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1 Convex optimization and its related variational inequality
We consider the linearly constrained convex optimization

min{θ(u) | Au = b, u ∈ U}. (1.1)

The Lagrangian function of the problem (1.1) is

L(u, λ) = θ(u)− λT (Au− b), (1.2)

which is defined on U × <m. A pair of (u∗, λ∗) ∈ U × <m
is called a saddle point of the Lagrangian function (1.2), if

Lu∈U (u, λ∗) ≥ L(u∗, λ∗) ≥ Lλ∈<m(u∗, λ). (1.3)

The two inequalities in (1.3) can be written as (u∗, λ∗) ∈ U × <m,{
L(u, λ∗)− L(u∗, λ∗) ≥ 0, ∀u ∈ U ,
L(u∗, λ∗)− L(u∗, λ) ≥ 0, ∀λ ∈ <m.

⇐⇒

{
θ(u)−θ(u∗)+(u− u∗)T (−ATλ∗) ≥ 0, ∀u ∈ U ,

(λ− λ∗)T (Au∗ − b) ≥ 0, ∀λ ∈ <m.
(1.4)

Combining the above two inequalities, the saddle point is equivalent to the solution of the VI :

(VI) w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (1.5)

where w =

(
u
λ

)
, F (w) =

(
−ATλ
Au− b

)
and Ω = U × <m. (1.6)

Please notice that (w − w̃)T (F (w)− F (w̃)) ≡ 0. The problem (1.1) is translated to VI (1.5).
For the multi-block separable convex optimization, we take the three-block problem

min{θ1(x) + θ2(y) + θ3(z) |Ax+By + Cz = b, x ∈ X , y ∈ Y, z ∈ Z} (1.7)

as an example. Its corresponding variational inequality has the form (1.5), where Ω = X × Y × Z × <m, and

u =

 x
y

z

, θ(u) = θ1(x) + θ2(y) + θ3(z), w =


x
y
z
λ

, F (w) =


−ATλ
−BTλ
−CTλ

Ax+By + Cz − b

. (1.8)

For the F (w) in (1.8), we still have (w − w̃)T (F (w)− F (w̃)) ≡ 0, for any w and w̃ in the space containing Ω.

2 Algorithmic unified framework for monotone variational inequalities
We focus on how to solve the variational inequality (1.5), following is our algorithmic framework.

Algorithms in a unified framework (Each iteration of the method consists of a prediction and a correction)

[Prediction Step]. Start from a given vk, find a predictor w̃k ∈ Ω, which satisfies

w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TQ(vk − ṽk), ∀w ∈ Ω, (2.1a)

where the prediction matrix Q is not necessarily symmetric, but the kernel of QT +Q is positive definite.

v is called the essential variable in the iteration which can be equal to w, or a part of the whole vector of w.

[Correction Step]. Find the correction matrix M which satisfied (2.2). The new iteration vk+1 is given by

vk+1 = vk −M(vk − ṽk). (2.1b)

Convergence Conditions (It is easy to find the matrix M which satisfies the conditions, see the details in §4)

[Convergence Conditions]. For the prediction matrix Q in (2.1a) and the correction matrix M in (2.1b),
there is a positive definite matrix H , such that

HM = Q and G = QT +Q−MTHM � 0. (2.2)
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3 Convergence proof of the methods in the algorithmic framework
Theorem A. For solving the VI (1.5), let {vk}, {w̃k} be the sequences generated by (2.1). If the conditions
(2.2) are satisfied, then we have

w̃k ∈ Ω, θ(u)−θ(ũk)+(w−w̃k)TF (w̃k) ≥ 1
2

(
‖v−vk+1‖2H−‖v−vk‖2H

)
+ 1

2‖v
k−ṽk‖2G, ∀w ∈ Ω. (3.1)

and
‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − ṽk‖2G, ∀v∗ ∈ V∗. (3.2)

Proof. Treating the term Q(vk − ṽk) in the RHS of (2.1a) by using Q = HM (see (2.2)) and the correction
formula (2.1b), we obtain Q(vk − ṽk) = HM(vk − ṽk) = H(vk − vk+1). Thus we get

w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TH(vk − vk+1), ∀w ∈ Ω. (3.3)
Applying the identity

(a− b)TH(c− d) = 1
2

(
‖a− d‖2H − ‖a− c‖2H

)
+ 1

2

(
‖b− c‖2H − ‖b− d‖2H

)
(3.4)

to the RHS of (3.3) with a = v, b = ṽk, c = vk and d = vk+1, we obtain

(v − ṽk)TH(vk − vk+1) = 1
2

(
‖v − vk+1‖2H − ‖v − vk‖2H

)
+ 1

2

(
‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H

)
. (3.5)

To the second part of the RHS of (3.5), by using HM = Q and 2vTQv = vT (QT +Q)v, it follows that

‖vk − ṽk‖2H −‖vk+1 − ṽk‖2H
(2.1b)
= ‖vk − ṽk‖2H − ‖(vk − ṽk)−M(vk − ṽk)‖2H

= (vk − ṽk)T (QT +Q−MTHM)(vk − ṽk)
(2.2)
= ‖vk − ṽk‖2G. (3.6)

Substituting (3.6) in (3.5), and then in (3.3), we get the assertion (3.1) directly. Setting the w ∈ Ω in (3.1) by any
fixed w∗, then using (w̃k − w∗)TF (w̃k) = (w̃k − w∗)TF (w∗) and θ(ũk) − θ(u∗) + (w̃k − w∗)TF (w∗) ≥ 0,
we obtain (3.2) and the theorem is completely proved. 2

This theorem is proved under weak conditions: QT +Q � 0, H � 0, HM = Q, G = QT +Q−MTHM � 0.

Assertion (3.1) is useful for the convergence rate proof of ADMM, see SIAM Numer. Anal. 2012, 50:700-709.

4 The equivalent convergence conditions and the generalized PPA
Under the condition that the prediction matrix Q is nonsingular, it is easy to construct the correction matrix M
which satisfies the convergence conditions (2.2). In fact, because QT +Q � 0, we can take

D � 0, G � 0 and D +G = QT +Q. (4.1)

Afterwards, we let
HM = Q and MTHM = D. (4.2)

Because
{

HM=Q,

MTHM=D.
⇔

{
QTM=D,

HM=Q.
⇔

{
M=Q−TD,

H=QD−1QT ,
we get the matrices M , H and G,

which satisfy the conditions (2.2). There are infinite combinations of D and G which satisfy conditions (4.1).

Choosing matrix D that satisfies condition (4.1), we get M = Q−TD, and H = QD−1QT is positive definite.
The correction vk+1 = vk −M(vk − ṽk) can be achieved by solving QT (vk+1 − vk) = D(ṽk − vk).

The generalized PPA by choosing a specialD. We can take a special pair of D and G in (4.1) by

D = G = 1
2 (QT +Q). (4.3)

In this case, M = 1
2Q
−T (QT +Q). Because D = G, the contractive inequality (3.2) becomes

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − ṽk‖2D, ∀v∗ ∈ V∗. (4.4)

Moreover, since D = MTHM (see (4.2)) and M(vk − ṽk) = vk − vk+1 (see (2.1b)), it follows that

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − vk+1‖2H , ∀v∗ ∈ V∗. (4.5)

The inequality (4.5) is just the main convergence result of the classical PPA, a favorable formula ! Because the
each iteration consists of a prediction and a correction, we call the related method as a generalized PPA.

In practice, in the generalized PPA, we suggest to takeD = α(QT +Q) and α ∈ [0.5, 1).
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