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Abstract
For a ring R and an additive subcategory C of the category Mod R of left R-modules,
under some conditions, we prove that the right Gorenstein subcategory of Mod R and
the left Gorenstein subcategory of Mod Rop relative to C form a coproduct-closed
duality pair. Let R, S be rings andC a semidualizing (R, S)-bimodule. As applications
of the above result, we get that if S is right coherent and C is faithfully semidualizing,
then (GFC (R),GIC (Rop)) is a coproduct-closed duality pair andGFC (R) is covering
in Mod R, where GFC (R) is the subcategory of Mod R consisting of C-Gorenstein
flat modules and GIC (Rop) is the subcategory ofMod Rop consisting ofC-Gorenstein
injective modules; we also get that if S is right coherent, then (AC (Rop), lG(FC (R)))

is a coproduct-closed and product-closed duality pair and AC (Rop) is covering and
preenveloping in Mod Rop, where AC (Rop) is the Auslander class in Mod Rop and
lG(FC (R)) is the left Gorenstein subcategory of Mod R relative to C-flat modules.
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1 Introduction

In relative homological algebra, the Gorenstein homological theory and the theory of
covers and envelopes have always been in the central, and their interplay has been
researched extensively over the years.

In theGorenstein homological theory, the properties ofGorenstein projective, injec-
tive and flat modules and related modules are fundamental and important, see [2,8,9].
For an abelian category A and an additive subcategory C of A , as a common gen-
eralization of Gorenstein projective and injective modules, Sather-Wagstaff, Sharif
and White introduced in [26] the Gorenstein subcategory G(C ) of A relative to C .
It was proved that Gorenstein subcategories unify many nice properties of Goren-
stein projective modules and Gorenstein injective modules, see [13,20,26]. From the
definition of the Gorenstein subcategory G(C ), it is known that C should be a gener-
ator and a cogenerator for G(C ) simultaneously and both functors HomA (C ,−) and
HomA (−,C ) should possess certain exactness. These assumptions seem to be strong
to some extent. In [27], by modifying the definition of Gorenstein subcategories, it
was introduced the so-called right Gorenstein subcategories and left Gorenstein sub-
categories, such that for a self-orthogonal subcategory C ofA , G(C ) is right and left
Gorenstein.

In the theory of covers and envelopes, given a subcategory, we always hope to know
whether or when it is (pre)covering or (pre)enveloping. This problem has been studied
in depth, see [3–12,14–21,34] and references therein. Holm and Jørgensen introduced
the notion of duality pairs and proved the following remarkable result. Let R be an
arbitrary ring and letX andY be subcategories ofMod R andMod Rop, respectively.
If (X ,Y ) is a duality pair, then the following assertions hold true: (1) IfX is closed
under products, thenX is preenveloping; (2) ifX is closed under coproducts, thenX
is covering; and (3) if R R ∈ X andX is closed under coproducts and extensions, then
(X ,X ⊥) is a perfect cotorsion pair [17, Theorem 3.1]. By using it, they generalized
a result in [6] about the covering and enveloping properties of the Auslander and Bass
classes in Mod R to the bounded derived category of Mod R. Then, also by using this
result of Holm and Jørgensen, Enochs and Iacob investigated in [7] the existence of
Gorenstein injective envelopes over commutative noetherian rings.

Let C andD be subcategories of Mod R and Mod Rop, respectively, and let rG(C )

and lG(D) be the corresponding right and left Gorenstein subcategories, respectively.
In this paper, we will study when the pair (rG(C ), lG(D)) is a duality pair in terms of
the properties of C and D . Then, combining with the result of Holm and Jørgensen
mentioned above, we give some applications. The paper is organized as follows.

In Sect. 2, we give some terminology and notations.
Let R be an arbitrary associative ring with identity and (−)+ := HomZ(−,Q/Z),

where Z is the additive group of integers and Q is the additive group of rational
numbers. For a classX of R-modules, we writeX + := {X+ | X ∈ X }. In Sect. 3,
we prove that if C and D are subcategories of Mod R and Mod Rop, respectively,
satisfying the following conditions: (1)D+ ⊆ C andC+ ⊆ D ; (2)C is preenveloping
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Duality Pairs Induced by One-Sided Gorenstein Subcategories

in Mod R and all modules in C are pure injective; and (3) Ext≥1
Rop (D,C+) = 0 for any

D ∈ D and C ∈ C , then the pair (rG(C ), lG(D)) is a duality pair. Furthermore, if
rG(C ) is closed under coproducts (resp. products), then (rG(C ), lG(D)) is coproduct-
closed (resp. product-closed) and rG(C ) is covering (resp. preenveloping) in Mod R
(Theorem 3.5).

