COGRADE CONDITIONS AND COTORSION PAIRS

XI TANG AND ZHAOYONG HUANG

ABSTRACT. Let R and S be rings and pwg a semidualizing bimodule. We
study when the double functor Torf(w, Ext% (w, —)) preserves epimorphism-
s and the double functor Ext"j'_-‘,/(u.z,Tor;S (w, —)) preserves monomorphisms in
terms of the (strong) cograde conditions of modules. Under certain cograde
condition of modules, we construct two complete cotorsion pairs. In addition,
we establish the relation between some relative finitistic dimensions of rings
and the right and left projective dimensions of w.

1. Introduction

Let R be a left and right Noetherian ring and n > 1. It was proved by Auslander
that the flat dimension of the i-th term in the minimal injective resolution of Rp is
at most ¢ for any 0 < 7 < n if and only if the strong grade of Extlé(M, R) is at least i
for any finitely generated left R-module M and 1 < ¢ < n; and this result is left-right
symmetric ([16, Theorem 3.7]). In this case, R is called Auslander n-Gorenstein.
If R is Auslander n-Gorenstein for all n, then it is said to satisfy the Auslander
condition. This condition is a non-commutative version of commutative Gorenstein
rings. It has been known that Auslander n-Gorenstein rings and the Auslander
condition play a crucial role in homological algebra, representation theory of artin
algebras and non-commutative algebraic geometry, see [5, 6, 10, 12, 15, 16, 20, 22,
24, 25, 26, 27, 28] and references therein. In particular, Auslander n-Gorenstein
rings and some generalized versions were characterized in terms of the properties of
the double functor Ext’., (Extz(—, R), R) and certain (strong) grade conditions of
Ext-modules, and a series of cotorsion pairs were constructed under the Auslander
condition ([24]).

It is well known that the (Auslander) transpose is one of the most powerful tools
in representation theory of artin algebras and Gorenstein homological algebra, see
[4, 7, 14]. To dualize this important and useful notion, we introduced in [32] the
notion of the cotranspose of modules and then obtained many dual counterparts of
interesting results ([32, 33, 34, 35]). As a dual of the notion of the (strong) grade of
modules, we introduced in [32, 33] the notion of the (strong) cograde of modules,
and obtained the dual versions of some results about the (strong) grade of mod-
ules. Let R and S be rings and rwg a semidualizing bimodule. In this paper, we
will study when the double functor Torf (w, Ext(w, —)) preserves epimorphisms
and the double functor Ext’(w, Tor;9 (w,—)) preserves monomorphisms in terms of
the (strong) cograde conditions of modules and some related properties of the co-
transpose of modules, and also investigate the relationship between certain cograde
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conditions of modules and complete cotorsion pairs. This paper is organized as
follows.

In Section 2, we give some terminology and some preliminary results.

Let R and S be rings and rwg a semidualizing bimodule. In Section 3, we
study when Tor? (w, Ext’(w, —)) preserves epimorphisms and Ext' (w, Tor? (w, —))
preserves monomorphisms in terms of the (strong) cograde conditions of modules.
Let n, k > 0. We prove that the Tor-cograde of Ex‘ci}%Hg (w, M) with respect to w is at
least i for any left R-module M and 1 < i < n if and only if Tor? (w, Ext%(w, f)) is
an epimorphism for any epimorphism of left R-modules f : B — C with B, C being
a (k + 1)-cosyzygy and 0 < ¢« < n — 1 (Theorem 3.5); and that the Ext-cograde of
ToriSJrk(w, N) with respect to w is at least ¢ for any left S-module N and 1 < i< n
if and only if Ext’(w, Torf (w, g)) is a monomorphism for any monomorphism of
left S-modules ¢g : B’ — C’ with B’,C’ being a (k 4+ 1)-yoke and 0 < i < n—1
(Theorem 3.7).

Moreover, we prove that the strong Tor-cograde of EX‘LEHC (w, M) with respect
to w is at least ¢ for any left R-module M and 1 < i < n if and only if for any

exact sequence of left R-modules 0 - A — B L ¢ = 0 with A an (i —1)-Pu(R)-
syzygy of an (i + k — 1)-cosyzygy, Tor? (w, Ext’(w, f)) is an epimorphism for any
0 < i < n—1(Theorem 3.8); and that the strong Ext-cograde of Tor}, , (w, N) with
respect to w is at least ¢ for any left S-module N and 1 < i < n if and only if for
any exact sequence of left S-modules 0 - A % B — C — 0 with C an (i — 1)-
T.,(S)-cosyzygy of an (i + k — 1)-yoke, Ext’ (w, Tor? (w, g)) is a monomorphism for
any 0 <i<n—1 (Theorem 3.9).

In Section 4, we introduce the notion of w satisfying the (quasi) n-cograde con-
dition in terms of the properties of the strong cograde of modules. By using the
results obtained in Section 3, we give some equivalent characterizations for w satisfy-
ing such conditions (Theorems 4.8 and 4.14). In particular, the n-cograde condition
is left-right symmetric, but the quasi n-cograde condition is not. In addition, we
prove that the Tor-cograde of Extzé(w, M) with respect to w is at least ¢ — 1 for
any M € Mod R and 1 < i < n if and only if the Ext-cograde of Tor? (w, N) with
respect to w is at least ¢ — 1 for any N € Mod S and 1 < ¢ < n (Theorem 4.19).

In Section 5, we prove that if one of the equivalent conditions in Theorem 4.19
mentioned above is satisfied, then the right S-projective dimension pdge, w of w
is at most n — 1 if and only if (P,-idS""*(R), gw') forms a complete cotorsion
pair; and the left R-projective dimension pdp w of w is at most n — 1 if and only if
(ws '™, T,-pdS""1(S)) forms a complete cotorsion pair (Theorem 5.6); see Section
2 and 5 for the details of these notations. Then we apply this result to right quasi
(n — 1)-Gorenstein artin algebras (Corollary 5.8).

In Section 6, we introduce the finitistic P, (R)-injective dimension FP,-id R
of R and the Z,(S)-projective dimension FZ,-pdS of S. We prove that if the
Tor-cograde of Exti-jk(w,M) with respect to w is at least ¢ for any M € Mod R
and ¢ > 1, then FP,-idR < pdrw < FP,-id R + k; and if the Ext-cograde of
Torerk(wJ\/') with respect to w is at least ¢ for any N € Mod S and ¢ > 1, then
FZ,-pd S < pdgey w < FZ,-pd S + k (Theorem 6.3). As an application, we get
that for an artin algebra R, if R satisfies the Auslander condition, then FPD RP =
FID R°? = idger R = idg R = FPD R = FID R; and if R satisfies the right quasi
Auslander condition, then FPD R < FID R = idgor R = idg R < FPD R+ 1, where
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FID R, FPD R, idger R and idg R are the finitistic injective dimension, the finitistic
projective dimension, the right and left self-injective dimensions of R respectively
(Corollary 6.9).

2. Preliminaries

Throughout this paper, all rings are associative rings with units. For a ring R,
Mod R (resp. mod R) are the class of left (resp. finitely generated left) R-modules.
Let M € Mod R, we use Addr M to denote the subclass of Mod R consisting of
modules consisting of direct summands of direct sums of copies of M, and use
pdr M, fdr M and idr M to denote the projective, flat and injective dimensions
of M respectively.

Definition 2.1. ([2, 19]). Let R and S be rings. An (R-S)-bimodule pwg is called
semidualizing if the following conditions are satisfied.

(al) gpw admits a degreewise finite R-projective resolution.

) wg admits a degreewise finite S-projective resolution.

) The homothety map rRp =3 Homger (w,w) is an isomorphism.
(b2) The homothety map sSg % Hompg(w,w) is an isomorphism.
(c1) Extil(w,w) =0.

(c2) ExtZ.,(w,w) = 0.

Wakamatsu in [37] introduced and studied the so-called generalized tilting mod-
ules, which are usually called Wakamatsu tilting modules, see [8, 29]. Note that a
bimodule rwg is semidualizing if and only if it is Wakamatsu tilting ([39, Corollary
3.2]). Examples of semidualizing bimodules are referred to [19, 31, 33, 35, 38|.

From now on, R and S are arbitrary rings and we fix a semidualizing bimodule
rwgs. For convenience, We write

(=)« := Hom(w, —) and (—)* := Hom(—,w),
rwb := {M € Mod R | Ext7' (w, M) = 0},
ws' :={N € Mod§S | Tor”;l(w,N) = 0}.
For any n > 1, we write
rwbm = {M € Mod R | Ext~"S"(w, M) = 0},
ws " = {N € Mod S | Tor{¢,c, (w,N) = 0};
in particular, rpw'® = Mod R and wg'® = Mod S. Symmetrically, wg'» and gw'"
are defined. Following [19], set
Fo(R) :={w®g F | F is flat in Mod S},
Pu(R) :={w®g P | P is projective in Mod S},
Z.,(S) :={L.| I is injective in Mod R}.
The modules in F,(R), Po,(R) and Z,(S) are called w-flat, w-projective and w-
injective respectively. Note that P,(R) = Addg w ([33, Proposition 3.4(2)]). Sym-
metrically, the classes of F,,(S°P), P, (S°P) and Z,(R°P) are defined.
Let M € ModR and N € ModS. Then we have the following two canonical
valuation homomorphisms

Op :w®s M, — M
3
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defined by Oy (z ® f) = f(z) for any € w and f € M,; and
un N = (w®gs N),

defined by pn(y)(z) = 2 ® y for any y € N and ¢ € w. Recall that a module
M € Mod R is called w-cotorsionless (resp. w-coreflezive) if 0 is an epimorphism
(resp. an isomorphism) ([32]); and a module N € Mod S is called adjoint w-
cotorsionless (resp. adjoint w-coreflexive) if py is a monomorphism (resp. an
isomorphism) ([34]).

Definition 2.2. ([19]).

(1) The Auslander class A, (S) with respect to w consists of all left S-modules
N satisfying the following conditions.
(Al) N € wg .
(A2) w®g N € RWT.
(A3) p is an isomorphism in Mod S.

(2) The Bass class B,,(R) with respect to w consists of all left R-modules M
satisfying the following conditions.
(Bl) M € RWT.
(B2) M, € ws'.
(B3) 6 is an isomorphism in Mod R.

For a module M € Mod R, we use

0 1 i—1 i

0—-M—=I1°M) s '(M) L - s TP(M) L - (2.1)

to denote the minimal injective resolution of M. For any n > 1, coQ" (M) :=
Im g™ ! is called the n-cosyzygy of M; in particular, COQO(M) = M. We use

co2"(R) to denote the subclass of Mod R consisting of n-cosyzygy modules. Sym-
metrically, coQ2™(S°P) is defined.

Definition 2.3. ([32]). Let M € Mod R and n > 1.

(1) ¢Tr, M := Coker(g°,) is called the cotranspose of M with respect to rws,
where ¢° is as in (2.1).

(2) M is called n-w-cotorsionfree if cTr,, M € wg ' "; and is called co-w-cotorsionfree
if it is n-w-cotorsionfree for all n.

We use ¢T,(R) (resp. ¢Tw(R)) to denote the subclass of Mod R consisting
of n-w-cotorsionfree modules (resp. oo-w-cotorsionfree modules). Symmetrically,
cT(S°P) is defined. By [32, Proposition 3.2], we have that a module in Mod R is
w-cotorsionless (resp. w-coreflexive) if and only if it is in ¢T L (R) (resp. ¢T2(R)).

Recall from [13] that a homomorphism f : FF — N in Mod S with F flat is called
a flat cover of N if Homg(F’, f) is epic for any flat module F’ in Mod S, and an
endomorphism A : F' — F' is an automorphism whenever f = fh. Let N € Mod S.
Bican, El Bashir and Enochs proved in [9] that N has a flat cover. We use

I E IS B () B Ry(V) N 50 (2.2)

to denote the minimal flat resolution of N in Mod S, where each F;(N) — Coker f;
is a flat cover of Coker f;. For any n > 1, Q%(N) :=Im f,_; is called the n-yoke
of N; in particular, Q%(N) = N. We use Q%(S) to denote the subclass of Mod S
consisting of n-yoke modules. Symmetrically, Q% (RP) is defined.

Definition 2.4. ([34]) Let N € Mod S and n > 1.
4
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(1) acTr, N := Ker(1, ® fo) is called the adjoint cotranspose of N with respect
to rws, where fj is as in (2.2).

(2) N is called adjoint n-w-cotorsionfree if acTr, N € rw'n; and is called
adjoint co-w-cotorsionfree if it is adjoint n-w-cotorsionfree for all n.

We use acT;(S) (resp. acT w(S)) to denote the subclass of Mod S consisting
of adjoint n-w-cotorsionfree modules (resp. adjoint oo-w-cotorsionfree modules).
Symmetrically, acT, (R°P) is defined. By [34, Proposition 3.2], we have that a
module in Mod S is adjoint w-cotorsionless (resp. adjoint w-coreflexive) if and only
if it is in ac7 L (S) (resp. acT2(S)).

Definition 2.5. ([33])

(1) Let M € ModR and n > 0. The Ext-cograde of M with respect to w is
defined as E-cograde,, M := inf{i > 0 | Ext%(w, M) # 0}; and the strong
Ext-cograde of M with respect to w, denoted by s.E-cograde,, M, is said
to be at least n if E-cograde, X > n for any quotient module X of M.
Symmetrically, the (strong) Ext-cograde of a module in Mod S°P is defined.

(2) Let N € Mod S and n > 0. The Tor-cograde of N with respect to w is
defined as T-cograde, N := inf{i > 0 | Tors(w, N) # 0}; and the strong
Tor-cograde of N with respect to w, denoted by s.T-cograde,, IV, is said to be
at least n if T-cograde,, Y > n for any submodule Y of N. Symmetrically,
the (strong) Tor-cograde of a module in Mod R°? is defined.

Let X be a subclass of Mod R and M € Mod R. An exact sequence (of finite or
infinite length):
=Xy = =2 X1 =2 Xg 2> M—-0
in Mod R is called an X -resolution of M if all X; are in X. The X-projective
dimension X-pdp M of M is defined as inf{n | there exists an X-resolution

0—-X,— - =>X1=-Xo—>M-—=0

of M in Mod R}. Dually, the notions of an X-coresolution and the X-injective
dimension X-idg M of M are defined.

Let F be a subclass of Mod R. A module M € Mod R is said to have special
F-precover if there exists an exact sequence

0O>K—~F—M-—0

in Mod R with F € F and Extp(F’, K) = 0 for any F’ € F. The class F is called
special precovering if any module in Mod R has a special F-precover. Dually, the

notions of special F-preenvelopes and special preenveloping classes are defined (see
[14]).

