A brief introduction to finite element methods

1. Two-point boundary value problem and weak formulation

Consider the two-point boundary value problem: Given a constant \(a \geq 0 \) and a function \(f(x) \), find \(u(x) \) such that

\[
- u'' + au = f(x), \quad 0 < x < 1, \\
u(0) = 0, \quad u'(1) = 0.
\] (0.1)

If \(u \) is the solution to (0.1) and \(v(x) \) is any (sufficiently regular) function such that \(v(0) = 0 \), then integration by parts yields

\[
\int_0^1 -u''v \, dx + \int_0^1 auv \, dx = -u'(1)v(1) + u'(0)v(0) + \int_0^1 u'(x)v'(x) \, dx + \int_0^1 auv \, dx = \int_0^1 fv \, dx.
\]

Let us introduce the bilinear form

\[
A(u, v) = \int_0^1 (u'v' + auv) \, dx,
\]

and define

\[
V = \{ v \in L^2([0,1]) : A(v, v) < \infty \text{ and } v(0) = 0 \}.
\]

Then we can say that the solution \(u \) to (0.1) is characterized by

\[
u \in V \quad \text{such that} \quad A(u, v) = \int_0^1 f(x)v(x) \, dx \quad \forall v \in V.
\] (0.2)

which is called the variational or weak formulation of (0.1).

We remark that the boundary condition \(u(0) = 0 \) is called essential as it appears in the variational formulation explicitly, i.e., in the definition of \(V \). This type of boundary condition is also called “Dirichlet” boundary condition. The boundary condition \(u'(0) = 0 \) is called natural as it is incorporated implicitly. This type of boundary condition is often referred to by the name “Neumann”.

Theorem 1.1. Suppose \(f \in C^0([0,1]) \) and \(u \in C^2([0,1]) \) satisfies (0.2). Then \(u \) solves (0.1).

Proof. Let \(v \in V \cap C^1([0,1]) \). Then integration by parts gives

\[
\int_0^1 fv \, dx = A(u, v) = \int_0^1 -u''v \, dx + \int_0^1 auv \, dx + u'(1)v(1).
\] (0.3)
Thus, $\int_0^1 (f + u'' - au) v \, dx = 0$ for all $v \in V \cap C^1([0, 1])$ such that $v(1) = 0$. Let $w = f + u'' - au \in C^0([0, 1])$. If $w \not\equiv 0$, then $w(x)$ is of one sign in some interval $[b, c] \subset [0, 1]$ with $b < c$. Choose $v(x) = (x - b)^2(x - c)^2$ in $[b, c]$ and $v \equiv 0$ outside $[b, c]$. But then $\int_0^1 w v \, dx \neq 0$ which is a contradiction. Thus $-u'' + au = f$. Now apply (0.3) with $v(x) = x$ to find $u'(1) = 0$. So u solves (0.1).

2. Piecewise polynomial spaces – the finite element method

2.1. Meshes. Let \mathcal{M}_h be a partition of $[0, 1]$: $0 = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = 1$.

The points $\{x_i\}$ are called nodes. Let $h_i = x_i - x_{i-1}$ be the length of the i-th subinterval $[x_{i-1}, x_i]$. Define $h = \max_{1 \leq i \leq n} h_i$.

2.2. Finite element spaces. We shall approximate the solution $u(x)$ by using the continuous piecewise linear functions over \mathcal{M}_h. Introduce the linear space of functions

$$V_h = \{ v \in C^0([0, 1]) : v(0) = 0, \quad v|_{[x_{i-1}, x_i]} \text{ is a linear polynomial}, \quad i = 1, \cdots, n \}. \quad (0.4)$$

It is clear that $V_h \subset V$.