In Sect. 4, we give two applications of Theorem 3.5. Let R, S be rings and C a
semidualizing (R, S)-bimodule. When S is right coherent, we have

GFC (R) = rG(FC (R) ∩ PI(R)),

where GFC (R) is the subcategory of Mod R consisting ofC-Gorenstein flat modules,
FC (R) is the subcategory of Mod R consisting of C-flat modules and PI(R) is the
subcategory of Mod R consisting of pure injective modules (Theorem 4.6). Then, by
using it, we give the first application of Theorem 3.5 as follows: If S is right coherent
and C is faithfully semidualizing, then

(GFC (R),GIC (Rop))

is a coproduct-closed duality pair andGFC (R) is covering inMod R, whereGIC (Rop)

is the subcategory of Mod Rop consisting of C-Gorenstein injective modules (Theo-
rem 4.8). As a consequence, we get that if S is right coherent and RCS is faithfully
semidualizing, then (GFC (R),GFC (R)⊥) is a hereditary perfect cotorsion pair in
Mod R (Corollary 4.9). It generalizes [10, Theorem 2.12].

We observe that the Auslander class AC (Rop) coincides with the right Gorenstein
subcategory of Mod Rop relative to C-injective modules (Lemma 4.14). According to
this observation, we apply Theorem 3.5 to prove that if S is right coherent, then

(AC (Rop), lG(FC (R)))

is a coproduct-closed and product-closed duality pair and AC (Rop) is covering and
preenveloping in Mod Rop, where lG(FC (R)) is the left Gorenstein subcategory of
Mod R relative to C-flat modules (Theorem 4.15). Then, as a generalization of [6,
Theorem 3.11], we get that if S is right coherent, then

(AC (Rop),AC (Rop)⊥)

is a hereditary perfect cotorsion pair in Mod Rop (Corollary 4.16).

2 Preliminaries

In this section,A is an abelian category and all subcategories ofA are full and closed
under isomorphisms. For a subcategory X of A , we write

⊥X := {A ∈ A | Ext≥1
A (A, X) = 0 for any X ∈ X },

X ⊥ := {A ∈ A | Ext≥1
A (X , A) = 0 for any X ∈ X },
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⊥1X := {A ∈ A | Ext1A (A, X) = 0 for any X ∈ X },
X ⊥1 := {A ∈ A | Ext1A (X , A) = 0 for any X ∈ X }.

For subcategoriesX ,Y ofA , wewriteX ⊥ Y if Ext≥1
A (X ,Y ) = 0 for any X ∈ X

and Y ∈ Y . Let C ⊆ X be subcategories of A . We say that C is a cogenerator for
X if for any X ∈ X , there exists an exact sequence

0 → X → C → X
′ → 0

in A with C ∈ C and X
′ ∈ X ; and we say that C is an injective cogenerator for

X if C is a cogenerator forX and X ⊥ C .
A sequence E in A is called HomA (X ,−)-exact (resp. HomA (−,X )-exact)

if HomA (X ,E) (resp. HomA (E, X)) is exact for any X ∈ X . Following [26], we
write res ˜X := {A ∈ A | there exists a HomA (X ,−)-exact exact sequence

· · · → Xi → · · · → X1 → Xi → A → 0

inA with all Xi inX }, and cores ˜X := {A ∈ A | there exists a HomA (−,X )-exact
exact sequence

0 → A → X0 → X1 → · · · → Xi → · · ·

in A with all Xi inX }.
Definition 2.1 [26] LetC be a subcategory ofA . TheGorenstein subcategory G(C )

of A (relative to C ) is defined as {G ∈ A | there exists a HomA (C ,−)-exact and
HomA (−,C )-exact exact sequence

· · · → C1 → C0 → C0 → C1 → · · ·

in A with all Ci ,Ci in C , such that G ∼= Im(C0 → C0)}.
The Gorenstein subcategory unifies the following notions: modules of Gorenstein

dimension zero [2], Gorenstein projective modules, Gorenstein injective mod-
ules [8], V -Gorenstein projective modules, V -Gorenstein injective modules [11],
W -Gorenstein modules [13] and so on; see [20] for the details.

Let C be an additive category ofA . Following [20, Lemma 5.7], if C⊥C , then the
Gorenstein subcategory

G(C ) = (⊥C ∩ cores ˜C ) ∩ (C⊥ ∩ res ˜C ).

Motivated by this fact, it was introduced in [27] the following

Definition 2.2 We call

rG(C ) := ⊥C ∩ cores ˜C (resp. lG(C ) := C⊥ ∩ res ˜C )
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Duality Pairs Induced by One-Sided Gorenstein Subcategories

the right (resp. left) Gorenstein subcategory of A (relative to C ).

When C⊥C , we have G(C ) = rG(C ) ∩ lG(C ).

Definition 2.3 [4,9] Let X ⊆ Y be subcategories of A . The morphism f : X → Y
in A with X ∈ X and Y ∈ Y is called an X -precover of Y if HomA (X

′
, f ) is

epic for any X
′ ∈ X . An X -precover f : X → Y is called an X -cover if an

endomorphism h : X → X is an automorphism whenever f = f h. The subcategory
X is called (pre)covering in Y if any object in Y admits anX -(pre)cover. Dually,
the notions of anX -(pre)envelope and a (pre)enveloping subcategory are defined.

Definition 2.4 [9,12] Let U ,V be subcategories of A .

