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Abstract
Let R and S be rings and RCS a semidualizing bimodule. We

show that the supremum of the C-projective dimensions of C-flat
left R-modules is less than or equal to that of left R-modules with
finite C-projective dimension, and the latter one is less than or equal
to the supremum of C-injective dimensions of projective (or flat) left
S-modules. We also show that the supremum of the C-projective
dimensions of injective left R-modules and that of the C-injective
dimensions of projective left S-modules are identical provided that
both of them are finite. Finally, we show that the supremum of the C-
projective dimensions of C-flat left R-modules (a relative homological
invariant) and that of the projective dimensions of flat left S-modules
(an absolute homological invariant) coincide.

1 Introduction

The study of semidualizing modules in commutative rings was initiated by

Foxby in [10] and by Golod in [12]. Then Holm and White extended it in [16]
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to arbitrary associative rings. Many authors have studied the properties of

semidualizing modules and related modules, see for example, [10], [12], [15]–

[16], [25], [28], [32]–[40] and the references therein. Among various research

areas on semidualizing modules, one basic theme is to extend the “absolute”

classical results in homological algebra to the “relative” setting with respect

to semidualizing modules. One of the motivations of this paper comes from

a classical result due to Jensen, which states that any flat left R-module has

finite projective dimension over a ring R with finite left finitistic dimension

([23, Proposition 6]). Simson extended this result to skeletally small additive

categories ([29, Theorem 2.7]). Another comes from Emmanouil and Talelli’s

work [7], in which the relations among the supremum of the projective

lengths of injective left R-modules, that of the injective lengths of projective

left R-modules, the finitistic dimension and the left self-injective dimension

of a ring R were established. We are interested in whether these results have

relative counterparts with respect to semidualizing modules. The paper is

organized as follows.

In Section 2, we give some terminology and some preliminary results.

Let R and S be rings and RCS a semidualizing bimodule. In Section

3, we show that the supremum of the C-projective dimensions of C-flat

left R-modules is less than or equal to that of left R-modules with finite

C-projective dimension, and the latter one is less than or equal to the supre-

mum of C-injective dimensions of projective (or flat) left S-modules. The

former part of this result is a C-version of the Jensen’s result mentioned

above.

In Section 4, we show that the supremum of the C-projective dimensions

of injective left R-modules and that of the C-injective dimensions of projec-

tive left S-modules are identical provided that both of them are finite. If S

is a right coherent ring, then any C-Gorenstein projective left R-module is

C-Gorenstein flat provided that the supremum of the C-projective dimen-

sions of C-flat left R-modules is finite. In the final of this section, we give

a negative answer to the following open question posed by White in [40]:

for a commutative ring R, if M is a left R-module with finite projective

dimension, must the projective and C-Gorenstein projective dimensions of

M be identical?

In Section 5, we prove that if R is a left noetherian ring, then the direct

sum of the first (n + 1) terms in a minimal injective resolution of RC is

a Σ-embedding cogenerator for the category of modules with C-projective

dimension at most n; and if the supremum of the C-projective dimension-
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s of C-flat left R-modules is at most m, then the direct sum of the first

(m+n+1) terms in a minimal injective resolution of RC is a Σ-embedding

cogenerator for the category of modules with C-flat dimension at most n. Fi-

nally, we show that the supremum of the C-projective dimensions of C-flat

left R-modules (a relative homological invariant) and that of the projec-

tive dimensions of flat left S-modules (an absolute homological invariant)

coincide.

2 Preliminaries

Throughout this paper, all rings are associative rings with unit. Let R be

a ring. We use ModR (resp. ModRop) to denote the category of left (resp.

right) R-modules, and use modR (resp. modRop) to denote the category

of finitely presented left (resp. right) R-modules. Let M ∈ ModR. We use

AddR M (resp. addR M) to denote the subcategory of ModR consisting of

all direct summands of direct sums (resp. finite direct sums) of copies of M .

We use

0→M → I0(M)
f0

−→ I1(M)
f1

−→ · · · f
i−1

−→ I i(M)
f i

−→ · · ·

to denote a minimal injective resolution of M .

Let X be a full subcategory of ModR. We write

X⊥ := {M ∈ ModR | Ext>1
R (X,M) = 0}, and

⊥X := {M ∈ ModR | Ext>1
R (M,X) = 0}.

A sequence

M := · · · →M1 →M2 →M3 → · · ·

in ModR is called HomR(X ,−)-exact (resp. HomR(−,X )-exact) if HomR(X,M)

(resp. HomR(M, X)) is exact for any X ∈ X . An exact sequence (of finite

or infinite length):

· · · → Xn → · · · → X1 → X0 →M → 0

in ModR is called an X -resolution of M if all Xi are in X . The X -projective
dimension X -pdR M of M is defined as inf{n | there exists an X -resolution

0→ Xn → · · · → X1 → X0 →M → 0

of M in ModR}. Dually, the notions of an X -coresolution and the X -
injective dimension X -idR M ofM are defined. In particular, we use pdR M ,
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fdR M and idR M to denote the projective, flat and injective dimensions of

M respectively.

We first give the following

Lemma 2.1. Let X and C be full subcategories of ModR with C additive.