2.3. The finite element method. The finite element discretization of (0.2) reads as:

Find $u_h \in V_h$ such that $A(u_h, v_h) = \int_0^1 f(x) v_h(x) \, dx \quad \forall v_h \in V_h. \quad (0.5)$

2.4. A nodal basis. For $i = 1, \cdots, n$, define $\phi_i \in V_h$ by the requirement that $\phi_i(x_j) = \delta_{ij} = \text{the Kronecker delta}$, as shown in Fig. 1:

![Figure 1. piecewise linear basis function ϕ_i.](image-url)
\[\phi_i = \begin{cases} \frac{x - x_{i-1}}{h_i}, & x_{i-1} \leq x \leq x_i, \\ \frac{x - x_i}{h_{i+1}}, & x_i < x \leq x_{i+1}, \\ 0, & x < x_{i-1} \text{ or } x > x_{i+1}, \end{cases} \]

\[\phi_n = \begin{cases} \frac{x - x_{n-1}}{h_n}, & x_{n-1} \leq x \leq 1, \\ 0, & x < x_{n-1}. \end{cases} \]

For any \(v_h \in V_h \), let \(v_i \) be the value of \(v_h \) at the node \(x_i \), i.e.,

\[v_i = v_h(x_i), \quad i = 1, 2, \cdots, n, \]

then

\[v_h = v_1\phi_1(x) + v_2\phi_2(x) + \cdots + v_n\phi_n(x). \]

2.5. The finite element equations.

Let

\[u_h = u_1\phi_1 + u_2\phi_2 + \cdots + u_n\phi_n, \quad u_1, \cdots, u_n \in \mathbb{R}, \]

where \(u_i = u_h(x_i) \).

Let \(v_h = \phi_i, \ i = 1, \cdots, n \) in (0.5), then we obtain an algebraic linear system in unknowns \(u_1, u_2, \cdots, u_n \):

\[A(\phi_1, \phi_i)u_1 + A(\phi_2, \phi_i)u_2 + \cdots + A(\phi_n, \phi_i)u_n = \int_0^1 f(x)\phi_i \, dx, \quad i = 1, \cdots, n. \]

(0.6)

Denote by

\[k_{ij} = A(\phi_j, \phi_i) = \int_0^1 \phi'_j\phi'_i + a\phi_j\phi_i \, dx, \quad f_i = \int_0^1 f(x)\phi_i \, dx, \]

and

\[K = (k_{ij})_{n \times n}, \quad F = (f_i)_{n \times 1}, \quad U = (u_i)_{n \times 1}, \]

then (0.6) can be rewritten as:

\[KU = F \]

(0.7)

Here \(K \) is called the \textit{stiffness} matrix.

It is clear that \(A(\phi_j, \phi_i) = 0 \) if \(x_i \) and \(x_j \) are not adjacent to each other. Therefore \(K \) is \textit{sparse}.

We recall that the Simpson quadrature rule

\[\int_c^d \phi(x) \, dx \simeq \frac{d - c}{6} \left[\phi(c) + 4\phi\left(\frac{c + d}{2} \right) + \phi(d) \right] \]
is accurate for polynomials of degree \(\leq 3 \). To compute \(A(\phi_j, \phi_i) \), we first calculate the following integrals over the subinterval \([x_{i-1}, x_i]\):

\[
\int_{x_{i-1}}^{x_i} \phi_j^i \phi_i^j \, dx = \int_{x_{i-1}}^{x_i} \frac{1}{h_i} \, dx = \frac{1}{h_i},
\]

\[
\int_{x_{i-1}}^{x_i} \phi_{j-1}^i \phi_i^{j-1} \, dx = \frac{1}{h_i},
\]

\[
\int_{x_{i-1}}^{x_i} \phi_j^i \phi_i^{j-1} \, dx = \int_{x_{i-1}}^{x_i} -\frac{1}{h_i^2} \, dx = -\frac{1}{h_i},
\]

\[
\int_{x_{i-1}}^{x_i} \phi_j \phi_i \, dx = \frac{h_i}{6} (1 + \frac{4}{4} + 0) = \frac{h_i}{3},
\]

\[
\int_{x_{i-1}}^{x_i} \phi_{i-1} \phi_i \, dx = \frac{h_i}{3},
\]

\[
\int_{x_{i-1}}^{x_i} \phi_j \phi_i \, dx = \frac{h_i}{6} (0 + \frac{4}{4} + 0) = \frac{h_i}{6}.
\]

Therefore

\[
A(\phi_i, \phi_i) = \int_0^1 \phi_i^j \phi_i^j \, dx + a \int_0^1 \phi_i \phi_i \, dx = \begin{cases} \frac{1}{h_i} + \frac{1}{h_i+1} + \frac{a}{h_i} (h_i + h_{i+1}), & i = 1, \ldots, n-1, \\ \frac{1}{h_i} + \frac{a}{3} h_i, & i = n, \end{cases}
\]

\[
A(\phi_i, \phi_{i-1}) = A(\phi_{i-1}, \phi_i) = -\frac{1}{h_i} + \frac{a}{6} h_i, \quad i = 2, \ldots, n.
\]

