Duality Pairs Induced by Auslander and Bass Classes*
 \dagger

Zhaoyong Huang ${ }^{\ddagger}$
Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, P.R. China

Abstract

Let R and S be any rings and ${ }_{R} C_{S}$ a semidualizing bimodule, and let $\mathcal{A}_{C}\left(R^{o p}\right)$ and $\mathcal{B}_{C}(R)$ be the Auslander and Bass classes respectively. Then both the pairs $$
\left(\mathcal{A}_{C}\left(R^{o p}\right), \mathcal{B}_{C}(R)\right) \text { and }\left(\mathcal{B}_{C}(R), \mathcal{A}_{C}\left(R^{o p}\right)\right)
$$ are coproduct-closed and product-closed duality pairs and both $\mathcal{A}_{C}\left(R^{o p}\right)$ and $\mathcal{B}_{C}(R)$ are covering and preenveloping; in particular, the former duality pair is perfect. Moreover, if $\mathcal{B}_{C}(R)$ is enveloping in $\operatorname{Mod} R$, then $\mathcal{A}_{C}(S)$ is enveloping in $\operatorname{Mod} S$. Then some applications to the Auslander projective dimension of modules are given.

1 Introduction

In relative homological algebra, the theory of covers and envelopes is fundamental and important. Let R be a ring and $\operatorname{Mod} R$ the category of left R-modules. Given a subcategory of $\operatorname{Mod} R$, it is always worth studying whether or when it is (pre)covering or (pre)enveloping. This problem has been studied extensively, see [2]-[9] and references therein.

Let R be a commutative noetherian ring and C a semidualizing R-module, and let $\mathcal{A}_{C}(R)$ and $\mathcal{B}_{C}(R)$ be the Auslander and Bass classes respectively. By proving that both $\mathcal{A}_{C}(R)$ and $\mathcal{B}_{C}(R)$ are Kaplansky classes, Enochs and Holm got in [5, Theorems 3.11 and 3.12] that the pair $\left(\mathcal{A}_{C}(R),\left(\mathcal{A}_{C}(R)\right)^{\perp}\right)$ is a perfect cotorsion pair, $\mathcal{A}_{C}(R)$ is covering and preenveloping and $\mathcal{B}_{C}(R)$ is preenveloping. Holm and Jørgensen introduced the notion of duality pairs and proved the following remarkable result. Let R be an arbitrary ring, and let \mathscr{X} and \mathscr{Y} be subcategories of $\operatorname{Mod} R$ and $\operatorname{Mod} R^{o p}$ respectively. When ($\left.\mathscr{X}, \mathscr{Y}\right)$ is a duality pair, the following assertions hold true: (1) If \mathscr{X} is closed under coproducts, then \mathscr{X} is covering; (2) if \mathscr{X} is closed under products, then \mathscr{X} is preenveloping; and (3) if ${ }_{R} R \in \mathscr{X}$ and \mathscr{X} is closed under coproducts and extensions, then $\left(\mathscr{X}, \mathscr{X}^{\perp}\right)$ is a perfect cotorsion pair ([9, Theorem 3.1]). By using it, they generalized the above result of Enochs and Holm to the category of complexes, and Enochs and Iacob investigated in [6] the existence of Gorenstein injective envelopes over commutative noetherian rings.

Let R and S be arbitrary rings and ${ }_{R} C_{S}$ a semidualizing bimodule, and let $\mathcal{A}_{C}\left(R^{o p}\right)$ be the Auslander class in $\operatorname{Mod} R^{o p}$ and $\mathcal{B}_{C}(R)$ the Bass class in $\operatorname{Mod} R$. Our first main result is the following

Theorem 1.1. (Theorem 3.3)

[^0](1) Both the pairs
$$
\left(\mathcal{A}_{C}\left(R^{o p}\right), \mathcal{B}_{C}(R)\right) \text { and }\left(\mathcal{B}_{C}(R), \mathcal{A}_{C}\left(R^{o p}\right)\right)
$$
are coproduct-closed and product-closed duality pairs; and furthermore, the former one is perfect.
(2) $\mathcal{A}_{C}\left(R^{o p}\right)$ is covering and preenveloping in $\operatorname{Mod} R^{o p}$ and $\mathcal{B}_{C}(R)$ is covering and preenveloping in $\operatorname{Mod} R$.

As a consequence of Theorem 1.1, we get that the pair

$$
\left(\mathcal{A}_{C}\left(R^{o p}\right), \mathcal{A}_{C}\left(R^{o p}\right)^{\perp}\right)
$$

is a hereditary perfect cotorsion pair and $\mathcal{A}_{C}\left(R^{o p}\right)$ is covering and preenveloping in $\operatorname{Mod} R^{o p}$, where $\mathcal{A}_{C}\left(R^{o p}\right)^{\perp}$ is the right Ext-orthogonal class of $\mathcal{A}_{C}\left(R^{o p}\right)$ (Corollary 3.4). This result was proved in [5, Theorem 3.11] when R is a commutative noetherian ring and ${ }_{R} C_{S}={ }_{R} C_{R}$.

By Theorem 1.1 and its symmetric result, we have that $\mathcal{B}_{C}(R)$ is preenveloping in $\operatorname{Mod} R$ and $\mathcal{A}_{C}(S)$ is preenveloping in $\operatorname{Mod} S$. Moreover, we prove the following

Theorem 1.2. (Theorem 3.7(2)) If $\mathcal{B}_{C}(R)$ is enveloping in $\operatorname{Mod} R$, then $\mathcal{A}_{C}(S)$ is enveloping in $\operatorname{Mod} S$.
Then we apply these results and their symmetric results to study the Auslander projective dimension of modules. We obtain some criteria for computing the Auslander projective dimension of modules in $\operatorname{Mod} S$ (Theorem 4.4). Furthermore, we get the following

Theorem 1.3. (Theorem 4.10) If ${ }_{R} C$ has an ultimately closed projective resolution, then

$$
\mathcal{A}_{C}(S)=C_{S}^{\top}={ }^{\perp} \mathcal{I}_{C}(S)
$$

where $C_{S}{ }^{\top}$ is the Tor-orthogonal class of C_{S} and ${ }^{\perp} \mathcal{I}_{C}(S)$ is the left Ext-orthogonal class of the subcategory $\mathcal{I}_{C}(S)$ of $\operatorname{Mod} S$ consisting of C-injective modules.

As a consequence, we have that if ${ }_{R} C$ has an ultimately closed projective resolution, then the projective dimension of C_{S} is at most n if and only if the Auslander projective dimension of any module in Mod S is at most n (Corollary 4.11).

2 Preliminaries

In this paper, all rings are associative with identities. Let R be a ring. We use $\operatorname{Mod} R$ to denote the category of left R-modules and all subcategories of $\operatorname{Mod} R$ are full and closed under isomorphisms. For a subcategory \mathscr{X} of $\operatorname{Mod} R$, we write

$$
\begin{aligned}
\perp \mathscr{X} & :=\left\{A \in \operatorname{Mod} R \mid \operatorname{Ext}_{R}^{\geq 1}(A, X)=0 \text { for any } X \in \mathscr{X}\right\} \\
\mathscr{X}^{\perp} & :=\left\{A \in \operatorname{Mod} R \mid \operatorname{Ext}_{R}^{\geq 1}(X, A)=0 \text { for any } X \in \mathscr{X}\right\} \\
\perp_{1} \mathscr{X} & :=\left\{A \in \operatorname{Mod} R \mid \operatorname{Ext}_{R}^{1}(A, X)=0 \text { for any } X \in \mathscr{X}\right\}, \\
\mathscr{X}^{\perp_{1}} & :=\left\{A \in \operatorname{Mod} R \mid \operatorname{Ext}_{R}^{1}(X, A)=0 \text { for any } X \in \mathscr{X}\right\} .
\end{aligned}
$$

For subcategories \mathscr{X}, \mathscr{Y} of $\operatorname{Mod} R$, we write $\mathscr{X} \perp \mathscr{Y}$ if $\operatorname{Ext}_{\bar{R}}^{>1}(X, Y)=0$ for any $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$.

Definition 2.1. ([4, 7]) Let $\mathscr{X} \subseteq \mathscr{Y}$ be subcategories of $\operatorname{Mod} R$. A homomorphism $f: X \rightarrow Y$ in $\operatorname{Mod} R$ with $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$ is called an \mathscr{X}-precover of Y if $\operatorname{Hom}_{R}\left(X^{\prime}, f\right)$ is epic for any $X^{\prime} \in \mathscr{X}$; and f is called right minimal if an endomorphism $h: X \rightarrow X$ is an automorphism whenever $f=f h$. An \mathscr{X}-precover $f: X \rightarrow Y$ is called an \mathscr{X}-cover of Y if it is right minimal. The subcategory \mathscr{X} is called (pre)covering in \mathscr{Y} if any object in \mathscr{Y} admits an \mathscr{X}-(pre)cover. Dually, the notions of an \mathscr{X} (pre)envelope, a left minimal homomorphism and a (pre)enveloping subcategory are defined.

Definition 2.2. ([7, 8]) Let \mathscr{U}, \mathscr{V} be subcategories of $\operatorname{Mod} R$.
(1) The pair $(\mathscr{U}, \mathscr{V})$ is called a cotorsion pair in $\operatorname{Mod} R$ if $\mathscr{U}={ }^{\perp_{1}} \mathscr{V}$ and $\mathscr{V}=\mathscr{U}^{\perp_{1}}$.
(2) A cotorsion pair $(\mathscr{U}, \mathscr{V})$ is called perfect if \mathscr{U} is covering and \mathscr{V} is enveloping in $\operatorname{Mod} R$.
(3) A cotorsion pair $(\mathscr{U}, \mathscr{V})$ is called hereditary if one of the following equivalent conditions is satisfied.
(3.1) $\mathscr{U} \perp \mathscr{V}$.
(3.2) \mathscr{U} is projectively resolving in the sense that \mathscr{U} contains all projective modules in $\operatorname{Mod} R, \mathscr{U}$ is closed under extensions and kernels of epimorphisms.
(3.3) \mathscr{V} is injectively coresolving in the sense that \mathscr{V} contains all injective modules in $\operatorname{Mod} R, \mathscr{V}$ is closed under extensions and cokernels of monomorphisms.