(1) If (X ∪ C) ⊆ C⊥ and C-pdR X 6 m(< ∞) for any X ∈ X , then for a

module M ∈ ModR with X -pdR M 6 n(< ∞), we have C-pdR M 6
m+ n.

(2) If (X ∪ C) ⊆ ⊥C and C-idR X 6 m(< ∞) for any X ∈ X , then for

a module M ∈ ModR with X -idR M 6 n(< ∞), we have C-idR M 6
m+ n.

Proof. (1) Let M ∈ ModR with X - pdR M 6 n and

0→ Xn → · · · → X1 → X0 →M → 0 (2.1)

be an exact sequence in ModR with all Xi in X . Because X ⊆ C⊥ by as-

sumption, the exact sequence (2.1) is HomR(C,−)-exact. Because C-pdR X 6
m and C ⊆ C⊥ by assumption, for any 0 6 i 6 n we have a HomR(C,−)-
exact exact sequence

0→ Cm
i → · · · → C1

i → C0
i → Xi → 0

in ModR with all Cj
i in C. By [17, Corollary 3.7], we get an exact sequence

0→ Cm+n → Cm+n−1 → · · · → C1 → C0 →M → 0

in ModR with all Ct being direct sums of some modules in {Cj
i }

06j6m
06i6n .

Because C is additive, we have that all Ct are in C and C-pdR M 6 m+ n.

(2) It is dual to (1).

Definition 2.2. ([16]). Let R and S be rings.

(1) An (R-S)-bimodule RCS is called semidualizing if the following condi-

tions are satisfied.

(a1) RC admits a degreewise finite R-projective resolution.

(a2) CS admits a degreewise finite S-projective resolution.

(b1) The homothety map RRR
Rγ→ HomSop(C,C) is an isomorphism.

(b2) The homothety map SSS
γS→ HomR(C,C) is an isomorphism.

(c1) Ext>1
R (C,C) = 0, that is RC is self-orthogonal.

(c2) Ext>1
Sop(C,C) = 0, that is CS is self-orthogonal.
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(2) A semidualizing bimodule RCS is called faithful if the following condi-

tions are satisfied:

(f1)If M ∈ ModR and HomR(C,M) = 0, then M = 0.

(f2) If N ∈ ModSop and HomSop(C,N) = 0, then N = 0.

Typical examples of semidualizing bimodules include the free module

of rank one, dualizing modules over a Cohen-Macaulay local ring and the

ordinary Matlis dual bimodule ΛD(Λ)Λ of ΛΛΛ over an artin algebra Λ. Over

a commutative ring, all semidualizing modules are faithful ([16, Proposition

3.1]).

From now on, R and S are arbitrary rings and we fix a semid-

ualizing bimodule RCS. For convenience, we write (−)∗ := Hom(C,−),
and

RC
⊥ := {M ∈ ModR | Exti>1

R (C,M) = 0},

CS
⊤ := {N ∈ ModS | TorSi>1(C,N) = 0}.

Following [16], set

FC(R) := {C ⊗S F | F is flat in ModS},

PC(R) := {C ⊗S P | P is projective in ModS},

IC(S) := {I∗ | I is injective in ModR}.

The modules in FC(R), PC(R) and IC(S) are called C-flat, C-projective and

C-injective respectively. Symmetrically, the classes of FC(S
op), PC(S

op) and

IC(Rop) are defined. Set (−)+ := HomZ(−,Q/Z), where Z is the additive

and Q is the additive group of rational numbers. We have the following

Lemma 2.3.

(1) If M ∈ FC(R), then M+ ∈ IC(Rop).

(2) If S is a right coherent ring and N ∈ IC(Rop), then N+ ∈ FC(R).

Proof. (1) It follows directly from the adjoint isomorphism theorem.

(2) Let S be a right coherent ring and N ∈ IC(Rop). Then there exists

an injective module I in ModSop such that N = I∗. By [11, Lemma 2.16(c)]

we have

C ⊗S I+ ∼= I∗
+(= N+).

By [9, Theorem 2.2], we have that I+ ∈ ModS is flat. So N+(∼= C⊗S I
+) ∈

FC(R).
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Let M ∈ ModR and N ∈ ModS. Then we have the following two

canonical valuation homomorphisms:

θM : C ⊗S M∗ →M

defined by θM(c⊗ f) = f(c) for any c ∈ C and f ∈M∗; and

µN : N → (C ⊗S N)∗

defined by µN(x)(c) = c⊗ x for any x ∈ N and c ∈ C.

Definition 2.4. ([16])

(1) The Auslander class AC(S) with respect to C consists of all left S-

modules N satisfying the following conditions.

(A1) N ∈ CS
⊤.

(A2) C ⊗S N ∈ RC
⊥.

(A3) µN is an isomorphism in ModS.

(2) The Bass class BC(R) with respect to C consists of all left R-modules

M satisfying the following conditions.

(B1) M ∈ RC
⊥.

(B2) M∗ ∈ CS
⊤.

(B3) θM is an isomorphism in ModR.

For a subcategory X of ModR and n > 0, we write

X - pd6n(R) := {M ∈ ModR | X - pdR M 6 n},

and

X - pd<∞(R) := {M ∈ ModR | X - pdR M <∞}.

We use I(R) to denote the subcategory of ModR consisting of injective

modules. The following two lemmas will be used frequently in the sequel.

