favored in engineering must be simple. I have written five short
summaries, each two pages long, introducing the main results in convex optimization splitting
contraction algorithms that were achieved since 2010. Some of these results are recent works
in collaboration with my students, while others are my more mature perspectives after the age
of seventy. For older scholars with some research foundation, continuing to collaborate with
students after retirement has been proven to be the right choice and worthwhile. The specific
contents of these five summary notes are:

1. Introduction to Our Unified Algorithm Framework. This note presents our unified
framework for algorithms, providing a convergence proof, an equivalent representation
of convergence conditions, and the resulting generalized prediction-correction Proximal
Point Algorithm (PPA). The key identity ”product-to-sum and difference” that plays a
critical role in the convergence proof could be contributed to the solid mathematical foun-
dation I achieved from pre-Cultural Revolution secondary education in mathematics and
physics.

2. H-norm PPA under the Variational Inequality Perspective. It explains that the H-
norm PPA, as understood in the context of variational inequalities, is a specific method
within our unified framework. Examples are provided to illustrate the construction of
Customized PPA, which is tailored to specific needs, and Balanced PPA, which dis-
tributes computational difficulty in the primal and dual sub-problems of each iteration.
These methods are also applicable to solving multi-block separable convex optimization
problems.
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3. Deriving ADMM as a Specific Algorithm in the Unified Framework. This summary
shows that the Alternating Direction Method of Multipliers (ADMM) can be interpreted
as a specific algorithm within the unified framework. While this interpretation may seem
redundant, it provides a convenient approach for proving convergence rates. My two
collaborative papers with Xiaoming Yuan on convergence rates of ADMM in both ergodic
and point-wise senses rely on this prediction-correction decomposition. This method of
interpretation has also been adopted by several renowned international scholars in their
theorem proofs.

4. Provide a class of solution methods for three-block separable convex optimization
using a unified framework. It was pointed out that directly extending ADMM to solve
problems with three separable blocks does not guarantee convergence. However, our
unified framework can guide the construction of algorithms for multi-block problems.
Using convex optimization with three separable blocks as an example, we demonstrate
how, by applying the same Gaussian-type prediction with different corrections, one can
construct a family of prediction-correction splitting contraction algorithms.

5. Generalized PPA for Large-Scale Linearly Constrained Separable Convex Opti-
mization Problems. This note presents a generalized PPA for large-scale, linearly con-
strained separable convex optimization problems, developed under the guidance of our
unified framework. Each iteration of the algorithm follows a prediction-correction step
that flows as naturally as the “elimination and back-substitution” process in Gaussian
elimination for solving system of linear equations. The only difference is that here, “e-
limination” is achieved by solving relatively simple convex optimization subproblems.

For linearly constrained convex optimization, these short summaries illustrate that our u-
nified framework not only covers foundational algorithms such as PPA, ALM, and ADMM,
but also provides solution methods for multi-block separable convex optimization problems. I
am deeply grateful for the support of my colleagues. These works contributed to my receiving
the “Operations Research Society of China Scientific and Technological Award” in Operations
Research in 2014, and elected as a Fellow of the “Operations Research Society of China” in
2024.

To fit everything into two-page format required considerable effort for me to edit and sum-
marize the contents. Hopefully a graduate student with some background in optimization could
likely browse through it in one day, and a week should be enough to fully understand the con-
cepts. At the age of seventy-six, I often reflect on my academic legacy. I am fortunate that I
still have time and energy to organize and present these materials. I welcome any corrections
from readers should there be any errors.

Prof. Dr. Bingsheng He
October 2024
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A. Splitting and contraction methods for convex optimization
Optimization, VI, Algorithmic framework and Generalized-PPA c© Bingsheng He

1 Convex optimization and its related variational inequality
We consider the linearly constrained convex optimization

min{θ(u) | Au = b, u ∈ U}. (1.1)

The Lagrangian function of the problem (1.1) is

L(u, λ) = θ(u)− λT (Au− b), (1.2)

which is defined on U × <m. A pair of (u∗, λ∗) ∈ U × <m
is called a saddle point of the Lagrangian function (1.2), if

Lu∈U (u, λ∗) ≥ L(u∗, λ∗) ≥ Lλ∈<m(u∗, λ). (1.3)

The two inequalities in (1.3) can be written as (u∗, λ∗) ∈ U × <m,{
L(u, λ∗)− L(u∗, λ∗) ≥ 0, ∀u ∈ U ,
L(u∗, λ∗)− L(u∗, λ) ≥ 0, ∀λ ∈ <m.

⇐⇒

{
θ(u)−θ(u∗)+(u− u∗)T (−ATλ∗) ≥ 0, ∀u ∈ U ,

(λ− λ∗)T (Au∗ − b) ≥ 0, ∀λ ∈ <m.
(1.4)

Combining the above two inequalities, the saddle point is described as the solution of the following VI :

(VI) w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (1.5)

where w =

(
u
λ

)
, F (w) =

(
−ATλ
Au− b

)
and Ω = U × <m. (1.6)

Please notice that (w − w̃)T (F (w)− F (w̃)) ≡ 0. The problem (1.1) is translated to VI (1.5).
For the multi-block separable convex optimization, we take the three-block problem

min{θ1(x) + θ2(y) + θ3(z) |Ax+By + Cz = b, x ∈ X , y ∈ Y, z ∈ Z} (1.7)

as an example. Its corresponding variational inequality has the form (1.5), where Ω = X × Y × Z × <m, and

u =

 x
y

z

, θ(u) = θ1(x) + θ2(y) + θ3(z), w =


x
y
z
λ

, F (w) =


−ATλ
−BTλ
−CTλ

Ax+By + Cz − b

. (1.8)

For the F (w) in (1.8), we still have (w − w̃)T (F (w)− F (w̃)) ≡ 0, for any w and w̃ in the space containing Ω.