Set $(-)^{+}:=\operatorname{Hom}_{\mathbb{Z}}(-, \mathbb{Q} / \mathbb{Z})$, where \mathbb{Z} is the additive group of integers and \mathbb{Q} is the additive group of rational numbers. The following is the definition of duality pairs (cf. [6, 9]).

Definition 2.3. Let \mathscr{X} and \mathscr{Y} be subcategories of $\operatorname{Mod} R$ and $\operatorname{Mod} R^{o p}$ respectively.
(1) The pair $(\mathscr{X}, \mathscr{Y})$ is called a duality pair if the following conditions are satisfied.
(1.1) For a module $X \in \operatorname{Mod} R, X \in \mathscr{X}$ if and only if $X^{+} \in \mathscr{Y}$.
(1.2) \mathscr{Y} is closed under direct summands and finite direct sums.
(2) A duality pair $(\mathscr{X}, \mathscr{Y})$ is called (co)product-closed if \mathscr{X} is closed under (co)products.
(3) A duality pair $(\mathscr{X}, \mathscr{Y})$ is called perfect if it is coproduct-closed, ${ }_{R} R \in \mathscr{X}$ and \mathscr{X} is closed under extensions.

We also recall the following remarkable result.
Lemma 2.4. ([6, p.7, Theorem] and [9, Theorem 3.1]) Let \mathscr{X} and \mathscr{Y} be subcategories of $\operatorname{Mod} R$ and Mod $R^{o p}$ respectively. If $(\mathscr{X}, \mathscr{Y})$ is a duality pair, then the following assertions hold true.
(1) If $(\mathscr{X}, \mathscr{Y})$ is coproduct-closed, then \mathscr{X} is covering.
(2) If $(\mathscr{X}, \mathscr{Y})$ is product-closed, then \mathscr{X} is preenveloping.
(3) If $(\mathscr{X}, \mathscr{Y})$ is perfect, then $\left(\mathscr{X}, \mathscr{X}^{\perp}\right)$ is a perfect cotorsion pair.

Definition 2.5. ([10]). Let R and S be rings. An (R, S)-bimodule ${ }_{R} C_{S}$ is called semidualizing if the following conditions are satisfied.
(a1) ${ }_{R} C$ admits a degreewise finite R-projective resolution.
(a2) C_{S} admits a degreewise finite S-projective resolution.
(b1) The homothety map ${ }_{R} R_{R} \xrightarrow{R \gamma} \operatorname{Hom}_{S^{o p}}(C, C)$ is an isomorphism.
(b2) The homothety map $S_{S} \xrightarrow{\gamma_{S}} \operatorname{Hom}_{R}(C, C)$ is an isomorphism.
(c1) $\operatorname{Ext}^{\geq}{ }^{\geq} 1(C, C)=0$.
(c2) $\operatorname{Ext}_{\bar{S}^{o p}}^{\geq 1}(C, C)=0$.
Wakamatsu in [17] introduced and studied the so-called generalized tilting modules, which are usually called Wakamatsu tilting modules, see [2, 15]. Note that a bimodule ${ }_{R} C_{S}$ is semidualizing if and only if it is Wakamatsu tilting ([19, Corollary 3.2]). Examples of semidualizing bimodules are referred to $[10,18]$.

3 Duality pairs

In this section, R and S are arbitrary rings and ${ }_{R} C_{S}$ is a semidualizing bimodule. We write $(-)_{*}:=$ $\operatorname{Hom}(C,-)$ and

$$
\begin{aligned}
{ }_{R} C^{\perp} & :=\left\{M \in \operatorname{Mod} R \mid \operatorname{Ext}_{R}^{\geq 1}(C, M)=0\right\} \text { and } C_{S}^{\perp}:=\left\{B \in \operatorname{Mod} S^{o p} \mid \operatorname{Ext}_{S^{o p}}^{\geq 1}(C, B)=0\right\}, \\
{ }^{\top}{ }_{R} C & :=\left\{N \in \operatorname{Mod} R^{o p} \mid \operatorname{Tor}_{\geq 1}^{R}(N, C)=0\right\} \text { and } C_{S}^{\top}:=\left\{A \in \operatorname{Mod} S \mid \operatorname{Tor}_{\geq 1}^{S}(C, A)=0\right\} .
\end{aligned}
$$

Definition 3.1. ([10])
(1) The Auslander class $\mathcal{A}_{C}\left(R^{o p}\right)$ with respect to C consists of all modules N in $\operatorname{Mod} R^{o p}$ satisfying the following conditions.
(a1) $N \in{ }^{\top}{ }_{R} C$.
(a2) $N \otimes_{R} C \in C_{S}{ }^{\perp}$.
(a3) The canonical valuation homomorphism

$$
\mu_{N}: N \rightarrow\left(N \otimes_{R} C\right)_{*}
$$

defined by $\mu_{N}(x)(c)=x \otimes c$ for any $x \in N$ and $c \in C$ is an isomorphism in $\operatorname{Mod} R^{o p}$.
(2) The Bass class $\mathcal{B}_{C}(R)$ with respect to C consists of all modules M in $\operatorname{Mod} R$ satisfying the following conditions.
(b1) $M \in{ }_{R} C^{\perp}$.
(b2) $M_{*} \in C_{S}{ }^{\top}$.
(b3) The canonical valuation homomorphism

$$
\theta_{M}: C \otimes_{S} M_{*} \rightarrow M
$$

defined by $\theta_{M}(c \otimes f)=f(c)$ for any $c \in C$ and $f \in M_{*}$ is an isomorphism in $\operatorname{Mod} R$.
(3) The Auslander class $\mathcal{A}_{C}(S)$ in $\operatorname{Mod} S$ and the Bass class $\mathcal{B}_{C}\left(S^{o p}\right)$ in $\operatorname{Mod} S^{o p}$ are defined symmetrically.

The following result is crucial. From its proof, it is known that the conditions in the definitions of $\mathcal{A}_{C}\left(R^{o p}\right)$ and $\mathcal{B}_{C}(R)$ are dual item by item.

Proposition 3.2.

(1) For a module $N \in \operatorname{Mod} R^{o p}, N \in \mathcal{A}_{C}\left(R^{o p}\right)$ if and only if $N^{+} \in \mathcal{B}_{C}(R)$.
(2) For a module $M \in \operatorname{Mod} R, M \in \mathcal{B}_{C}(R)$ if and only if $M^{+} \in \mathcal{A}_{C}\left(R^{o p}\right)$.

Proof. (1) Let $N \in \operatorname{Mod} R^{o p}$. Then we have the following
(a)

$$
\begin{aligned}
& N \in{ }_{R}^{\top} C \\
\Leftrightarrow & \operatorname{Tor}_{\geq 1}^{R}(N, C)=0 \\
\Leftrightarrow & {\left[\operatorname{Tor}_{\geq 1}^{R}(N, C)\right]^{+}=0 } \\
\Leftrightarrow & \operatorname{Ext}_{R}^{\geq 1}\left(C, N^{+}\right)=0 \quad(\text { by }[8, \text { Lemma } 2.16(\mathrm{~b})]) \\
\Leftrightarrow & N^{+} \in{ }_{R} C^{\perp}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& N \otimes_{R} C \in C_{S}^{\perp} \\
\Leftrightarrow & \operatorname{Ext}_{\bar{S}^{o p}}^{\geq 1}\left(C, N \otimes_{R} C\right)=0 \\
\Leftrightarrow & {\left[\operatorname{Ext}_{\bar{S}^{o p}}^{\geq 1}\left(C, N \otimes_{R} C\right)\right]^{+}=0 } \\
\Leftrightarrow & \operatorname{Tor}_{\geq 1}^{S}\left(C,\left(N \otimes_{R} C\right)^{+}\right)=0(\text { by }[8, \text { Lemma } 2.16(\mathrm{~d})]) \\
\Leftrightarrow & \left.\operatorname{Tor}_{\geq 1}^{S}\left(C,\left(N^{+}\right)_{*}\right)=0 \text { (by }[8, \text { Lemma } 2.16(\mathrm{a})]\right) \\
\Leftrightarrow & \left(N^{+}\right)_{*} \in C_{S}^{\top} .
\end{aligned}
$$

(c) By [8, Lemma 2.16(c)], the canonical valuation homomorphism

$$
\alpha: C \otimes_{S}\left(N \otimes_{R} C\right)^{+} \rightarrow\left[\operatorname{Hom}_{S^{o p}}\left(C, N \otimes_{R} C\right)\right]^{+}
$$

defined by $\alpha(c \otimes g)(f)=g f(c)$ for any $c \in C, g \in\left(N \otimes_{R} C\right)^{+}$and $f \in \operatorname{Hom}_{S^{o p}}\left(C, N \otimes_{R} C\right)$ is an isomorphism in $\operatorname{Mod} R$. By [8, Lemma 2.16(a)], the canonical valuation homomorphism

$$
\beta:\left(N \otimes_{R} C\right)^{+} \rightarrow \operatorname{Hom}_{R}\left(C, N^{+}\right)
$$

defined by $\beta(g)(c)(x)=g(x \otimes c)$ for any $g \in\left(N \otimes_{R} C\right)^{+}, c \in C$ and $x \in N$ is an isomorphism in Mod S. So

$$
1_{C} \otimes \beta: C \otimes_{S}\left(N \otimes_{R} C\right)^{+} \rightarrow C \otimes_{S} \operatorname{Hom}_{R}\left(C, N^{+}\right)
$$

via $\left(1_{C} \otimes \beta\right)(c \otimes g)=c \otimes \beta(g)$ for any $c \in C$ and $g \in\left(N \otimes_{R} C\right)^{+}$is an isomorphism in $\operatorname{Mod} R$.