Combining the above equations and (0.6) yields

\[
\begin{cases}
\left[\frac{a(h_i+h_{i+1})}{3} - \frac{1}{h_i} + \frac{1}{h_{i+1}} \right] u_1 + \left(\frac{ah_i}{6} - \frac{1}{h_i} \right) u_2 = f_1,
\left(\frac{ah_i}{6} - \frac{1}{h_i} \right) u_{i-1} + \left[\frac{a(h_i+h_{i+1})}{3} + \frac{1}{h_i} + \frac{1}{h_{i+1}} \right] u_i + \left(\frac{ah_{i+1}}{6} - \frac{1}{h_{i+1}} \right) u_{i+1} = f_i, & i = 2, \ldots, n-1,
\left(\frac{ah_n}{6} - \frac{1}{h_n} \right) u_{n-1} + \left[\frac{ah_n}{3} + \frac{1}{h_n} \right] u_n = f_n.
\end{cases}
\]
2.6. The interpolant. Given $u \in C^0([0, 1])$, the interpolant $u_I \in V_h$ of u is determined by
\[u_I = \sum_{i=1}^{n} u(x_i) \phi_i. \]
It is clear that $u_I(x_i) = u(x_i)$, $i = 0, 1, \ldots, n$, and
\[u_I(x) = \frac{x - x_i}{h_i} u(x_{i-1}) + \frac{x - x_{i-1}}{h_i} u(x_i) \quad \text{for} \ x \in [x_{i-1}, x_i]. \]
Denote by $\tau_i = [x_{i-1}, x_i]$ and by $\|g\|_{L^2(\tau_i)} = (\int_{x_{i-1}}^{x_i} g^2 \, dx)^{1/2}$.

Theorem 2.1.
\[
\begin{align*}
\|u - u_I\|_{L^2(\tau_i)} &\leq \frac{1}{h_i} \|u'\|_{L^2(\tau_i)}, \\
\|u - u_I\|_{L^2(\tau_i)} &\leq \frac{1}{h_i} \|u''\|_{L^2(\tau_i)}, \\
\|u' - u_I'\|_{L^2(\tau_i)} &\leq \frac{1}{h_i} \|u''\|_{L^2(\tau_i)}.
\end{align*}
\] (0.9) (0.10) (0.11)

Proof. We only prove (0.9) and leave the others as an exercise. We first change (0.9) to the reference interval $[0, 1]$. Let $\hat{x} = (x - x_{i-1})/h_i$ and let $\hat{e}(\hat{x}) = u(x) - u_I(x)$. Note that $\hat{e}(0) = \hat{e}(1) = 0$ and $k = u_I'$ is a constant. The inequality (0.9) is equivalent to
\[
\|\hat{e}\|_{L^2([0, 1])}^2 = \frac{1}{h_i} \|u - u_I\|_{L^2(\tau_i)}^2 \leq \frac{h_i}{\pi^2} \|u'\|_{L^2(\tau_i)}^2 = \frac{1}{\pi^2} \|\hat{e}' + kh_i\|_{L^2([0, 1])},
\]
that is
\[
\|\hat{e}\|_{L^2([0, 1])}^2 \leq \frac{1}{\pi^2} \|\hat{e}'\|_{L^2([0, 1])}^2 + \frac{1}{\pi^2} \|kh_i\|_{L^2([0, 1])}.
\] (0.12)

Introduce the space $W = \{ w \in L^2([0, 1]) : w' \in L^2([0, 1]) \text{ and } w(0) = w(1) = 0 \}$. Let
\[\lambda_1 = \inf_{w \in W, w \neq 0} R[w] = \inf_{w \in W, w \neq 0} \|w''\|_{L^2([0, 1])}. \]
By variational calculus it is easy to see that $R[w]$ is the Rayleigh quotient of the following eigenvalue problem:
\[-w'' = \lambda w, \ w \in W. \]
Therefore $\lambda_1 = \pi^2$ is the smallest eigenvalue of the above problem, and hence (0.12) holds. This completes the proof of (0.9). \qed