Lemma 2.5.

(1) I(R) ∪ FC(R)- pd<∞(R) ⊆ BC(R) ⊆ RC
⊥ = PC(R)⊥.

(2) IC(Rop) ⊆ ⊥IC(Rop) and IC(S) ⊆ ⊥IC(S).
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Proof. (1) By [16, Lemma 4.1 and Corollary 6.1] and [35, Theorem 3.9], we

have

I(R) ∪ FC(R)- pd<∞(R) ⊆ BC(R) ⊆ RC
⊥.

It is well known that ExtnR(⊕i∈IAi,M) ∼=
∏

i∈I Ext
n
R(Ai,M) for any family

of modules {Ai}i∈I , M ∈ ModR and n > 1. Because PC(R) = AddR C by

[36, Proposition 3.4(2)], it is easy to get PC(R)⊥ = RC
⊥.

(2) It follows from [16, Lemma 4.1 and Theorem 6.4(b)].

The following result is used frequently in the sequel.

Lemma 2.6. ([35, Theorem 3.9]) and [36, Theorem 3.5])

(1) fdS M∗ 6 FC(R)-pdR M for any M ∈ ModR, the equality holds if

M ∈ BC(R).

(2) pdS M∗ 6 PC(R)-pdR M for any M ∈ ModR, the equality holds if

M ∈ BC(R).

(3) idR C ⊗S N 6 IC(S)-idS N for any N ∈ ModS, the equality holds if

N ∈ AC(S).

The following notions were introduced by Holm and Jϕgensen in [15] for

commutative rings. We give the non-commutative versions of them.

Definition 2.7. Let M be in ModR.

(1) M is called C-Gorenstein projective if the following conditions are sat-

isfied.

(i) Ext>1
R (M,G) = 0 for any G ∈ PC(R).

(ii) There exists a HomR(−,PC(R))-exact exact sequence

G := 0→M → G0 → G1 → · · ·

in ModR with all Gi in PC(R).

(2) M is called C-Gorenstein flat if the following conditions are satisfied.

(i) TorR>1(E,M) = 0 for any E ∈ IC(Rop).

(ii) There exists an exact sequence

Q := 0→M → Q0 → Q1 → · · ·

in ModR with all Qi in FC(R), such that E ⊗R Q is exact for any

module E ∈ IC(Rop).
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We use GPC(R) to denote the subcategory of ModR consisting of C-

Gorenstein projective modules. Putting RCS = RRR, then C-Gorenstein

projective modules and C-Gorenstein flat modules are the classical Goren-

stein projective modules and Gorenstein flat modules respectively ([4, 5, 8,

14]).

Lemma 2.8. For a module M ∈ ModR, if PC(R)-pdR M < ∞, then

PC(R)-pdR M = GPC(R)-pdR M .

Proof. The case for commutative rings has been proved in [40, Proposition

2.16]. The argument there is valid in our setting, so we omit it.

3 The C-Version of a Result of Jensen

In this section, we investigate the relationship among some homological in-

variants related to RCS. We first define the finitistic C-projective dimension

FPC-dimR of R as

FPC-dimR := sup{PC(R)- pdR M |M ∈ ModR with PC(R)- pdR M <∞},

and define the finitistic C-Gorenstein projective dimension FGPC-dimR of

R as

FGPC-dimR := sup{GPC(R)- pdR M |M ∈ ModR with GPC(R)- pdR M <∞}.

We write the supremum of the C-projective dimensions of C-flat left

R-modules as

spclfcR := sup{PC(R)- pdR M |M ∈ FC(R)}.

The following result is a C-version of [23, Proposition 6]. It plays a key role

in the sequel.

Proposition 3.1. spclfcR 6 FPC-dimR.

Proof. The proof is modified from [23, Proposition 6]. Let FPC-dimR <∞
and M ∈ FC(R). Then M ∼= C ⊗S F for some flat module F in ModS.

Now take an exact sequence

0→ B → F0 → F → 0 (3.1)

in ModS with F0 free and B flat. Assume that B is generated by ℵ elements,

where ℵ is a finite or an infinite cardinal number. We claim that pdS B 6
FPC-dimR.



Homological Invariants Related to Semidualizing Bimodules 9

We proceed by using transfinite induction on ℵ. If ℵ 6 ℵ0, then there

exists a pure exact sequence

0→ B → F ′ → F ′/B → 0

in ModS such that F ′ is a free submodule of F0 and F ′ is generated by

at most ℵ0 elements. Hence F ′/B is a countably related flat module by

[22]. Now it follows from [21, Lemma 2] (see also [27, Lamma 1.2]) that

pdS F
′/B 6 1. So B is projective and pdS B 6 FPC-dimR. Next from the

proof of [23, Proposition 6], we know that there exists a transfinite sequence

(Cβ)β<Ω of pure submodules Cβ such that B =
∪

β<Ω Cβ with Cβ1 ⊆ Cβ2 for

β1 6 β2, and each Cβ is generated by less than ℵ elements. Then by the in-

duction hypothesis, we have pdS Cβ 6 FPC-dimR. So pdS B 6 FPC-dimR

by [2, Proposition 3]. The claim is proved.