Consider the following diagram

where

$$
\left(\mu_{N}\right)^{+}:\left[\operatorname{Hom}_{S^{o p}}\left(C, N \otimes_{R} C\right)\right]^{+} \rightarrow N^{+}
$$

$\operatorname{via}\left(\mu_{N}\right)^{+}\left(f^{\prime}\right)=f^{\prime} \mu_{N}$ for any $f^{\prime} \in\left[\operatorname{Hom}_{S^{o p}}\left(C, N \otimes_{R} C\right)\right]^{+}$is a natural homomorphism in $\operatorname{Mod} R$, and

$$
\theta_{N^{+}}: C \otimes_{S} \operatorname{Hom}_{R}\left(C, N^{+}\right) \rightarrow N^{+}
$$

defined by $\theta_{N^{+}}\left(c \otimes f^{\prime \prime}\right)=f^{\prime \prime}(c)$ for any $c \in C$ and $f^{\prime \prime} \in \operatorname{Hom}_{R}\left(C, N^{+}\right)$is a canonical valuation homomorphism in $\operatorname{Mod} R$. Then for any $c \in C, g \in\left(N \otimes_{R} C\right)^{+}$and $x \in N$, we have

$$
\begin{gathered}
\left(\mu_{N}\right)^{+} \alpha(c \otimes g)(x)=\alpha(c \otimes g) \mu_{N}(x)=g \mu_{N}(x)(c)=g(x \otimes c) \\
\theta_{N^{+}}\left(1_{C} \otimes \beta\right)(c \otimes g)(x)=\theta_{N^{+}}(c \otimes \beta(g))(x)=\beta(g)(c)(x)=g(x \otimes c),
\end{gathered}
$$

Thus

$$
\left(\mu_{N}\right)^{+} \alpha=\theta_{N^{+}}\left(1_{C} \otimes \beta\right)
$$

and therefore μ_{N} is an isomorphism $\Leftrightarrow\left(\mu_{N}\right)^{+}$is an isomorphism $\Leftrightarrow \theta_{N^{+}}$is an isomorphism.
We conclude that $N \in \mathcal{A}_{C}\left(R^{o p}\right) \Leftrightarrow N^{+} \in \mathcal{B}_{C}(R)$.
(2) Let $M \in \operatorname{Mod} R$. Then we have the following
(a)

$$
\begin{aligned}
& M \in{ }_{R} C^{\perp} \\
\Leftrightarrow & \operatorname{Ext}_{\bar{R}}^{\geq 1}(C, M)=0 \\
\Leftrightarrow & {\left[\operatorname{Ext}_{\bar{R}}^{\geq 1}(C, M)\right]^{+}=0 } \\
\Leftrightarrow & \operatorname{Tor}_{\geq 1}^{R}\left(M^{+}, C\right)=0 \quad(\text { by }[8, \text { Lemma } 2.16(\mathrm{~d})]) \\
\Leftrightarrow & M^{+} \in^{\top}{ }_{R} C
\end{aligned}
$$

(b)

$$
\begin{aligned}
& M_{*} \in C_{S}^{\top} \\
\Leftrightarrow & \operatorname{Tor}_{\geq 1}^{S}\left(C, M_{*}\right)=0 \\
\Leftrightarrow & {\left[\operatorname{Tor}_{\geq 1}^{S}\left(C, M_{*}\right)\right]^{+}=0 } \\
\Leftrightarrow & \operatorname{Ext}_{\bar{S}^{o p}}^{\geq 1}\left(C,\left(M_{*}\right)^{+}\right)=0(\text { by }[8, \text { Lemma 2.16(b)]) } \\
\Leftrightarrow & \operatorname{Ext}_{\bar{S}^{o p}}\left(C, M^{+} \otimes_{R} C\right)=0(\text { by }[8, \text { Lemma } 2.16(\mathrm{c})]) \\
\Leftrightarrow & M^{+} \otimes_{R} C \in C_{S}{ }^{\perp}
\end{aligned}
$$

(c) By [8, Lemma 2.16(a)], the canonical valuation homomorphism

$$
\tau:\left[C \otimes_{S} \operatorname{Hom}_{R}(C, M)\right]^{+} \rightarrow \operatorname{Hom}_{S^{o p}}\left(C,\left[\operatorname{Hom}_{R}(C, M)\right]^{+}\right)
$$

defined by $\tau\left(g^{\prime}\right)(c)(f)=g^{\prime}(c \otimes f)$ for any $g^{\prime} \in\left[C \otimes_{S} \operatorname{Hom}_{R}(C, M)\right]^{+}, c \in C$ and $f \in \operatorname{Hom}_{R}(C, M)$ is an isomorphism in Mod $R^{o p}$. By [8, Lemma 2.16(c)], the canonical valuation homomorphism

$$
\sigma: M^{+} \otimes_{R} C \rightarrow\left[\operatorname{Hom}_{R}(C, M)\right]^{+}
$$

defined by $\sigma(g \otimes c)(f)=g f(c)$ for any $g \in M^{+}, c \in C$ and $f \in \operatorname{Hom}_{R}(C, M)$ is an isomorphism in $\operatorname{Mod} S^{o p}$. So

$$
\operatorname{Hom}_{S^{o p}}(C, \sigma): \operatorname{Hom}_{S^{o p}}\left(C, M^{+} \otimes_{R} C\right) \rightarrow \operatorname{Hom}_{S^{o p}}\left(C,\left[\operatorname{Hom}_{R}(C, M)\right]^{+}\right)
$$

via $\operatorname{Hom}_{S^{o p}}(C, \sigma)\left(g^{\prime \prime}\right)=\sigma g^{\prime \prime}$ for any $g^{\prime \prime} \in \operatorname{Hom}_{S^{o p}}\left(C, M^{+} \otimes_{R} C\right)$ is an isomorphism in $\operatorname{Mod} R^{o p}$.
Consider the following diagram

where

$$
\left(\theta_{M}\right)^{+}: M^{+} \rightarrow\left[C \otimes_{S} \operatorname{Hom}_{R}(C, M)\right]^{+}
$$

via $\left(\theta_{M}\right)^{+}(g)=g \theta_{M}$ for any $g \in M^{+}$is a natural homomorphism in $\operatorname{Mod} R^{o p}$, and

$$
\mu_{M^{+}}: M^{+} \rightarrow \operatorname{Hom}_{S^{o p}}\left(C, M^{+} \otimes_{R} C\right)
$$

defined by $\mu_{M^{+}}(g)(c)=g \otimes c$ for any $g \in M^{+}$and $c \in C$ is a canonical valuation homomorphism in $\operatorname{Mod} R^{o p}$. Then for any $g \in M^{+}, c \in C$ and $f \in \operatorname{Hom}_{R}(C, M)$, we have

$$
\begin{gathered}
\tau\left(\theta_{M}\right)^{+}(g)(c)(f)=\left(\theta_{M}\right)^{+}(g)(c \otimes f)=g \theta_{M}(c \otimes f)=g f(c) \\
\operatorname{Hom}_{S^{o p}}(C, \sigma) \mu_{M^{+}}(g)(c)(f)=\sigma \mu_{M^{+}}(g)(c)(f)=\sigma(g \otimes c)(f)=g f(c),
\end{gathered}
$$

Thus

$$
\tau\left(\theta_{M}\right)^{+}=\operatorname{Hom}_{S^{o p}}(C, \sigma) \mu_{M^{+}}
$$

and therefore θ_{M} is an isomorphism $\Leftrightarrow\left(\theta_{M}\right)^{+}$is an isomorphism $\Leftrightarrow \mu_{M^{+}}$is an isomorphism.
We conclude that $M \in \mathcal{B}_{C}(R) \Leftrightarrow M^{+} \in \mathcal{A}_{C}\left(R^{o p}\right)$.
As a consequence, we get the following

Theorem 3.3.

(1) The pair

$$
\left(\mathcal{A}_{C}\left(R^{o p}\right), \mathcal{B}_{C}(R)\right)
$$

is a perfect coproduct-closed and product-closed duality pair and $\mathcal{A}_{C}\left(R^{o p}\right)$ is covering and preenveloping in $\operatorname{Mod} R^{o p}$.
(2) The pair

$$
\left(\mathcal{B}_{C}(R), \mathcal{A}_{C}\left(R^{o p}\right)\right)
$$

is a coproduct-closed and product-closed duality pair and $\mathcal{B}_{C}(R)$ is covering and preenveloping in $\operatorname{Mod} R$.

Proof. It follows from [10, Proposition $4.2(\mathrm{a})$] that both $\mathcal{A}_{C}\left(R^{o p}\right)$ and $\mathcal{B}_{C}(R)$ are closed under direct summands, coproducts and products. So by Lemma $2.4(1)(2)$ and Proposition 3.2, we have that both the pairs

$$
\left(\mathcal{A}_{C}\left(R^{o p}\right), \mathcal{B}_{C}(R)\right) \text { and }\left(\mathcal{B}_{C}(R), \mathcal{A}_{C}\left(R^{o p}\right)\right)
$$

are coproduct-closed and product-closed duality pairs, $\mathcal{A}_{C}\left(R^{o p}\right)$ is covering and preenveloping in Mod $R^{o p}$ and $\mathcal{B}_{C}(R)$ is covering and preenveloping in $\operatorname{Mod} R$. Moreover, $\mathcal{A}_{C}\left(R^{o p}\right)$ is projectively resolving by [10, Theorem 6.2], so the duality pair $\left(\mathcal{A}_{C}\left(R^{o p}\right), \mathcal{B}_{C}(R)\right)$ is perfect.

We write

$$
\mathcal{A}_{C}\left(R^{o p}\right)^{\perp}:=\left\{Y \in \operatorname{Mod} R^{o p} \mid \operatorname{Ext}_{\bar{R}^{o p}}^{\geq 1}(N, Y)=0 \text { for any } N \in \mathcal{A}_{C}\left(R^{o p}\right)\right\}
$$

The following corollary was proved in [5, Theorem 3.11] when R is a commutative noetherian ring and ${ }_{R} C_{S}={ }_{R} C_{R}$.