2 Algorithmic unified framework for monotone variational inequalities
We focus on how to solve the variational inequality (1.5), following is our algorithmic framework.

Algorithms in a unified framework (Each iteration of the method consists of a prediction and a correction)

[Prediction Step]. Start from a given vk, find a predictor w̃k ∈ Ω, which satisfies

w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TQ(vk − ṽk), ∀w ∈ Ω, (2.1a)

where the prediction matrix Q is not necessarily symmetric, but the kernel of QT +Q is positive definite.

v is called the essential variable in the iteration which can be equal to w, or a part of the whole vector of w.

[Correction Step]. Find the correction matrix M which satisfied (2.2). The new iteration vk+1 is given by

vk+1 = vk −M(vk − ṽk). (2.1b)

Convergence Conditions (It is easy to find the matrix M which satisfies the conditions, see the details in §4)

[Convergence Conditions]. For the prediction matrix Q in (2.1a) and the correction matrix M in (2.1b),
there is a positive definite matrix H , such that

HM = Q and G = QT +Q−MTHM � 0. (2.2)
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3 Convergence proof of the methods in the algorithmic framework
Theorem A. For solving the VI (1.5), let {vk}, {w̃k} be the sequences generated by (2.1). If the conditions
(2.2) are satisfied, then we have

w̃k ∈ Ω, θ(u)−θ(ũk)+(w−w̃k)TF (w̃k) ≥ 1
2

(
‖v−vk+1‖2H−‖v−vk‖2H

)
+ 1

2‖v
k−ṽk‖2G, ∀w ∈ Ω. (3.1)

and
‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − ṽk‖2G, ∀v∗ ∈ V∗. (3.2)

Proof. Treating the term Q(vk − ṽk) in the RHS of (2.1a) by using Q = HM (see (2.2)) and the correction
formula (2.1b), we obtain Q(vk − ṽk) = HM(vk − ṽk) = H(vk − vk+1). Thus we get

w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TH(vk − vk+1), ∀w ∈ Ω. (3.3)
Applying the identity

(a− b)TH(c− d) = 1
2

(
‖a− d‖2H − ‖a− c‖2H

)
+ 1

2

(
‖b− c‖2H − ‖b− d‖2H

)
(3.4)

to the RHS of (3.3) with a = v, b = ṽk, c = vk and d = vk+1, we obtain

(v − ṽk)TH(vk − vk+1) = 1
2

(
‖v − vk+1‖2H − ‖v − vk‖2H

)
+ 1

2

(
‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H

)
. (3.5)

To the second part of the RHS of (3.5), by using HM = Q and 2vTQv = vT (QT +Q)v, it follows that

‖vk − ṽk‖2H −‖vk+1 − ṽk‖2H
(2.1b)
= ‖vk − ṽk‖2H − ‖(vk − ṽk)−M(vk − ṽk)‖2H

= (vk − ṽk)T (QT +Q−MTHM)(vk − ṽk)
(2.2)
= ‖vk − ṽk‖2G. (3.6)

Substituting (3.6) in (3.5), and then in (3.3), we get the assertion (3.1) directly. Setting the w ∈ Ω in (3.1) by any
fixed w∗, then using (w̃k − w∗)TF (w̃k) = (w̃k − w∗)TF (w∗) and θ(ũk) − θ(u∗) + (w̃k − w∗)TF (w∗) ≥ 0,
we obtain (3.2) and the theorem is completely proved. 2

This theorem is proved under weak conditions: QT +Q � 0, H � 0, HM = Q, G = QT +Q−MTHM � 0.

Assertion (3.1) is useful for the convergence rate proof of ADMM, see SIAM Numer. Anal. 2012, 50:700-709.

4 The equivalent convergence conditions and the generalized PPA
Under the condition that the prediction matrix Q is nonsingular, it is easy to construct the correction matrix M
which satisfies the convergence conditions (2.2). In fact, because QT +Q � 0, we can take

D � 0, G � 0 and D +G = QT +Q. (4.1)

Afterwards, we let
HM = Q and MTHM = D. (4.2)

Because
{

HM=Q,

MTHM=D.
⇔

{
QTM=D,

HM=Q.
⇔

{
M=Q−TD,

H=QD−1QT ,
we get the matrices M , H and G,

which satisfy the conditions (2.2). There are infinite combinations of D and G which satisfy conditions (4.1).

Choosing matrix D that satisfies condition (4.1), we get M = Q−TD, and H = QD−1QT is positive definite.
The correction vk+1 = vk −M(vk − ṽk) (can be achieved by solving QT (vk+1 − vk) = D(ṽk − vk).

The generalized PPA by choosing a specialD. We can take a special pair of D and G in (4.1) by

D = G = 1
2 (QT +Q). (4.3)

In this case, M = 1
2Q
−T (QT +Q). Because D = G, the contractive inequality (3.2) becomes

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − ṽk‖2D, ∀v∗ ∈ V∗. (4.4)

Moreover, since D = MTHM (see (4.2)) and M(vk − ṽk) = vk − vk+1 (see (2.1b)), it follows that

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − vk+1‖2H , ∀v∗ ∈ V∗. (4.5)

The inequality (4.5) is just the main convergence result of the classical PPA, a favorable formula ! Because the
each iteration consists of a prediction and a correction, we call the related method as a generalized PPA.