By the claim and the exact sequence (3.1), we have pdS F <∞. Notice

that F ∈ AS(C) by [16, Lemma 4.1], so µF : F → (C ⊗S F )∗ is an iso-

morphism, and hence PC(R)-pdR M = PC(R)-pdR(C ⊗S F ) = pdS(C ⊗S

F )∗ = pdS F < ∞ by Lemma 2.6(2). It follows that PC(R)-pdR M 6
FPC-dimR.

For a subcategory X of ModR, following [36] we write

idRX := sup{idR X | X ∈ X}.

The following result improves [36, Proposition 3.6].

Corollary 3.2. sup{PC(R)-pdR M | M ∈ ModR with FC(R)-pdR M <

∞} 6 FPC-dimR 6 idR PC(R).

Proof. If FPC-dimR <∞, then spclfcR 6 FPC-dimR by Proposition 3.1.

It follows from Lemmas 2.5 and 2.1(1) that PC(R)-pdR M < ∞ for any

M ∈ ModR with FC(R)-pdR M <∞. Then the first inequality follows.

Let M ∈ ModR with PC(R)-pdR M = n(<∞) and

0→ Cn → · · · → C1 → C0 →M → 0

be an exact sequence in ModR with all Ci in PC(R)(= AddR C by [36,

Proposition 3.4(2)]). Then ExtnR(M,Cn) ̸= 0 and idR Cn > n. So idR PC(R) >
n and the second inequality follows.

Motivated by [7, Section 2], we write the supremum of the C-injective

dimensions of projective left S-modules as

siclpS := sup{IC(S)- idS P | P ∈ ModS is projective},
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and write the supremum of the C-injective dimensions of flat left S-modules

as

siclf S := sup{IC(S)- idS F | F ∈ ModS is flat}.

A special case of those commutative Noetherian rings S with siclpS 6 n,

it was proved in [33, Theorem 2.6] that these are precisely the rings over

which every finitely generated module can be embedded into a module with

C-projective dimension at most n.

Theorem 3.3.

(1) spclfcR 6 FGPC-dimR = FPC-dimR 6 idR PC(R) = siclpS =

siclf S.

(2) If R is a left noetherian ring, then FPC-dimR 6 idR C = siclpS.

Proof. (1) By Proposition 3.1, Lemma 2.8 and Corollary 3.2, we have spclfcR 6
FPC-dimR 6 FGPC-dimR 6 idR PC(R).

Now suppose that FPC-dimR = n(<∞) andM ∈ ModR with GPC(R)-

pdR M < ∞. By [25, Corollary 3.4], there exists M ′ ∈ ModR such that

PC(R)-pdR M ′ = GPC(R)-pdR M . So GPC(R)-pdR M 6 n. It follows that

FGPC-dimR 6 FPC-dimR. The first equality follows.

Assume that siclpS = n(< ∞) and M(∼= C ⊗S P ) ∈ PC(R) with pro-

jective in ModS. Then there exists an exact sequence:

0→ P → I0∗ → I1∗ → · · · → In∗ → 0 (3.2)

in ModS with all I i injective in ModR. By Lemma 2.5(1), all I i are in

BC(R). So I i∗ ∈ CS
⊤ and C ⊗S I i∗ ∼= I i for any 0 6 i 6 n. Then applying

the functor C ⊗S − to (3.2) yields the following exact sequence

0→M → I0 → I1 → · · · → In → 0

in ModR. It follows that idR M 6 n and idR PC(R) 6 siclpS. By using a

dual argument, we get siclpS 6 idR PC(R). The second equality follows.

Obviously siclpS 6 siclf S. Now let siclpS = n(< ∞) and F ∈ ModS

be flat. Then FPC-dimR 6 n and PC(R)-pdR(C ⊗S F ) <∞ by the former

argument. Let

0→ Cm → · · · → C1 → C0 → C ⊗S F → 0

be an exact sequence in ModR with all Ci in PC(R). By Lemma 2.6(3), we

have idR Ci 6 siclpS 6 n. Thus idR(C⊗S F ) 6 n. Note that F ∈ AC(R) by
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[16, Lemma 4.1]. Then IC(S)-idS F 6 n by Lemma 2.6(3) again. It yields

that siclf S 6 n. Therefore we conclude that siclpS = siclf S.

(2) Let R be a left noetherian ring. Then idR PC(R) 6 idR C by [3,

Theorem 1.1]. Now the first inequality follows from Corollary 3.2.

Since idR C = IC(S)-idS S by Lemma 2.6(3), we have idR C 6 siclpS.

Now let idR C = n(< ∞). Since R is left noetherian, by [3, Theorem 1.1]

we have idR G 6 n for any G ∈ PC(R). It follows from Lemma 2.6(3) that

IC(S)-idS P 6 n for any projective module P in ModS. Thus siclpS 6 n

and siclpS 6 idR C.

Note that Theorem 3.3(1) extends [14, Theorem 2.28] and [7, Proposition

2.1]. The inequality in Theorem 3.3(2) can be strict, as illustrated in the

following example. We refer to [1] for the notions about quivers and their

representations.

Example 3.4. Let R be the bound quiver algebra kQ/J2, where k is a

field, Q is the quiver

◦177
// ◦2 // ◦3 // ◦4,

kQ is the path k-algebra of Q, and J is the two-sided ideal of kQ generated

by the arrows. If C is the (R,R)-bimodule R, then FPC-dimR = 0 ([13,

Example 1.2]), but idR C =∞.