(1) The pair (U ,V ) is called a cotorsion pair in A if U = ⊥1V and V = U ⊥1 .
(2) A cotorsion pair (U ,V ) is called perfect ifU is covering and V is enveloping

in A .
(3) Assume that A has enough projectives and enough injectives. A cotorsion pair

(U ,V ) is called hereditary if one of the following equivalent conditions is
satisfied.

(3.1) U ⊥ V .
(3.2) U is projectively resolving in the sense that U contains all projectives in

A , and U is closed under extensions and kernels of epimorphisms.
(3.3) V is injectively coresolving in the sense that V contains all injectives inA ,

and V is closed under extensions and cokernels of monomorphisms.

3 General Results

In this section, R is an arbitrary associative ringwith identity andMod R is the category
of left R-modules. All subcategories of Mod R and Mod Rop are additive, full and
closed under isomorphisms.

Recall that a short exact sequence in Mod R is called pure if the functor
HomR(M,−) preserves its exactness for any finitely presented left R-module M ;
and a module E ∈ Mod R is called pure injective if the functor HomR(−, E) pre-
serves the exactness of a short pure exact sequence in Mod R (cf. [14,21]). We use
PI(R) to denote the subcategory of Mod R consisting of pure injective modules.

Let D be a subcategory of Mod Rop. A sequence E in Mod R is called (D ⊗R −)-
exact if D ⊗R E is exact for any D ∈ D . We write

D� := {M ∈ Mod R | TorR≥1(D, M) = 0 for any D ∈ D}.

Lemma 3.1 Let C andD be subcategories ofMod R andMod Rop, respectively, such
that D+ ⊆ C . For a module A ∈ Mod R, consider the following conditions.

(1) A ∈ rG(C ).
(2) A ∈ D� and there exists a (D ⊗R −)-exact exact sequence

0 → A → C0 → C1 → · · · → Ci → · · ·
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inMod R with all Ci ∈ C .

We have (1) ⇒ (2). The converse holds true if C+ ⊆ D and all modules in C are
pure injective (that is, C ⊆ PI(R)).

Proof (1) ⇒ (2) Let A ∈ rG(C ). Then, A ∈ ⊥C and there exists a HomR(−,C )-
exact exact sequence

0 → A → C0 → C1 → · · · → Ci → · · ·

in Mod R with all Ci ∈ C . Let D ∈ D . By assumption, D+ ∈ C and hence the
sequence

· · · → HomR(Ci , D+) → · · · → HomR(C1, D+) → HomR(C0, D+)

→ HomR(A, D+) → 0

is exact. By the adjoint isomorphism, we get the following exact sequence

· · · → (D ⊗R Ci )+ → · · · → (D ⊗R C1)+ → (D ⊗R C0)+ → (D ⊗R A)+ → 0,

which yields that the sequence

0 → D ⊗R A → D ⊗R C0 → D ⊗R C1 → · · · → D ⊗R Ci → · · ·

is also exact. On the other hand, by [14, Lemma 2.16(b)], we have [TorRi (D, A)]+ ∼=
ExtiR(A, D+) = 0 for any i ≥ 1. So TorR≥1(D, A) = 0 and A ∈ D�.

Now assume that C+ ⊆ D and all modules in C are pure injective. We will prove
(2) ⇒ (1).

Let C ∈ C . Then, C+ ∈ D and C++ ∈ C . By [14, Lemma 2.16(b)] and (2), we
have ExtiR(A,C++) ∼= [TorRi (C+, A)]+ = 0 for any i ≥ 1. By [14, Theorem 2.27],

we have that C is isomorphic to a direct summand of C++. So Ext≥1
R (A,C) = 0 and

A ∈ ⊥C .
By (2), we have the following exact sequence

0 → C+ ⊗R A → C+ ⊗R C0 → C+ ⊗R C1 → · · · → C+ ⊗R Ci → · · ·

with all Ci ∈ C , which yields that the sequence

· · · → (C+ ⊗R Ci )+ → · · · → (C+ ⊗R C1)+

→ (C+ ⊗R C0)+ → (C+ ⊗R A)+ → 0

is exact. By the adjoint isomorphism, the sequence

· · · → HomR(Ci ,C++) → · · · → HomR(C1,C++)

→ HomR(C0,C++) → HomR(A,C++) → 0
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is also exact. Because C is isomorphic to a direct summand of C++, we get the
following exact sequence

· · · → HomR(Ci ,C) → · · · → HomR(C1,C) → HomR(C0,C)

→ HomR(A,C) → 0.

Thus, A ∈ rG(C ). 
�
By using Lemma 3.1, we have the following

Proposition 3.2 Let C and D be subcategories ofMod R andMod Rop, respectively,
satisfying the following conditions.

(a) D+ ⊆ C and C+ ⊆ D .
(b) C is preenveloping inMod R, and all modules in C are pure injective.
(c) D⊥C+ (in particular, it is satisfied if D is self-orthogonal).

Then, the following statements are equivalent for any A ∈ Mod R.

(1) A ∈ rG(C ).
(2) A+ ∈ lG(D).