Definition 2.6. (cf. [17]) Let U,V be subclasses of Mod R. The pair (U, V) is
called a cotorsion pair if U = -1V := {U € ModR | Exth(U,V) = 0 for any
VeVyand V=U" :={V € ModR | Exty(U,V) =0 for any U € U}.

The following is the Salce’s lemma.
Lemma 2.7. (cf. [17, Lemma 2.2.6]) Let (U,V) be a cotorsion pair in Mod R.

Then the following statements are equivalent.

(1) Any module in Mod R has a special U-precover.
(2) Any module in Mod R has a special V-preenvelope.
5
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In this case, the cotorsion pair (U, V) is called complete.

Definition 2.8. Let X’ be a subcategory of an abelian category £ and n > 1. If
there exists an exact sequence

0O>N—-Xg—> - =X,_1—->M=0
in & with all X; in X, then N is called an n-X-syzygy of M and M is called an
n-X-cosyzygy of N.
For subcategories X', ) of an abelian category £ and n > 1, we write
QY (V) :={N € A| N is an n-X-syzygy of some object in YV},
coQy (V) :={M € A| M is an n-X-cosyzygy of some object in V}.
In particular, Q% (Y) = ¥ = coQ%(Y) and Q1Y) = 0 = coQ3'(Y). For conve-

nience, we write
QU(S) == (s)(Mod 5), Q7 (5) :=QF (5 (ModS),
Q7 (R?) := Q7 (gery(Mod RP),
codp(R) := coQp _(gy(Mod R), coQf (R) := coQy g (Mod R),
co2p_ (R) = coQp_(gy(Mod R), coQp_(S) := coflp_(gory(Mod S).

Lemma 2.9. We have

(1) QF_(9) = acT,(5).

(2) coQp (R) =cTL(R).
Proof. (1) By [34, Proposition 3.8], we have acT(S) C Qf (S). Now let N €

Q7 (S) and let f°: N »— I° be a monomorphism in Mod S with I° € Z,,(S). Then
from the following commutative diagram

]\&LIO

lP‘N l“w
1,®F°)s
(w®g N)*(*J;) (w®s I°),.

with g0 an isomorphism, we get that py is a monomorphism and N € acT . (S).
It implies Q1 (S) C acT(S).

(2) By [32, Proposition 3.7], we have ¢TL(R) C coQdp (R). Now let M €
coQ%;w(R) and let fo : Wy — M be an epimorphism in Mod R with Wy € P, (R).
Then from the following commutative diagram

1,® fo,
w®s Wo, —f0>w®5 M,

\LGWO lel\/f
fo

Wo M

with fyy, an isomorphism, we get that 6y, is an epimorphism and M € c¢T(R). Tt
implies coQp,_(R) C cTL(R). O

Let C, & be abelian categories and A : C — £ a functor. Recall that a sequence
T in C is called A-ezact if A(T) is exact in £.
6
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3. (Strong) cograde conditions and double homological functors

In this section, we study when Torf (w, Extzé(w, —)) preserves epimorphisms and
Ext’., (w, Tor?¥(—,w)) preserves monomorphisms in terms of the (strong) cograde
conditions of modules.

3.1. Cograde conditions

We begin with the following

Lemma 3.1.
(1) Let M € Mod R with the minimal injective resolution as (2.1). Then there
exists an exact sequence

0 — Exth(w, M) =25 ¢Try M = T' (M), / coQ* (M), — 0 (3.1)

in Mod S such that 1, ® 7 is an isomorphism.
(2) Let N € Mod S with the minimal flat resolution as (2.2). Then there exists
an exact sequence

0 — Im(1l, ® f1) - acTr, N - Torf (w, N) = 0 (3.2)
i Mod R such that o, is an isomorphism.
Proof. (1) Let ¢° = a - (where B : I°(M) — coQ*(M)(= Img°) and a :

coQ' (M) ~— I*(M)) be the natural epic-monic decomposition of g°. Then we
have the following commutative diagram with exact columns and rows

0 0
|
|
5 Y
0 —— M, — I(M), ——> coQ* (M), — Extp(w, M) —=0
|
q° v v
0—> M, —I°(M), ——>I"(M), ———cTr, M ——=0
|
T | ™
\
C c
|
|
A
0 0

in Mod S, where C' = I'(M),/co¥* (M)., m is the natural epimorphism, A and
m are induced homomorphisms. The rightmost column in the above diagram is
exactly the exact sequence (3.1). Notice that

0 — coQt (M), 2= I (M), L= 12(M),

is exact, so there exists a homomorphism § : C' — I?(M), in Mod S such that
g',=0-m,and hence g', =6 -m =6 7.
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By [19, Lemma 4.1], for any injective module I € Mod R, we have w ®g I, = I
canonically. So the upper row in the following commutative diagram

1,®9°. 1,®g" .
w®g IO(M), 22w @g THM), 25w g I2(M).

i1w®7 T1w®5

w®ScTer1“L>w®SC.

is exact. Let » € Ker(l,, ® m). Then there exists y € w ®g I'(M), such that
z = (1, ®9)(y). It follows that

(1w ®91*)(y) =(1u®6) (lo®m) (lu ®7)(y) = (Lo ®J) - (L, @ 7)(z) = 0.
Soy € Ker(1, ®¢',) = Im(1, ® ¢°,), and hence there exists z € w®g I°(M), such
that y = (1, ® ¢°,)(2). Thus

=L@y =lo®7) (lo®g°)(2) = (lo® (v-¢°,))(2) = 0,

which implies that 1, ® 7 is a monomorphism, and hence an isomorphism.

(2) Let fo = o’ - B’ (where 8 : F1(N) = QL(N)(=Im fy) and o : QL(N) —
Fy(N)) be the natural epic-monic decomposition of fo. Then we have the following
commutative diagram with exact columns and rows

0 0
I
I
Y
Im(lw X fl) S Im(lw X fl)
I
| o o1
! n L@/
0 ——acltyy N ——w®s Fi(N) —>w®g Fo(N) —w®s N —=0
I
T 1,8’
Y o
0 — Tor{ (w, N) — w ®g VL(N) 2= w ®g Fy(N) —= w @5 N —= 0
I
I
A
0 0

in Mod R, where o and 7 are induced homomorphisms. The leftmost column in the
above diagram is exactly the exact sequence (3.2). Notice that

w®gs Fo(N) LOh g Fi(N) 9 9 Q%(N) =0

is exact, so there exists a homomorphism ¢ : w ®g F2(N) — Im(1, ® f1) in Mod R
such that 1, ® fi =01 - ¢, and hence 1, ® fy =01-0=n-0- .

By [19, Lemma 4.1], for any flat module F' € Mod S, we have F' & (w ®g F).
canonically. So the upper row in the following commutative diagram is exact.

(1,®f1)« (1,®f0)«
(w®s Fo(N))y ——=(w @5 F1(N))y —"(w ®s Fy(N)).

l@ I
(Im(1y ® f1))s———> (acTry, N),.
8
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Let x € (acTry, N).. Since ((1o ® fo)x - 74)(z) = (1w ® fo) - n)«)(x) = 0, we have
that n.(z) € Ker(1, ® fo)x = Im(1, ® f1). and there exists y € (w®g Fo(N)), such
that n.(x) = (1, ® f1)«(y). Thus

77*($> = (10.7 & fl) (y) = (77* T Ot ¢*)<y)

As n* is monic, we have © = 0.(¢.(y)). It means that o, is an epimorphism, and
hence an isomorphism. ([l

The following two lemmas are useful in this section.

Lemma 3.2. Assume that coQ"(R) C c¢T'(R) with m,n > 0. Then the following
statements are equivalent.

(1) T-cograde,, Ext’s"! (w, M) > m for any M € Mod R.
(2) co™ T (R) C T (R).
Proof. Because any injective module in Mod R is in ¢7(R) by [32, Lemma 2.5(2)],
we have that coQ" ™ (R) C ¢TL(R) for any n > 0, and the case for m = 0 follows.
Now suppose that m > 1 and M € Mod R. By Lemma 3.1(1), there exists an exact
sequence
0 — BExt}(w, coQ™(M)) 2 T, coQ" (M) = C =0
in Mod S such that 1, ® 7 is an isomorphism, where C' = I"*1 (M), /coQ" 1 (M),.
Because coQ™(R) C ¢T ) (R) by assumption, we have that both cTr,, coQ" (M) and
cTry, coQ™ (M) are in wg '™. It yields that
Tor} (w, Ext’s ™ (w, M)) 2 Tor; (w, Exth(w, coQ™ (M))) = ToriSH(w, )
for any 0 < ¢ < m — 1. In addition, we also have an exact sequence
0— C — I""2(M), — cTr,, coQ" (M) = 0
in Mod S. By [19, Corollary 6.1], we have I"T2(M), € ws'. So
Tor? (w, Ext’y (w, M)) = Torz-sﬂ(w, C)= ToriSJrQ(w, cTr,, coQ™ (M)

for any 0 < ¢ < m—1. Thus we conclude that Tor§<i<m_1(w, Extyt (w, M)) = 0 if
and only if ¢Tr,, coQ" (M) € wg ™+, and if and only if coQ" (M) € cT" ! (R).
The proof is finished. O

Lemma 3.3. Assume that Q%(S) C acT ) (S) with m,n > 0. Then the following
statements are equivalent.

(1) E-cograde, Tor?, (w,N) =m for any N € Mod S.

(2) QF(S) S acTE H(S).

Proof. Because any flat module in Mod S is in ac7 . (S) by [34, Corollary 3.5(1)],
we have that Q%(S) C acTL(S) for any n > 0, and the case for m = 0 follows.
Now suppose that m > 1 and N € Mod S. By Lemma 3.1(2), there exists an exact
sequence

0— Im(ly, ® fri1) = acTr, Q%(N) > Tor‘lg(w7 Q%(N)) =0
in Mod R such that o, is an isomorphism. Because Q% (S) C acT_,(S) by assump-

tion, we have that both acTr, Q%(N) and acTr, Q% (N) are in gw'=. It yields
that

Exty (w, Tory ;1 (w, N)) 22 Exti(w, Tor? (w, Q% (N))) 2 Exty ™ (w, Im(1, ® foi1))
9
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for any 0 < ¢ < m — 1. In addition, we also have an exact sequence
0 — acTr, Q% (N) = w g Fupa(N) = Im(1y ® fri1) — 0
in Mod R. By [19, Corollary 6.1], we have w ®g F,,12(N) € grw®. So
Ext’ (w, Tor | 1 (w, N)) = Exti ! (w, Im(1, ® fri1)) = Exti % (w, acTr, QFH(N))

for any 0 < ¢ < m—1. Thus we conclude that Ext?figm*l(w, Tor,SLH(w7 N))=0if
and only if acTr, Q% (N) € pwbm+1, and if and only if Q¥ (N) € acTT(S).
The proof is finished. O

Let 7 C W be subcategories of an abelian category £. Recall that 7T is called
a generator (resp. cogenerator) for W if for any W € W, there exists an exact
sequence
0—-W =T —W =0 (resp. 0 =W - T — W' —0)

in€ withT €7 and W € W.

Lemma 3.4.
(1) Pu(R) is a generator for B, (R).
(2) coQ™(R) C coQj3(R) = cox (R) = coQlp_(R) for any n > 1.

Proof. (1) Let M € B,,(R). Then by [32, Theorem 3.9 and Proposition 3.7], there
exists an exact sequence

= W =W =Wy —- M =0

in Mod R with all W; € P, (R) such that it remains exact after applying the functor
Hompg(w,—). Put My := Im(W; — Wy). Then My € ¢T,(R) by [32, Proposition
3.7]. Because both M and W are in rw', we have M; € pw™’. So M; € B, (R) by
[32, Theorem 3.9].

(2) Let n > 1. By [19, Lemma 4.1], we have that B, (R) contains all injective left
R-modules, which yields coQ™(R) C coQi(R). Because B, (R) 2 F.,(R) 2 P,(R)
by [19, Corollary 6.1], we have coQ(R) D coQ¥x (R) 2 coQp_(R). Because B, (R)
is closed under extensions by [19, Theorem 6.2], we have coQj3(R) = co2p_(R) by
(1) and [23, Corollary 5.4(2)]. O

In the following result, we characterize when the double functor Tor? (w, Ext, (w, —))
preserves epimorphisms in terms of the Tor-cograde conditions of Ext-modules.

Theorem 3.5. The conditions (1)-(3) below are equivalent for any n,k > 0. If
k> 1, then (1)-(4) are equivalent.
(1) T-cograde,, Extiy*(w, M) > i for any M € Mod R and 1 < i < n.
(2) Torf(w,EthR(w, f)) is an epimorphism for any epimorphism f: B — C in
Mod R with B,C € COQ;CD‘Il(R) and 0 <i<n—1.
(3) Torf(w,Ethk(w, f)) is an epimorphism for any epimorphism f: B — C in
Mod R with B,C € coQk‘H(R) and 0 <i<n—1.
(4) coQ™™(R) C cTHH(R) for any 1 < i< n.
Proof. By using induction on 4, (1) < (4) follows from Lemma 3.2.
(1) = (2) Let f: B — C be an epimorphism in Mod R with B,C € COQ%‘S(R).
Then C = coQ%ﬁl(C’) for some C' € Mod R. By (1), we have

Tor? (w, Ext’y (w, 0)) = Tor? (w, Extd " (w,C") =0
10
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for any 1 < ¢ <n— 1. Thus Tor;g (w, Ext’s(w, f)) is epic. In the following, we will
show that 1, ® f, is epic.

If £ > 1, then COQ%M(R) C ¢TL(R) by Lemma 2.9(2). So COQ];JJ:l(R) C c¢T2(R)
by Lemma 3.2, and hence B, C € ¢T2(R). It follows that 1, ® f, = f and 1, ® f.
is epic.