4 Some Relative Homological Invariants

In classical homological algebra, it is known that for any module M ∈
ModR with fdR M 6 n, the nth yoke in every flat resolution of M is flat.

As described in the following result, an analogous result holds for C-flat

dimension of modules.

Lemma 4.1. Let RCS be faithful and M ∈ ModR. If there exist two exact

sequences:

0→Mn → · · · → C1 → C0 →M → 0, and

0→ Dn → · · · → D1 → D0 →M → 0

in ModR with all Ci and Di in FC(R), then Mn ∈ FC(R).
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Proof. Applying the functor (−)+ to both of the given exact sequences, we

get the following commutative diagram with exact rows:

0 // M+ // D+
0

//

f0
���
�
�

· · · // D+
n−1

//

fn−1

���
�
�

D+
n

//

fn
���
�
�

0

0 // M+ // C+
0

// · · · // C+
n−1

// M+
n

// 0.

By Lemma 2.3(1), all modules C+
i and D+

i lie in IC(Rop). Then the exis-

tence of all fi follows from Lemma 2.5(2). Now we may view the sequence

(f0, · · · , fn−1, fn) as a quasi-isomorphism between the following two com-

plexes:

0→ D+
0 → · · · → D+

n−1 → D+
n → 0, and

0→ C+
0 → · · · → C+

n−1 →M+
n → 0.

We therefore obtain an exact sequence:

0→ D+
0 → D+

1 ⊕ C+
0 → · · · → D+

n ⊕ C+
n−1 →M+

n → 0.

Then M+
n ∈ IC(Rop)(⊆ AC(R

op)) and M+
n ⊗R C ∈ ModSop is injec-

tive by Lemma 2.3(1) and [16, Lemma 5.1(c)]. Note that M+
n ⊗R C ∼=

HomR(C,Mn)
+ by [11, Lemma 2.16(c)]. So HomR(C,Mn) ∈ ModS is flat

by [11, Corollary 2.18(b)], and hence it is in AC(S) by [16, Lemma 4.1].

Then Mn ∈ BC(R) by [34, Lemma 1.7]. It follows from [16, Lemma 5.1(a)]

that Mn ∈ FC(R).

The following example shows that the assumption about the faithfulness

of RCS in the above lemma is necessary.

Example 4.2. Let k be an algebraically closed field and let R = kQ be the

path k-algebra of dimension 3 of the quiver

1◦ // ◦2.

Put C = I(1) ⊕ I(2). Then RCR is a non-faithful semidualizing bimodule

and there exist two exact sequences:

0→ S(2)→ P (1)→ S(1)→ 0, and

0→ I(1)→ I(1)2 → S(1)→ 0,

where I(1) and P (1) are in FC(R), but S(2) is not in FC(R).
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Motivated by the corresponding notions introduced in [7], in an analo-

gous way we write the supremum of the C-projective dimensions of injective

left R-modules as

spcliR := sup{PC(R)- pdR I | I ∈ ModR is injective},

and write the supremum of the C-flat dimensions of injective left R-modules

as

sfcliR := sup{FC(R)- pdR I | I ∈ ModR is injective}.

Next we turn to further investigate the relationship of aforementioned rel-

ative invariants. The following two results extend [7, Proposition 2.2 and

Corollary 2.3] respectively.

Theorem 4.3.

(1) If spcliR <∞ and siclpS <∞, then spcliR = siclpS.

(2) If RCS is faithful, then spcliR 6 sfcliR + spclfcR.

Proof. (1) Let spcliR = n, and let I ∈ ModR be injective with PC(R)-

pdR I = n. Thus there exists an exact sequence

0→ Cn → · · · → C1 → C0 → I → 0

in ModR with all Ci ∈ PC(R). Then ExtnR(I, Cn) ̸= 0, which implies that

idR Cn > n. We may assume that Cn
∼= C ⊗S P for some projective module

P in ModS. Then IC(S)-idS P = idR Cn > n by Lemma 2.6(3), implying

that siclpS > n. With the aid of Lemma 2.6(2), a similar argument gives

the converse inequality.

(2) Let sfcliR = n(<∞) and spclfcR = m(<∞), and let I ∈ ModR be

injective. Since I ∈ BC(R), by [35, Theorem 3.9 and Proposition 3.7] there

exists an exact sequence

0→ Kn → Cn−1 → · · · → C0 → I → 0

in ModR with all Ci in PC(R). Since FC(R)-pdR I 6 sfcliR = n, it follows

from Lemma 4.1 that Kn ∈ FC(R). Since spclfcR = m, we have P(R)C-

pdR Kn 6 m and P(R)C-pdR I 6 m+ n.

Corollary 4.4. Let RCS be faithful. Then the following statements are e-

quivalent.

(1) spcliR = siclpS <∞.
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(2) sfcliR <∞ and siclpS <∞.

Proof. The implication (1)⇒ (2) is trivial.

Let sfcliR <∞ and siclpS <∞. Then spclfcR <∞ by Theorem 3.3(1).

So spcliR < ∞ by Theorem 4.3(2). Now the implication (2) ⇒ (1) follows

from Theorem 4.3(1).