Proof (1) ⇒ (2) Let A ∈ rG(C ). Then, by [14, Lemma 2.16(b)] and Lemma 3.1,
ExtiR(D, A+) ∼= [TorRi (D, A)]+ = 0 for any D ∈ D and i ≥ 1, and there exists a
(D ⊗R −)-exact exact sequence

0 → A → C0 → C1 → · · · → Ci → · · ·

in Mod R with all Ci ∈ C . It induces an exact sequence

· · · → Ci+ → · · · → C1+ → C0+ → A+ → 0 (3.1)

in Mod Rop with all Ci+ ∈ D . On the other hand, since the sequence

0 → D ⊗R A → D ⊗R C0 → D ⊗R C1 → · · · → D ⊗R Ci → · · ·

is exact, the sequence

· · · → (D ⊗R Ci )+ → · · · → (D ⊗R C1)+ → (D ⊗R C0)+ → (D ⊗R A)+ → 0

is exact. By the adjoint isomorphism, the sequence

· · · → HomR(D,Ci+) → · · · → HomR(D,C1+
)

→ HomR(D,C0+
) → HomR(D, A+) → 0

is also exact, which shows that the exact sequence (3.1) is HomR(D,−)-exact. Thus,
A+ ∈ lG(D).
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(2) ⇒ (1) Let A+ ∈ lG(D). Then, there exists an exact sequence

0 → L → D0 → A+ → 0

in Mod Rop with D0 ∈ D . It induces an exact sequence

0 → A++ → D+
0 → L+ → 0

in Mod R with D+
0 ∈ C . Then, by [14, Corollary 2.21], we get a monomorphism

A � D+
0 in Mod R. Because C is preenveloping in Mod R, we have a HomR(−,C )-

exact exact sequence

0 → A
f 0−→ C0 → A1 → 0

in Mod R with C0 ∈ C . Because C+ ⊆ D and D⊥C+, we have C0+ ∈ D ∩ D⊥,
and so C0+ ∈ lG(D).

We claim that A1+ ∈ lG(D). Firstly, we have an exact sequence

0 → A1+ → C0+ f 0
+

−→ A+ → 0 (3.2)

in Mod Rop with C0+ ∈ D . Let D ∈ D . Then, D+ ∈ C and HomR( f 0, D+) is
epic. For any X ∈ Mod R and Y ∈ Mod Rop, it follows from the adjoint isomorphism
theorem that there exist the following natural isomorphisms

HomRop (Y , X+) ∼= (Y ⊗R X)+ ∼= HomR(X ,Y+).

So, we have the following commutative diagram

HomRop (D,C0+
)
HomRop (D, f 0

+
)

∼=

HomRop (D, A+)

∼=

HomR(C0, D+)
HomR( f 0,D+)

HomR(A, D+),

and hence HomRop (D, f 0
+
) is epic. Because D⊥C+ and the exact sequence (3.2)

induces the following exact sequence

HomRop (D,C0+
)
HomRop (D, f 0

+
)−→ HomRop (D, A+)

→ Ext1Rop (D, A1+
) → Ext1Rop (D,C0+

) = 0,

we have Ext1R(D, A1+
) = 0. Applying the dual of [27, Proposition 3.6] to the exact

sequence (3.2), we have A1+ ∈ lG(D). The claim is proved.
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Similarly, we get a HomR(−,C )-exact exact sequence

0 → A1 f 1−→ C1 → A2 → 0

in Mod R with C1 ∈ C and A2+ ∈ lG(D). Continuing this process, we get a
HomR(−,C )-exact exact sequence

0 → A
f 0−→ C0 f 1−→ C1 → · · · f i−→ Ci → · · ·

in Mod R with all Ci in C . On the other hand, because A+ ∈ lG(D), we have
[TorRi (D, A)]+ ∼= ExtiR(D, A+) = 0 for any i ≥ 1 by [14, Lemma 2.16(b)]. So
TorR≥1(D, A) = 0 and A ∈ D�. It follows from Lemma 3.1 that A ∈ rG(C ). 
�

The following is the definition of duality pairs (cf. [7,17]).

Definition 3.3 Let X and Y be subcategories of Mod R and Mod Rop, respectively.

(1) The pair (X ,Y ) is called a duality pair if the following conditions are satisfied.

(1.1) For a module X ∈ Mod R, X ∈ X if and only if X+ ∈ Y .
(1.2) Y is closed under direct summands and finite direct sums.

(2) A duality pair (X ,Y ) is called (co)product-closed if X is closed under
(co)products.

(3) A duality pair (X ,Y ) is called perfect if it is coproduct-closed, R R ∈ X , and
X is closed under extensions.

We also recall the following remarkable result.

Lemma 3.4 ([7, p.7, Theorem] and [17, Theorem 3.1]) LetX andY be subcategories
of Mod R and Mod Rop, respectively. If (X ,Y ) is a duality pair, then the following
assertions hold true.