Now suppose k = 0. We have an epimorphism p : W — B in Mod R with
W € Addgr w. From the exact sequence

0= M —-WIZc o0
in Mod R with M; = Ker(f - p), we get the following exact sequence

w, Y o, Bxth(w, My) — 0
in Mod S. By (1). w®s Ext}%(w,Ml) =0. 50 (1, ® fi) (Lo ®@ps) = 1w @ (f - D)«
is epic, which implies that 1, ® f,. is also epic.
By Lemma 3.4(2), we have (2) = (3).
(3) = (1) Let M € Mod R. From the exact sequence

0 — coQ¥ (M) — I¥(M) L coQF T (M) — 0

in Mod R, we get the following exact sequence
I5(M), L5 o (M), = Exthi (w, M) = 0

in Mod S. Since 1,,® f. is an epimorphism by (2), we have that w®SExt]§+1 (w, M) =
0 and T-cograde,, Ext%"™ (w, M) > 1. In addition, for any 1 <i < n — 1,

Tor? (w,Ext (w,f))

0 = Tor? (w, Bxth(w, I*(M))) Tor? (w, Ext, (w, coQ¥ 1 (M)))

is epic by (3), so we have
Tor? (w, Exty # (w, M)) = Tor (w, Exth (w, coQ* ™ (M))) =0

Thus we conclude that T-cograde,, Exti};rk‘|r1 (w,M) zi+lforany0<i<n—-1. O

Lemma 3.6.
(1) Z,(S) is a cogenerator for A,(S).
(2) L(S) € V(S) = 9 (S) for anyn > 1.

Proof. (1) Let N € A, (S). Then by [34, Theorem 3.11(1)], there exists an (w®g—)-
exact exact sequence

0N—-U" U -U?— ...

in Mod S with all U? € Z,,(S). Put N! := Im(U® — U'). Then N! € acT,(S) by
[34, Corollary 3.9]. Because both N and U are in wg', we have N* € wg'. So
N' e A,(S) by [34, Theorem 3.11(1)] again.

(2) Let n > 1. By [19, Lemma 4.1], we have that A, (S) contains all flat left S-
modules, which yields Q%(S) C Q7 (S). Because A, (S) is closed under extensions
by [19, Theorem 6.2], we have Q7 (S) = Q% (S) by (1) and [23, Corollary 5.4(1)].

(]

In the following result, we characterize when the double functor Ext’ (w, Tor? (w, —))
preserves monomorphisms in terms of the Ext-cograde conditions of Tor-modules.
11
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Theorem 3.7. The conditions (1)-(3) below are equivalent for any n,k > 0. If
k> 1, then (1)-(4) are equivalent.
(1) E-cograde, TorZ-SJrk(w7 N) =i for any N € Mod S and 1 <i < n.
(2) Ext(w, Tor? (w,g)) is a monomorphism for any monomorphism g : B’ —
C’ in Mod S with B',C" € Q5™ (S) and 0 <i<n— 1.
(3) Ext(w, Tor? (w,g)) is a monomorphism for any monomorphism g : B’ —
C" in Mod S with B',C" € Q%1(S) and 0 <i <n — 1.
(4) QIFF(S) CacTLHH(S) for any 1 < i < n.
Proof. By using induction on 4, (1) < (4) follows from Lemma 3.3.
(1) = (2) Let g : B’ — C’ be a monomorphism in Mod S with B/, C" € Q5™ (S).
Then B’ = Qéjl(B”) for some B” € Mod S. By (1), we have

Ext’ (w, Tor} (w, B')) & Extly(w, Tor? 4,1 (w, B”)) = 0

for any 1 < i < n — 1. Thus Ext(w, Tor; (w, g)) is a monic. In the following, we
will show that (1, ® g). is monic.

If k > 1, then Q% (S) C acTL(S) by Lemma 2.9(1). So Q5"'(S) C acTZ(S)
by Lemma 3.3, and hence B’,C’ € acT2(S). It follows that (1, ® g). = g and
(1, ® g)« is monic.

Now suppose & = 0. We have a monomorphism ¢ : C’ »— U in Mod S with
U € Z,(S). From the exact sequence

0B 2% UL, -0

in Mod S with L; = Coker(i - g), we get the following exact sequence

0= TorS(w, L1) — w®s B' 249 4 osU

in Mod R. By (1), (Tor? (w, L1))sx = 0. So (1 ®1)s - (1 @ ¢)s = (1, ® (i - g))s is
monic, which implies that (1, ® g). is also monic.
By Lemma 3.6(2), we have (2) = (3).
(3) = (1) Let N € Mod S. From the exact sequence
0— Q5 (V) L F(N) — Q5%(N) =0
in Mod S, we get the following exact sequence

0 — Torj 1 (w, N) = w®s Q1 (N) w2 v g Fy(N)

in Mod R. Since (1,®g). is a monomorphism by (2), we have that (Tory,; (w, N)). =
0 and E-cograde,, Tory, ; (w, N) > 1. In addition, for any 1 <i <n — 1,

. Ext%, (w,Tor? w,
Exct w, Tor (w, Q5 (V))) g (047

Ext’ (w, Tor? (w, Fi(N))) = 0
is monic by (3), so we have

Extl (w, Torf, ;1 (w, N)) 2 Exty (w, Tor? (% (w, N)) = 0.

Thus we conclude that E-cograde,, Torgikﬂ(w, N)>zi+lforany0<i<n—1. O

3.2. Strong cograde conditions

Compare the following result with Theorem 3.5.
12
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Theorem 3.8. For any n > 1 and k > 0, the following three statements are
equivalent.

(1) s.T-cograde,, ExtZ™"(w, M) > i for any M € Mod R and 1 <i < n.
(2) For any exact sequence

0—>A—>BL>C—>O

in Mod R with A € Q;;wl (COQ;;;]C_I(R)), Tor? (w, Extiy(w, f)) is an epimor-
phism for any 0 <i<n—1.
(3) For any exact sequence

0—>A—>BL>C—>O

in Mod R with A € Q;;: (coQTETL(R)), Tor? (w, Exth (w, f)) is an epimor-
phism for any 0 < i< n—1.

Moreover, if k =0, then any of the above statements is equivalent to the following
(4) For any exact sequence
0>A-B-L 00
in Mod R, Torf(w, Extﬁz(w, 1)) is an epimorphism for any 0 <i<n— 1.

Proof. (1) = (2) Let A = Q;',_wl(coﬂé,tkfl(A’)) with A” € Mod R. For any i > 0, by
dimension-shifting we have an exact sequence

ExtiH*(w, ') <5 Extia(w, B) "2 Extio(w, C) — Exti 1 (w, 4')
in Mod S, which induces exact sequences
Tor? (w, Extly (w, B)) —= Tor? (w, Im(Ext (w, f))) = Tor;  (w, Ker(Exty(w, f)))
and
Tor? (w, Im(Bxt% (w, f))) N Tor? (w, Bxt, (w, C')) = Tor? (w, Coker(Ext’ (w, f)))
in Mod R. Since Coker(Exth(w, f)) C Exti**!(w, A’), by (1) we have

Tor? (w, Coker(Ext (w, f))) = 0
for any 0 < i < n — 1. Moreover, it follows from (1) and the exact sequence
0 — Kerg — ExtH*(w, A") — Ker(Exth(w, f)) = 0

in Mod S that Tory | (w,Ker(Exth(w, f))) = 0 for any 0 < i < n — 1. Thus
Tor? (w, Ext’ (w, f)) = b- a is an epimorphism for any 0 < i < n — 1.

By Lemma 3.4(2), we have (2) = (3).

(3) = (1) Let M € ModR. Fix i (1 € i €< n) and an S-submodule L of
Extgk(w, M). Take an epimorphism a : P — L in Mod S with P projective and a’
the composition

P 5 L < BExti}*(w, M).
13
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Then o’ can be lifted to b : P — coQ¥(M),. Take the following pull-back diagram

0

0 — coQ T F =1 (r) ¢ X Z w®s P

| |

0 —— coQ T F N M) —— I ( M) —— coQ" (M) — 0,

Diagram (3.3)
where ' is the composition
. 0. oqitk ;
wos P ey coQ TR (M), R0 coQ TR ().
It induces the following commutative diagram with exact rows

cx

k—1 dx
0 — coQitE—1(M), X (w®g P)x L 0

| [

0 —— coQ TPt (M), —— I'FFL (M), —— ot (M), —— ExtiFF(w, M) —— 0.

In the following, we will proceed by induction on i. Let i = 1. Since 1, ® ¢, is
epic by (3), we have that w ®5 L = 0 and s.T-cograde,, Ext}" (w, M) > 1.

Assume that the statement (1) holds for any 1 < 7 < n—1. Now consider the case
for ¢ = n. By the induction hypothesis, we have that s.T-cograde,, Extﬂ%H€ (w, M) >
for any 1 < i < n—1 and s.T-cograde,, Ext’s™(w, M) > n—1. Then coQ™*~1(M) ¢
¢T Y (R) by Lemma 3.2. Because w ®s P € ¢cT" *(R) by [32, Proposition 3.7], it
follows from [36, Lemma 4.3 that X in the diagram (3.3) is in ¢77 *(R). By [32,
Proposition 3.7] again, there exists Hompg(Add g w, —)-exact exact sequences

0=Y =W 5= = W) — coQ" 1 (M) - 0
and
0O=-Y-W, 00— - - =>Wy—=X -0

in Mod R with all W]’-, W, in Addgw. Then both Y and Y are in gw'»-! and we
get the following commutative diagram

0 Yy’ W) _o w§ co"thF=1(M) ———=0
| g

' |
‘ d
y y

|
|
\
0 Y Wi _o Wo X 0.

We can guarantee that ¢ is a monomorphism by adding a direct summand in

Addgw (for example W) _,) to Y and W,,_o. Thus we get an exact sequence

0-Y Ly "z 0
in Mod R with Z = Coker g. Since

Coker(Ext’y ' (w, h)) = Ker(Ext}(w, ) = Ker(Ext(w, d)) = Cokerc, = L,
14
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we obtain L = Exty ' (w, Z). Since Y’ € Q%:l(COQ"H“_l(R)), by (3) we get that
Tor’_; (w, Ext’s ! (w, h)) is epic. So Tory_;(w, L) = 0 and s.T-cograde,, Ext™" (w, M)

n—1
> n.

When k = 0, the proof of (3) = (1) = (2) is in fact that of (4) < (1) by just
removing the first sentence and putting A’ = A in the beginning of the proof of
(1) = (2), O

Compare the following result with Theorem 3.7.

Theorem 3.9. For any n > 1 and k > 0, the following three statements are
equivalent.

(1) s.E-cograde, Torf+k(w,N) > for any N € Mod S and 1 <i < n.

(2) For any exact sequence

05A-%5B—>S0C—=0

in Mod S with C' € coQZl(Q"Itk_l(S)), Exts (w, Tor? (w, g)) is a monomor-
phism for any 0 <i<n—1.
(3) For any exact sequence

0-A-LB—>SC—=0

in Mod S with C' € COQZl(Q?kﬂ(S)), Ext (w, Tor? (w, g)) is a monomor-
phism for any 0 <i<n—1.
Moreover, if k =0, then any of the above statements is equivalent to the following

(4) For any exact sequence
0425 B—-C—0
in Mod S, Ext’(w, Tor? (w, g)) is a monomorphism for any 0 <i <n—1.
Proof. (1) = (2) Let C = coQZl(QZk_l(C’)) with C’ € Mod S. For any i > 0, by
dimension shifting we have an exact sequence

3 (w
Toi>79) Tor-S(wa B) LN Tor;%rk(wa ')

7

Tor}, ;41 (w,C") — Tor} (w, A)
in Mod R, which induces exact sequences
Ext’ (w, Ker(Tor? (w, g))) — Exti(w, Torf (w, A)) —= Ext' (w, Im(Tor? (w, g)))
and
Ext’y ! (w, Coker(Tor (w, g))) — Ext% (w, Im(Tor{ (w, g))) N Ext' (w, Tor? (w, B))

in Mod S. Since Ker(Tor? (w,g)) is an R-quotient module of Tori_k“(w, C"), by
(1) we have
Ext’ (w, Ker(Tor} (w, g))) = 0.

Moreover, it follows from (1) and the exact sequence
0 — Coker(Tor? (w, g)) — Torf, ,(w,C’) — Coker f — 0

in Mod R that Ext% ! (w, Coker(Tor? (w,g))) = 0 for any 0 < i < n — 1. Thus
Ext’ (w, Tor} (w, g)) = b - a is a monomorphism for any 0 <i <n — 1.
By Lemma 3.6(2), we have (2) = (3).
15
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(3) = (1) Let N € ModS. Fix i (1 <7 < n) and an R-quotient module H of
Torf+k(w, N). Take a monomorphism a : H ~— I in Mod R with I injective and o’
the composition

Tord, ). (w, N) — H » I.
Then a’ can be extended to b : w ®s QF*(N) — I. Take the following push-out

diagram:

0 —= QiFF () Fipp-1(N) ——= Q" 1(N) —0

g |

0 I, & Y ¢ s QiEI(N) —0,

Diagram (3.5)

where b’ is the composition

Hoitk )

QFE(N) (w s QFF(N)), 2 L.
It induces the following commutative diagram with exact rows
00— Tord, (W, N) —— w®s QFF(N) ——> 0w ®s Fiyp_1(N) —> w®s Q1 (N) —0

lw®c 1, ®d

0 H w®g Iy wRgY w®s QT (V) ——— 0.

In the following, we will proceed by induction on i. Let i = 1. Since (1, ® ¢). is
monic by (2), we have that H, = 0 and s.E-cograde,, Torf+k(w, N) > 1

Assume that the statement (1) holds for any 1 < 7 < n—1. Now consider the case
for i = n. By the induction hypothesis, we have that s.E-cograde,, Torf+k(w, N)>1
for any 1 <i < n — 1 and s.E-cograde,, Tory_ ; (w, N) > n — 1. Then Q%*"1(N) €
acT"~!(S) by Lemma 3.3. Because I, € acT"%'(S) by [34, Propposition], it follows
from the dual result of [36, Lemma 4.3] that Y in the diagram (3.5) is in ac7"~*(S).
By [34, Propposition| again, there exist (w ®s —)-exact exact sequences

0=Y U= ... 2U"2 5 X =0
and
0— QL) V0 .. 5 V2 5 X 50

in Mod S with all U?, V? in Z,,(S). Then both X and X’ are in wg "~ and we get
the following commutative diagram

0 Y vo yn—2 b'e 0
| | |
J(d | | | £
A Y Y
0 ——= 3t () Vo yn—2 e 0.

We can guarantee that f is an epimorphism by adding a direct summand in Z,(S)
(for example V" ~2) to X and U"2. Thus we get an exact sequence

05z x Lo x 5o
16
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in Mod S with Z = Ker f. Since
Ker(TorS_, (w, h)) = Coker(Tor? (w, f)) = Coker(Tor; (w, d)) = Ker(1, @ c),

we obtain H = Tor® (w,Z). Since X' € coQg:l(Qgﬁ'k_l(S)), by (3) we get
that Ext’ ! (w, TorS_,(w,h)) is a monomorphism. So Ext% *(w,H) = 0 and
s.E-cograde, Tor§+k (w,N) = n.