2.7. A priori error estimate. Introduce the energy norm
\[\|v\| = A(v, v)^{1/2}. \]
From the Cauchy inequality,
\[A(u, v) \leq \|u\| \|v\|. \]
By taking $v = v_h \in V_h$ in (0.2) and subtracting it from (0.5), we have the following fundamental orthogonality
\[A(u - u_h, v_h) = 0 \quad \forall v_h \in V_h. \] (0.13)
Therefore
\[\| u - u_h \|^2 = A(u - u_h, u - u_h) = A(u - u_h, u - u_I) \leq \| u - u_h \| \| u - u_I \|, \]
It follows from Theorem 2.1 that
\[\| u - u_h \| \leq \| u - u_I \| = \left[\sum_{i=1}^{n} \left(\| u_i' - u'_I \|^2_{L^2(\tau_i)} + \alpha \| u_i'' \|^2_{L^2(\tau_i)} \right) \right]^{1/2} \]
\[\leq \left[\sum_{i=1}^{n} \left(\frac{h}{\pi} \right)^2 \| u_i'' \|^2_{L^2(\tau_i)} + \alpha \left(\frac{h}{\pi} \right)^4 \| u_i'' \|^2_{L^2(\tau_i)} \right]^{1/2} \]
\[= \frac{h}{\pi} \left[\left(1 + \alpha \left(\frac{h}{\pi} \right)^2 \right) \int_0^1 (u''')^2 \, dx \right]^{1/2} . \]

We have proved the following error estimate.

Theorem 2.2.
\[\| u - u_h \| \leq \frac{h}{\pi} \left(1 + \alpha \left(\frac{h}{\pi} \right)^2 \right)^{1/2} \| u''' \|_{L^2([0,1])}. \]

Since the above estimate depends on the unknown solution \(u \), it is called the *a priori* error estimate.

2.8. A posteriori error estimates. We will derive error estimates independent of the unknown solution \(u \).

Let \(e = u - u_h \). Then
\[A(e, e) = A(u - u_h, e - e_I) \]
\[= \int_0^1 f \cdot (e - e_I) \, dx - \int_0^1 u_h'(e - e_I)' \, dx - \int_0^1 au_h(e - e_I) \, dx \]
\[= \int_0^1 (f - au_h)(e - e_I) \, dx - \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} u_h'(e - e_I)' \, dx \]
Since \(u_h' \) is constant on each interval \((x_{i-1}, x_i)\),
\[A(e, e) = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} (f - au_h)(e - e_I) \, dx \]
\[\leq \sum_{i=1}^{n} \| f - au_h \|_{L^2(\tau_i)} \| e - e_I \|_{L^2(\tau_i)} \]
\[\leq \sum_{i=1}^{n} \frac{h_i}{\pi} \| f - au_h \|_{L^2(\tau_i)} \| e' \|_{L^2(\tau_i)}. \]

Here we have used Theorem 2.1 to derive the last inequality.

Define the local error estimator on the element \(\tau_i = [x_{i-1}, x_i] \) as follows
\[\eta_i = \frac{1}{\pi} h_i \| f - au_h \|_{L^2(\tau_i)}. \]
(0.14)
Then
\[\| e \|^2 \leq \left(\sum_{i=1}^{n} \eta_i^2 \right)^{1/2} \| e' \| \leq \left(\sum_{i=1}^{n} \eta_i^2 \right)^{1/2} \| e' \|. \]
That is, we have the following a posteriori error estimate.
Theorem 2.3 (Upper bound).

\[
\|u - u_h\| \leq \left(\sum_{i=1}^{n} \eta_i^2 \right)^{1/2}.
\]

(0.15)

Now a question is if the above upper bound overestimates the true error. To answer this question we introduce the following theorem that gives a lower bound of the true error.