In the following result, we give a sufficient condition when a C-Gorenstein

projective module is C-Gorenstein flat.

Proposition 4.5. Let S be a right coherent ring. If spclfcR < ∞ (in

particular, if FPC-dimR < ∞), then any C-Gorenstein projective module

in ModR is C-Gorenstein flat.

Proof. By Proposition 3.1, we have spclfcR 6 FPC-dimR. Now let S be

a right coherent ring and spclfcR < ∞. If M ∈ ModR is C-Gorenstein

projective module, then by definition there exists a HomR(−,PC(R))-exact

exact sequence

G := · · · → P1 → P0 → G0 → G1 → · · ·

in ModR with all Gi in PC(R), Pi projective and M ∼= Im(P0 → G0), such

that HomR(G, H) is exact for any module H ∈ PC(R). By using induction

on the dimension, it is not difficult to get that HomR(G, H ′) is exact for

any H ′ ∈ ModR with PC(R)-pdR H ′ <∞.

Now let E ∈ IC(Rop). Then E+ ∈ FC(R) by Lemma 2.3(2), and so

PC(R)-pdR E+ < ∞ by assumption. It yields that HomR(G, E+) is exact.

Thus E ⊗R G is exact by the adjoint isomorphism theorem. It follows that

M is C-Gorenstein flat.

Recall that the big finitistic dimension FPDR of R is defined as

FPDR := sup{pdR M |M ∈ ModR with pdR M <∞}.

Following [7], we write the supremum of the projective dimensions of flat

left R-modules as

splf R := sup{pdR M |M ∈ ModR is flat}.

Putting RCS = RRR in Proposition 4.5, we get immediately the following

result, which is a slight generalization of [14, Proposition 3.4].

Corollary 4.6. Let R be a right coherent ring. If splf R < ∞ (in partic-

ular, if FPDR < ∞), then any Gorenstein projective module in ModR is

Gorenstein flat.
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We use P(R) to denote the subcategory of ModR consisting of projec-

tive modules. Recall from [14] that a subcategory X of ModR is called

projectively resolving if P(R) ⊆ X and X is closed under extensions and

kernels of epimorphisms.

White posed in [40, Question 2.15] an open question: for a commutative

ring R, if M ∈ ModR with pdR M < ∞, must pdR M = GPC(R)-pdR M?

The following example illustrates that the answer to each of the question and

its non-commutative version is negative in general. In addition, Holm and

White proved in [16, Corollary 6.4] that PC(R) and FC(R) are projectively

resolving if RCS is faithful. The following example also illustrates that this

result is not true.

Example 4.7.

(1) Let R be a non-self-injective commutative artinian local ring with maxi-

mal idealm. For example we can take forR the ring k[[X, Y ]]/(X2, XY, Y 2)

with k a field (see [6, p.15]). Then C := I0(R/m) is a faithfully semid-

ualizing module and C is C-(Gorenstein) projective. But C is an injec-

tive cogenerator for ModR, so we have pdR C = idR R ̸= 0. We also

claim that R /∈ PC(R). Otherwise, there exists a projective module

P in ModR such that R ∼= C ⊗R P . It follows that R is injective, a

contradiction. Consequently, PC(R) is not projectively resolving.

(2) Let R be a Gorenstein artin algebra with idR R = idRop R = n > 1. For

example we can take for R the bound quiver algebra kQ/J2, where k is

an algebraically field, Q is the quiver

◦1 α1 // ◦2 α2 // ◦3 α3 // · · · αn // ◦n+ 1,

kQ is the path k-algebra of Q, and J is the two-sided ideal of kQ

generated by the arrows. Put C := ⊕n
i=0I

i(R). Then by [39, Corollary

3.2], it is easy to see that C is a semidualizing (R,S)-bimodule, where

S = EndR C. Because C is an injective cogenerator for ModR by [19,

Theorem 2], we have pdR C = fdR C = idRop R = n(> 1) by [20, Propo-

sition 1]. But C is C-(Gorenstein) projective.

The following result shows that the answer to the White’s question men-

tioned above is positive under some condition.

Proposition 4.8. Assume that PC(R) is projectively resolving and M ∈
ModR. If pdR M <∞, then we have

pdR M = PC(R)- pdR M = GPC(R)- pdR M.
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Proof. By assumption, PC(R) is projectively resolving; in particular, P(R) ⊆
PC(R). So we have pdR M > PC(R)-pdR M . On the other hand, by Lem-

ma 2.5(1), we have PC(R) ⊆ P(R)⊥ ∩ ⊥P(R). So, if pdR M < ∞, then

pdR M = PC(R)-pdR M by [18, Theorem 3.10]. It follows from Lemma 2.8

that PC(R)-pdR M = GPC(R)-pdR M .

5 Σ-Embedding Cogenerators

Recall from [26] that a module A ∈ ModR is called a Σ-embedding cogener-

ator for a subcategory B of ModR, if every module in B admits an injection

to a direct sum of copies of A.

Theorem 5.1. Let R be a left noetherian ring and X a subcategory of

ModR with X ⊆ C⊥, and let m,n > 0. Then we have

(1) If sup{PC(R)-pdR X | X ∈ X} 6 m, then ⊕m+n
t=0 I t(C) is a Σ-embedding

cogenerator for X - pd6n(R).