When k = 0, the proof of (3) = (1) = (2) is in fact that of (4) < (1) by just
removing the first sentence and putting C’ = C in the beginning of the proof of
1) = (2), O

4. (Quasi) n-cograde condition

In this section, we introduce and study the (quasi) n-cograde condition of semid-
ualizing bimodules.

4.1. The n-cograde condition

Definition 4.1. For any n > 1, w is said to satisfy the right n-cograde condition
if s.E-cograde,, Torf(w,N) > ¢ for any N € ModS and 1 < ¢ < n; and w is
said to satisfy the left n-cograde condition if s.E-cograde,, Tor® (M’ ,w) > i for any
M' € Mod R°? and 1 < i < n.

As a consequence of Theorems 3.8 and 3.9, we get the following equivalent char-
acterizations for w satisfying the right n-cograde condition.

Corollary 4.2. For anyn > 1, the following statements are equivalent.
(1) s.T-cograde,, Exts(w, M) > i for any M € Mod R and 1 <i < n.
(2) s.E-cograde_, Tor? (w, N) > i for any N € Mod S and 1 <i < n.
(3) Torf (w, Exthy(w, —)) preserves epimorphisms in Mod R for 0 < i <
(4) Exth(w, Tor? (w, —)) preserves monomorphisms in Mod S for 0 < i
(5) For any exact sequence

n—1.
<n-—1.

0—>A—>BL>C—>0

in Mod R with A € Qé;wl (coQé;wl (R)), Tor{ (w, Exth(w, f)) is an epimor-
phism for any 0 <i<n—1.
(6) For any exact sequence

O%A%BLC%O

in Mod R with A € Q;;wl(coﬂifl(R)), Tor? (w, Extlsy (w, f)) is an epimor-
phism for any 0 <i<n—1.
(7) For any exact sequence

0+A4-%B-C—0
in Mod S with C' € coQZl(QZl(S)), Ext’ (w, Tor? (w, g)) is a monomor-
phism for any 0 <i<n—1.

(8) For any exact sequence

0-A-%B-C—0
in Mod S with C' € coQZl(Qi}Tl(S)), Ext’ (w, Torf (w, g)) is a monomor-
phism for any 0 <i<n—1.

17
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Proof. By [33, Theorem 6.9], we have (1) < (2). By Theorems 3.8 and 3.9, we have
(1) (3) < (5) & (6) and (2) & (4) & (7) & (8) respectively. O

Symmetrically, we have the following equivalent characterizations for w satisfying

the left n-cograde condition.

Corollary 4.3. For any n > 1, the following statements are equivalent.

(1) s.T-cograde,, Ext%., (w, N') > i for any N’ € Mod S° and 1 < i < n.
(2) s.E-cograde,, Tor (M’ ,w) > i for any M' € Mod R and 1 < i < n.
(3) Torl(Extke,(w, —),w) preserves epimorphisms in Mod S for 0 < i <

n— 1.
(4) Exti., (w, Torl(—,w)) preserves monomorphisms in Mod R%P for 0 < i <
n—1.

(5) For any exact sequence

0A-B-L 00
in Mod S°P with A € Qé;wl (coQé;wl(SOp)), Torf (Extle, (w, f),w) is an epi-
morphism for any 0 < i< n—1.
(6) For any exact sequence

O—>A—>Bi>0—>0

in Mod S°P with A € Q;;wl (coQ2 1 (8°P)), Tor (Exthe, (w, f),w) is an epi-
morphism for any 0 < i< n—1.
(7) For any exact sequence

0-A-LB—=C—=0

in Mod R°P with C € COQZI(QZl(R‘”’)), Extlo, (w, Torf(g,w)) is a monomor-
phism for any 0 <i<n—1.
(8) For any exact sequence

0-A-LB—>SC—0

in Mod R°P with C € coQZl(Qif_l(R"p)), Ext., (w, Torf(g,w)) is a monomor-
phism for any 0 <7< n—1.

In the following, we will establish the left-right symmetry of the n-cograde con-

dition.

Lemma 4.4. Let

0—-—A—B—-C—=0

be an exact sequence in Mod R such that A is superfluous in B. Then the following
assertions hold.

(1) Let L € Mod R°P. If L’ @R C = 0 for any submodule L' of L, then L&g B =
0.

(2) Let M € Mod R. If Hompg(C, M") = 0 for any quotient module M’ of M,
then Homp (B, M) = 0.

Proof. (1) If L ® B # 0, then there exists € L such that xR ®r B # 0. Since
xR = R/I for some right ideal I of R, we have that

B/IB=R/IQrB=zR®rB#0
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and IB < B. In view of the assumption that A is superfluous in B, it follows that
IB+AS Band
B/A

~R/I ®R/I®zrB/AY ———
tR®rC=R/I®rC=R/I®r B/ (IB+A)/A

~ B/(IB+ A) #0

It contradicts the assumption.

(2) If Homp(B, M) # 0, then there exists a non-zero homomorphism f €
Hompg(B, M). Pick the kernel L of f such that Im f = B/L. Because A is su-
perfluous in B and f # 0, we have A+ L S B. Then there exists a non-zero
natural epimorphism 7 : B/A(2 C) — B/(A + L). Note that the inclusions
(A+L)/L C B/L C M induce an embedding homomorphism

) B/L M
RV A AR R W y)

Then 0 # i - 7w € Hompg(C, ﬁ), which contradicts the assumption. O

It is straightforward to verify the following observation.

Lemma 4.5.
(1) If P € ModR is finitely generated projective, then pdge, P* = P, (R)-
idr P.
(2) If @ € Mod S°? is finitely generated projective, then pdy Q* = P, (SP)-
idSoP Q.
Lemma 4.6. Let P € Mod R be finitely generated projective and t > 0. Then the
following statements are equivalent.
( ) pdS{)pP* <t
(2) Pu(R)-idp P <t
(3) Extgti( ,H)®r P =0 for any H € Mod S°P.
(4) Hompg(P, Tory,(w,N)) =0 for any N € Mod S.
Proof. By Lemma 4.5(1), we have (1) < (2).
(1) & (3) Let H € Mod S°P and
I=0-H->I>I'"5...5T" =
be an injective resolution of H in Mod S°P. Because P € Mod R is finitely generated
projective by assumption, the functor — ® g P is exact. Then we have

Ext4ir (P*, H)
=~ ' (Homges (P*, 1))
=~ I (Homges (w,I) @5 P)
>~ ' (Homger (w, 1)) ®@r P (by [6, p.33, Excercise 3])
=~ Extii(w, H) ®p P.

Now the assertion follows easily.
(1) & (4) Since pdge, P* = fdger P*, the assertion follows from [35, Lemma
7.6]. O

Recall from [30] that a ring R is called semiregular if R/J(R) is von Neumann
regular and idempotents can be lifted modulo J(R), where J(R) is the Jacobson
radical of R. The class of semiregular rings includes: (1) von Neumann regular
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rings; (2) semiperfect rings; (3) left cotorsion rings; and (4) right cotorsion rings.
See [18] for the definitions of left cotorsion rings and right cotorsion rings.

If R is a semiregular ring, then any finitely presented left or right R-module has
a projective cover by [30, Theorem 2.9]. In this case, since rw admits a degreewise
finite R-projective resolution by Definition 2.1, we may assume that

= Pi(w) =+ = P(w) = Py(w) = gw—0

is the minimal projective resolution of grw in mod R. Put w; := Im(P;(w) —
P;_1(w)) for any i > 1 and wp := w. Analogously, if S is a semiregular ring, then
we assume that

= Qi(w) = = Q1(w) = Qo(w) > ws =0

is the minimal projective resolution of wg in mod S°?. By Lemma 4.6, we have the
following

Proposition 4.7. Let R be a semiregular ring and m,n > 1. Then the following
statements are equivalent.

(1) pdSop Pi(w)*<m—1 forany 0 <i<n—1

(2) Pu(R)-idg Pi(w) < —1f07“any0<l\n—l.

(3) s.T-cograde,, Extsw(w N') = n for any N’ € Mod S°P.

(4) s.E-cograde,, Tor> (w,N) = n for any N € Mod S.

Proof. By [35, Proposition 7.7] and Lemma 4.6, we have (4) < (1) < (2).

(3) = (1) We proceed by induction on n. Let N’ € Mod S°P. Suppose n = 1.
Because s.T-cograde,, Extgop (w, N') = 1 by (3), we have L' @ g w = 0 for any
submodule L' of Extgo,(w, N') in Mod R°P. It follows from Lemma 4.4(1) that
Extgop (w, N')®p Po(w) = 0. Therefore by Lemma 4.6 we get pdgop Po(w)* < m—1
and the case for n = 1 is proved.

Now suppose n > 2. Let X be a submodule of ExtGo,(w, N') in Mod R°?. By
(3), we have Toré%gignfl(X,w) = 0. Then for any 0 <7 < n — 2, we have

Torl? (X, w;) = Torﬁrl(X,w) =0.
For any ¢ > 0, from the exact sequence
0 = wit1 = Pi(w) = w; — 0,

we get the following exact sequence

0 — Torf (X, w;) = X @rwit1 — X Qg Pi(w). (4.1)
By the induction hypothesis, we have pdgo, P;(w)* <m —1 for any 0 < i < n — 2.
Then it follows from Lemma 4.6 that Extgo,(w, N') ®R P, 2(w) =0 and hence
X ®r Py—2(w) = 0. So it is derived from (4.1) that X ®g w,—1 = 0. Notice
that P,,_1(w) is the projective cover of wy,_1, s0 Extdep(w, N') @ g Pr—1(w) =0 by
Lemma 4.4(1). It follows from Lemma 4.6 that pdgep Pr—1(w)* < m — 1.

(1) = (3) Let X be a submodule of Extgo,(w, N') in Mod R°?. Then by (1)
and Lemma 4.6, we have ExtZ., (w, N') ®pg (©72) Pi(w)) = 0, and hence X ®@g
(@725 P;(w)) = 0. Since w; is a quotient module of P;(w) for any i > 0, we then
have X ®@p (B ;wi) = 0.

If n =1, then X ®R w = 0 and s.T-cograde, Ext ., (w, N') > 1. If n > 2, then
from (4.1) we get Torf (X, ®"~2w;) = 0. Since Torg_l(X,w) >~ Torf (X, w;) for any

> 0, we have that Torogign_l(X, w) = 0 and s.T-cograde,, Ext o, (w, N') =2 n. O
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The following result means that the n-cograde condition is left-right symmetric.

Theorem 4.8. Let R be semiregular and n > 1. Then the following statements
are equivalent.
(1) pdger Pi(w)* < for any 0 <i<n—1.

(2) Py(R)-idg Pi(w) <4 for any 0 <i<n— 1.
(3) s.T-cograde,, Exts(w, M) > i for any M € Mod R and 1 <i < n.
(4) s.E-cograde,, Tor? (w, N) > i for any N € Mod S and 1 <i < n.
(5) s.T-cograde,, Extl., (w, N') =i for any N’ € Mod S and 1 <i < n.
(6) s.E-cograde,, Tor(M’,w) > i for any M' € Mod R and 1 < i < n.
(7) Torf (w, Exth(w, —)) preserves epimorphisms in Mod R for 0 <i<n —1.
(8) Ext(w, Tor? (w, —)) preserves monomorphisms in Mod S for 0 <i <n—1.
(9) Torl (Extle, (w, —),w) preserves epimorphisms in Mod S for 0 < i <
n—1.
(10) Ext&,,(w, Torl(—,w)) preserves monomorphisms in Mod R for 0 < i <

n—1.

Proof. By Proposition 4.7, we have (1) & (2) & (4) & (5). By Corollaries 4.2
and 4.3, we have (3) & (4) & (7) < (8) and (5) & (6) & (9) & (10). O
As a consequence, we get the following

Corollary 4.9. Let R and S be semiregular and n > 1. Then the following state-
ments are equivalent.

(1

pdgop Pi(w)* <@ for any 0 <i<n—1.

)
(2) pd Qi(w)* < i forany 0 <i<n—1.
(3) Pu(R)-idg Pi(w) <4 for any 0 <i<n— 1.
(4) Pu(S°P)-idger Q;(w) <@ for any 0 < i< n—1.

Proof. By the symmetric version of Proposition 4.7, we have
(2) & (4) < s.T-cograde,, Ext’ (w, M) > i for any M € Mod R and 1 < i < n.

Now the assertion follows from Theorem 4.8. O
4.2. The quasi n-cograde condition

Definition 4.10. For any n > 1, w is said to satisfy the right quasi n-cograde
condition if s.E-cograde,, Torfﬂ(w, N) > iforany N € Mod S and 1 <i < n;and w
is said to satisfy the left quasi n-cograde condition if s.E-cograde,, Torﬁl(M', w) =i
for any M’ € Mod R°? and 1 < i < n.

It is trivial that w satisfies the right (resp. left) quasi n-cograde conditions if it
satisfies the right (resp. left) n-cograde condition. But the converse does not hold
true in general, see Subsection 4.4 below.

The following lemma is useful in the sequel.

Lemma 4.11. For any n > 0, the following assertions hold.
(1) Let M € ModR. If E-cograde, M > n and T-cograde , Extp(w, M) >
n+ 1, then E-cograde,, M > n + 1.
(2) Let N € Mod S. If T-cograde, N > n and E-cograde,, Tor’ (w, N) > n+1,
then T-cograde, N > n + 1.
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Proof. We proceed by induction on n.

(1) If n = 0, then w ®s M, = 0 by assumption. It follows from [33, Lemma
6.1(1)] that M, = 0 and E-cograde, M > 1.

Let n > 1. Consider an injective resolution

0—=M—=10— o =" — ...

of M in Mod R. Put M’ = Im(I"~' — I"). Since E-cograde, M > n by the
induction hypothesis, applying the functor (—), to the above exact sequence yields
the following exact sequence

0—1% = - =11, L M, — Exth(w, M) =0

in ModS. Because T-cograde, Extz(w,M) > n + 1 by assumption, we have
Torg@gn(w,Ext%(w, M)) = 0. Then by [11, Proposition VI.5.1], we have

Extl (Ext’(w, M), I,) = Hompg(Tor? (w, Ext}(w, M)), I7) =0
for any 0 < ¢ < n and 5 > 0, and hence
Ext g (Ext(w, M), Im g) = Ext?(Ext’(w, M), I°,) = 0.
It implies that the exact sequence
0—Img— M, — Exth(w, M) =0

splits and hence Exty(w, M) is a direct summand of M’,. Since M’, is adjoint
1-w-cotorsionfree, so is Ext’s(w, M). Thus, applying [34, Proposition 3.2], the T-
cograde condition on Ext(w, M) proves Extz(w, M) = 0. Consequently we have
E-cograde, M > n + 1 and the assertion follows.