Corollary 3.4. The pair

$$
\left(\mathcal{A}_{C}\left(R^{o p}\right), \mathcal{A}_{C}\left(R^{o p}\right)^{\perp}\right)
$$

is a hereditary perfect cotorsion pair and $\mathcal{A}_{C}\left(R^{o p}\right)$ is covering and preenveloping in $\operatorname{Mod} R^{o p}$.
Proof. It follows from Theorem 3.3(1) and Lemma 2.4(3).

The following two results are the symmetric versions of Theorem 3.3 and Corollary 3.4 respectively.

Theorem 3.5.

(1) The pair

$$
\left(\mathcal{A}_{C}(S), \mathcal{B}_{C}\left(S^{o p}\right)\right)
$$

is a perfect coproduct-closed and product-closed duality pair and $\mathcal{A}_{C}(S)$ is covering and preenveloping in $\operatorname{Mod} S$.
(2) The pair

$$
\left(\mathcal{B}_{C}\left(S^{o p}\right), \mathcal{A}_{C}(S)\right)
$$

is a coproduct-closed and product-closed duality pair and $\mathcal{B}_{C}\left(S^{o p}\right)$ is covering and preenveloping in $\operatorname{Mod} S^{o p}$.

We write

$$
\mathcal{A}_{C}(S)^{\perp}:=\left\{X \in \operatorname{Mod} S \mid \operatorname{Ext}_{\bar{S}}^{\geq 1}\left(N^{\prime}, X\right)=0 \text { for any } N^{\prime} \in \mathcal{A}_{C}(S)\right\} .
$$

Corollary 3.6. The pair

$$
\left(\mathcal{A}_{C}(S), \mathcal{A}_{C}(S)^{\perp}\right)
$$

is a hereditary perfect cotorsion pair and $\mathcal{A}_{C}(S)$ is covering and preenveloping in $\operatorname{Mod} S$.

Holm and White proved in [10, Proposition 4.1] that there exist the following (Foxby) equivalences of categories

$$
\begin{gathered}
\mathcal{A}_{C}(S) \frac{C \otimes_{S}-}{\sim} \underset{\operatorname{Hom}_{R}(C,-)}{<} \\
\mathcal{B}_{C}(R), \\
\mathcal{A}_{C}\left(R^{o p}\right) \frac{-\otimes_{R} C}{\underset{\operatorname{Hom}_{S^{o p}(C,-)}}{\sim}} \mathcal{B}_{C}\left(S^{o p}\right) .
\end{gathered}
$$

Compare this result with Theorems 3.3 and 3.5.
By Theorems 3.3(2) and $3.5(1), \mathcal{B}_{C}(R)$ is preenveloping in $\operatorname{Mod} R$ and $\mathcal{A}_{C}(S)$ is preenveloping in $\operatorname{Mod} S$. In the following result, we construct an $\mathcal{A}_{C}(S)$-preenvelope of a given module in $\operatorname{Mod} S$ from a $\mathcal{B}_{C}(R)$-preenvelope of some module in $\operatorname{Mod} R$.

Theorem 3.7.

(1) Let $N \in \operatorname{Mod} S$ and

$$
f: C \otimes_{S} N \rightarrow B
$$

be a $\mathcal{B}_{C}(R)$-preenvelope of $C \otimes_{S} N$ in $\operatorname{Mod} R$. Then we have
(1.1)

$$
f_{*} \mu_{N}: N \rightarrow B_{*}
$$

is an $\mathcal{A}_{C}(S)$-preenvelope of N in $\operatorname{Mod} S$.
(1.2) If f is a $\mathcal{B}_{C}(R)$-envelope of $C \otimes_{S} N$, then $f_{*} \mu_{N}$ is an $\mathcal{A}_{C}(S)$-envelope of N.
(2) If $\mathcal{B}_{C}(R)$ is enveloping in $\operatorname{Mod} R$, then $\mathcal{A}_{C}(S)$ is enveloping in $\operatorname{Mod} S$.

Proof. (1.1) Let $N \in \operatorname{Mod} S$ and

$$
f: C \otimes_{S} N \rightarrow B
$$

be a $\mathcal{B}_{C}(R)$-preenvelope in $\operatorname{Mod} R$. By [10, Proposition 4.1], we have $B_{*} \in \mathcal{A}_{C}(S)$. Let $g \in \operatorname{Hom}_{S}(N, A)$ with $A \in \mathcal{A}_{C}(S)$. By [10, Proposition 4.1] again, we have $C \otimes_{S} A \in \mathcal{B}_{C}(R)$. So there exists $h \in$ $\operatorname{Hom}_{R}\left(B, C \otimes_{S} A\right)$ such that $1_{C} \otimes g=h f$, that is, the following diagram

$$
\begin{aligned}
& C \otimes_{S} N \xrightarrow{f} B \\
& 1_{C} \otimes g \downarrow \kappa^{\prime}{ }_{h}^{\prime} \\
& C \otimes_{S} A
\end{aligned}
$$

commutes. From the following commutative diagram

we get $\mu_{A} g=\left(1_{C} \otimes g\right)_{*} \mu_{N}$. Because μ_{A} is an isomorphism, we have

$$
g=\mu_{A}^{-1}\left(1_{C} \otimes g\right)_{*} \mu_{N}=\left(\mu_{A}^{-1} h_{*}\right)\left(f_{*} \mu_{N}\right)
$$

that is, the following diagram

$$
\begin{aligned}
& N \xrightarrow{f_{*} \mu_{N}} B \\
& g \downarrow \hbar^{\prime}, \\
& A
\end{aligned}
$$

commutes. Thus $f_{*} \mu_{N}: N \rightarrow B_{*}$ is an $\mathcal{A}_{C}(S)$-preenvelope of N.
(1.2) $\mathrm{By}(1.1)$, it suffices to prove that if f is left minimal, then so is $f_{*} \mu_{N}$.

Let f be left minimal and $h \in \operatorname{Hom}_{S}\left(B_{*}, B_{*}\right)$ such that $f_{*} \mu_{N}=h\left(f_{*} \mu_{N}\right)$. Then we have

$$
\begin{equation*}
\left(1_{C} \otimes f_{*}\right)\left(1_{C} \otimes \mu_{N}\right)=1_{C} \otimes\left(f_{*} \mu_{N}\right)=1_{C} \otimes\left(h\left(f_{*} \mu_{N}\right)\right)=\left(1_{C} \otimes h\right)\left(1_{C} \otimes f_{*}\right)\left(1_{C} \otimes \mu_{N}\right) \tag{3.1}
\end{equation*}
$$

From the following commutative diagram

we get

$$
\begin{equation*}
f \theta_{C \otimes_{S} N}=\theta_{B}\left(1_{C} \otimes f_{*}\right) \tag{3.2}
\end{equation*}
$$

So we have

$$
\begin{aligned}
f & =f 1_{C \otimes_{S} N} \\
& =f\left(\theta_{C \otimes{ }_{S} N}\left(1_{C} \otimes \mu_{N}\right)\right)(\text { by }[20, \text { Proposition } 2.2(1)]) \\
& =\theta_{B}\left(1_{C} \otimes f_{*}\right)\left(1_{C} \otimes \mu_{N}\right)(\text { by }(3.2)) \\
& =\theta_{B}\left(1_{C} \otimes h\right)\left(1_{C} \otimes f_{*}\right)\left(1_{C} \otimes \mu_{N}\right)(\text { by }(3.1)) \\
& =\theta_{B}\left(1_{C} \otimes h\right)\left(\theta_{B}^{-1} \theta_{B}\right)\left(1_{C} \otimes f_{*}\right)\left(1_{C} \otimes \mu_{N}\right)\left(\text { because } \theta_{B} \text { is an isomorphism }\right) \\
& =\theta_{B}\left(1_{C} \otimes h\right) \theta_{B}^{-1} f \theta_{C \otimes S N}\left(1_{C} \otimes \mu_{N}\right)(\text { by }(3.2)) \\
& =\theta_{B}\left(1_{C} \otimes h\right) \theta_{B}^{-1} f 1_{C \otimes_{S} N}(\text { by }[20, \text { Proposition } 2.2(1)]) \\
& =\theta_{B}\left(1_{C} \otimes h\right) \theta_{B}^{-1} f .
\end{aligned}
$$

Because f is left minimal, $\theta_{B}\left(1_{C} \otimes h\right) \theta_{B}{ }^{-1}$ is an isomorphism, which implies that $1_{C} \otimes h$ and $\left(1_{C} \otimes h\right)_{*}$ are also isomorphisms. From the following commutative diagram

we get

$$
\left(1_{C} \otimes h\right)_{*} \mu_{B_{*}}=\mu_{B_{*}} h .
$$

Because $B_{*} \in \mathcal{A}_{C}(S)$ by [10, Proposition 4.1], $\mu_{B_{*}}$ is an isomorphism. It follows that h is also an isomorphism and $f_{*} \mu_{N}$ is left minimal.
(2) It follows from the assertion (1.2) immediately.

We do not know whether a $\mathcal{B}_{C}(R)$-preenvelope of given module in Mod R can be constructed from an $\mathcal{A}_{C}(S)$-preenvelope of some module in $\operatorname{Mod} S$, and do not know whether the converse of Theorem 3.7(2) holds true.

By Theorems 3.3(2) and $3.5(1), \mathcal{B}_{C}(R)$ is covering in $\operatorname{Mod} R$ and $\mathcal{A}_{C}(S)$ is covering in $\operatorname{Mod} S$. In the following result, we construct a $\mathcal{B}_{C}(R)$-cover of a given module in $\operatorname{Mod} R$ from an $\mathcal{A}_{C}(S)$-cover of some module in $\operatorname{Mod} S$.