In practice, in the generalized PPA, we suggest to takeD = α(QT +Q) and α ∈ [0.5, 1).
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B. PPA belongs to the algorithmic unified framework
Proximal Point Algorithm, Algorithmic unified framework c© Bingsheng He

1 Preliminary theorem for convex optimization
Theorem B. LetX ⊂ <n be a closed convex set, θ(x) and f(x) be convex functions and f(x) be differentiable.
Assume that the solution set of the minimization problem min{θ(x) + f(x) |x ∈ X} is nonempty. Then,

x∗ ∈ arg min{θ(x) + f(x) |x ∈ X} (1.1)
if and only if

x∗ ∈ X , θ(x)− θ(x∗) + (x− x∗)T∇f(x∗) ≥ 0, ∀x ∈ X . (1.2)

2 Convex optimization and its related variational inequality
1). min-max problem. Let (x∗, y∗) be the solution of the min-max problem

minx maxy{Φ(x, y) = θ1(x)− yTAx− θ2(y) |x ∈ X , y ∈ Y}. (2.1)

Using the notation of Φ(x, y), we have{
x∗ ∈ X , θ1(x)− θ1(x∗) + (x− x∗)T (−AT y∗) ≥ 0, ∀x ∈ X ,
y∗ ∈ Y, θ2(y)− θ2(y∗) + (y − y∗)T ( Ax∗) ≥ 0, ∀ y ∈ Y.

Furthermore, it can be written as a variational inequality in the compact form:

(VI) u∗ ∈ Ω, θ(u)− θ(u∗) + (u− u∗)TF (u∗) ≥ 0, ∀u ∈ Ω, (2.2)

where u =

(
x
y

)
, θ(u) = θ1(x) + θ2(y), F (u) =

(
−AT y
Ax

)
and Ω = X × Y. (2.3)

Please notice that for the F (u) in (2.3), we have (u− ũ)T (F (u)− F (ũ)) ≡ 0.

2). Linearly constrained convex optimization The Lagrangian function of the linearly constrained convex
optimization problem min{θ(u) | Au = b, u ∈ U} is

L(u, λ) = θ(u)− λT (Au− b), which defined on U × <m.
The saddle point (u∗, λ∗) ∈ U × <m of the Lagrangian function can be characterized as{

u∗ ∈ U , L(u, λ∗)− L(u∗, λ∗) ≥ 0, ∀u ∈ U , (2.4a)
λ∗ ∈ <m, L(u∗, λ∗)− L(u∗, λ) ≥ 0, ∀ λ ∈ <m. (2.4b)

Using a more compact form, the saddle-point can be characterized as the solution of the following VI:

(VI) w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (2.5)

where w =

(
u
λ

)
, F (w) =

(
−ATλ
Au− b

)
and Ω = U × <m. (2.6)

Please notice that (w− w̃)T (F (w)−F (w̃)) ≡ 0. We focus on solving the variational inequalities (2.2) and (2.5).

3 Algorithmic unified framework for monotone variational inequalities
Algorithms in a unified framework (Each iteration of the method consists of a prediction and a correction)

[Prediction Step]. Start from a given vk, find a predictor w̃k ∈ Ω, which satisfies

w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TQ(vk − ṽk), ∀w ∈ Ω, (3.1a)
where the prediction matrix Q is not necessarily symmetric, but the kernel of QT +Q is positive definite.

v can be equal to w, or a part vector of the whole vector of w. In this note, v is the whole vector w.

[Correction Step]. Find the correction matrix M which satisfied (3.2). The new vk+1 is given by

vk+1 = vk −M(vk − ṽk). (3.1b)

Convergence Conditions
[Convergence Conditions]. For the prediction matrix Q in (3.1a) and the correction matrix M in (3.1b),
there is a positive definite matrix H , such that

HM = Q and G = QT +Q−MTHM � 0. (3.2)
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4 Proximal point algorithm for monotone variational inequalities

Definition (k-th iteration of the relaxed PPA) H � 0. Start with a given wk, find a w̃k, such that

[Prediction] w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (w − w̃k)TH(wk − w̃k), ∀w ∈ Ω. (4.1a)

[Correction] wk+1 = wk − α(wk − w̃k), α ∈ (0, 2).
(
α ∈ [1.2, 1.8] is suggested

)
. (4.1b)

The relaxed PPA is a special algorithm of (3.1) with Q = H and M = αI . By setting H = 1
αH, we have

HM = H = Q and G = QT +Q−MTHM = (2− α)H � 0. (4.2)

Taking α = 1, we get the classical PPA. PPA belongs to (3.1) and satisfies the convergence conditions (3.2).

5 PPA (Customized PPA and Balanced PPA) for VI
The main task of the each iteration of the relaxed PPA is to find a predictor w̃k which satisfies (4.1a).
1). PPA for VI (2.2) (Bingsheng He and Xiaoming Yuan, SIAM Imaging Science 5, (2012) 119-149)

Start with given uk, find a ũk, such that (4.1a) is satisfied, where

u =

(
x
y

)
, w = u, F (w) =

(
−AT y
Ax

)
, H =

(
rIn AT

A sIm

)
, rs > ‖ATA‖. (5.1)

The concrete formula of (4.1a) with F and H given in (5.1) is the uwave parts is F (w̃k){
x̃k ∈ X , θ1(x)− θ1(x̃k) + (x− x̃k)T {−AT ỹk

::::::
+ rIn(x̃k − xk) +AT (ỹk − yk)} ≥ 0, ∀x ∈ X ,

ỹk ∈ Y, θ2(y)− θ2(ỹk) + (y − ỹk)T { Ax̃k
:::

+ A(x̃k − xk) + sIm(ỹk − yk)} ≥ 0, ∀y ∈ Y.