(2) If n = 0, then (w®g N). = 0 by assumption. It follows from [33, Lemma

6.1(2)] that w ®s N = 0 and T-cograde, N > 1.
Let n > 1. Consider a projective resolution

=Py 5P —-N=0

of N in ModS. Put N’ = Im(P, — P,_1). Since T-cograde, N > n by the
induction hypothesis, applying the functor w ®¢s — to the above exact sequence
yields the following exact sequence

0—>T0r§(w,N)—>w®sN’Lw@SPn,1—>~-~—>w®SPO—>O

in Mod R. Because E-cograde, Torg(w,N) > n + 1 by assumption, we have
ExtORgign(%Torf(w,N)) = 0. Notice that w ®s P € Addrw for any projective
module P in Mod S, so Ext%'S"(w @g Pj, Tor (w, N)) = 0 for any j > 0, and
hence
Exth(Im f, Tor® (w, N)) = Ext’(w ®g Py, Tor (w, N)) = 0.
It induces an exact sequence
Homp(w ®5 N, Tor? (w, N)) — Hompg(Tor? (w, N), Tor’ (w, N)) — 0.

Because w ®g N’ € ¢T1(R) by [33, Lemma 6.1(2)], there exists an epimorphis-

mU —» w®s N in ModR with U € Addgrw by [32, Lemma 3.6(1)]. Be-

cause (TorS (w,N)), = 0, we have Hompg(U, Tor> (w, N)) = 0. It follows that

Homp(w ®g N’, Tor> (w, N)) = 0 and Homp(Tor? (w, N), Tor> (w, N)) = 0, which

implies Tor? (w, N) = 0. So T-cograde, N > n + 1 and the assertion follows. O
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We have the following equivalent characterizations for w satisfying the right quasi
n-cograde condition.

Proposition 4.12. For any n > 1, the following statements are equivalent.
(1) s.E-cograde, Toris+1(w,N) > for any N € Mod S and 1 <i < n.
(2) T-cograde, Extz(w, M) =i for any M € Mod R and 1 < i < n.
(3) For any exact sequence

0-A-LB—>SC—=0

in Mod S with C € coQZl(Qin(S)), Ext’(w, Tor? (w, g)) is a monomor-
phism for any 0 <i<n—1.
(4) For any exact sequence

0-A-LB—=SC—0

in Mod S with C € coQZl(Q;(S)), Ext(w, Tor? (w, g)) is a monomor-
phism for any 0<i<n-—1.

(5) Tor? (w, Exth(w, f)) is an epimorphism for any epimorphism f : B — C in
Mod R with B,C € COQ%;W(R) and 0 <1< n—1.

(6) Toris(w,Ext%(w, 1)) is an epimorphism for any epimorphism f: B — C in
ModR with B},C € cle(R) and 0 <1< n—1.

(7) coQ(R) C ¢T5™H(R) for any 1 <i < n.

Proof. By Theorems 3.9 and 3.5, we have (1) < (3) < (4) and (2) & (5) < (6) &
(7) respectively. In the following, we will prove (1) < (2) by induction on n.

(1) = (2) Let M € Mod R. By Lemma 3.1(1), for any n > 1, there exist exact
sequences

0 — Ext}}(w, M) = ¢Tr,, co" (M) = C = 0, (4.2)
0— C — I" (M), — cTr,, coQ™ (M) — 0 (4.3)

in Mod S such that 1, ® 7 is an isomorphism, where C' = I"(M),/coQ" (M)..
Because I"1(M), € ws ' by [19, Corollary 6.1], it follows from the exact sequence
(4.3) that Tor} (w, C) = Tor, | (w, cTr,, cot" (M)) for any i > 1.

If n = 1, then from the exact sequence (4.2) we get an exact sequence

Tor} (w, ¢Tr,, coQ (M)) (= Torf (w, C)) = w ®g Exth(w, M) — 0

in Mod R. Because s.E-cograde,, Torj (w, ¢Tr, coQ'(M)) > 1 by assumption, we
have E-cograde, w ®g Extp(w,M)) > 1. Tt is derived from Lemma 4.11(2) that
T-cograde,, Ext(w, M) > 1.

Now suppose n > 2. Then T-cograde, Extlé(w,M) >idforany 1 < i< n-—
1 and T-cograde, Extkz(w, M) > n — 1 by the induction hypothesis. It follows
from Theorem 3.5 that coQ’(R) C c¢7.(R) for any 1 < i < n. So coQ" (M) €
¢T" *(R), and hence cTr,, coQ"” (M) € wg . Thus from the exact sequences
(4.2) and (4.3) we get the following exact sequence

Tory,  (w, cTr,, coQ™(M)) — Tor’_; (w, Extf(w, M)) — 0.

By (1), we have E-cograde, Tor>_,(w, Ext(w, M)) > n. It follows from Lem-
ma 4.11(2) that T-cograde,, Extsz(w, M) > n.
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(2) = (1) Let N € Mod S and X a quotient module of Tor’ ,;(w, N) in Mod R,
and let 3 : Tor? (w, Q%(N))( Tor2+1(w, N)) — X be an epimorphism in Mod R.
By Lemma 3.1(2), we have an exact sequence

0 — Im(ly ® fri1) —= acTr, Q%(N) — Tors, 1 (w,N) =0
in Mod R such that o, is an isomorphism. Then we get an exact sequence
0 — Ker f —1 acTr, QL(N) -1 X =0 (4.4)

in Mod R, where f = - 7. It is easy to see that 7, is an isomorphism.

Let n = 1. Because QL(N) € acTL(S) by [34, Corollary 35(1)]7 we have
acTr, Q% (N) € rw't. Then the exact sequence (4.4) gives that X, = Ext},(w, Ker f).
So T-cograde,, X, > 1 by (2), and hence E-cograde,, X > 1 by Lemma 4.11(1). The
case for n = 1 is proved.

Now suppose n > 2. Then s.E-cograde, Torfﬂ(w,N) > i forany 1 < ¢ <
n — 1 and s.E-cograde,, Toriﬂ(w,N) > n — 1 by the induction hypothesis. So
E-cograde, X > n — 1.

By Theorem 3.7, we have Q%(S) C acT.,(S) for any 1 < i < n. So Q%(N) €
acT () and acTr, Q%(N) € grwrn. It follows from the exact sequence (4.4) that
Ext)y ' (w, X) = Ext(w, Ker f). Then by (2), we have T-cograde,, Ext; ' (w, X) =
T-cograde,, Exts (w, Ker f) > n. Thus E-cograde,, X > n by Lemma 4.11(1). O

We also have the following

Proposition 4.13. For any n > 1, the following statements are equwalent
(1) s.T-cograde,, Extgti (w,N") > i for any N’ € Mod S°P and 1 < n.
(2) E-cograde,, Tor;'(M',w) > i for any M' € Mod R and 1 < i < n.
(3) For any exact sequence

04 =B Lo oo
in Mod S°P with A € Q;';Wl (coQ%;.w (59P)), Torl (Extko, (w, f'),w) is an epi-

morphism for any 0 <i<n—1.

(4) For any exact sequence

0—+A =B —C' =0

in Mod S°P with A € Q5 1(COQ’(S"”)) Tor! (Extko, (w, f'),w) is an epi-
morphism for cmy 0 < n—1.

(5) Extho,(w, Tori(g’,w)) is a monomorphism for any monomorphism g’
B — C"in ModR"p with B',C" € Q%N(R"p) and 0 <i<n—1.

(6) Ext., (w, Torl(¢’,w)) is a monomorphism for any monomorphism g’
B' — C"in ModR"p with B',C" € Q%(R°?) and 0 < i <n—1.

(7) QL(R) C acTL ™ (RP) for any 1 < i < n.

Proof. By the symmetric versions of Theorems 3.8 and 3.7, we have (1) < (3) < (4)
and (2) & (5) & (6) < (7) respectively. In the following, we will prove (1) < (2)
by induction on n.

(1) = (2) Let M’ € Mod R°P and let

S B (M) LS By = - LS By — M 0
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be the minimal flat resolution of M’ in Mod R°?. By Lemma 3.1(2), for any n > 1,
there exist exact sequences

0— Im(1, ® f,) —= acTr, Q% H(M') T Tor(M',w) — 0, (4.5)
0 — acTr, Q% (M') = Fi1(M') @rpw — Im(1, ® f,) = 0 (4.6)
in Mod S°P such that o, is an isomorphism. Because F,1(M')®grw € ws™ by [19,
Corollary 6.1], it follows from the exact sequence (4.6) that Extko, (w, Im(1,®f,)) =
Extishh (w, acTr,, Q% (M) for any i > 1.
If n = 1, then from the exact sequence (4.5) we get an exact sequence

0 — (Torf(M’,w)), — ExtZo, (w, acTr, QL(M"))(Z Exthop (w, Im(1, @ f,)))

in Mod R°. Because s.T-cograde, Ext%.,(w, acTr, Q% (M’)) > 1 by assumption,
we have T-cograde,, (Tor®(M’,w)), > 1. It is derived from Lemma 4.11(1) that
E-cograde,, Torf (M’ ,w) > 1.

Now suppose n > 2. Then E-cograde,, TorlR(M',w) >iforany 1<i<n—-1
and E-cograde,, Tor®(M’,w) > n — 1 by the induction hypothesis. It follows from
Theorem 3.7 that Qi (R°?) C acT,(RP) for any 1 < i < n. So Q¥ '(M') €
acT ' (RP) and acTr, Q% *(M’) € wgt»-1. Thus from the exact sequences (4.5)
and (4.6) we get the following exact sequence

0 — Extio, (w, Tork (M’ w)) — Exteh! (w, acTr, Q%(M')).

By (1), we have T-cograde,, Ext.,' (w, Torf(M',w)) > n. Tt follows from Lem-

ma 4.11(1) that E-cograde_, Tor®(M’,w) > n.

(2) = (1) Let N’ € Mod S° and Y a submodule of Ext!,! (w, N') in Mod R°P,
and let @ : Y > Extgo,(w,coQ"(N'))(Z Extel! (w, N')) be a monomorphism in
Mod R°?. By Lemma 3.1(1), we have an exact sequence

0 — Ext2h w, N') =5 ¢Tr, co™(N') -5 I"H(N'), [ co (N, — 0
in Mod R°P such that m ® 1, is an isomorphism. Then we get an exact sequence
0—Y L ¢Tr, coQ"(N') £ Coker g — 0 (4.7)

in Mod R°P, where g = A - «v. It is easy to see that p ® 1,, is an isomorphism.

Let n = 1. Because coQ'(N’) € ¢TL(S°P) by [32, Lemma 2.5(2)], we have
¢Tr, coQ'(N’') € ws''. Then the exact sequence (4.7) gives that ¥ @ w =
Tor?*(Coker g,w). So E-cograde, Y ®pw > 1 by (2), and hence T-cograde_ Y > 1
by Lemma 4.11(2). The case for n =1 is proved.

Now suppose n > 2. Then s.T-cograde, Extgt;(w,]\f’) >4 for any 1 < ¢ <
n — 1 and s.T-cograde,, Extgjpl (w,N") 2 n — 1 by the induction hypothesis. So
T-cograde, Y >n — 1.

By Theorem 3.5, we have coQ'(R%?) C c¢T' (R°) for any 1 < i < n. So
coQ"(N') € ¢TL(R°) and cTr, coQ"(N’) € rw'. Tt follows from the exac-
t sequence (4.7) that Tor? | (Y,w) = TorZ(Cokerg,w). Then by (2), we have
E-cograde,, Torfffl(Y, w) = E-cograde,, Torf (Coker g,w) > n. Thus T-cograde, Y
> n by Lemma 4.11(2). O

Now we are in a position to state the following

Theorem 4.14. Let R be semireqular and n > 1. Then the following statements
are equivalent.
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(1) pdgep Pi(w)* <i+4+1 forany0<i<n—1.

(2) Pu,(R)-idg Pi(w )<z—|—1f0rcmy0<z n—1.

(3) s.T-cograde, Extso,, (w,N") =i for any N' € Mod S°? and 1 < i < n.

(4) s.E-cograde, TorH_l(w N) =i for any N € Mod S and 1 <i < n.

(5) T-cograde, ExtR(w M) =i for any M € Mod R and 1 < i < n.

(6) E- cograde Tor(M',w) > i for any M’ € Mod R’ and 1 < i< n.

(7) Torf (w ,ExtR(w, f)) is an epimorphism for any epimorphism f: B — C in

Mod R with B,C € COQl(R) and0 <1 <n—1.

(8) Ext., (w, Torl(f',w)) is a monomorphism for any monomorphism f’ -
B' — C"in ModR"p with B',C" € Q%(R°?) and 0 < i <n—1.

(9) For any exact sequence

054 5B ¢ 0
in Mod S°P with A’ € Q;';wl(coQi(So”)) Tor? (Extko, (w, ¢'),w) is an epi-

morphism for any 0 <t < n—1.
(10) For any exact sequence

0A-LBsC—0

in Mod S with C € COQZI(Q;(S)), Ext(w, Tor? (w, g)) is a monomor-
phism for any 0 <i<n—1.

(11) coQ'(R) C cT M (R) for any 1 <i < n.

(12) Q%(R) C acTL ™ (RP) for any 1 < i< n.

Proof. By Proposition 4.7, we have (1) & (2) < (3) < (4). By Propositions 4.12
and 4.13, we have (4) & (5) & (7) & (10) & (11) and (3) & (6) & (8) & (9) &
(12) respectively. O

For the right quasi 1-cograde condition, we have some additional interesting
equivalent characterizations.

Proposition 4.15. Let R be a semireqular ring. Then the following statements
are equivalent.
(1) pdger Po(w)* < 1.
(2) s.E-cograde,, Tor5 (w, N) > 1 for any N € Mod S.
(3) s is a superfluous epimorphism for any M € coQ'(R).
(4) par is an essential monomorphism for any M’ € Q% (RP).

Proof. By Theorem 4.14, we have (1) < (2).