Proposition 3.8. Let $M \in \operatorname{Mod} R$ and

$$
g: A \rightarrow M_{*}
$$

be an $\mathcal{A}_{C}(S)$-cover of M_{*} in $\operatorname{Mod} S$. Then

$$
\theta_{M}\left(1_{C} \otimes g\right): C \otimes_{S} A \rightarrow M
$$

is a $\mathcal{B}_{C}(R)$-cover of M in $\operatorname{Mod} R$.
Proof. Let $M \in \operatorname{Mod} R$ and

$$
g: A \rightarrow M_{*}
$$

be an $\mathcal{A}_{C}(S)$-cover of M_{*} in $\operatorname{Mod} S$. By [10, Proposition 4.1], we have $C \otimes_{S} A \in \mathcal{B}_{C}(R)$. Let $f \in$ $\operatorname{Hom}_{R}(B, M)$ with $B \in \mathcal{B}_{C}(R)$. By [10, Proposition 4.1] again, we have $B_{*} \in \mathcal{A}_{C}(S)$. So there exists $h \in \operatorname{Hom}_{S}\left(B_{*}, A\right)$ such that $f_{*}=g h$, that is, the following diagram

commutes. From the following commutative diagram

we get $f \theta_{B}=\theta_{M}\left(1_{C} \otimes f_{*}\right)$. Because θ_{B} is an isomorphism, we have

$$
\left.f=\theta_{M}\left(1_{C} \otimes f_{*}\right) \theta_{B}^{-1}=\theta_{M}\left(1_{C} \otimes(g h)\right) \theta_{B}^{-1}=\left(\theta_{M}\left(1_{C} \otimes g\right)\right)\left(\left(1_{C} \otimes h\right)\right) \theta_{B}^{-1}\right)
$$

that is, the following diagram

commutes. Thus $\theta_{M}\left(1_{C} \otimes g\right): C \otimes_{S} A \rightarrow M$ is a $\mathcal{B}_{C}(R)$-precover of M.
In the following, it suffices to prove that $\theta_{M}\left(1_{C} \otimes g\right)$ is right minimal.
Let $h \in \operatorname{Hom}_{R}\left(C \otimes_{S} A, C \otimes_{S} A\right)$ such that $\theta_{M}\left(1_{C} \otimes g\right)=\left(\theta_{M}\left(1_{C} \otimes g\right)\right) h$. Then we have

$$
\begin{equation*}
\left(\theta_{M}\right)_{*}\left(1_{C} \otimes g\right)_{*}=\left(\theta_{M}\left(1_{C} \otimes g\right)\right)_{*}=\left(\left(\theta_{M}\left(1_{C} \otimes g\right)\right) h\right)_{*}=\left(\theta_{M}\right)_{*}\left(1_{C} \otimes g\right)_{*} h_{*} \tag{3.3}
\end{equation*}
$$

From the following commutative diagram

we get

$$
\begin{equation*}
\mu_{M_{*}} g=\left(1_{C} \otimes g\right)_{*} \mu_{A} \tag{3.4}
\end{equation*}
$$

So we have

$$
\begin{aligned}
g & =1_{M_{*}} g \\
& =\left(\theta_{M}\right)_{*} \mu_{M_{*}} g(\text { by }[20, \text { Proposition } 2.2(1)]) \\
& =\left(\theta_{M}\right)_{*}\left(1_{C} \otimes g\right)_{*} \mu_{A}(\text { by }(3.4)) \\
& =\left(\theta_{M}\right)_{*}\left(1_{C} \otimes g\right)_{*} h_{*} \mu_{A}(\text { by }(3.3)) \\
& =\left(\theta_{M}\right)_{*}\left(1_{C} \otimes g\right)_{*} \mu_{A} \mu_{A}{ }^{-1} h_{*} \mu_{A}\left(\text { because } \mu_{A} \text { is an isomorphism }\right) \\
& =\left(\theta_{M}\right)_{*} \mu_{M_{*}} g \mu_{A}{ }^{-1} h_{*} \mu_{A}(\text { by }(3.4)) \\
& =1_{M_{*}} g \mu_{A}{ }^{-1} h_{*} \mu_{A}(\text { by }[20, \text { Proposition } 2.2(1)]) \\
& =g \mu_{A}{ }^{-1} h_{*} \mu_{A} .
\end{aligned}
$$

Because g is right minimal, $\mu_{A}{ }^{-1} h_{*} \mu_{A}$ is an isomorphism, which implies that h_{*} and $1_{C} \otimes h_{*}$ are also isomorphisms. From the following commutative diagram

$$
\begin{gathered}
C \otimes_{S}\left(C \otimes_{S} A\right)_{*} \xrightarrow{1_{C} \otimes h_{*}} C \otimes_{S}\left(C \otimes_{S} A\right)_{*} \\
\theta_{C \otimes_{S} A} \downarrow \\
C \otimes_{S} A \xrightarrow{\theta_{C \otimes_{S} A}} \\
C \otimes_{S} A,
\end{gathered}
$$

we get

$$
h \theta_{C \otimes_{S} A}=\theta_{C \otimes_{S} A}\left(1_{C} \otimes h_{*}\right) .
$$

Because $C \otimes_{S} A \in \mathcal{B}_{C}(R)$ by [10, Proposition 4.1], $\theta_{C \otimes S A}$ is an isomorphism. It follows that h is also an isomorphism and $\theta_{M}\left(1_{C} \otimes g\right)$ is right minimal.

We do not know whether an $\mathcal{A}_{C}(S)$-cover of a given module in $\operatorname{Mod} S$ can be constructed from a $\mathcal{B}_{C}(R)$-cover of some module in $\operatorname{Mod} R$.

4 The Auslander projective dimension of modules

For a subcategory \mathscr{X} of $\operatorname{Mod} S$ and $N \in \operatorname{Mod} S$, the \mathscr{X}-projective dimension $\mathscr{X}-\operatorname{pd}_{S} N$ of N is defined as $\inf \{n \mid$ there exists an exact sequence

$$
0 \rightarrow X_{n} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0} \rightarrow N \rightarrow 0
$$

in $\operatorname{Mod} S$ with all $\left.X_{i} \in \mathscr{X}\right\}$, and we set $\mathscr{X}-\operatorname{pd}_{S} N$ infinite if no such integer exists. We call $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N$ the Auslander projective dimension of N. For any $n \geq 0$, we use $\Omega^{n}(N)$ to denote the n-th syzygy of $N\left(\right.$ note: $\left.\Omega^{0}(N)=N\right)$.

Lemma 4.1. Let $N \in \operatorname{Mod} S$ and $n \geq 0$. If $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N \leq n$ and

$$
0 \rightarrow K_{n} \rightarrow A_{n-1} \rightarrow \cdots \rightarrow A_{1} \rightarrow A_{0} \rightarrow N \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} S$ with all A_{i} in $\mathcal{A}_{C}(S)$, then $K_{n} \in \mathcal{A}_{C}(S)$; in particular, $\Omega^{n}(N) \in \mathcal{A}_{C}(S)$.
Proof. Because $\mathcal{A}_{C}(S)$ is projectively resolving and is closed under direct summands and coproducts by [10, Theorem 6.2 and Proposition 4.2(a)], the assertion follows from [1, Lemma 3.12].

We use $\mathcal{A}_{C}(S)-\mathrm{pd}^{<\infty}$ to denote the subcategory of $\operatorname{Mod} S$ consisting of modules with finite Auslander projective dimension.

Proposition 4.2. $\mathcal{A}_{C}(S)-\mathrm{pd}^{<\infty}$ is closed under extensions, kernels of epimorphisms and cokernels of monomorphisms.

Proof. Let

$$
0 \rightarrow N_{1} \rightarrow N_{2} \rightarrow N_{3} \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} S$ and $n \geq 0$. If $\max \left\{\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N_{1}, \mathcal{A}_{C}(S)-\operatorname{pd}_{S} N_{3}\right\} \leq n$, then by Lemma 4.1, there exist exact sequences

$$
\begin{aligned}
& 0 \rightarrow \Omega^{n}\left(N_{1}\right) \rightarrow P_{1}^{n-1} \rightarrow \cdots \rightarrow P_{1}^{1} \rightarrow P_{1}^{0} \rightarrow N_{1} \rightarrow 0 \\
& 0 \rightarrow \Omega^{n}\left(N_{3}\right) \rightarrow P_{3}^{n-1} \rightarrow \cdots \rightarrow P_{3}^{1} \rightarrow P_{3}^{0} \rightarrow N_{3} \rightarrow 0
\end{aligned}
$$

in $\operatorname{Mod} S$ with all P_{i}^{j} projective and $\Omega^{n}\left(N_{1}\right), \Omega^{n}\left(N_{3}\right) \in \mathcal{A}_{C}(S)$. Then we get exact sequences

$$
\begin{gathered}
0 \rightarrow K_{n} \rightarrow P_{1}^{n-1} \oplus P_{3}^{n-1} \rightarrow \cdots \rightarrow P_{1}^{1} \oplus P_{3}^{1} \rightarrow P_{1}^{0} \oplus P_{3}^{0} \rightarrow N_{2} \rightarrow 0 \\
0 \rightarrow \Omega^{n}\left(N_{1}\right) \rightarrow K_{n} \rightarrow \Omega^{n}\left(N_{3}\right) \rightarrow 0
\end{gathered}
$$

in $\operatorname{Mod} S$. By [10, Theorem 6.2], we have $K_{n} \in \mathcal{A}_{C}(S)$ and $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N_{2} \leq n$.
If $\max \left\{\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N_{1}, \mathcal{A}_{C}(S)-\operatorname{pd}_{S} N_{2}\right\} \leq n$, then by Corollary 3.6 and Lemma 4.1, there exist $\operatorname{Hom}_{S}\left(\mathcal{A}_{C}(S),-\right)$-exact exact sequences

$$
\begin{aligned}
& 0 \rightarrow A_{1}^{n} \rightarrow A_{1}^{n-1} \rightarrow \cdots \rightarrow A_{1}^{1} \rightarrow A_{1}^{0} \rightarrow N_{1} \rightarrow 0 \\
& 0 \rightarrow A_{2}^{n} \rightarrow A_{2}^{n-1} \rightarrow \cdots \rightarrow A_{2}^{1} \rightarrow A_{2}^{0} \rightarrow N_{2} \rightarrow 0
\end{aligned}
$$

in $\operatorname{Mod} S$ with all A_{i}^{j} in $\mathcal{A}_{C}(S)$. By [11, Theorem 3.6], we get an exact sequence