According to Theorem B, to complete the PPA iteration, we need only to solve the following sub-problems:{
x̃k = argmin{θ1(x)− xTAT yk + 1

2r‖x− x
k‖2 |x ∈ X}, (5.2a)

ỹk = argmin{θ2(y) + yTA(2x̃k − xk) + 1
2s‖y − y

k‖2 | y ∈ Y}. (5.2b)

2). Customized PPA and Balanced PPA for VI (2.5)
Start with given wk, find a w̃k, such that (4.1a) is satisfied, where

F (w) =

(
−ATλ
Au− b

)
, H=H1 =

(
βATA+ δIn AT

A 1
β Im

)
or H=H2 =

(
rIn AT

A 1
rAA

T + δIm

)
. (5.3)

Customized PPA for VI (2.5) (For customized PPA, see He, Yuan, Zhang 2013 COA, Gu, He, Yuan 2014 COA)
The concrete formula of (4.1a) withH = H1 given in (5.3) is the uwave parts is F (w̃k) ũk ∈ U , θ(u)− θ(ũk) + (u− ũk)T {−AT λ̃k

::::::
+ (βATA+ δIn)(ũk − uk) +AT (λ̃k − λk)} ≥ 0, ∀u ∈ U ,

λ̃k ∈ <m, (λ− λ̃k)T {(Aũk − b
:::::::

) + A(ũk − uk) + (1/β)(λ̃k − λk)} ≥ 0, ∀λ ∈ <m.

According to Theorem B, to complete PPA iteration, we need only to solve the following sub-problems:{
ũk = argmin

{
θ(u)− uTATλk + 1

2 (u− uk)T (βATA+ δIn)(u− uk) |u ∈ U
}
, (5.4a)

λ̃k = λk − β
(
A[2ũk − uk]− b

)
. (5.4b)

Balanced PPA for VI (2.5) (For balanced PPA, see He and Yuan, arXiv:2108.08554; S.J. Xu, 2023, JAMC)

The concrete formula of (4.1a) withH = H2 given in (5.3) is the uwave parts is F (w̃k)ũ
k ∈ U , θ(u)− θ(ũk) + (u− ũk)T {−AT λ̃k

::::::
+ rIn(ũk − uk) + AT (λ̃k − λk)} ≥ 0, ∀u ∈ U ,

λ̃k ∈ <m, (λ− λ̃k)T {(Aũk − b
:::::::

) +A(ũk − uk) + ( 1
rAA

T + δIm)(λ̃k − λk)} ≥ 0, ∀λ ∈ <m.

According to Theorem B, to complete PPA iteration, we need only to solve the following sub-problems:{
ũk = argmin

{
θ(u)− uTATλk + r

2‖u− u
k‖2 |u ∈ U

}
, Primal problem is easier than(5.4a) (5.5a)

λ̃k = λk − ( 1
rAA

T + δIm)−1
(
A[2ũk − uk]− b

)
. Only once Cholesky-Decomposition (5.5b)

Algorithm (5.5) is called the balanced algorithm, because its two subproblems share the difficulties.
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C. Explaining ADMM as an algorithm within the framework
The convergence rate proof benefit from this explaination c© Bingsheng He

1 Two block convex optimization and its related VI and ADMM
We consider the two block separable convex optimization problem

min{θ1(x) + θ2(y) | Ax+By = b, x ∈ X , y ∈ Y}, (1.1)

where θ1(x), θ2(y) are convex function,A, B, b are the corresponding matrices and vector. X and Y are closed
convex set. The saddle point of the Lagrangian function of the problem (1.1), say w∗ = (x∗, y∗, λ∗), can be
characterized as the solution of the following variational inequality:

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (1.2a)
where

w =

 x
y
λ

 , u =

(
x
y

)
, θ(u) = θ1(x) + θ2(y), F (w) =

 −ATλ
−BTλ

Ax+By − b

 . (1.2b)

The k-th iteration of ADMM begins with a given vk = (yk, λk), produces (xk+1, yk+1, λk+1) via
xk+1 ∈ arg min

{
θ1(x)− xTATλk + 1

2β‖Ax+Byk − b‖2
∣∣ x ∈ X}, (1.3a)

yk+1 ∈ arg min
{
θ2(y)− yTBTλk + 1

2β‖Ax
k+1 +By − b‖2

∣∣ y ∈ Y}, (1.3b)

λk+1 = λk − β(Axk+1 +Byk+1 − b). (1.3c)

2 Split ADMM iteration into prediction and correction of the unified framework
We intentionally split ADMM (1.3) into a prediction-correction method.

The prediction of the k-th iteration begins with given vk = (yk, λk), produces (x̃k, ỹk, λ̃k) via

[Prediction]


x̃k ∈ arg min

{
θ1(x)− xTATλk + 1

2β‖Ax+Byk − b‖2
∣∣ x ∈ X}, (2.1a)

ỹk ∈ arg min
{
θ2(y)− yTBTλk + 1

2β‖Ax̃
k +By − b‖2

∣∣ y ∈ Y}, (2.1b)

λ̃k = λk − β(Ax̃k +Byk − b). (2.1c)

According to the optimality of the convex optimization, the VI forms of three subproblems of (2.1) are
x̃k ∈ X , θ1(x)− θ1(x̃k) + (x− x̃k)T

{
−ATλk + βAT (Ax̃k +Byk − b)} ≥ 0, ∀x ∈ X ,

ỹk ∈ Y, θ2(y)− θ2(ỹk) + (y − ỹk)T
{
−BTλk + βBT (Ax̃k +Bỹk − b)} ≥ 0, ∀y ∈ Y,

λ̃k ∈ <m, (λ− λ̃k)T {(Ax̃k +Byk − b) + 1
β (λ̃k − λk)} ≥ 0, ∀λ ∈ <m.