(1) = (3) Let M € coQ'(R). By [32, Lemma 2.5(2)], we have coQ'(R)
¢TL(R). So M € ¢T-(R) and 6y is an epimorphism. Because Ker 6y,
Torj (w, ¢Tr, M) by [32, Proposition 3.2], we have

Hom g (Py(w), Ker 837) = Hom g(Py(w), Tory (w, cTr, M)) =

1N

by (1) and Lemma 4.6. It follows easily that X, = 0 for any quotient module

X of Kerfjy,. Let A be a submodule of w ®g M, in Mod R such that Ker,, +

A =w®g M,. Then (Kerfy + A)/A(= Kerfy/(ANKerby)) is isomorphic to

a quotient module of Ker 6y, and so ((Kerf@y; + A)/A). = 0. Since w ®s M, €

¢TL(R) by [33, Lemma 6.1(2)], (Ker 6y + A)/A € ¢TL(R) by [32, Corollary 3.8].

It follows that 6(kerg,,+4)/4 : W ®s ((Kerfp + A)/A). — (Ker by + A)/A is epic
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and (Ker @y, + A)/A = 0. It induces that A = Kerfy; + A = w®g M, and )y is a
superfluous epimorphism.

(3) = (2) Let f : B — C be an epimorphism in Mod R with B,C € coQ'(R)(C
¢TL(R)). Then 6c - (1, ® f.) = f - 0p is epic. Because ¢ is a superfluous
epimorphism by (3), it follows from [1, Corollary 5.15] that 1, ® f is epic. Now
the assertion follows from Theorem 4.14.

(1) = (4) Let M' € QL(R°P). By [34, Corollary 3.5(1)], we have QL (RP) C

~

acTL(R). So M’ € acT . (R°P) and jup; is a monomorphism. Because Coker i =
Ext%o, (w,acTr,, M') by [34, Proposition 3.2], we have

Coker pipy @ Po(w) = ExtZo, (w,acTr, M) @p Py(w) =0

by (1) and Lemma 4.6. It follows easily that ¥ ® g w = 0 for any submodule Y of
Coker ppr. Let A be a submodule of (M’ ® g w). in Mod R°P with A’ N M’ = 0.
Then A’ = A'/JA'NM' = (A'+ M’)/M’ is isomorphic to a submodule of Coker pip;-,
and so A’ @gw = 0. Since (M’ @ w). € acTL(R) by [33, Lemma 6.1(1)],
A’ € acTL(R%P) by [34, Corollary 3.3(1)]. It follows that pas : A" — (A @p w), is
monie, It induces that A’ = 0 and pp is an essential monomorphism.

(4) = (2) Let g : B' — C’ be a monomorphism in Mod R°? with B’,C" €
QL (R)(C acTL(R)). Then (§®1,)s - ip = jucr - g is monic. Because yup: is an
essential monomorphism by (4), it follows from [1, Corollary 5.13] that (¢ ® 1)« is
monic. Now the assertion follows from Theorem 4.14. O

4.3. The equivalence of certain cograde condition of modules

We have the following facts: for the strong Tor-cograde condition of modules in
Theorem 3.8(1) and the strong Ext-cograde condition of modules in Theorem 3.9(1),
they are equivalent when & = 0 by Theorems 4.8; but they are not equivalent
when k = 1 by Theorem 4.14 and Subsection 4.4 below. Also from Theorem 4.14
and Subsection 4.4 below we know that the Tor-cograde condition of modules in
Theorem 3.5(1) and the Ext-cograde condition of modules in Theorem 3.7(1) are
not equivalent when k£ = 0. In this subsection, we will show that these two cograde
conditions of modules are equivalent when k = 1.

For any i > 1, by [34, Proposition 3.8] we have acT",(S) C Q% (S). The following
result characterizes when they are identical.

Proposition 4.16. For any n > 1, the following statements are equwalent

(1) E-cograde, Tor? ( N)>i—1 for any N € coQy(S) and 1 <i < n.
(2) E-cograde, Tor (w,N)zi—1 for any N € coQ (S) and 1 < i < n.
(3) acTL(S) = QY(S) for any 1 <i < n.
(4) acTL(S )* L (S )foranylgzgn.
Proof. Because Z,,(S) C A,(S), we have (1) = (2). By Lemma 3.6(2), we have
(3) & (4) |

(2) = (4) By [34, Proposition 3.8], it suffices to prove Q% (S) C acT.,(S) for
any 1 < i < n. We proceed by induction on n. The case for n = 1 follows from
Lemma 2.9(1).

Now let N € Q7 (S) with n > 2 and let

fn—l

0 1
0— NIl (4.8)
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be an exact sequence in Mod S with all I? in Z,(S). By the induction hypothesis,
we have Im f! € ac7" *(S). Applying the functor w ®g — to (4.8) gives an exact
sequence

0 — Tor} n—1 L.®f" 0 1
— Tor,, (w, Coker f"™) — w®s N w®s " — wogImfl =0 (4.9)

in Mod R. Set M :=Im(1, ® f°) and let 1, ® f® := a7 (where 7 : w®g N - M
and o : M — w ®g I°) be the natural epic-monic decomposition of 1, @ fY. Then
we have the following commutative diagram with exact rows

fO
0 N I0 Imf! ———0
|
l g iufo il‘qul
V (e}
0 (M), L (w@g 1)y —— (w®g Im f1), — Exth(w, M) — 0.

Diagram (4.10)

Since i 1 is @ monomorphism by the above argument, it follows from the snake
lemma that g is an epimorphism. On the other hand, we have

oy = (@) iy = (1o © fO) - v = ppo - fO = v - g

As ay is monic, we get that m, - uy = g and =, is epic. Consider the following
commutative diagram with exact rows

N:N

0 — (Tor? (w, Coker f*~1)), —— (w®g N), —

Diagram (4.11)

Because (Tor? (w, Coker 1)), = 0 by assumption, we have that 7, is an isomor-
phism. So uy is epic by the diagram (4.11), and hence an isomorphism. Thus
N € acT2(S) and the case for n = 2 follows.

Now suppose n = 3. By the induction hypothesis, we have that Im f' €
acT . '(S) and gy g1 is an isomorphism. So Extp(w,M) = 0 by the diagram
(4.10). In addition, we have w ®g Im f! € rw®»-3 by [34, Corollary 3.3(3)]. Be-
cause E-cograde,, Tor? (w, Coker f*~1) > n—1 (by assumption) and w®g1° € pw™,
applying the dimension shifting to (4.9) we obtain w ®g N € gw*"-2. Therefore
we conclude that N € acT[,(S) by [34, Corollary 3.3(3)] again.

(3) = (1) We proceed by induction on n. The case for n = 1 is trivial. Let
N € co?’y(S) with n > 2. Then there exists an exact sequence

0—>H—>An,1i>An,2—>---—>A0—>N—>O
in Mod S with all A; in A, (S). By (3), we have H € acT,,(S). By the induction
hypothesis, we have that E-cograde, Tor? (w, N) >i—1for any 1 <i <n—1 and
E-cograde,, Tor> (w, N) > n — 2.
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Put M := Ker(l, ® f). Because A; € acT,, (S) by [34, Theorem 3.11(1)], we
obtain that M, = H(€ acT5(S)) and M € pw'»-2. By [35, Proposition 5.1], we
have the following exact sequences

0 — Tor® (w, N)(= Tors (w, Coker f)) = w ®g M, — Im 6y — 0, (4.12)

0 — Imfy = M — Tor®_, (w, N)(2 Tor? (w, Coker f)) — 0 (4.13)
such that 0y = A - 7. Since pypy, is an isomorphism, it follows from [33, Lemma
6.1(1)] that (6as)+ is also an isomorphism. Then both A, and . are isomorphisms.

From the exact sequence (4.13), we get Im 0y, € gw'—2. Because w ®g M, €
rwin=2 by [34, Corollary 3.3], from the exact sequence (4.12) it yields that
Ext?%(w, Tory (w, N)) = 0. Thus we have E-cograde,, Tor’ (w, N) > n — 1. O

For any i > 1, by [32, Proposition 3.7] we have ¢’ (R) C coQ%,w (R). The
following result characterizes when they are identical.

Proposition 4.17. For any n > 1, the following statements are equivalent.
(1) T-cograde, ExtR(w M) =i—1 for any M € Qi(R) and 1 < i < n.

(2) T-cograde,, Exty(w, M) >i—1 for any M € Q% (R) and 1 <i < n.

(3) T- cograde Extlp(w, M) >i—1 for any M € Qp (R) and 1 < i< n.

(4) T, (R )—COQ%( ) for any 1 <i < n.

(5) ¢T"(R) = coQ%x (R) for any 1 < i < n.

(6) cT(R) = coQdp_(R) for any 1 <i<n.

Proof. Because B,(R) O F,(R) D P,(R), we have (1) = (2) = (3). By Lem-
ma 3.4(2), we have (4) & (5) < (6).

(3) = (6) By [32, Proposition 3.7], it suffices to prove coQp_(R) C ¢T,(R) for
any 1 < i < n. We proceed by induction on n. The case for n = 1 follows from
Lemma 2.9(2).

Now let M € coQp_(R) with n > 2 and let

Wt 5w D wy L5 Mo (4.14)

be an exact sequence in Mod R with all W; in P, (R). By the induction hypothesis,
we have Im f; € ¢T" '(R). Applying the functor (=), to (4.14) gives an exact
sequence

0= (Im f1)s — Wo, 25 M, — Ext(w, Ker fo_1) — 0. (4.15)

Set N :=Im(fo,) and let fo, := a-7 (where 7 : Wy, — N and o : N — M,,) be the
natural epic-monic decompositions of fy,. Then we have the following commutative
diagram with exact rows

0 — Tor{ (w, N) — w ®g (Im f1), — w Vg Wo*ﬂw(@SNHO

|
loIm f1 \LGWO |9
\

| JE— Wo M 0.

Diagram (4.16)
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So we have
Or - (lo®a) - (1, @m) =0p - (1, ® fo,) = fo- 0w, =9 (1, ®@m).

Because 1, ® 7 is epic, we have 07 - (1, ® @) = g and the following commutative
diagram with exact rows

w®s N Lo w®s M, w®g Exth(w,Ker f,_1) ——0
lg laM
M M.

Diagram (4.17)

Since Oy, ¢, is an epimorphism by the above argument, it follows from the snake
lemma that g is an isomorphism. Thus 1, ® a is a monomorphism. Because
w ®g Exth(w,Ker f,—1) = 0 by assumption, we have that 0y, is an isomorphism
and M € c¢T2(R) by the diagram (4.17). It means that the assertion holds true for
n = 2. If n > 3, then the fact that Im f; € CTZ_l(R) implies Oy, r, is an isomor-
phism. So Tory (w, N) = 0 by the diagram (4.16). In addition, we have (Im f;), €
ws 7= by [32, Corollary 3.4(3)]. Because T-cograde,, Ext’h(w,Ker f,_1) > n — 1
by assumption, applying the dimension shifting to (4.15) we obtain M, € wg'»-2.
Therefore we conclude that M € ¢7T (R) by [32, Corollary 3.4(3)] again.

(4) = (1) We proceed by induction on n. The case for n = 1 is trivial. Let
M € Q%(R) with n > 2 and let

O—>M—>Bn,1—>-~-—>Bli>Bo—>L—>O

be an exact sequence with all B; in B, (R). By (4), we have L € ¢T[,(R). By the
induction hypothesis, we have T-cograde,, Ext’(w, M) >i—1forany 1 <i<n—1
and T-cograde,, Exty(w, M) > n — 2.

Put N := cTr, Ker f. Because B; € c¢T,(R) by [32, Theorem 3.9], we obtain
that w ®g N = L(€ ¢cT(R)) and N € ws 2. By [33, Proposition 6.7], we have
the following exact sequences

0— BExth '(w, M) = N "5 Impuy — 0, (4.18)

0— Im py —> (w®g N)y = Extlh(w, M) =0 (4.19)
such that puy = X\ - 7. Since 0,g4n is an isomorphism, it follows from [33, Lemma
6.1(2)] that 1, ® py is also an isomorphism. Then both 1, ® A and 1, ® 7 are
isomorphisms.

From the exact sequence (4.18), we get Impuy € wg Because (w ®g
N). € wg "2 by [32, Corollary 3.4], from the exact sequence (4.19) it yields that
Tor? _,(w, Ext(w, M)) = 0. Thus we have T-cograde , Ext’(w, M) >n — 1. O

Th-2

Lemma 4.18. For anyn > 0, the following statements are equivalent.
(1) w® Ext%(w, —) vanishes on Mod R.
(2) (Tors (w,—))« vanishes on Mod S.
(3) M, € acT2(S) for any M € Mod R.
(4) w®s N € cT2(R) for any N € Mod S.
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Proof. By [35, Corollary 6.6], we have (3) < (4).
(1) & (4) Assume that (1) holds true. Let N € Mod S. By [33, Lemma 6.1(2)],
we have
OuosN - (1w ® .UN) = lugsN-
It follows that 6,4 N is a split epimorphism and
Kerf,g.n = Coker(1l, ® un) = w ®g Coker
>~ w ®@g BExth(w,acTr, N) (by [35, Corollary 5.2(2)])
=0 (by (1))
So O,gs N is @ monomorphism, and hence an isomorphism.
Conversely, assume that (4) holds true. Let M € Mod R. By [33, Lemma 6.1(2)]
again, we have
9w®gcTrw M (]-w & McTr,, M) - 1w®scTrw M-
It follows that
w ®g Exth(w, M) = w ®g Coker pety, ar (by [35, Corollary 5.3(2)])
= COker(lw & HeTr,, M) = Ker 9w®scTrw M
=0 (by (4)).
(2) < (3) Assume that (2) holds true. Let M € Mod R. By [33, Lemma 6.1(1)],
we have
(Oar)s - s, = 1,
It follows that ppy, is a split monomorphism and
Coker ppr, =2 Ker(Opr)« = (Ker0pr)+
>~ (Tors (w, cTr, M)), (by [32, Proposition 3.2])
=0 (by (2)).
So pas, is an epimorphism, and hence an isomorphism.
Conversely, assume that (3) holds true. Let N € Mod S. By [33, Lemma 6.1(1)]
again, we have
(eacTrw N)* " M(acTr, N), — 1(acTrW N),-
It follows that
(Tor5 (w, N)), 2 (Ker oy, v)« (by [35, Corollary 5.3(1)])

= Ker(eac'l"rw N)* & Coker /Jf(acTr‘,u N).
=0 (by (3)).
[l

The following result establishes the left-right symmetry of certain cograde con-
dition of modules.

Theorem 4.19. For any n > 1, the following statements are equwalent

) T-cograde, ExtR(w M)>i—1 forany M € Mod R and 1 < i < n.
2 Ecograde Tor? (w,N) 2 i—1 for any N € Mod S and 1 < 2<n

3) co*(R )CCTZZ( )—con( ) for any 1 <i < n.
Q'(R) C cTL(R) = co_(R) for any 1 < i < n.
5 coQZ( ) CcTL(R) = COQ%;W(R) for any 1 <1i < n.