$$
0 \rightarrow A_{1}^{n} \rightarrow A_{1}^{n-1} \oplus A_{2}^{n} \rightarrow \cdots \rightarrow A_{1}^{0} \oplus A_{2}^{1} \rightarrow A_{2}^{0} \rightarrow N_{3} \rightarrow 0
$$

in $\operatorname{Mod} S$, and so $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N_{3} \leq n+1$.
If $\max \left\{\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N_{2}, \mathcal{A}_{C}(S)-\operatorname{pd}_{S} N_{3}\right\} \leq n$, then by Corollary 3.6 and Lemma 4.1, there exist $\operatorname{Hom}_{S}\left(\mathcal{A}_{C}(S),-\right)$-exact exact sequences

$$
\begin{aligned}
& 0 \rightarrow A_{2}^{n} \rightarrow A_{2}^{n-1} \rightarrow \cdots \rightarrow A_{2}^{1} \rightarrow A_{2}^{0} \rightarrow N_{2} \rightarrow 0 \\
& 0 \rightarrow A_{3}^{n} \rightarrow A_{3}^{n-1} \rightarrow \cdots \rightarrow A_{3}^{1} \rightarrow A_{3}^{0} \rightarrow N_{3} \rightarrow 0
\end{aligned}
$$

in $\operatorname{Mod} S$ with all A_{i}^{j} in $\mathcal{A}_{C}(S)$. By [11, Theorem 3.2], we get exact sequences

$$
\begin{gathered}
0 \rightarrow A_{2}^{n} \rightarrow A_{2}^{n-1} \oplus A_{3}^{n} \rightarrow \cdots \rightarrow A_{2}^{1} \oplus A_{3}^{2} \rightarrow A \rightarrow N_{1} \rightarrow 0 \\
0 \rightarrow A \rightarrow A_{2}^{0} \oplus A_{3}^{1} \rightarrow A_{3}^{0} \rightarrow 0
\end{gathered}
$$

in $\operatorname{Mod} S$. By [10, Theorem 6.2], we have $A \in \mathcal{A}_{C}(S)$, and so $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N_{1} \leq n$.

We write

$$
\mathcal{I}_{C}(S):=\left\{I_{*} \mid I \text { is injective in } \operatorname{Mod} R\right\} .
$$

The modules in $\mathcal{I}_{C}(S)$ is called C-injective ([10]). Let Q be an injective cogenerator for $\operatorname{Mod} R$. Then

$$
\mathcal{I}_{C}(S)=\operatorname{Prod}_{S} Q_{*}
$$

by [14, Proposition 2.4(2)], where $\operatorname{Prod}_{S} Q_{*}$ is the subcategory of Mod S consisting of direct summands of products of copies of Q_{*}. By [8, Lemma 2.16(b)], we have the following isomorphism of functors

$$
\operatorname{Hom}_{R}\left(\operatorname{Tor}_{i}^{S}(C,-), Q\right) \cong \operatorname{Ext}_{S}^{i}\left(-, Q_{*}\right)
$$

for any $i \geq 1$. This gives the following
Lemma 4.3. $C_{S}{ }^{\top}={ }^{\perp} \mathcal{I}_{C}(S)$.
For a subcategory \mathscr{X} of $\operatorname{Mod} S$, a sequence in $\operatorname{Mod} S$ is called $\operatorname{Hom}_{S}(-, \mathscr{X})$-exact if it is exact after applying the functor $\operatorname{Hom}_{S}(-, X)$ for any $X \in \mathscr{X}$. Now we give some criteria for computing the Auslander projective dimension of modules.

Theorem 4.4. Let $N \in \operatorname{Mod} S$ with $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N<\infty$ and $n \geq 0$. Then the following statements are equivalent.
(1) $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N \leq n$.
(2) $\Omega^{n}(N) \in \mathcal{A}_{C}(S)$.
(3) $\operatorname{Tor}_{\geq n+1}^{S}(C, N)=0$.
(4) There exists an exact sequence

$$
0 \rightarrow H \rightarrow A \rightarrow N \rightarrow 0
$$

in $\operatorname{Mod} S$ with $A \in \mathcal{A}_{C}(S)$ and $\mathcal{I}_{C}(S)-\operatorname{pd}_{S} H \leq n-1$.
(5) There exists a $\left(\operatorname{Hom}_{S}\left(-, \mathcal{I}_{C}(S)\right)\right.$-exact) exact sequence

$$
0 \rightarrow N \rightarrow H^{\prime} \rightarrow A^{\prime} \rightarrow 0
$$

in $\operatorname{Mod} S$ with $A^{\prime} \in \mathcal{A}_{C}(S)$ and $\mathcal{I}_{C}(S)-\operatorname{pd}_{S} H^{\prime} \leq n$.

Proof. By Lemma 4.1 and the dimension shifting, we have $(1) \Leftrightarrow(2) \Rightarrow(3)$.
$(3) \Rightarrow(2)$ Because $\operatorname{Tor}_{\geq n+1}^{S}(C, N)=0$ by (3), we have $\Omega^{n}(N) \in C_{S}{ }^{\top}$, and so $\Omega^{n}(N) \in{ }^{\perp} \mathcal{I}_{C}(S)$ by Lemma 4.3. Note that all projective modules in $\operatorname{Mod} S$ are in $\mathcal{A}_{C}(S)$ by [10, Theorem 6.2]. Because $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N<\infty$ by assumption, we have $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} \Omega^{n}(N)<\infty$ by Proposition 4.2.

Assume that $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} \Omega^{n}(N)=m(<\infty)$ and

$$
\begin{equation*}
0 \rightarrow A_{m} \rightarrow \cdots \rightarrow A_{1} \rightarrow A_{0} \rightarrow \Omega^{n}(N) \rightarrow 0 \tag{4.1}
\end{equation*}
$$

is an exact sequence in $\operatorname{Mod} S$ with all A_{j} in $\mathcal{A}_{C}(S)$. Because $\mathcal{A}_{C}(S) \subseteq C_{S}{ }^{\top}={ }^{\perp} \mathcal{I}_{C}(S)$ by Lemma 4.3, the exact sequence (4.1) is $\operatorname{Hom}_{S}\left(-, \mathcal{I}_{C}(S)\right)$-exact. By [16, Theorem 3.11(1)], we have the following $\operatorname{Hom}_{S}\left(-, \mathcal{I}_{C}(S)\right)$-exact exact sequence

$$
0 \rightarrow A_{j} \rightarrow U_{j}^{0} \rightarrow U_{j}^{1} \rightarrow \cdots \rightarrow U_{j}^{i} \rightarrow \cdots
$$

in $\operatorname{Mod} S$ with all U_{j}^{i} in $\mathcal{I}_{C}(S)$ for any $0 \leq j \leq m$ and $i \geq 0$. It follows from [11, Corollary 3.5] that there exist the following two exact sequences

$$
\begin{gathered}
0 \rightarrow \Omega^{n}(N) \rightarrow U \rightarrow \oplus_{i=0}^{m} U_{i}^{i+1} \rightarrow \oplus_{i=0}^{m} U_{i}^{i+2} \rightarrow \oplus_{i=0}^{m} U_{i}^{i+3} \rightarrow \cdots \\
0 \rightarrow U_{m}^{0} \rightarrow U_{m}^{1} \oplus U_{m-1}^{0} \rightarrow \cdots \rightarrow \oplus_{i=2}^{m} U_{i}^{i-2} \rightarrow \oplus_{i=1}^{m} U_{i}^{i-1} \rightarrow \oplus_{i=0}^{m} U_{i}^{i} \rightarrow U \rightarrow 0
\end{gathered}
$$

and the former one is $\operatorname{Hom}_{S}\left(-, \mathcal{I}_{C}(S)\right)$-exact. Because $\mathcal{I}_{C}(S)$ is closed under finite direct sums and cokernels of monomorphisms by [10, Proposition 5.1 (c) and Corollary 6.4], we have $U \in \mathcal{I}_{C}(S)$. By [16, Theorem 3.11(1)] again, we have $\Omega^{n}(N) \in \mathcal{A}_{C}(S)$.
$(1) \Rightarrow(4) \mathrm{By}\left[10\right.$, Theorem 6.2], $\mathcal{A}_{C}(S)$ is closed under extensions. By [16, Theorem 3.11(1)], we have that $\mathcal{I}_{C}(S)$ is an $\mathcal{I}_{C}(S)$-coproper cogenerator for $\mathcal{A}_{C}(S)$ in the sense of [12]. Then the assertion follows from [12, Theorem 4.7].
$(4) \Rightarrow(5)$ Let

$$
0 \rightarrow H \rightarrow A \rightarrow N \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} S$ with $A \in \mathcal{A}_{C}(S)$ and $\mathcal{I}_{C}(S)-\operatorname{pd}_{S} H \leq n-1$. By [16, Theorem 3.11(1)], there exists a $\operatorname{Hom}_{S}\left(-, \mathcal{I}_{C}(S)\right)$-exact exact sequence

$$
0 \rightarrow A \rightarrow U \rightarrow A^{\prime} \rightarrow 0
$$

in $\operatorname{Mod} S$ with $U \in \mathcal{I}_{C}(S)$ and $A^{\prime} \in \mathcal{A}_{C}(S)$. Consider the following push-out diagram

By the middle row in this diagram, we have $\mathcal{I}_{C}(S)-\operatorname{pd}_{S} H^{\prime} \leq n$. Because the middle column in the above diagram is $\operatorname{Hom}_{S}\left(-, \mathcal{I}_{C}(S)\right)$-exact, the rightmost column is also $\operatorname{Hom}_{S}\left(-, \mathcal{I}_{C}(S)\right)$-exact by [11, Lemma $2.4(2)]$ and it is the desired exact sequence.
(5) \Rightarrow (1) Let

$$
0 \rightarrow N \rightarrow H^{\prime} \rightarrow A^{\prime} \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} S$ with $A^{\prime} \in \mathcal{A}_{C}(S)$ and $\mathcal{I}_{C}(S)-\operatorname{pd}_{S} H^{\prime} \leq n$. Then there exists an exact sequence

$$
0 \rightarrow U_{n} \rightarrow \cdots \rightarrow U_{1} \rightarrow U_{0} \rightarrow H^{\prime} \rightarrow 0
$$

in $\operatorname{Mod} S$ with all U_{i} in $\mathcal{I}_{C}(S)$. Set $H:=\operatorname{Ker}\left(U_{0} \rightarrow H^{\prime}\right)$. Then $\mathcal{I}_{C}(S)-\operatorname{pd}_{S} H \leq n-1$. Consider the following pull-back diagram

Applying [10, Theorem 6.2] to the middle row in this diagram yields $A \in \mathcal{A}_{C}(S)$. Thus $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N \leq n$ by the leftmost column in the above diagram.