By using λ̃k = λk − β(Ax̃k +Byk − b), the above inequalities can be written as
x̃k ∈ X , θ1(x)− θ1(x̃k) + (x− x̃k)T

{
−AT λ̃k
::::::

} ≥ 0, ∀x ∈ X , (2.2a)

ỹk ∈ Y, θ2(y)− θ2(ỹk) + (y − ỹk)T
{
−BT λ̃k
::::::

+ βBTB(ỹk − yk) } ≥ 0, ∀y ∈ Y, (2.2b)

λ̃k ∈ <m, (λ− λ̃k)T {(Ax̃k +Bỹk − b)
::::::::::::::

−B(ỹk − yk) + 1
β (λ̃k − λk)} ≥ 0, ∀λ ∈ <m. (2.2c)

Furthermore, by using the notations of VI (1.2), we get the compact VI form of the prediction (2.1) :

θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TQ(vk − ṽk), ∀w ∈ Ω, (2.3a)
where

Q =

(
βBTB 0
−B 1

β Im

)
. (2.3b)

Let wk+1 = (xk+1, yk+1, λk+1) be the output of the classical ADMM (1.3), then we have

xk+1 = x̃k, yk+1 = ỹk and λk+1 = λ̃+ βB(yk − ỹk). (2.4)
where w̃k = (x̃k, ỹk, λ̃k) are generated by the prediction (2.1). According to (2.4)

[Correction] vk+1 = vk −M(vk − ṽk), where M =

(
I 0

−βB Im

)
. (2.5)

By setting H =

(
βBTB 0

0 1
β Im

)
, we have HM = Q and G = QT +Q−MTHM

::::::::::::::::::::
=

(
0 0
0 1

β Im

)
. (2.6)
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ADMM (1.3) is split into the prediction-correction method (2.3)-(2.5). According to the framework, we have

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − ṽk‖2G, ∀v∗ ∈ V∗. (2.7)

Theorem C1. Let the sequences {vk} and {ṽk} be generated by the prediction-correction method (2.3)-(2.5),
then we have

‖vk − ṽk‖2G = 1
β ‖λ

k − λ̃k‖2 ≥ ‖vk − vk+1‖2H , (2.8)
and consequently,

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − vk+1‖2H , ∀v∗ ∈ V∗. (2.9)

Proof. From (2.2b), we know that the optimal condition of the y-subproblem is

ỹk ∈ Y, θ2(y)− θ2(ỹk) + (y − ỹk)T {−BT λ̃k + βBTB(ỹk − yk)} ≥ 0, ∀ y ∈ Y. (2.10)

According to (2.4), λk+1 = λ̃k + βB(yk − ỹk) and ỹk = yk+1, the inequality (2.10) can be written as

yk+1 ∈ Y, θ2(y)− θ2(yk+1) + (y − yk+1)T {−BTλk+1} ≥ 0, ∀ y ∈ Y. (2.11)

The above inequality is hold also for the last iteration, i. e., we have

yk ∈ Y, θ2(y)− θ2(yk) + (y − yk)T {−BTλk} ≥ 0, ∀ y ∈ Y. (2.12)

Setting y = yk and y = yk+1 in in (2.11) and (2.12), respectively, and then adding them, we get

(λk − λk+1)TB(yk − yk+1) ≥ 0. (2.13)
Using λk − λ̃k = (λk − λk+1) + βB(yk − yk+1) (see (2.4)) and the inequality (2.13), we obtain

1
β ‖λ

k − λ̃k‖2 = 1
β ‖(λ

k − λk+1) + βB(yk − yk+1)‖2

≥ β‖B(yk − yk+1)‖2 + 1
β ‖λ

k − λk+1‖2 = ‖vk − vk+1‖2H . (2.14)
The assertion (2.8) follows from (2.14) directly. Consequently, the assertion (2.9) follows from (2.7) and (2.8).
The theorem is proved. 2

Note that from (2.9) we have
∑∞
k=1 ‖vk − vk+1‖H ≤ ‖v0 − v∗‖2H , ∀v∗ ∈ V∗. (2.15)

3 Important property of ADMM by using the algorithmic framework
Theorem C2. Let the sequences {vk} and {ṽk} be generated by the prediction (2.3) and correction (2.5), then
we have

‖vk+1 − vk+2‖H ≤ ‖vk − vk+1‖2H , ∀v∗ ∈ V∗. (3.1)

Proof. According to (2.3), we have

θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TQ(vk − ṽk), ∀w ∈ Ω (3.2)
and

θ(u)− θ(ũk+1) + (w − w̃k+1)TF (w̃k+1) ≥ (v − ṽk+1)TQ(vk+1 − ṽk+1), ∀w ∈ Ω. (3.3)

Setting the w in (3.2) and (3.3) by w̃k+1 and w̃k, respectively, and then adding the resulting inequalities together
and using (w̃k − w̃k+1)T

(
F (w̃k)− F (w̃k+1)

)
= 0, we obtain

(ṽk − ṽk+1)TQ{(vk − ṽk)− (vk+1 − ṽk+1)} ≥ 0. (3.4)

Adding {(vk − ṽk)− (vk+1 − ṽk+1)}TQ{(vk − ṽk)− (vk+1 − ṽk+1)} to the both sides of (3.4), we get

(vk − vk+1)TQ{(vk − ṽk)− (vk+1 − ṽk+1)} ≥ 1
2‖(v

k − ṽk)− (vk+1 − ṽk+1)‖2(QT+Q).

Because HM = Q and M(vk − ṽk) = (vk − vk+1) (see (2.5)), the above inequality becomes

(vk − vk+1)TH{(vk − vk+1)− (vk+1 − vk+2)} ≥ 1
2‖(v

k − ṽk)− (vk+1 − ṽk+1)‖2(QT+Q). (3.5)

Using the identity ‖a‖2H − ‖b‖2H = 2aTH(a− b)− ‖a− b‖2H and (3.5), we get

‖vk − vk+1‖2H − ‖vk+1 − vk+2‖2H
= 2(vk − vk+1)TH{(vk − vk+1)− (vk+1 − vk+2)} − ‖(vk − vk+1)− (vk+1 − vk+2)‖2H
≥ ‖(vk − ṽk)− (vk+1 − ṽk+1)‖2(QT+Q) − ‖(v

k − vk+1)− (vk+1 − vk+2)‖2H . (3.6)

Since (vk−vk+1) = M(vk−ṽk) andQT+Q−MTHM = G, the RHS of (3.6) is ‖(vk−ṽk)−(vk+1−ṽk+1)‖2G.
The assertion (3.1) follows immediately. 2

Theorem C3. Let {vk} be the sequence generated by ADMM, then for any integer t > 0, we have

‖vt − vt+1‖2H ≤ 1
t+1

∑t
k=0 ‖vk − vk+1‖H ≤ 1

t+1

∑∞
k=0 ‖vk − vk+1‖H ≤ 1

t+1‖v
0 − v∗‖2H , ∀v∗ ∈ V∗.