(1) If (X ,Y ) is coproduct-closed, then X is covering.
(2) If (X ,Y ) is product-closed, then X is preenveloping.
(3) If (X ,Y ) is perfect, then (X ,X ⊥) is a perfect cotorsion pair.

Now, we are in a position to give the following

Theorem 3.5 Under the assumptions in Proposition 3.2, the pair

(rG(C ), lG(D))

is a duality pair. Furthermore, if rG(C ) is closed under coproducts (resp. products),
then this duality pair is coproduct-closed (resp. product-closed) and rG(C ) is covering
(resp. preenveloping) inMod R.

Proof Because D is additive, lG(D) is closed under finite direct sums. By [20,
Theorem 4.6(1)], lG(D) is closed under direct summands. So (rG(C ), lG(D)) is a
duality pair by Proposition 3.2. If rG(C ) is closed under coproducts (resp. prod-
ucts), then (rG(C ), lG(D)) is coproduct-closed (resp. product-closed). It follows from
Lemma 3.4 that rG(C ) is covering (resp. preenveloping) in Mod R. 
�
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4 Applications

4.1 The Pair (GFC(R),GIC(Rop))

In this subsection, we will give the first application of Theorem 3.5.

Definition 4.1 [18] Let R and S be rings. An (R, S)-bimodule RCS is called semidu-
alizing if the following conditions are satisfied.

(a1) RC admits a degreewise finite R-projective resolution.
(a2) CS admits a degreewise finite S-projective resolution.

(b1) The homothety map R RR
Rγ→ HomSop (C,C) is an isomorphism.

(b2) The homothety map S SS
γS→ HomR(C,C) is an isomorphism.

(c1) Ext�1
R (C,C) = 0.

(c2) Ext�1
Sop (C,C) = 0.

A semidualizing bimodule RCS is called faithful if the following conditions are sat-
isfied.

(f1) If M ∈ Mod R and HomR(C, M) = 0, then M = 0.
(f2) If N ∈ Mod Sop and HomSop (C, N ) = 0, then N = 0.

Wakamatsu in [31] introduced and studied the so-called generalized tilting mod-
ules, which are usually called Wakamatsu tilting modules, see [3,23]. Note that a
bimodule RCS is semidualizing if and only if it is Wakamatsu tilting [33, Corollary
3.2]. Examples of semidualizing bimodules are referred to [18,32]. In particular, R RR

is a faithfully semidualizing bimodule; all semidualizing modules over commutative
rings are faithful [18, Proposition 3.1].

From now on, R and S are arbitrary rings and we fix a semidualizing bimodule
RCS . We write

PC (R) := {C ⊗S P | P is projective in Mod S},
FC (R) := {C ⊗S P | P is flat in Mod S},

IC (Rop) := {HomSop (C, I ) | I is injective in Mod Sop}.

The modules in PC (R), FC (R) and IC (Rop) are called C-projective, C-flat and
C-injective, respectively. When RCS = R RR , C-projective, C-flat and C-injective
modules are exactly projective, flat and injective modules, respectively.

Lemma 4.2 (1) For a module A ∈ Mod R, if A ∈ FC (R), then A+ ∈ IC (Rop). The
converse holds true if S is a right coherent ring and RCS is faithfully semidualizing.

(2) Assume that S is a right coherent ring. For a module B ∈ Mod Rop, if B ∈
IC (Rop), then B+ ∈ FC (R). The converse holds true if S is a right noetherian
ring and RCS is faithfully semidualizing.

(3) If R is a right coherent ring, thenFC (R)+ ⊆ IC (Rop) and IC (Rop)+ ⊆ FC (R)∩
PI(R).
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Proof (1) The first assertion follows from [30, Lemma 2.3(1)]. Conversely, let S be
a right coherent ring and RCS faithfully semidualizing, and let A ∈ Mod R such that
A+ ∈ IC (Rop). Then, A+ = HomSop (C, I ) for some injective module I in Mod Sop.
By [14, Lemma 2.16(c)], we have

A++ = [HomSop (C, I )]+ ∼= C ⊗S I+.

By [14, Corollary 2.18(b)], we have that I+ ∈ Mod S is flat, and so A++ ∈ FC (R).
By [14, Theorem 2.27], we have that A is isomorphic to a pure submodule of A++. It
follows from [18, Lemma 5.2(a)] that A ∈ FC (R).

(2) The first assertion follows from [30, Lemma 2.3(2)]. Conversely, let S be a right
noetherian ring and RCS faithfully semidualizing, and let B ∈ Mod Rop such that
B+ ∈ FC (R). Then, B+ = C ⊗S F for some flat module F in Mod S. By the adjoint
isomorphism theorem, we have

B++ = (C ⊗S F)+ ∼= HomSop (C, F+).

By [14, Corollary 2.18(b)], we have that F+ ∈ Mod Sop is injective, and so B++ ∈
IC (Rop). By [14, Theorem 2.27], we have that B is isomorphic to a pure submodule
of B++. It follows from [18, Lemma 5.2(b)] that B ∈ IC (Rop).