(2) If sup{PC(R)-pdR X | X ∈ X} < ∞ then ⊕t>0I
t(C) is a Σ-embedding

cogenerator for X - pd<∞(R).

Proof. (1) Let M ∈ ModR with X - pdR M 6 n and sup{PC(R)-pdR X |
X ∈ X} 6 m. Then by Lemma 2.1(1), we have an exact sequence

0→ Cm+n → Cm+n−1 → · · · → C1 → C0 →M → 0

in ModR with all Ct in PC(R)(= AddR C). Because R is a left noethe-

rian ring, all Ij(Ct) are in AddR Ij(C) for any j > 0. By [26, Corollary

1.3] (cf. [17, Corollary 3.5]), M can be embedded into (a direct summand

of) ⊕m+n
t=0 I t(Ct). So M can be embedded into a direct sum of copies of

⊕m+n
t=0 I t(C). It follows that ⊕m+n

t=0 I t(C) is a
∑

-embedding cogenerator for

X - pd6n(R).

(2) It is a direct consequence of (1).

Putting X = PC(R) in Theorem 5.1, we have the following result in

which the first assertion is a C-version of [26, Theorem 2.2].

Corollary 5.2. Let R be a left noetherian ring, and let n > 0. Then we

have

(1) ⊕n
t=0I

t(C) is a Σ-embedding cogenerator for PC(R)- pd6n(R).

(2) ⊕t>0I
t(C) is a Σ-embedding cogenerator for PC(R)- pd<∞(R).
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As another application of Theorem 5.1, we have the following

Corollary 5.3. Let R be a left noetherian ring, and let m,n > 0. Then we

have

(1) If spclfcR 6 m (in particular, if FPC-dimR 6 m or idR C 6 m), then

⊕m+n
t=0 I t(C) is a Σ-embedding cogenerator for FC(R)- pd6n(R).

(2) If spclfcR <∞ (in particular, if FPC-dimR <∞ or idR C <∞), then

⊕t>0I
t(C) is a Σ-embedding cogenerator for FC(R)- pd<∞(R).

Proof. By Theorem 3.3, we have

spclfcR 6 FPC-dimR 6 idR C.

Note that FC(R) ⊆ C⊥ by Lemma 2.5(1). So, Putting X = FC(R) in

Theorem 5.1, then the assertions follow.

Putting C = R in Corollary 5.3, we have the following result in which

the second assertion generalizes [26, Corollary 2.3].

Corollary 5.4. Let R be a left noetherian ring, and let m,n > 0. Then we

have

(1) If splf R 6 m (in particular, if FPDR 6 m or idR R 6 m), then

⊕m+n
t=0 I t(R) is a Σ-embedding cogenerator for the subcategory of ModR

consisting of modules with flat dimension at most n.

(2) If splf R < ∞ (in particular, if FPDR < ∞ or idR R < ∞), then

⊕t>0I
t(C) is a Σ-embedding cogenerator for the subcategory of ModR

consisting of modules with finite flat dimension.

In view of Proposition 4.5 and Corollary 5.3, it is necessary for us to get

more information about (the finiteness of) spclfcR.

Lemma 5.5. For any m,n > 0, we have

(1) If pdS N 6 n for any flat module N in ModS, then PC(R)-pdR M 6
m+ n for any module M ∈ ModR with FC(R)-pdR M 6 m.

(2) If pdS N 6 n (resp. <∞) for any module N ∈ ModS with fdS N <∞,

then PC(R)-pdR M 6 n (resp. <∞) for any module M ∈ ModR with

FC(R)-pdR M <∞.
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Proof. (1) Let M ∈ ModR with FC(R)-pdR M 6 m. By Lemmas 2.5(1)

and 2.6(1), we have M ∈ BC(R) and fdS M∗ 6 m. Then by assumption and

the dimension shifting, we have pdS M∗ 6 m + n. So there exists an exact

sequence

0→ Pm+n → · · · → P1 → P0 →M∗ → 0 (5.1)

in ModS with all Pi projective. Applying the functor C⊗S− to (5.1) yields

the following exact sequence

0→ C ⊗S Pm+n → · · · → C ⊗S P1 → C ⊗S P0 → C ⊗S M∗(∼= M)→ 0

in ModR with all C⊗S Pi in PC(R). It follows that PC(R)-pdR M 6 m+n.

(2) It has been essentially proved in (1).

Let k be a field, and let S be a right-Noetherian k-algebra for which there

exists a left-Noetherian k-algebra R and a dualizing complex RDS. Then

pdS N <∞ for any moduleN ∈ ModS with fdS N <∞ ([24, Theorem]). So

PC(R)-pdR M < ∞ for any module M ∈ ModR with FC(R)-pdR M < ∞
by Lemma 5.5(2).

As a consequence of Lemma 5.5(1), we have the following result, which

shows that the relative homological invariant spclfcR coincides with the

absolute homological invariant splf S. Compare it with Proposition 3.1.

Theorem 5.6. spclfcR = splf S.

Proof. Putting m = 0 in Lemma 5.5(1), it is easy to get spclfcR 6 splf S.