Proof. The assertion follows from (3.1) and (2.15) directly. 2 See H and Yuan, Numer. Math. 130 (2015) 567-577.
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D. Constructing SC methods for three block convex optimization
Different corrections based on the same prediction c© Bingsheng He

1 The variational inequality and the algorithmic framework
Finding the saddle point of the Lagrangian function is reduced to solving the variational inequality

(VI) w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω. (1.1)

For solving VI (1.1), we have proposed the following algorithmic unified framework:
[Prediction Step]. Start from a given vk, find a predictor w̃k ∈ Ω, which satisfies

w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TQ(vk − ṽk), ∀w ∈ Ω, (1.2a)
where the matrix Q is not necessarily symmetric, but the kernel of QT +Q is positive definite.
[Correction Step]. The new iteration (corrector) vk+1 is given by

vk+1 = vk −M(vk − ṽk), (1.2b)

where M = Q−TD, D is chosen which is satisfied D � 0, G � 0, D +G = QT +Q.

Because M = Q−TD, the correction (1.2b) can be achieved by QT (vk+1 − vk) = D(ṽk − vk).

2 Prediction We take the three block separable convex optimization as an example for explanation.
The problem and the VI are described in A. We take the direct extension of ADMM for producing its prediction.

[Prediction]


x̃k ∈ arg min

{
θ1(x)− xTATλk + 1

2β‖Ax+Byk + Czk − b‖2 | x ∈ X
}
, (2.1a)

ỹk ∈ arg min
{
θ2(y)− yTBTλk + 1

2β‖Ax̃
k +By + Czk − b‖2 | y ∈ Y

}
, (2.1b)

z̃k ∈ arg min
{
θ3(z)− zTCTλk + 1

2β‖Ax̃
k +Bỹk + Cz − b‖2 | z ∈ Z

}
, (2.1c)

λ̃k = λk − β
(
Ax̃k +Byk + Czk − b

)
. (2.1d)

According to the basic theorem of optimization, it follows from (2.1) that

x̃k ∈ X , θ1(x)− θ1(x̃k) + (x− x̃k)T
{
−AT λ̃k
::::::

} ≥ 0, ∀x ∈ X , (2.2a)

ỹk ∈ Y, θ2(y)− θ2(ỹk) + (y − ỹk)T
{
−BT λ̃k
::::::

+ βBTB(ỹk−yk) } ≥ 0, ∀y ∈ Y, (2.2b)

z̃k ∈ Z, θ3(z)− θ3(z̃k) + (z − z̃k)T
{
−CT λ̃k
::::::

+ βCTB(ỹk−yk) + βCTC(z̃k−zk)} ≥ 0, ∀z ∈ Z, (2.2c)

(Ax̃k +Bỹk + Cz̃k − b)
::::::::::::::::::::

−B(ỹk − yk)− C(z̃k − zk) + 1
β (λ̃k − λk) = 0. (2.2d)

 The inequalities (2.2)
can be written together
as the prediction (1.2a)

 where w =


x
y
z
λ

, v =

 y
z
λ

 and Q =

 βBTB 0 0
βCTB βCTC 0
−B −C 1

β I

. (2.3)

3 Correction by using the kernel matrix Note that the matrix

QT +Q =

 BT 0 0
0 CT 0
0 0 I

 2βI βI −I
βI 2βI −I
−I −I 2

β I

 B 0 0
0 C 0
0 0 I


is positive definite (whenever B and C are both full column rank) and

QT =

 BT 0 0
0 CT 0
0 0 I

 βI βI −I
0 βI −I
0 0 1

β I

 B 0 0
0 C 0
0 0 I

 .

The center part of the matrices QT +Q and QT are called the kernel matrices, and denoted respectively by

QT +Q=

 2βI βI −I
βI 2βI −I
−I −I 2

β I

 and QT =

βI βI −I
0 βI −I
0 0 1

β I

. Note that Q−T=

 1
β I − 1

β I 0

0 1
β I I

0 0 βI

. (3.1)

Q−T has the simple form because the kernel matrix QT is a upper triangular matrix ! Since the k-th iteration
begins with a given (Byk, Czk, λk), for starting the next iteration, the correction of the k-th iteration needs
only to offer (Byk+1, Czk+1, λk+1) . This is very simple ! See some examples !
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3.1 Constructing method I D has a simple form

D =

BT 0 0
0 CT 0
0 0 I

 νβI 0 0
0 νβI 0
0 0 1

β I

B 0 0
0 C 0
0 0 I

 , ν ∈ (0, 1). (3.2)

Since the kernel matrix of QT +Q can be decomposed as 2βI βI −I
βI 2βI −I
−I −I 2

β I

 =

 νβI 0 0
0 νβI 0
0 0 1

β I

+

 (2− ν)βI βI −I
βI (2− ν)βI −I
−I −I 1

β I

 ,

the kernel matrices of D and G in the right hand side of the above equation are positive definite. The solution of
the system of equation QT (vk+1 − vk) = D(ṽk − vk) can be obtained by solving βI βI −I

0 βI −I
0 0 1

β I

Byk+1 −Byk
Czk+1 − Czk
λk+1 − λk

 =

 νβI 0 0
0 νβI 0
0 0 1

β I

Bỹk −Byk
Cz̃k − Czk
λ̃k − λk

 .