(3) Because IC (Rop)+ ⊆ PI(R) by [14, Theorem 2.27], the assertion follows
from the above two assertions. 
�

We introduce the notion of C-cotorsion modules as follows, which is a C-version
of that of cotorsion modules in [5,9,34].

Definition 4.3 A module A ∈ Mod R is called C-cotorsion if A ∈ FC (R)⊥.

We use CC (R) to denote the subcategory of Mod R consisting of C-cotorsion mod-
ules. For a module A ∈ Mod R, σA : A → A++ defined by σA(x)( f ) = f (x) for
any x ∈ A and f ∈ A+ is the canonical valuation homomorphism. The first assertion
in the following result is a C-version of [34, Lemma 3.2.3] (also cf. [5, Lemma 2.3]).

Proposition 4.4 Let S be a right coherent ring. Then, we have

(1) FC (R) ∩ CC (R) = FC (R) ∩ PI(R).
(2) FC (R) ∩ PI(R) is an injective cogenerator for FC (R).
(3) If C is faithfully semidualizing, thenFC (R)∩PI(R) is preenveloping inMod R.

Proof (1) Let A ∈ FC (R) ∩ CC (R). Then, A+ ∈ IC (Rop) and A++ ∈ FC (R) by
Lemma 4.2. By [14, Corollary 2.21(b)], we have the following pure exact sequence

0 → A
σA−→ A++ → A++/A → 0 (4.1)

in Mod R. Then, A++/A ∈ FC (R) by [18, Lemma 5.2(a)]. So this exact sequence
splits, and hence, A is isomorphic to a direct summand of A++. Because A++ is
pure injective by [14, Theorem 2.27], we have that A is also pure injective and A ∈
FC (R) ∩ PI(R).
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Conversely, let A ∈ FC (R) ∩ PI(R) and Q ∈ FC (R). Then, Q = C ⊗S F for
some flat module F in Mod S. For any i ≥ 1, we have

ExtiR(Q, A++)

= ExtiR(C ⊗S F, A++)

∼= [TorRi (A+,C ⊗S F)]+ (by [14, Lemma 2.16(b)])

∼= [TorRi (A+,C) ⊗S F]+ (by [24, Theorem 9.48])

∼= [(ExtiR(C, A))+ ⊗S F]+ (by [14, Lemma 2.16(d)])

= 0 (by [30, Lemma 2.5(a)]).

Because A is isomorphic to a direct summand of A++ by [14, Theorem 2.27], we have
that ExtiR(Q, A) = 0 for any i ≥ 1 and A is C-cotorsion. Thus, A ∈ FC (R)∩CC (R).

(2) Let A ∈ FC (R). Then, we have an exact sequence as (4.1) with A++ ∈ FC (R)∩
PI(R) and A++/A ∈ FC (R). By (1), we have A++ ∈ CC (R)(= FC (R)⊥). The
assertion follows.

(3) Let A ∈ Mod R. By [18, Proposition 5.3(d)], we have an FC (R)-preenvelope
f : A → Q of A. Let Q

′ ∈ FC (R) ∩ PI(R) and f
′ ∈ HomR(A, Q

′
). Then,

there exists h ∈ HomR(Q, Q
′
) such that f

′ = h f . From the following commutative
diagram

Q
σQ

h

Q++

h++

Q
′ σ

Q
′

Q
′++

,

we have σQ′ h = h++σQ . By [14, Theorem 2.27], σQ′ is a split monomorphism and

there exists g ∈ HomR(Q
′++

, Q
′
) such that gσQ′ = 1Q′ . So, we have

f
′ = h f = (gσQ′ )h f = (gh++)(σQ f ).

It follows that the homomorphism σQ f : A → Q++ is an FC (R) ∩ PI(R)-
preenvelope of A. 
�

The following notions were introduced by Holm and Jørgensen in [16] for commu-
tative rings. We give here their non-commutative versions.

Definition 4.5 (1) A module M ∈ Mod R is called C-Gorenstein projective if M ∈
⊥PC (R) and there exists a HomR(−,PC (R))-exact exact sequence

0 → M → G0 → G1 → · · · → Gi → · · ·

in Mod R with all Gi in PC (R).

123



Duality Pairs Induced by One-Sided Gorenstein Subcategories

(2) A module M ∈ Mod R is called C-Gorenstein flat if M ∈ IC (Rop)� and there
exists an (IC (Rop) ⊗R −)-exact exact sequence

0 → M → Q0 → Q1 → · · · → Qi → · · ·

in Mod R with all Qi in FC (R).
(3) A module N ∈ Mod Rop is called C-Gorenstein injective if N ∈ IC (Rop)⊥ and

there exists a HomRop (IC (Rop),−)-exact exact sequence

· · · → Ei → · · · → E1 → E0 → N → 0

in Mod Rop with all Ei in IC (Rop).

We use GPC (R) (resp. GFC (R)) to denote the subcategory of Mod R consisting of
C-Gorenstein projective (resp. flat) modules and use GIC (Rop) to denote the subcat-
egory of Mod Rop consisting of C-Gorenstein injective modules. When RCS = R RR ,
C-Gorenstein projective, flat and injective modules are the classical Gorenstein pro-
jective, flat and injective modules, respectively [9,15].

