Splitting and contraction methods for convex optimization
Optimization, VI, Algorithmic framework and Generalized-PPA (C) Bingsheng He

1 Convex optimization and its related variational inequality

We consider the linearly constrained convex optimization

min{f(u) | Au="b, u € U}. (1.1)
The Lagrangian function of the problem (1.1) is
L(u, \) = 0(u) — AT (Au — b), (1.2)

which is defined on U x R™. A pair of (u*, \*) € U x R™
is called a saddle point of the Lagrangian function (1.2), if

Lycy(u, \*) > L(u*, \*) > Lyegm (u*, A). (1.3)

The two inequalities in (1.3) can be written as (u*, A*) € U x ™,

L(u, \*) — L(u*,\*) > 0, Yu €U, O(u)—0(u*)+(u—u*)T(—ATA\*) > 0, Vu €U, (1.4)
L(u*,\*) — L(u*,A\) > 0, YA € R™. A= 2M)T(Au* —b) >0, VA€ R™. '
Combining the above two inequalities, the saddle point is equivalent to the solution of the VI :
VD) weQ, 0u)—0u)+(w—w)TFw)>0, YweQ, (1.5)'
U — AT\ m
where w-(A), F(w)-(AU_b> and Q=UxR™. (1.6)
Please notice that (w — @)% (F(w) — F(w)) = 0. The problem (1.1) is translated to VI (1.5).
For the multi-block separable convex optimization, we take the three-block problem
min{6,(z) + 02(y) + 05(2) | Ax + By+ Cz=bx € X,y € Y,z € Z} (1.7)

as an example. Its corresponding variational inequality has the form (1.5), where 2 = X x Y x Z x R™, and

x —AT)
v Y —BT\
u=19Y |, 0u)=0i(z)+0(y) +605(2), w= e F(w) = _ T . (1.3)
o A Az +By+Cz—b

For the F'(w) in (1.8), we still have (w — ) (F(w) — F()) = 0, for any w and 1 in the space containing (2.

2 Algorithmic unified framework for monotone variational inequalities

We focus on how to solve the variational inequality (1.5), following is our algorithmic framework.
AlgOI‘itth in a unified framework (Each iteration of the method consists of a prediction and a correction)

[Prediction Step]. Start from a given v*, find a predictor @w* € Q, which satisfies
" € Q, Ou) - 0(@") + (w — ") T F@@") > (v —)TQW* — %), Yw e Q, (2.1a)

where the prediction matrix () is not necessarily symmetric, but the kernel of Q7 + @ is positive definite.

v is called the essential variable in the iteration which can be equal to w, or a part of the whole vector of w.

[Correction Step]. Find the correction matrix M which satisfied (2.2). The new iteration v**! is given by
P =oF — M(oF — %), (2.1b)

Convergence Conditions (It is easy to find the matrix M which satisfies the conditions, see the details in §4)

[Convergence Conditions]. For the prediction matrix () in (2.1a) and the correction matrix M in (2.1b),
there is a positive definite matrix H, such that

HM=Q and G=QT+Q—-MT"HM - 0. (2.2)




3 Convergence proof of the methods in the algorithmic framework

Theorem A. For solving the VI (1.5), let {v*}, {#"*} be the sequences generated by (2.1). If the conditions
(2.2) are satisfied, then we have
B € Q. 0(0)—0(i)+(w— ") F(@*) = & (o—o G~ fo—v|3) + 3 oF— 583, v e . 3D
and
[ (v A e i Al PR =R (3.2)

Proof. Treating the term Q (v — @) in the RHS of (2.1a) by using Q = HM (see (2.2)) and the correction
formula (2.1b), we obtain Q(v* — %) = HM (v* — o%) = H(v* — v**1). Thus we get

" € Q, Ou) - 0@") + (w — ") TF(@") > (v — ") THO* — 0" ), vw e Q. (3.3)
Applying the identity
(a=0)TH(c—d) = 5(la—dlf —lla—clf) + 5(lb - clF — b dll) G4

to the RHS of (3.3) with a = v, b = 9%, ¢ = v¥ and d = v¥t1, we obtain
(0= F)TH@" — 0" = L(llo = o3 — o — o )%) + S (o - % — o = 55]%).  3S)
To the second part of the RHS of (3.5), by using HM = @ and 207 Qv = vT(QT + Q)v, it follows that
- - @.1b) - ~ .
e (e e e [ [ U B A Gl
= (" = T(QT + Q — MTHM)(wv* — %) & vk — %2 (3.6)

Substituting (3.6) in (3.5), and then in (3.3), we get the assertion (3.1) directly. Setting the w € €2 in (3.1) by any
fixed w*, then using (&% — w*)T F(@F) = (0F — w*)T F(w*) and §(a*) — O(u*) + (0% — w*)T F(w*) > 0,
we obtain (3.2) and the theorem is completely proved. O

‘ This theorem is proved under weak conditions: Q7 +Q =0, H> 0, HM =Q, G=QT +Q — MTHM > 0. ‘

’ Assertion (3.1) is useful for the convergence rate proof of ADMM, see STAM Numer. Anal. 2012, 50:700-709. ‘

4 The equivalent convergence conditions and the generalized PPA

Under the condition that the prediction matrix () is nonsingular, it is easy to construct the correction matrix M
which satisfies the convergence conditions (2.2). In fact, because QT + @ = 0, we can take

D >0, G-0 and D+G=0QT+qQ. .1
Afterwards, we let
HM=Q and MTHM =D. 4.2)
HM=Q, QT™M=D, M=Q~ "D, .
Because T & AT we get the matrices M, H and G,
M*'HM=D. HM=Q. H=QD~Q",

which satisfy the conditions (2.2). ’ There are infinite combinations of D and GG which satisfy conditions (4.1). ‘

Choosing matrix D that satisfies condition (4.1), we get M = Q7 D, and H = QD 'Q7 is positive definite.
The correction v**! =¥ — M (v — &%) can be achieved by solving Q7 (vF+! — o) = D(vF — v¥).

The generalized PPA by choosing a special D. We can take a special pair of D and G in (4.1) by

D=G=31Q"+Q). (4.3)
In this case, M = %Q‘T(QT + Q). Because D = G, the contractive inequality (3.2) becomes

— o2, Yot eV 4.4)
Moreover, since D = MT HM (see (4.2)) and M (v* — %) = v% — vF*1 (see (2.1b)), it follows that

k k k
[ — v < [lo* = v — o

||Uk)+1 _ ’U*H%{ < ”,Uk o U*H%I _ H,Uk _ ’Uk+1||%1, Yot e V¥, (45)

The inequality (4.5) is just the main convergence result of the classical PPA, a favorable formula ! Because the
each iteration consists of a prediction and a correction, we call the related method as a generalized PPA.

In practice, in the generalized PPA, we suggest to take D = a(QT + Q) and a € [0.5,1).
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