By using the inverse of the kernel matrix of QT in (3.1), the correction form can be simplified toByk+1

Czk+1

λk+1

 =

Byk

Czk

λk

−
 νI −νI 0

0 νI 1
β I

0 0 I

B(yk − ỹk)
C(zk − z̃k)

λk − λ̃k

 . (3.3)

3.2 Constructing method II G has a simple form

D =

 BT 0 0
0 CT 0
0 0 I

 (2− ν)βI βI −I
βI (2− ν)βI −I
−I −I 1

β I

 B 0 0
0 C 0
0 0 I

 , ν ∈ (0, 1). (3.4)

Since the kernel matrix of QT +Q can be decomposed as 2βI βI −I
βI 2βI −I
−I −I 2

β I

 =

 (2− ν)βI βI −I
βI (2− ν)βI −I
−I −I 1

β I

+

 νβI 0 0
0 νβI 0
0 0 1

β I

 ,

the kernel matrices of D and G in the right hand side of the above equation are positive definite. The solution of
the system of equation QT (vk+1 − vk) = D(ṽk − vk) can be obtained by solving βI βI −I

0 βI −I
0 0 1

β I

Byk+1 −Byk
Czk+1 − Czk
λk+1 − λk

 =

 (2− ν)βI βI −I
βI (2− ν)βI −I
−I −I 1

β I

Bỹk −Byk
Cz̃k − Czk
λ̃k − λk

 .

By using the inverse of the kernel matrix of QT in (3.1), the correction form can be simplified toByk+1

Czk+1

λk+1

 =

Byk

Czk

λk

−
 (1− ν)I −(1− ν)I 0

0 (1− ν)I 0
−βI −βI I

B(yk − ỹk)
C(zk − z̃k)

λk − λ̃k

 . (3.5)

3.3 Constructing method III D is proportional to (QT +Q)

D = α
[
QT +Q

]
= α

BT 0 0
0 CT 0
0 0 I

 2βI βI −I
βI 2βI −I
−I −I 1

β I

B 0 0
0 C 0
0 0 I

 , α ∈ (0, 1). (3.6)

The solution of the system of equations QT (vk+1 − vk) = D(ṽk − vk) can be obtained by solving βI βI −I
0 βI −I
0 0 1

β I

Byk+1 −Byk
Czk+1 − Czk
λk+1 − λk

 = α

 2βI βI −I
βI 2βI −I
−I −I 2

β I

B(yk − ỹk)
C(zk − z̃k)

λk − λ̃k

 , α ∈ (0, 1).

By using the inverse of the kernel matrix of QT in (3.1), the correction form can be simplified toByk+1

Czk+1

λk+1

 =

Byk

Czk

λk

− α
 I −I 0

0 I 1
β I

−βI −βI 2I

B(yk − ỹk)
C(zk − z̃k)

λk − λ̃k

 , α ∈ (0, 1). (3.7)
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E. Generalized PPA for multi-block convex optimization
Application of the generalized Proximal Point Algorithm c© Bingsheng He

1 The variational inequality and the algorithmic framework
Consider the multi-block convex optimization problem

min
{∑p

i=1 θi(xi)
∣∣ ∑p

i=1Aixi = b, xi ∈ Xi
}
. (1.1)

The Lagrangian function of the problem (1.1) is L(x1, . . . , xp, λ) =
∑p
i=1 θi(xi)−λT (

∑p
i=1Aixi− b), which

is defined on Ω =
∏p
i=1 Xi×<m. Note tha the saddle point of the Lagrangian function, say (x∗1, . . . , x

∗
p, λ
∗) ∈ Ω,

can be described the solution of the following variational inequality:

(VI) w∗ ∈ Ω, θ(x)− θ(x∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (1.2)

where Ω =
∏p
i=1 Xi × Λ, θ(x) =

∑p
i=1 θi(xi),

w =


x1
...
xp
λ

 , x =

 x1
...
xp

 , F (w) =


−AT1 λ

...
−ATp λ∑p

i=1Aixi − b

 . (1.3)

We still use Ω∗ to represent the solution set of the variational inequality (1.2). For solving VI (1.2), we have
proposed the following algorithmic unified framework which consists a prediction and a correction.

[Prediction]. Start from a given wk, find a predictor w̃k ∈ Ω, which satisfies

w̃k ∈ Ω, θ(x)− θ(x̃k) + (w − w̃k)TF (w̃k) ≥ (w − w̃k)TQ(wk − w̃k), ∀w ∈ Ω, (1.4a)
where the matrix Q is not necessarily symmetric, but the kernel of QT +Q is positive definite.
[Correction]. The new iterate (corrector) wk+1 is given by

wk+1 = wk −M(wk − w̃k). (1.4b)
where M = Q−TD, D is chosen which is satisfied D � 0, G � 0, D +G = QT +Q.

Because M = Q−TD, the correction can be achieved by QT (wk+1 − wk) = D(w̃k − wk). (1.5)

2 Prediction [24] B.S.He, S.J.Xu, X.M.Yuan, Handbook of Numerical Analysis, 24 (2023) 511-557.

Start from a given (A1x
k
1 , A2x

k
2 , · · · , Apxkp, λk), obtain w̃k = (x̃k1 , x̃

k
2 , · · · , x̃kp, λ̃k) via:

x̃k1 ∈ arg min
{
θ1(x1)− xT1 AT1 λk + 1

2β‖A1(x1 − xk1)‖2 | x1 ∈ X1

}
;

x̃k2 ∈ arg min
{
θ2(x2)− xT2 AT2 λk + 1

2β‖A1(x̃k1 − xk1) +A2(x2 − xk2)‖2 | x2 ∈ X2

}
;

...
x̃kp ∈ arg min

{
θp(xp)− xTpATp λk + 1

2β‖
∑p−1
j=1Aj(x̃

k
j − xkj )+Ap(xp − xkp)‖2 | xp ∈ Xp

}
;

λ̃k = λk − β
(∑p

j=1Aj x̃
k
j − b

)
.