The following equivalent characterizations ofC-Gorenstein flat modules are useful
in the sequel.

Theorem 4.6 Let S be a right coherent ring and A ∈ Mod R. Then, the following
statements are equivalent.

(1) A ∈ GFC (R).
(2) A ∈ rG(FC (R) ∩ CC (R)).
(3) A ∈ ⊥(FC (R) ∩ CC (R)), and there exists a Hom(−,FC (R) ∩ CC (R))-exact

exact sequence

0 → A → Q0 → Q1 → · · · → Qi → · · ·

inMod R with all Qi ∈ FC (R).
(4) A ∈ rG(FC (R) ∩ PI(R)).
(5) A ∈ ⊥(FC (R) ∩ PI(R)), and there exists a Hom(−,FC (R) ∩ PI(R))-exact

exact sequence

0 → A → Q0 → Q1 → · · · → Qi → · · ·

inMod R with all Qi ∈ FC (R).

Proof By Proposition 4.4, we have that FC (R) ∩ PI(R)(= FC (R) ∩ CC (R)) is
an injective cogenerator for FC (R). Then, by [27, Theorem 3.7], we have (3) ⇔
(2) ⇔ (4) ⇔ (5). By Lemma 4.2(3), we have (FC (R) ∩ PI(R))+ ⊆ IC (Rop) and
IC (Rop)+ ⊆ FC (R) ∩ PI(R). Then, by Lemma 3.1, we have (1) ⇔ (4). 
�

Recall from [21] that a subcategory ofMod S is called definable if it is closed under
direct limits, products and pure submodules in Mod S. We have the following

Lemma 4.7 (1) GPC (R) = rG(PC (R)) and GIC (Rop) = lG(IC (Rop)).
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(2) If S is a right coherent and left perfect ring, then GPC (R) = GFC (R).

Proof (1) It is trivial.
(2) Let S be a right coherent and left perfect ring. Then, any flat module in Mod S

is projective by [1, Theorem 28.4], and so PC (R) = FC (R). On the other hand, by
[1, Theorem 27.11], any projective module in Mod S has a decomposition as a direct
sum of indecomposable projective submodules. It follows from [25, Theorem 5], the
subcategory of Mod S consisting of projective modules is definable. So all projective
modules in Mod S are pure injective by [21, Corollary 2.7], and hence, all modules in
PC (R) are pure injective by [35, Theorem 3.5(a)]. Thus, PC (R) = FC (R) ∩PI(R).
Now, by (1) and Theorem 4.6, we have

GPC (R) = rG(PC (R)) = rG(FC (R) ∩ PI(R)) = GFC (R).


�
Now, we give an application of Theorem 3.5 as follows.

Theorem 4.8 If S is a right coherent ring and RCS is faithfully semidualizing, then

(GFC (R),GIC (Rop))

is a coproduct-closed duality pair and GFC (R) is covering inMod R.

Proof We have

(a) (FC (R) ∩ PI(R))+ ⊆ IC (Rop) and IC (Rop)+ ⊆ FC (R) ∩ PI(R) by
Lemma 4.2(3).

(b) By Proposition 4.4(3), FC (R) ∩ PI(R) is preenveloping in Mod R. It is trivial
that all modules in FC (R) ∩ PI(R) are pure injective.

(c) By [30, Lemma 2.5(b)], we have that IC (Rop) is self-orthogonal.

Note that GFC (R) = rG(FC (R) ∩ PI(R)) and GIC (Rop) = lG(IC (Rop)) by The-
orem 4.6 and Lemma 4.7(1). It follows from Theorem 3.5 that

(GFC (R),GIC (Rop))(= (rG(FC (R) ∩ PI(R)), lG(IC (Rop)))

is a duality pair. Moreover, by [18, Proposition 5.1(a)], we have that FC (R) is closed
under coproducts. Because tensor products commute with coproducts, from the def-
inition of C-Gorenstein flat modules, it is easy to get that GFC (R) is closed under
coproducts. Thus, the above duality pair is a coproduct-closed andGFC (R) is covering
in Mod R by Theorem 3.5 again. 
�

The following corollarywas proved in [10, Theorem2.12] for the case RCS = R RR .

Corollary 4.9 If S is a right coherent ring and RCS is faithfully semidualizing, then

(GFC (R),GFC (R)⊥)

is a hereditary perfect cotorsion pair inMod R.
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Proof By using an argument similar to that in the proof of [15, Theorem 3.7], we get
that GFC (R) is projectively resolving. Now, the assertion follows from Theorem 4.8
and Lemma 3.4(3). 
�

By Theorem 4.8 and Lemma 4.7(2), we have

Corollary 4.10 If S is a right coherent and left perfect ring and RCS is faithfully
semidualizing, then

(GPC (R),GIC (Rop))

is a coproduct-closed duality pair and GPC (R) is covering inMod R.