The only place where the assumption $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N<\infty$ in Theorem 4.4 is used is in showing $(3) \Rightarrow(2)$. By Theorem 4.4, it is easy to get the following standard observation.

Corollary 4.5. Let

$$
0 \rightarrow L \rightarrow M \rightarrow K \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} S$. Then we have
(1) $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} K \leq \max \left\{\mathcal{A}_{C}(S)-\operatorname{pd}_{S} M, \mathcal{A}_{C}(S)-\operatorname{pd}_{S} L+1\right\}$, and the equality holds true if $\mathcal{A}_{C}(S)$ $\operatorname{pd}_{S} M \neq \mathcal{A}_{C}(S)-\operatorname{pd}_{S} L$.
(2) $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} L \leq \max \left\{\mathcal{A}_{C}(S)-\operatorname{pd}_{S} M, \mathcal{A}_{C}(S)-\operatorname{pd}_{S} K-1\right\}$, and the equality holds true if $\mathcal{A}_{C}(S)$ $\operatorname{pd}_{S} M \neq \mathcal{A}_{C}(S)-\operatorname{pd}_{S} K$.
(3) $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} M \leq \max \left\{\mathcal{A}_{C}(S)-\operatorname{pd}_{S} L, \mathcal{A}_{C}(S)-\operatorname{pd}_{S} K\right\}$, and the equality holds true if $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} K \neq$ $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} L+1$.

The following corollary is an addendum to the implications $(1) \Rightarrow(4)$ and $(1) \Rightarrow(5)$ in Theorem 4.4.
Corollary 4.6. Let $N \in \operatorname{Mod} S$ with $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N=n(<\infty)$. Then there exist exact sequences

$$
0 \rightarrow H \rightarrow A \rightarrow N \rightarrow 0
$$

$$
0 \rightarrow N \rightarrow H^{\prime} \rightarrow A^{\prime} \rightarrow 0
$$

in $\operatorname{Mod} S$ with $A, A^{\prime} \in \mathcal{A}_{C}(S)$ and $\mathcal{I}_{C}(S)-\operatorname{pd}_{S} H=\mathcal{I}_{C}(S)-\operatorname{pd}_{S} H^{\prime}=n$.
Proof. Let $N \in \operatorname{Mod} S$ with $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N=n(<\infty)$. By Theorem 4.4, there exists an exact sequence

$$
0 \rightarrow H \rightarrow A \rightarrow N \rightarrow 0
$$

in $\operatorname{Mod} S$ with $A \in \mathcal{A}_{C}(S)$ and $\left(\mathcal{A}_{C}(S)-\operatorname{pd}_{S} H \leq\right) \mathcal{I}_{C}(S)-\operatorname{pd}_{S} H \leq n-1$. By Theorem 4.4 again, we have $\sup \left\{i \geq 0 \mid \operatorname{Tor}_{i}^{S}(C, N) \neq 0\right\}=n$. So $\sup \left\{i \geq 0 \mid \operatorname{Tor}_{i}^{S}(C, H) \neq 0\right\}=n-1$, and hence $\mathcal{A}_{C}(S)$ $\operatorname{pd}_{S} H=n-1$ by Theorem 4.4. It follows that $\mathcal{I}_{C}(S)-\operatorname{pd}_{S} H=n-1$.

By Theorem 4.4, there exists an exact sequence

$$
0 \rightarrow N \rightarrow H^{\prime} \rightarrow A^{\prime} \rightarrow 0
$$

in $\operatorname{Mod} S$ with $A^{\prime} \in \mathcal{A}_{C}(S)$ and $\left(\mathcal{A}_{C}(S)-\operatorname{pd}_{S} H \leq\right) \mathcal{I}_{C}(S)-\operatorname{pd}_{S} H^{\prime} \leq n$. By Corollary 4.5(3), we have $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} H=\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N=n$, and so $\mathcal{I}_{C}(S)-\operatorname{pd}_{S} H^{\prime}=n$.

Let $N \in \operatorname{Mod} S$. Bican, El Bashir and Enochs proved in [3] that N has a flat cover. We use

$$
\begin{equation*}
\cdots \xrightarrow{f_{n+1}} F_{n}(N) \xrightarrow{f_{n}} \cdots \xrightarrow{f_{2}} F_{1}(N) \xrightarrow{f_{1}} F_{0}(N) \xrightarrow{f_{0}} N \rightarrow 0 \tag{4.2}
\end{equation*}
$$

to denote a minimal flat resolution of N in $\operatorname{Mod} S$, where each $F_{i}(N) \rightarrow \operatorname{Im} f_{i}$ is a flat cover of $\operatorname{Im} f_{i}$.
Lemma 4.7. Let $N \in \operatorname{Mod} S$ and $n \geq 0$. If $\operatorname{Tor}_{1 \leq i \leq n}^{S}(C, N)=0$, then we have
(1) There exists an exact sequence

$$
0 \rightarrow \operatorname{Ext}_{R}^{n+1}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right) \rightarrow N \xrightarrow{\mu_{N}}\left(C \otimes_{S} N\right)_{*} \rightarrow \operatorname{Ext}_{R}^{n+2}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right) \rightarrow 0
$$

in $\operatorname{Mod} S$.
(2) $\operatorname{Ext}_{R}^{1 \leq i \leq n}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right)=0$.

Proof. (1) The case for $n=0$ follows from [16, Proposition 3.2]. Now suppose $n \geq 1$. If $\operatorname{Tor}_{1 \leq i \leq n}^{S}(C, N)=$ 0 , then the exact sequence (4.2) yields the following exact sequence

$$
\begin{align*}
& 0 \rightarrow \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right) \rightarrow C \otimes_{S} F_{n+1}(N) \xrightarrow{1_{C} \otimes f_{n+1}} C \otimes_{S} F_{n}(N) \xrightarrow{1_{C} \otimes f_{n}} \cdots \\
& \xrightarrow{1_{C} \otimes f_{2}} C \otimes_{S} F_{1}(N) \xrightarrow{1_{C} \otimes f_{1}} C \otimes_{S} F_{0}(N) \xrightarrow{1_{C} \otimes f_{0}} C \otimes_{S} N \rightarrow 0 \tag{4.3}
\end{align*}
$$

in $\operatorname{Mod} R$. Because all $C \otimes_{S} F_{i}(N)$ are in ${ }_{R} C^{\perp}$ by [16, Lemma 2.3(1)], we have

$$
\begin{aligned}
& \operatorname{Ext}_{R}^{1}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{1}\right)\right) \cong \operatorname{Ext}_{R}^{n+1}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n}\right)\right), \\
& \operatorname{Ext}_{R}^{2}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{1}\right)\right) \cong \operatorname{Ext}_{R}^{n+2}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n}\right)\right)
\end{aligned}
$$

Now the assertion follows from [16, Proposition 3.2].
(2) Applying the functor $(-)_{*}$ to the exact sequence (4.3) we get the following commutative diagram

All columns are isomorphisms by [10, Lemma 4.1]. So the bottom row in this diagram is exact. Because all $C \otimes_{S} F_{i}(N)$ are in ${ }_{R} C^{\perp}$, we have $\operatorname{Ext}_{R}^{1 \leq i \leq n}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right)=0$.

Let $X \in \operatorname{Mod} R$ and let

$$
\cdots \xrightarrow{g_{n+1}} P_{n} \xrightarrow{g_{n}} \cdots \xrightarrow{g_{2}} P_{1} \xrightarrow{g_{1}} P_{0} \xrightarrow{g_{0}} X \rightarrow 0
$$

be a projective resolution of X in $\operatorname{Mod} R$. If there exists $n \geq 1$ such that $\operatorname{Im} g_{n} \cong \oplus_{j} W_{j}$, where each W_{j} is isomorphic to a direct summand of some $\operatorname{Im} g_{i_{j}}$ with $i_{j}<n$, then we say that X has an ultimately closed projective resolution at n; and we say that X has an ultimately closed projective resolution if it has an ultimately closed projective resolution at some n ([13]). It is trivial that if $\mathrm{pd}_{R} X$ (the projective dimension of X) $\leq n$, then X has an ultimately closed projective resolution at $n+1$. Let R be an artin algebra. If either R is of finite representation type or the square of the radical of R is zero, then any finitely generated left R-module has an ultimately closed projective resolution ([13, p.341]). Following [20], a module $N \in \operatorname{Mod} S$ is called C-adstatic if μ_{N} is an isomorphism.

Proposition 4.8. Let $N \in \operatorname{Mod} S$ and $n \geq 1$. If $\operatorname{Tor}_{1 \leq i \leq n}^{S}(C, N)=0$, then N is C-adstatic provided that one of the following conditions is satisfied.
(1) $\operatorname{pd}_{R} C \leq n$.
(2) ${ }_{R} C$ has an ultimately closed projective resolution at n.