(2.1)

The optimal condition of the xi subproblem is

x̃ki ∈ Xi, θi(xi)− θi(x̃ki ) + (xi − x̃ki )T {−ATi λ̃k + β
∑i
j=1Aj(x̃

k
j − xkj ) +ATi (λ̃k − λk)} ≥ 0, ∀xi ∈ Xi.

The formula which yields λ̃k can be rewritten as

λ̃k ∈ <m, (λ− λ̃k)T {
(∑p

j=1Aj x̃
k
j − b

)
+ 1

β (λ̃k − λk)} ≥ 0, ∀λ ∈ <m.
By using the notations θ(x) and F (w), we obtain the following variational inequality for the prediction.

Lemma 2.1 Let w̃k ∈ Ω be generated by (2.1) with given (A1x
k
1 , A2x

k
2 , · · · , Apxkp, λk). Then we have

w̃k ∈ Ω, θ(x)− θ(x̃k) + (w − w̃k)TF (w̃k) ≥ (w − w̃k)TQ(wk − w̃k), ∀w ∈ Ω, (2.2a)
where

Q =


βAT1 A1 0 · · · 0 AT1

βAT2 A1 βAT2 A2
. . .

... AT2...
. . . 0

...
βATpA1 βATpA2 · · · βATpAp ATp

0 0 · · · 0 1
β Im

 . (2.2b)
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3 Correction (1.5) by using the kernel matrix also see arXiv:2107.01897v2[math.OC].

QT +Q =


AT1 0 · · · 0 0

0 AT2
. . .

... 0
...

. . . 0
...

0 0 · · · ATp 0
0 0 · · · 0 Im




2βI βI · · · βI I

βI 2βI
. . .

...
...

...
. . . . . . βI I

βI · · · βI 2βI I
I · · · I I 2

β I




A1 0 · · · 0 0

0 A2
. . .

... 0
...

. . . 0
...

0 0 · · · Ap 0
0 0 · · · 0 Im

 .

is positive definite (whenever each Ai, i = 1, . . . , p, is full column rank matrix) and

QT =


AT1 0 · · · 0 0

0 AT2
. . .

... 0
...

. . . 0
...

0 0 · · · ATp 0
0 0 · · · 0 Im




βI βI · · · βI 0

0 βI
. . .

...
...

...
. . . . . . βI 0

0 · · · 0 βI 0
I · · · I I 1

β I




A1 0 · · · 0 0

0 A2
. . .

... 0
...

. . . 0
...

0 0 · · · Ap 0
0 0 · · · 0 Im


The center part of the matrices QT +Q and QT are called their kernel matrix and denoted

QT +Q=


2βI βI · · · βI I

βI 2βI
. . .

...
...

...
. . . . . . βI I

βI · · · βI 2βI I
I · · · I I 2

β I

 and QT =


βI βI · · · βI 0

0 βI
. . .

...
...

...
. . . . . . βI 0

0 · · · 0 βI 0
I · · · I I 1

β I

, (3.1)

respectively. Note that Q−T has the simple form because QT is a nonsingular upper triangular matrix !

Since the k-th iteration begins with a given (A1x
k
1 , A2x

k
2 , . . . , Apx

k
p, λ

k), for starting the next iteration, the
correction this iteration needs only to offer (A1x

k+1
1 , A2x

k+1
2 , . . . , Apx

k+1
p , λk+1). There are infinite combi-

nations of D and G that meet the conditions, we only take the following example for illustration.

D is proportional toG D = α
(
QT +Q

)
and G = (1− α)

(
QT +Q

)
, α ∈ (0, 1)

D=α


AT1 0 · · · 0 0

0 AT2
. . .

... 0
...

. . . 0
...

0 0 · · · ATp 0
0 0 · · · 0 Im




2βI βI · · · βI I

βI 2βI
. . .

...
...

...
. . . . . . βI I

βI · · · βI 2βI I
I · · · I I 2

β I




A1 0 · · · 0 0

0 A2
. . .

... 0
...

. . . 0
...

0 0 · · · Ap 0
0 0 · · · 0 Im

. (3.2)

The solution of the system of equations QT (vk+1 − vk) = D(ṽk − vk) can be obtained by solving
βI βI · · · βI 0

0 βI
. . .

...
...

...
. . . . . . βI 0

0 · · · 0 βI 0
I · · · I I 1

β I




A1x

k+1
1 −A1x

k
1

A2x
k+1
2 −A2x

k
2

...
Apx

k+1
p −Apxkp
λk+1 − λk

= α


2βI βI · · · βI I

βI 2βI
. . .

...
...

...
. . . . . . βI I

βI · · · βI 2βI I
I · · · I I 2

β I




A1x̃

k
1 −A1x

k
1

A2x̃
k
2 −A2x

k
2

...
Apx̃

k
p −Apxkp
λ̃k − λk

.

Because


βI βI · · · βI 0

0 βI
. . .

...
...

...
. . . . . . βI 0

0 · · · 0 βI 0
I · · · I I 1

β I



−1

=



1
β I − 1

β I 0 · · · 0

0 1
β I

. . . . . .
...

...
. . . . . . − 1

β I 0

0 · · · 0 1
β I 0

−I 0 · · · 0 βI

, finally, we get


A1x

k+1
1

A2x
k+1
2

...
Apx

k+1
p

λk+1

 =


A1x

k
1

A2x
k
2

...
Apx

k
p

λk

− α


I −I 0 · · · 0

0
. . . . . . . . .

...
0 0 I −I 0
I · · · I 2I 1

β I

−βI 0 · · · 0 I




A1x

k
1 −A1x̃

k
1

A2x
k
2 −A2x̃

k
2

...
Apx

k
p −Apx̃kp
λk − λ̃k
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