1
(2)
(3)
(4) co
(5)
(6)

6) Q%(S) CacT.,(S) = QY(S) for any 1 <i < n.
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(7) Q(S) CacT,(S) = QL (S) for any 1 <i<n.

Proof. By Theorem 3.5 and Proposition 4.17, we have (1) & (3) & (4) < (5). By
Theorem 3.7 and Proposition 4.16, (2) < (6) < (7).

In the following, we will prove (1) < (2) by induction on n. The case for n =1
is trivial and the case for n = 2 follows from Lemma 4.18. Now suppose n > 3.

(1) = (2) Let N € ModS. By the induction hypothesis, we have that
E-cograde,, Tor? (w, N) > i —1 for any 1 < i < n—1 and E-cograde,, Tor> (w, N) >
n — 2. By Lemma 3.1(2), there exists an exact sequence

0 — Im(f, ® 1,) = acTr, Q% *(N) - Tor; (w,N) = 0

in Mod R such that o, is an isomorphism. By Theorem 3.7, we have that Q?‘l (N) e
acT ' (S) and acTr, Q% ' (N) € rwn-1. So
Ext? % (w, Tory (w, N)) = Ext’y (w, Im(f,, ® 1,,))
> Exty(w, acTr, Q%(N)).

Then T-cograde,, Ext"2(w, Tor (w, N)) > n — 1 by (1). Tt follows from Lem-
ma 4.11(1) that E-cograde,, Tor> (w, N) > n — 1.

(2) = (1) Let M € ModR. By the induction hypothesis, we have that
T-cograde,, Exty(w, M) > i—1for any 1 < i < n—1 and T-cograde,, Ext}(w, M) >
n — 2. By Lemma 3.1(1), there exists an exact sequence

0 — Bxt"+! (w, M) = ¢Tr,, coQ™(M) =5 I"1(M), / coQ" (M), — 0

in Mod S such that 1, ® 7 is an isomorphism. By Theorem 3.5, we have that
coQ" (M) € ¢T"Y(R) and ¢Tr,, coQ" (M) € wg '"*. So

Tor o (w, Ext(w, M)) = Tors | (w, I"(M),/ coQ™(M),)

= Tor? (w, ¢Tr,, coQ™(M)).

Then E-cograde,, Tor _,(w, Ext’(w,M)) > n — 1 by (2). It follows from Lem-
ma 4.11(2) that T-cograde,, Extk(w, M) > n — 1. O

4.4. Examples

In this subsection, we give some examples for w satisfying the (quasi) n-cograde
condition.

Let R be an artin algebra. Recall that R is called Auslander n-Gorenstein if
pdper I'(Rg) < i for any 0 < i < n — 1; equivalently pdyp I*(rR) < i for any
0 <i<n-—1/([16, 26)); and R is called left (resp. right) quasi n-Gorenstein if
pdg I'(rR) (resp. pdger I'(Rg) <i+1forany 0 <i<n—1([22]).

Let D be the ordinary duality between mod R and mod R°?. Then D(R) is a
semidualizing (R, R)-bimodule. Because

pdg I'(rR) = idper Pi(D(gR)) = pdg Homper (Pi(D(gR)), D(R)) and
pdger I'(Rp) = idg Pi(D(RR)) = pd ger Homp(Pi(D(RR)), D(R)),
we have
Example 4.20.
(1) R is Auslander n-Gorenstein if and only if D(R) satisfies the n-cograde

condition.
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(2) R is left (resp. right) quasi n-Gorenstein if and only if D(R) satisfies the
left (resp. right) quasi n-cograde condition.

So, if putting rws = rRD(R)g in Theorem 4.8 (resp. Theorem 4.14), then all the
conditions there are equivalent to that R is Auslander n-Gorenstein (resp. right
quasi n-Gorenstein). Note that the notion of quasi n-Gorenstein algebras is not
left-right symmetric ([5, p.11]). So, contrary to the n-cograde condition, the quasi
n-cograde condition is not left-right symmetric.

Example 4.21. Let Q be the quiver
3
N
1 5.
4
A

2
and R = KQ/ < Ba — év,ey > with K a field. Take
0 0 0 1 0
10 10 10 11 01
w = 0 @ 1 S 1 2 1 ® 1 -
0 1 0 0 0

By [3, Example VI.2.8(a)], we have that wg is a non-injective tilting module with
pdpw = 1. Thus it is a semidualizing (R, Endg(w))-bimodule. It is straightforward
to verify that the projective cover Py(w) of w is P(1) @& P(4)? & P(5)2. So Py (R)-
idg Py(w) = 0, and hence w satisfies the left and right 1-cograde conditions by
Theorem 4.8. Since pdpw = 1, we have Ext?(w, M) = 0 for any M € Mod R. By
Theorem 4.8 again, we have that w satisfies the left and right n-cograde conditions
for any n > 1.

5. Two cotorsion pairs

In this section, we will construct two complete cotorsion pairs under any of the
equivalent conditions in Theorem 4.19.
For any n > 0, set P,,-idS"(R) := {M € Mod R | P,,(R)-idg M < n}.

Lemma 5.1. Let M € grwt»-t with n > 1. If T-cograde, Ext}(w, M) > n — 1,
then there exists an exact sequence

0-M—-X—-Y—=0
in Mod R with X € gw' and Y € P,-idS""!(R).
Proof. Let M € pw*"-1. From the exact sequence

0= M—=I1°(M)— - = I""Y(M) = coQ"(M) = 0
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in Mod R, we get the following commutative diagram with exact rows

Po_1 Py Ext}(w, M) ——0
IO0(M). IY(M). coQ" (M), —— Ext}(w, M) ——0,

Diagram (5.1)

where the upper sequence is a projective resolution of Ext’(w, M) in Mod S.
Taking the mapping cone of the diagram (5.1), we get an exact sequence

M), ®Pyq— - = I""Y(M), ® Py — coQ" (M), — 0. (5.2)
Since T-cograde, Exts(w, M) > n — 1, we get an exact sequence
wWwRs P 1= —2w®s P 2>w®s Py —0

in Mod R. Then we get the following commutative diagram with exact columns

and rows
0 0 0
|
|
Y
0—-——-—>M-——————— X - — - — - - - - Y - ——-—->0
\

I
I
A
OHInfl(M)anfl(M)EB(w(@sPo) w g Py 0
I
I
A
co" (M) ======coQ"(M) 0
I
I
A
0 0,

Diagram (5.3)

where
X =Ker(I°(M) ® (w ®g Py_1) = I'(M) ® (w®g P,_3)) and

Y =Ker(w®g Pr—1 > w Qg Pr_2).
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Then Y € P,-idS""*(R). From the exactness of (5.2) and the middle column in
the diagram (5.3), we know that X € gw®". So the top row in the diagram (5.3)
is the desired exact sequence. (I

For any n > 0, set Z,,- pdS"(S) := {N € Mod S | Z,,(S)-pdg N < n}.

Lemma 5.2. Let N € wg "~ withn > 1. If E-cograde_, Tor> (w, N) > n—1, then
there exists an exact sequence

0=-Y - X' 5 N—=0

in Mod S with X' € wg T and Y’ € T,,-pd<"~1(S).

Proof. Let N € wg"»—*. From the exact sequence

0—-Q%N)—>F,_1(N)— -+ = Fy(N) > N—=0

in Mod S, we get the following commutative diagram with exact rows

OHTorg(w,N)Hw@)sQ;&(N) w®g F1(N) ——> w®g Fo(N)
0 —— TorS (w, N) 1° m-1

Diagram (5.4)

where the lower sequence is an injective resolution of Tor’ (w, N') in Mod R. Taking
the mapping cone of diagram (5.4), we get an exact sequence

WwRs QE(N) - I°D (wRs Fy 1 (N)) = - = I" '@ (w®s Fo(N)).  (5.5)

Since E-cograde,, Tor,sl (w,N) > n—1, we get an exact sequence

0-1% 1 - .. =11,
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in Mod S. Then we get the following commutative diagram with exact columns and
rows

0 0
|
|
Y

0 QL(N) = = = = =Q%(N)

|
|
Y

0 10, I° @ F_1(N) —= Fy_1(N) —=0
|
Y
|
|
Y

0 m1, "1, @ Fy(N) —= Fy(N) ——=0
|
|
\

0———>Y'— - — — — X - - - - - SN-———>0
|
|
\

0 0 0,

Diagram (5.6)
where
X' = Coker(I" 2, @ Fy(N) — I", @ Fy(N)) and
Y’ = Coker(I""2, — I"1,).
Then Y’ € Z,,-pdS""!(S). From the exactness of (5.5) and the middle column in

the diagram (5.6), we know that X’ € wg'™. So the bottom row in the diagram
(5.6) is the desired exact sequence. O

Lemma 5.3. For any n > 0, we have

(1) Py,-idS™(R) is closed under direct summands and closed under extensions.
(2) Iw-pdgn(S) 1s closed under direct summands and closed under extensions.

Proof. (1) By [33, Lemma 4.6], P,-idS"(R) is closed under direct summands.
Let
0+A—-B->C—=0
be an exact sequence in Mod R with A,C' € P,-idS™(R). It is easy to see that
it is Hompg(—, P, (R))-exact. Then B € P,-idS"(R) by the generalized horseshoe
lemma (c.f. [23, Lemma 3.1(2)]).
(2) By [34, Lemma 4.7], Z,,- pdS"(S) is closed under direct summands.
Let
0—-A—=B—-C—=0
be an exact sequence in Mod S with A,C € Z,- pdS"(S). It is easy to see that it is
(w®g—)-exact; equivalently it is Hompg(—, Z,,(5))-exact by [34, p.298, Observation].
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Then B € Z,-pdS™(S) by the generalized horseshoe lemma (c.f. [23, Lemma
3.1(1)]). O

Proposition 5.4. Let n,k > 1 and T-cograde,, Ext’;k(%M) > i for any M €
ModR and 1 < i <n—1. Then for any M € ModR and 0 < i < n — 1, there
exists an exact sequence

0—cod* H (M) =X =Y =0
in Mod R with X € pwbi+1 and Y € P,-idS'(R).

Proof. We proceed by induction on n. The case for n = 1 follows from Lemma 5.1.
Now suppose n > 2. By the induction hypothesis, for any 0 < ¢ < n— 2 there exists
an exact sequence

0— coQ* 1 (M) = X, - Y; =0
in Mod R with X; € gwbi+ and Y; € P,-idS*(R). Then
Exth(w, Xp—2) = Ext(w, coQk_l(M)) = Ext%"'k_l(w, M).

So T-cograde,, Ext’h(w, X,,_2) = T-cograde,, Ext’s™~(w, M) > n — 1 by assump-
tion. Applying Lemma 5.1, we get an exact sequence

0—-X, 9o—>X,_1—>Y,.1—0

in Mod R with X,,_; € gw*" and Y,,_; € P,- idgn_l(R). Consider the following
push-out diagram

0 0
0 —— coQ* 1 (M) X Y, o —0
0 —— coQ* 1 (M) X, Y 0
Y1 Yo
0 0

By Lemma 5.3(1), we have Y € P,-idS""(R). So the middle row in this diagram
is the desired sequence. O

Proposition 5.5. Let n,k > 1 and E-cograde,, Torf+k(w,N) > 1 for any N €
Mod S and1 <t <n—1. Then for any N € Mod S and 0 < i < n—1, there exists
an exact sequence

0=Y =X - QY N) =0
in Mod S with X' € wg T+t and Y’ € Z,,-pdS'(9).
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Proof. We proceed by induction on n. The case for n = 1 follows from Lemma 5.2.
Now suppose n > 2. By the induction hypothesis, for any 0 < ¢ < n— 2 there exists
an exact sequence

0—Y = X/ - Q1 (N) >0
in Mod S with X/ € wg i+t and Y/ € Z,,- pdS*(S). Then

Torf(w, X! ) = Tor;?(w7 Q’;_fl(N)) = Torngkfl(w, N).

So E-cograde,, Tor} (w, X/,_,) = E-cograde, Tor , ;(w,N) > n — 1 by assump-
tion. Applying Lemma 5.2, we get an exact sequence

0-Y =X =X ,—0

in Mod S with X! |, € wg' and Y, ; € Z,-pd" *(S). Consider the following
pull-back diagram

0 0
0 Y, 4 Y’ Y o 0
0 Yo Xy X2 0
(V) — 94 (W)
0 0
By Lemma 5.3(2), we have Y’/ € Z,-pdS""(S). So the middle column in this
diagram is the desired sequence. O

Based on the equivalence of (1) and (2) in Theorem 4.19, we have the following

Theorem 5.6. For any n > 1, we have

(1) If one of the equivalent conditions in Theorem 4.19 is satisfied, then the
following statements are equivalent.
(1.1) pdgorw <n—1.
(1.2) P,(R)-idg R<n—1.
(1.3) Pu(R)-idgp P < n—1 for any projective P in Mod R.
(1.4) (P,-idS""Y(R), gw'r) forms a complete cotorsion pair.
(2) If one of the equivalent conditions in Theorem 4.19 is satisfied, then the
following statements are equivalent.
(2.1) Z,(S)-pdg Q@ < m — 1 for some injective cogenerator @ in Mod S.
(2.2) Z,,(S)-pdg I < n—1 for any injective module I in Mod S.
(2.3) (ws '™, w-pdgnfl(S)) forms a complete cotorsion pair.
If R and S are artin algebras, then the statements (2.1)-(2.3) are equivalent
to the following
(24) pdgw <n—1.
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Proof. By Lemma 4.5(1), we have (1.1) & (1.2).

If P,(R)-idg R < n — 1, then P,(R)-idg FF < n — 1 for any free module F
in Mod R by [19, Proposition 5.1(b)]. It follows from Lemma 5.3(1) that P, (R)-
idp P < n — 1 for any projective P in Mod R. This proves (1.2) < (1.3).

(1.3) = (1.4) It is easy to verify that Exth(A, B) = 0 for any A € P,,-idS""*(R)
and B € gwtn.

Let M € Mod R. By Lemma 5.1 when n =1 or taking k¥ = 1 in Proposition 5.4
when n > 2, we get an exact sequence

0-M-—->B—>A—=0 (5.7)

in ModR with B € gw' and A € P,-idS" " *(R). It implies that M has a
special rw'n-preenvelope and gw'" is special preenveloping in Mod R. If M €
(P.-idS""Y(R)):1, then the exact sequence (5.7) splits. It follows that M is a
direct summand of B and M € pw*.