Theorem 2.4 (Lower bound). Define \(\|\phi\|_{\tau_i} = (\int_{x_{i-1}}^{x_i} ((\phi')^2 + a\phi^2) \, dx)^{1/2} \). Let \((f - au_h)_i = \frac{1}{h_i} \int_{x_{i-1}}^{x_i} (f - au_h) \, dx \) and osc \(i \) = \(\frac{1}{h_i} \|f - au_h - (f - au_h)_i\|_{L^2(\tau_i)} \). Then

\[
\eta_i = \frac{5 + \sqrt{30}}{5} \text{osc} \, i \leq \left(\frac{60 + 6ah_i^2}{5\pi^2} \right)^{1/2} \|u - u_h\|_{\tau_i}.
\]

(0.16)

As a consequence

\[
\left(\sum_{i=1}^{n} \frac{5\pi^2}{60 + 6ah_i^2} \left(\eta_i - \frac{5 + \sqrt{30}}{5} \text{osc} \, i \right)^2 \right)^{1/2} \leq \|u - u_h\|.
\]

(0.17)

Proof. Suppose \(\psi \in V \) is differentiable over each \(\tau_i \) and continuous on \([0,1]\). It is clear that

\[
A(e, \psi) = \int_{0}^{1} (f - au_h) \psi \, dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} u_i' \psi' \, dx.
\]

Define \(\psi_i(x) = 4\phi_{i-1}(x)\phi_i(x) \) if \(x \in \tau_i \) and \(\psi_i(x) = 0 \) otherwise. Choose \(\psi = \alpha_i \psi_i \) such that

\[
\int_{0}^{1} (f - au_h) \psi \, dx = h_i^2 \|f - au_h\|_{L^2(\tau_i)}.
\]

From (0.8),

\[
|\alpha_i| = \frac{2}{\int_{0}^{1} \psi_i \, dx} = \frac{3}{2} h_i^2 h_i \|f - au_h\|_{L^2(\tau_i)}.
\]

Therefore, by simple calculations,

\[
h_i^{-1} \|\psi\|_{L^2(\tau_i)} = \frac{\sqrt{30}}{5} h_i \|f - au_h\|_{L^2(\tau_i)} \|\psi\|_{L^2(\tau_i)} = 2\sqrt{30} h_i \|f - au_h\|_{L^2(\tau_i)}.
\]

From (0.18),

\[
A(e, \psi) = \int_{0}^{1} (f - au_h) \psi \, dx = \int_{x_{i-1}}^{x_i} (f - au_h - (f - au_h)_i) \psi \, dx + h_i^2 \|f - au_h\|_{L^2(\tau_i)}^2.
\]

We have,

\[
h_i^2 \|(f - au_h)_i\|_{L^2(\tau_i)}^2 \leq \|e\|_{\tau_i} \|\psi\|_{\tau_i} + \text{osc} \, i \pi h_i^{-1} \|\psi\|_{L^2(\tau_i)}
\]

\[
= \left(12 + \frac{6ah_i^2}{5} \right)^{1/2} h_i \|f - au_h\|_{L^2(\tau_i)}.
\]

which implies

\[
h_i \|f - au_h\|_{L^2(\tau_i)} \leq \left(12 + \frac{6ah_i^2}{5} \right)^{1/2} \|e\|_{\tau_i} + \frac{\sqrt{30}}{5} \text{osc} \, i.
\]

Now the proof is completed by using \(\eta_i \leq \frac{1}{2} h_i \|f - au_h\|_{L^2(\tau_i)} + \text{osc} \, i \).

\(\Box\)
We remark that the term osc_i is of high order compared to η_i if f and a are smooth enough on τ_i.

Example 2.5. We solve the following problem by the linear finite element method.

$$-u'' + 10000u = 1, \quad 0 < x < 1,$$
$$u(0) = u(1) = 0.$$

The true solution (see Fig. 2) is

$$u = \frac{1}{10000} \left(1 - \frac{e^{100x} + e^{100(1-x)}}{1 + e^{100}} \right).$$

If we use the uniform mesh obtained by dividing the interval $[0, 1]$ into 1008 subintervals of equal length, then the error $\|u - u_h\| \approx 2.86 \times 10^{-5}$. On the other hand, if we use a non-uniform mesh as shown in Fig. 2 which also contains 1008 subintervals, then the error $\|u - u_h\| \approx 1.59 \times 10^{-6}$ is smaller than that obtained by using the uniform mesh.

![Figure 2. Example 2.5. The finite element solution and the mesh.](image)

3. **Exercises**

Exercise 0.1. Prove (0.10) and (0.11).

Exercise 0.2. Use Example 2.5 to verify numerically the a posteriori error estimates in Theorem 2.3 and (0.17) in Theorem 2.4.