Note that for a commutative noetherian ring R and a semidualizing bimodule RCR ,
it was proved in [19, Theorem3.11] that R is artinian if and only if (GPC (R),GIC (R))

is a (coproduct-closed) duality pair.
We use GF(R) (resp. GI(Rop)) to the subcategory of Mod R (resp. Mod Rop)

consisting Gorenstein flat (resp. injective) modules. By Theorem 4.8, we have

Corollary 4.11 If R is a right coherent ring, then

(GF(R),GI(Rop))

is a coproduct-closed duality pair and GF(R) is covering inMod R.

4.2 The Pair (AC(Rop), lG(FC(R)))

In this subsection, we will give the second application of Theorem 3.5. We write

�
RC := {A ∈ Mod Rop | TorR≥1(A,C) = 0} and

CS
� := {B ∈ Mod S | TorS≥1(C, B) = 0}.

Definition 4.12 [18]

(1) The Auslander class AC (Rop) with respect to C consists of all modules N in
Mod Rop satisfying the following conditions.

(a1) N ∈ �
RC .

(a2) N ⊗R C ∈ CS
⊥.

(a3) The canonical valuation homomorphism

μN : N → HomSop (C, N ⊗R C)

defined by μN (x)(c) = x ⊗ c for any x ∈ N and c ∈ C is an isomorphism
in Mod Rop.

(2) The Bass class BC (R) with respect to C consists of all modules M in Mod R
satisfying the following conditions.
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(b1) M ∈ RC⊥.
(b2) HomR(C, M) ∈ CS

�.
(b3) The canonical valuation homomorphism

θM : C ⊗S HomR(C, M) → M

defined by θM (c ⊗ f ) = f (c) for any c ∈ C and f ∈ HomR(C, M) is an
isomorphism in Mod R.

The following two observations are useful.

Lemma 4.13 FC (R)⊥[IC (Rop)]+.
Proof Let A ∈ FC (R) and B ∈ [IC (Rop)]+. Then, A = C ⊗S F and B =
[HomSop (C, I )]+ for someflatmodule F inMod S and injectivemodule I inMod Sop.
For any i ≥ 1, we have

ExtiR(A, B)

= ExtiR(C ⊗S F, [HomSop (C, I )]+)

∼= [TorRi (HomSop (C, I ),C ⊗S F)]+ (by [14, Lemma 2.16(b)])

∼= [TorSi (I , F)]+ (by [18, Theorem 6.4(c)])

= 0.


�
We use ProdC+ to denote the subcategory of Mod Rop consisting of modules

isomorphic to direct summands of products of copies of C+.

Lemma 4.14 AC (Rop) = rG(IC (Rop)) and BC (R) = lG(PC (R)).

Proof By [22, Proposition 2.4(2)], we have IC (Rop) = ProdC+. Then, by [14,
Lemma 2.16(b)], it is easy to get

�
RC = ⊥(C+) = ⊥(ProdC+) = ⊥IC (Rop).

So AC (Rop) = rG(IC (Rop)) by [29, Theorem 3.11(1)]. On the other hand, by [28,
Theorem 3.9], we have BC (R) = lG(PC (R)). 
�

We are ready to prove the following

Theorem 4.15 If S is a right coherent ring, then

(AC (Rop), lG(FC (R)))

is a coproduct-closed and product-closed duality pair and AC (Rop) is covering and
preenveloping inMod Rop.
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Proof We have

(a) [IC (Rop)]+ ⊆ FC (R) and [FC (R)]+ ⊆ IC (Rop) by Lemma 4.2.
(b) By [18, Proposition 5.3(c)], IC (Rop) is preenveloping in Mod Rop. Because

IC (Rop) = ProdC+ by [22, Proposition 2.4(2)], it follows from [14, Theorem
2.27] that all modules in IC (Rop) are pure injective.

(c) By Lemma 4.13, we have FC (R)⊥[IC (Rop)]+.
Moreover, AC (Rop) is closed under coproducts and products by [18, Proposition
4.2(a)]. It follows from Lemma 4.14 and Theorem 3.5 that

(AC (Rop), lG(FC (R)))

is a coproduct-closed and product-closed duality pair and AC (Rop) is covering and
preenveloping in Mod Rop. 
�

The following corollary was proved in [6, Theorem 3.11] when R is a commutative
noetherian ring and RCS = RCR .

Corollary 4.16 If S is a right coherent ring, then

(AC (Rop),AC (Rop)⊥)

is a hereditary perfect cotorsion pair and AC (Rop) is covering and preenveloping in
Mod Rop.

Proof By [18, Theorem 6.2], AC (Rop) is projectively resolving. Now, the assertion
follows from Theorem 4.15 and Lemma 3.4(3). 
�

As a consequence of Theorem 4.15, we also have the following

Corollary 4.17 If S is a right coherent and left perfect ring, then

(AC (Rop),BC (R))

is a coproduct-closed and product-closed duality pair.

Proof Let S be a right coherent and left perfect ring. By Lemma 4.14, we have

BC (R) = lG(PC (R)) = lG(FC (R)).

Now, the assertion follows from Theorem 4.15. 
�
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