Let

O—-My —-P—>M—0
be an exact sequence in Mod R with P projective. By (1.3), we have P € P,-idS""!(R).

By Lemma 5.1 when n = 1 or by Proposition 5.4 when n > 2, we have an exact
sequence

0= M =B —-A =0

in Mod R with B’ € gw'» and A’ € P,-idS""*(R). Consider the following push-
out diagram

0 0
0 M, P M 0
0 B A" M 0
A=A
0 0.

Since P,,-idS""!(R) is closed under extensions by Lemma 5.3(1), it follows from the
middle column in the above diagram that A” € P,-idS" " Y(R). If M € 11 (gw'n),
then the middle row in the above diagram splits and M is a direct summand of A”.
By Lemma 5.3(1), we have M € P,-idS" *(R). It follows from Lemma 2.7 that
(P.-idS""H(R), gw'n) forms a complete cotorsion pair.

(1.4) = (1.2) By (1.4), we immediately have that rR € P,-idS""}(R) and
Po(R)idg R <n — 1.

If Z,(5)-pdg @ < n — 1 for some injective cogenerator @ in Mod S, then any
direct product of @ is in Z,- pdS" () by [19, Proposition 5.1(c)]. It follows from
Lemma 5.3(2) that Z,,(S)-pdg I < n— 1 for any injective module I in Mod S. This
proves (2.1) & (2.2).
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(2.2) = (2.3) Tt is easy to verify that Extg(C, D) = 0 for any C' € wg '™ and
D € T,-pdS"(9).

Let N € Mod S. By Lemma 5.2 when n = 1 or taking £ = 1 in Proposition 5.5
when n > 2, we get an exact sequence

0=-D—-C—->N=0 (5.8)

in Mod S with C' € wg " and D € Z,,- pdS""*(S). It implies that N has a special
wg "m-precover and wg ' is precovering in Mod S. If N € 11(Z,- pdS""1(S)), then
the exact sequence (5.8) splits. It follows that N is a direct summand of C' and
N e wST".
Let

0—+N—=I—-N —0
be an exact sequence in Mod S with I injective. By (2.2), we have I € Z,,- pdS"7%(S9).
By Lemma 5.2 when n = 1 or by Proposition 5.5 when n > 2, we have an exact
sequence

0D —=C" =N =0
in Mod S with C’ € wg '™ and D' € T,- pdgn*l(S). Consider the following pull-
back diagram

0 0
N=—7=—=N
0 D’ D" 1 0
0 D’ o Ny 0
0 0.

Since Z,,- pdS"1(S) is closed under extensions by Lemma 5.3(2), it follows from
the middle row in the above diagram that D" € Z,,-pdS"*(S). If N € (wg )1,
then the middle column in the above diagram splits and N is a direct summand of
D". By Lemma 5.3(2), we have N € Z,-pdS""*(S). It follows from Lemma 2.7
that (wg ™", Z,- pdS"1(S)) forms a complete cotorsion pair.

(2.3) = (2.2) For any injective module I in Mod S, by (2.3) we have that I €
Z.,-pdS""(S) and Z,,(S)-pdg I <n — 1.

If R and S are artin algebras, then pdpw = Z,(S5)-pdg D(Ss) by [34, Lemma
4.9]. Because D(Ss) is an injective cogenerator in Mod S, (2.1) < (2.4) follows. O

Observation 5.7. Let R be an artin algebra and rws = gD(R)g. Then we have
(1) pdgw =idger R and pdpop, w = idg R.
(2) Pu(R) is exactly the subclass of Mod R consisting of injective modules. It
implies that
(2.1) Py(R)-idg M =idr M for any M € Mod R.
(2.2) P,-idS"(R) = IS"(R) := {M € Mod R | idg M < n}.
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(3) Z,(R) is exactly the subclass of Mod R consisting of projective modules. It
implies that
(3.1) Z,(R)-pdg N = pdp N for any N € Mod R.
(3:2) Z.-pdS"(R) = PS"(R) := {N € Mod R | pdp N < nj}.

(4) By [11, Proposition V1.5.3], it is easy to see that wg "+ = tn+1pR.

(5) If R is right quasi (n — 1)-Gorenstein, then all conditions in Theorem 4.19
are satisfied; see Theorem 4.14 and Example 4.20(2).

As an application of Theorem 5.6, we have the following

Corollary 5.8. Let R be a right quasi (n—1)-Gorenstein artin algebra with n > 1.
Then the following statements are equivalent.

( ) idR R n—1.

( ) ldR0pR<7’l—1

(3) (I<" Y(R), RD(R)*") forms a complete cotorsion pair.

(4) (t»rR,PS""Y(R)) forms a complete cotorsion pair.

Proof. By Theorem 5.6 and Observation 5.7, we have (1) < (3) and (2) < (4).

(1) & (2) Let idg R < n — 1. By [6, Theorem 4.7] and the symmetric version
of [21, Theorem], we have idger R < (n — 1) + (n — 2) = 2n — 3. Conversely, let
idger R < n — 1. By [35, Theorem 7.5], we have idg R < n — 1. Now the assertion
follows from [40, Lemma A]. O

As a consequence of Corollary 5.8, we have the following

Corollary 5.9. For any artin algebra R, the following conditions are equivalent.
(1) dgR< 1
(2) idgrer R < 1.
Furthermore, if R is right quasi 1-Gorenstein, then they are equivalent to each of
the following two statements.
(3) (ZSY(R), RD(R)*2) forms a complete cotorsion pair.
(4) (f2rR,PSY(R)) forms a complete cotorsion pair.

Proof. The first assertion follows from [21, Corollary 2]. If R is right quasi 1-
Gorenstein, then we get the second assertion by putting n = 2 in Corollary 5.8. O

We use Z(R) and P(R) to denote the subclasses of Mod R consisting of injective
and projective modules respectively. Putting n = 1 in Corollary 5.8, we have the
following

Corollary 5.10. For any artin algebra R, the following statements are equivalent.
(1) R is self-injective.
(2) (Z(R), RD(R)*1) forms a complete cotorsion pair (in this case, RD(R)** =
I(R)™).
(3) (*1'rR,P(R)) forms a complete cotorsion pair (in this case, “* R = T*P(R)).

6. Relative finitistic dimensions

In this section, we introduce and study the finitistic P, (R)-injective dimension
and the Z,,(S)-projective dimension of rings.
The finitistic P, (R)-injective dimension FP,-id R of R is defined as

FP.-id R := sup{P,(R)-idg M | M € Mod R and P, (R)-idr M < co};
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and the finitistic Z,,(S)-projective dimension FZ,-pd S of S is defined as
FZ,-pd S :=sup{Z,(S)-pdg N | N € Mod S and Z,(S)-pdg N < co}.
Lemma 6.1. For anyn >0 and k > 1, we have
(1) Let T-cograde,, Ext’y ™ (w, M) > i for any M € Mod R and 1 <i < n + 1.
IfFP,-idR =mn, then pdrw < n+ k.
(2) Let E-cograde,, Torf+k(w,N) > forany N € ModS and 1 <i<n+1. If
F1,-pdS =n, then pdgep w < n+ k.
Proof. (1) Let M € Mod R. By Proposition 5.4, there exists an exact sequence
0—cod* H (M) > X =Y =0

in Mod R with X € gw’»+2 and P,(R)-idgY < n + 1. If FP,-id R = n, then
Po(R)-idr Y < n. Thus we have that

Ext™ 1 (w, M) = Exts™2(w, coQ* 1 (M) = Ext™ (w,Y) = 0
and pdrw < n + k.
(2) Let N € Mod S. By Proposition 5.5, there exists an exact sequence
0-Y - X = QI (N) =0
in Mod S with X’ € wg 7+2 and P, (R)-ids Y’ < n+ 1. If FZ,-pd S = n, then
Z,(R)-pdg Y' < n. Thus we have that
Tors+k+1(w, N) T01"75;_~_2(w7 Qg_-_l(N)) = Tors_i_l(w, Y')=0
and pdge, w = fdger w <N+ k. O
Lemma 6.2. For any n > 0, we have
(1) Let FP,-idR <n and N € Mod S. If T-cograde, N > n+1, then N =0.
(2) Let FZ,-pd S < n and H € Mod R. If E-cograde, H > n+1, then H = 0.
Proof. (1) Consider a projective resolution
%QTLJFl*)QTL*)*)QO*)N%O
of N in Mod S. If T-cograde, N > n + 1, then we get an exact sequence
0= M—->w®s@Qnt1 2w®sQp =+ 2 wRsQ1 > w®s Qo —0
in Mod R, where M = Ker(w ®g Qni1 — w ®s Q). By [34, Corollary 3.5],
Q = (w®s Q). canonically for any projective @ in Mod S, so N = Ext%“(w7 M).
Because FP,-id R < n by assumption, we have that P,(R)-idg M < n and N
Ext);t (w, M) = 0.
(2) Consider an injective resolution
0H—=I°>. .. 51" 1 ...
of H in Mod R. If E-cograde,, H > n + 1, then we get an exact sequence
0=1% = I, - I"", 5 N=0
in Mod S, where N = Coker(I", — I"*1,). By [32, Lemma 2.5(2)], w ®g I, = [
canonically for any injective I in Mod R, so H = Tor’ , ; (w, N). Because FZ,,- pd S <
n by assumption, we have that Z,,(R°?)-pdg N < nand H = Tor;_;(w,N) =0. O

The following is the main result in this section.

Theorem 6.3. For any k > 0, we have
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(1) If T-cograde,, Extiy*(w, M) > i for any M € ModR and i > 1, then
FP,-idR < pdpw < FP,-id R+ k.

(2) If E-cograde, Tor;ik(w,N) > i for any N € ModS and ¢ > 1, then
FZ,-pdS < pdgop w < FZ,-pd S + k.

Proof. (1) Let pdrw = n(< c0) and M € Mod R with P, (R)-idp M = m(< o0).
Then there exists an exact sequence
o0 oom
0-M-—>w —w = —uw"—=0

in Mod R with all w’ in P, (R). Since P,(R) C B,(R) by [19, Corollary 6.1], we
have B, (R)-idg M < P,(R)-idgM < oco. If m > n, then it follows from [33,
Theorem 4.2] that B, (R)-idg M < n and Im f™ € B,(R). On the other hand, we
have the following exact and split sequence

0> (Imf") 2w = 2w, =0

in Mod S with all w’, projective. So (Im f"), is projective, and hence Im f" €
P.(R) by [19, Lemma 5.1(2)]. It yields that P,(R)-idg M < n, a contradiction.
This proves FP,-id R < pdp w.

In the following, we will prove pdp w < FP,-id R+ k. The case for k > 1 follows
from Lemma 6.1(1). Now suppose that k¥ = 0 and FP,-idR = n(< o0). Let
M € Mod R. Then T-cograde,, Exty" (w, M) > n + 1 by assumption. It follows
from Lemma 6.2(1) that Ext’s"™ (w, M) = 0 and pdpw < n.

(2) Let pdgep w = n(< 00) and N € Mod S with Z,,(S)-pdg N = m(< 00). Then
there exists an exact sequence

0= Up L o 50, U2 N-0

in Mod S with all U; in Z,(S). Since Z,,(S) C A, (S) by [19, Corollary 6.1], we have
A, (S)-pdg N < oo. If m > n, then it follows from the dual result of [33, Theorem
4.2] that A, (S)-pdg N < n and Img, € A,(S). On the other hand, we have the
following exact and split sequence

0-w®sUy = m>wRsU, »>w®sImg, —0

in Mod R with all w ®g U; injective. So w ®g Im g,, is injective, and hence Im g,, €
Z,(S) by [19, Lemma 5.1(3)]. It yields that Z,(S)-pdg N < n, a contradiction.
This proves FZ,,-pd S < pdgep w.

In the following, we will prove pdge, w < FZ,-pdS + k. The case for k > 1
follows from Lemma 6.1(2). Now suppose that £k = 0 and FZ,-pdS = n. Let
N € ModS. Then E-cograde,, Tori_H(w,N) > n + 1 by assumption. It follows

from Lemma 6.2(2) that Tor,SLH(w, N) =0 and pdgep w = fdger w < 0. O
Putting k£ = 0 in Theorem 6.3, we immediately get the following

Corollary 6.4. ‘
(1) If T-cograde, Exth(w,M) > i for any M € ModR and i > 1, then
FP,-idR = pdpw.
(2) IfE-cograde,, Torf(w,N) > forany N € Mod S andi > 1, thenFZ,-pd S
= pdgop w.

The following is an immediate consequence of Corollaries 4.2 and 6.4.
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Corollary 6.5. If w satisfies the n-cograde condition for all n, then
FP,-idR =pdgpw and FZ,-pd S = pdgep w.

Combining Theorem 4.19 with the case for £ = 1 in Theorem 6.3, we get the
following

Corollary 6.6. We have
FP,-idR < pdpw < FP,-id R+ 1 and
FZ,-pdS < pdgop w < FZ,-pd S + 1,

if either of the following conditions is satisfied.
(1) T-cograde,, Ext’y" (w, M) > i for any M € Mod R and i > 1.
(2) E-cograde, Tor}, ;(w, N) =i for any N € Mod S and i > 1.

Corollary 6.7. If w satisfies the right quasi n-cograde condition for all n, then
FP,-idR =pdpw and FZ,-pd S < pdgop w < FZ,,-pd S + 1.

Proof. The former equality follows from Proposition 4.12 and Corollary 6.4(1), and
the later inequalities follow from the definition of the right quasi n-cograde condition
and Corollary 6.6. O

Observation 6.8. Let R be an artin algebra and rws = gD(R)g. Then we have
(1) By Observation 5.7, we have

FP,-idR=FIDR :=sup{idg M | M € Mod R and idg M < oo},

FZ,-pdS=FPDR :=sup{pdz N | N € Mod R and pdp N < co}.
(2) If R is right (or left) quasi n-Gorenstein for all n, then idger R = idg R
([21, Corollary 4]).

As a consequence of the above results, we have the following

Corollary 6.9. Let R be an artin algebra. Then we have

(1) If R satisfies the Auslander condition (that is, R is Auslander n-Gorenstein
for all n), then

FPD R°? = FID R°? =idge» R =idg R =FPD R =FID R.

(2) If R satisfies the right quasi Auslander condition (that is, R is right quasi
n-Gorenstein for all n), then

FPDR < FIDR = idger R =idg R < FPD R + 1.

Proof. In view of Example 4.20, Observations 5.7 and 6.8, the assertions follow
from Corollaries 6.5 and 6.7 respectively. O
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