Now let spclfcR = n(<∞) and N ∈ ModS be flat. Then C⊗S N ∈ FC(R)

and there exists an exact sequence

0→ Cn → · · · → C1 → C0 → C ⊗S N → 0

in ModR with all Ci in PC(R)(= AddR C). Applying the functor HomR(C,−)
to it yields an exact sequence

0→ Cn∗ → · · · → C1∗ → C0∗ → (C ⊗S N)∗ → 0

in ModS with all Ci∗ projective. Note that N ∈ AC(S) by [16, Lemma 4.1].

Hence N ∼= (C⊗SN)∗ and pdS N 6 n. Thus splf S 6 spclfcR and the proof

is complete.

We finish the paper by the following interesting open problem suggested

by a referee.
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Open Problem 5.7. Let C be a preadditive category and Mod C the cat-

egory of additive contravariant functors from C to abelian groups. Similar

problems on pure projective resolutions, pure projective and pure injective

dimensions have been studied in Mod C ([29]–[31]). It is interesting to study

how to define suitably a semidualizing bimodule T in Mod C such that the

results in this paper still hold true by replacing C (in ModR) by T (in

Mod C).
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[11] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras

of Modules, de Gruyter Expositions in Math. 41, 2nd revised and

extended edition, Berlin-Boston 2012.

[12] E. S. Golod, G-dimension and generalized perfect ideals, Trudy Mat.

Inst. Steklov. 165 (1984), 62–66.

[13] E. L. Green, Finitistic dimensions of finite dimensional monomial

algebras, J. Algebra 136 (1991), 37–50.

[14] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra

189 (2004), 167–193.

[15] H. Holm and P. Jøgensen, Semidualizing modules and related Goren-

stein homological dimensions, J. Pure Appl. Algebra 205 (2006), 423–

445.

[16] H. Holm and D. White, Foxby equivalence over associative rings, J.

Math. Kyoto Univ. 47 (2007), 781–808.

[17] Z. Y. Huang, Proper resolutions and Gorenstein categories, J. Algebra

393 (2013), 142–169.

[18] Z. Y. Huang, Homological dimensions relative to preresolving subcat-

egories, Kyoto J. Math. 54 (2014), 727–757.

[19] Y. Iwanaga, On rings with finite self-injective dimension, Comm. Al-

gebra 7 (1979), 393–414.

[20] Y. Iwanaga, On rings with finite self-injective dimension II, Tsukuba

J. Math. 4 (1980), 107–113.

[21] C. U. Jensen, On homological dimensions of rings with countably gen-

erated ideals, Math. Scand. 18 (1966), 97–105.



Homological Invariants Related to Semidualizing Bimodules 21

[22] C. U. Jensen, Homological dimension of ℵ0-coherent rings, Math. S-

cand. 20 (1967), 55–66.

[23] C. U. Jensen, On the vanishing of lim←−
(i), J. Algebra 15 (1970), 151–

166.

[24] P. Jøgensen, Finite flat and projective dimension, Comm. Algebra 33

(2005), 2275–2279.

[25] Z. F. Liu, Z. Y. Huang and A. M. Xu, Gorenstein projective dimension

relative to a semidualizing bimodule, Comm. Algebra 41 (2013), 1–18.

[26] J. Miyachi, Injective resolutions of Noetherian rings and cogenerators,

Proc. Amer. Math. Soc. 128 (2000), 2233–2242.

[27] B. L. Osofsky, Upper bounds of homological dimensions, Nagoya.

Math. J. 32 (1968), 315–322.

[28] M. Salimi, E. Tavasoli, P. Moradifar and S. Yassemi, Syzygy and tor-

sionless modules with respect to a semidualizing module, Algebr. Rep-

resent. Theory 17 (2014), 1217–1234.

[29] D. Simson, On pure global dimension of locally finitely presented

Grothendieck categories, Fund. Math. 96 (1977), 91–116.

[30] D. Simson, Pure-periodic modules and a structure of pure-projective

resolutions, Pacific J. Math. 207 (2002), 235–256.

[31] D. Simson, Flat complexes, pure periodicity and pure acyclic complex-

es, J. Algebra 480 (2017), 298–308.

[32] R. Takahashi, A new approximation theory which unifies spherical and

Cohen-Macaulay approximations, J. Pure Appl. Algebra 208 (2007),

617–634.

[33] X. Tang, New characterizations of dualizing modules, Comm. Algebra

40 (2012), 845–861.

[34] X. Tang, FP-injectivity relative to a semidualizing bimodule, Publ.

Math. Debrecen 80 (2012), 311–326.

[35] X. Tang and Z. Y. Huang, Homological aspects of the dual Auslander

transpose, Forum Math. 27 (2015), 3717–3743.



22 X. Tang and Z. Y. Huang

[36] X. Tang and Z. Y. Huang, Homological aspects of the dual Auslander

transpose II, Kyoto J. Math. 57 (2017), 17–53.

[37] X. Tang and Z. Y. Huang, Homological aspects of the adjoint cotrans-

pose, Colloq. Math. 150 (2017), 293–311.

[38] T. Wakamatsu, On modules with trivial self-extensions, J. Algebra 114

(1988), 106–114.

[39] T. Wakamatsu, Tilting modules and Auslander’s Gorenstein property,

J. Algebra 275 (2004), 3–39.

[40] D. White, Gorenstein projective dimension with respect to a semidu-

alizing module, J. Commutative Algebra 2 (2010), 111–137.