Proof. (1) It follows directly from Lemma 4.7(1).
(2) Let

$$
\cdots \xrightarrow{g_{n+1}} P_{n} \xrightarrow{g_{n}} \cdots \xrightarrow{g_{2}} P_{1} \xrightarrow{g_{1}} P_{0} \xrightarrow{g_{0}} C \rightarrow 0
$$

be a projective resolution of C in $\operatorname{Mod} R$ ultimately closed at n. Then $\operatorname{Im} g_{n} \cong \oplus_{j} W_{j}$ such that each W_{j} is isomorphic to a direct summand of some $\operatorname{Im} g_{i_{j}}$ with $i_{j}<n$. Let $N \in \operatorname{Mod} S$ with $\operatorname{Tor}_{1 \leq i \leq n}^{S}(C, N)=0$. By Lemma 4.7(2), we have

$$
\operatorname{Ext}_{R}^{1}\left(\operatorname{Im} g_{i_{j}}, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right) \cong \operatorname{Ext}_{R}^{i_{j}+1}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right)=0
$$

Because W_{j} is isomorphic to a direct summand of some $\operatorname{Im} g_{i_{j}}$, we have $\operatorname{Ext}_{R}^{1}\left(W_{j}, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right)=0$ for any j, which implies

$$
\begin{aligned}
& \operatorname{Ext}_{R}^{n+1}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right) \\
\cong & \operatorname{Ext}_{R}^{1}\left(\operatorname{Im} g_{n}, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right) \\
\cong & \operatorname{Ext}_{R}^{1}\left(\oplus_{j} W_{j}, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right) \\
\cong & \Pi_{j} \operatorname{Ext}_{R}^{1}\left(W_{j}, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right) \\
= & 0 .
\end{aligned}
$$

Then by Lemma 4.7(2), we conclude that $\operatorname{Ext}_{R}^{1 \leq i \leq n+1}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right)=0$. Similar to the above argument we get $\operatorname{Ext}_{R}^{n+2}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right)=0$. It follows from Lemma 4.7(1) that μ_{N} is an isomorphism and N is C-adstatic.

Corollary 4.9. For any $n \geq 1$, a module $N \in \operatorname{Mod} S$ satisfying $\operatorname{Tor}_{0 \leq i \leq n}^{S}(C, N)=0$ implies $N=0$ provided that one of the following conditions is satisfied.
(1) $\operatorname{pd}_{R} C \leq n$.
(2) ${ }_{R} C$ has an ultimately closed projective resolution at n.

Proof. Let $N \in \operatorname{Mod} S$ with $\operatorname{Tor}_{0 \leq i \leq n}^{S}(C, N)=0$. By Proposition 4.8, we have that N is C-adstatic and $N \cong\left(C \otimes_{S} N\right)_{*}=0$.

We now are in a position to give the following
Theorem 4.10. If ${ }_{R} C$ has an ultimately closed projective resolution, then

$$
\mathcal{A}_{C}(S)=C_{S}^{\top}={ }^{\perp} \mathcal{I}_{C}(S)
$$

Proof. By the definition of $\mathcal{A}_{C}(S)$ and Lemma 4.3, we have $\mathcal{A}_{C}(S) \subseteq C_{S}{ }^{\top}={ }^{\perp} \mathcal{I}_{C}(S)$.
Now let $N \in{ }^{\perp} \mathcal{I}_{C}(S)$ and let $f: C \otimes_{S} N \rightarrow B$ be a $\mathcal{B}_{C}(R)$-preenvelope of $C \otimes_{S} N$ in $\operatorname{Mod} R$ as in Theorem 3.7. Because $\mathcal{B}_{C}(R)$ is injectively coresolving in Mod R by [10, Theorem 6.2], f is monic. By Proposition $4.8, \mu_{N}$ is an isomorphism. Then by Theorem $3.7(1)$, we have a monic $\mathcal{A}_{C}(S)$-preenvelope

$$
f^{0}: N \mapsto A^{0}
$$

of N, where $f^{0}=f_{*} \mu_{N}$ and $A^{0}=B_{*}$. So we have a $\operatorname{Hom}_{S}\left(-, \mathcal{A}_{C}(S)\right)$-exact exact sequence

$$
0 \rightarrow N \xrightarrow{f^{0}} A^{0} \rightarrow N^{1} \rightarrow 0
$$

in $\operatorname{Mod} S$, where $N^{1}=\operatorname{Coker} f^{0}$. Because $A^{0} \in{ }^{\perp} \mathcal{I}_{C}(S)$, we have $N^{1} \in{ }^{\perp} \mathcal{I}_{C}(S)$. Similar to the above argument, we get a $\operatorname{Hom}_{S}\left(-, \mathcal{A}_{C}(S)\right)$-exact exact sequence

$$
0 \rightarrow N^{1} \xrightarrow{f^{1}} A^{1} \rightarrow N^{2} \rightarrow 0
$$

in $\operatorname{Mod} S$ with $A^{1} \in \mathcal{A}_{C}(S)$ and $N^{2} \in{ }^{\perp} \mathcal{I}_{C}(S)$. Repeating this procedure, we get a $\operatorname{Hom}_{S}\left(-, \mathcal{A}_{C}(S)\right)$ exact exact sequence

$$
0 \rightarrow N \xrightarrow{f^{0}} A^{0} \xrightarrow{f^{1}} A^{1} \xrightarrow{f^{2}} \cdots \xrightarrow{f^{i}} A^{i} \xrightarrow{f^{i+1}} \cdots
$$

in $\operatorname{Mod} S$ with all A^{i} in $\mathcal{A}_{C}(S)$. Because $\mathcal{I}_{C}(S) \subseteq \mathcal{A}_{C}(S)$ by [10, Corollary 6.1$]$, this exact sequence is $\operatorname{Hom}_{S}\left(-, \mathcal{I}_{C}(S)\right)$-exact. By $[16$, Theorem $3.11(1)]$, there exists a $\operatorname{Hom}_{S}\left(-, \mathcal{A}_{C}(S)\right)$-exact exact sequence

$$
0 \rightarrow A^{i} \rightarrow U_{0}^{i} \rightarrow U_{1}^{i} \rightarrow \cdots \rightarrow U_{j}^{i} \rightarrow \cdots
$$

in $\operatorname{Mod} S$ with all U_{j}^{i} in $\mathcal{I}_{C}(S)$ for any $i, j \geq 0$. Then by [11, Corollary 3.9], we get the following $\operatorname{Hom}_{S}\left(-, \mathcal{A}_{C}(S)\right)$-exact exact sequence

$$
0 \rightarrow N \rightarrow U_{0}^{0} \rightarrow U_{1}^{0} \oplus U_{0}^{1} \rightarrow \cdots \rightarrow \oplus_{i=0}^{n} U_{n-i}^{i} \rightarrow \cdots
$$

in $\operatorname{Mod} S$ with all terms in $\mathcal{I}_{C}(S)$. It follows from [16, Theorem 3.11(1)] that $N \in \mathcal{A}_{C}(S)$. The proof is finished.

We use $\mathrm{pd}_{S^{o p}} C$ and $\mathrm{fd}_{S^{o p}} C$ to denote the projective and flat dimensions of C_{S} respectively.
Corollary 4.11. If ${ }_{R} C$ has an ultimately closed projective resolution, then the following statements are equivalent for any $n \geq 0$.
(1) $\operatorname{pd}_{S^{o p}} C \leq n$.
(2) $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N \leq n$ for any $N \in \operatorname{Mod} S$.

Proof. Assume that ${ }_{R} C$ has an ultimately closed projective resolution. By Theorem 4.10, we have $\mathcal{A}_{C}(S)=C_{S}{ }^{\top}$. Then it is easy to see that C_{S} is flat (equivalently, projective) if and only if $\mathcal{A}_{C}(S)=$ $\operatorname{Mod} S$, so the assertion for the case $n=0$ follows. Now let $N \in \operatorname{Mod} S$ and $n \geq 1$.
$(2) \Rightarrow(1)$ By (2) and Theorem 4.4, we have $\Omega^{n}(N) \in \mathcal{A}_{C}(S)\left(\subseteq C_{S}{ }^{\top}\right)$. Then by the dimension shifting, we have $\operatorname{Tor}_{\geq n+1}^{S}(C, N)=0$, and so $\operatorname{pd}_{S^{\circ p}} C=\operatorname{fd}_{S^{\circ p}} C \leq n$.
$(1) \Rightarrow(2)$ If $\operatorname{pd}_{S^{\circ p}} C \leq n$, then $\Omega^{n}(N) \in C_{S}^{\top}$ by the dimension shifting. By Theorem 4.10, we have $\Omega^{n}(N) \in \mathcal{A}_{C}(S)$ and $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N \leq n$.

Acknowledgements. This research was partially supported by NSFC (Grant No. 11571164).

References

[1] M. Auslander and M. Bridger, Stable Module Theory, Memoirs Amer. Math. Soc. 94, Amer. Math. Soc., Providence, RI, 1969.
[2] A. Beligiannis and I. Reiten, Homological and Homotopical Aspects of Torsion Theories, Mem. Amer. Math. Soc. 188 (883), Amer. Math. Soc., Providence, RI, 2007.
[3] L. Bican, R. El Bashir and E. E. Enochs, All modules have flat covers, Bull. London Math. Soc. 33 (2001), 385-390.
[4] E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), 189-209.
[5] E. E. Enochs and H. Holm, Cotorsion pairs associated with Auslander categories, Israel J. Math. 174 (2009), 253-268.
[6] E. E. Enochs and A. Iacob, Gorenstein injective covers and envelopes over noetherian rings, Proc. Amer. Math. Soc. 143 (2015), 5-12.
[7] E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, de Gruyter Expositions in Math. 30, Walter de Gruyter GmbH \& Co. KG, Berlin, 2000.
[8] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, de Gruyter Expositions in Math. 41, 2nd revised and extended edition, Walter de Gruyter GmbH \& Co. KG, Berlin-Boston, 2012.
[9] H. Holm and P. Jørgensen, Cotorsion pairs induced by duality pairs, J. Commut. Algebra 1 (2009), 621-633.
[10] H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), 781-808.
[11] Z. Y. Huang, Proper resolutions and Gorenstein categories, J. Algebra 393 (2013), 142-169.
[12] Z.Y. Huang, Homological dimensions relative to preresolving subcategories, Kyoto J. Math. 54 (2014), 727-757.
[13] J. P. Jans, Some generalizations of finite projective dimension, Illinois J. Math. 5 (1961), 334-344.
[14] Z. F. Liu, Z. Y. Huang and A. M. Xu, Gorenstein projective dimension relative to a semidualizing bimodule, Comm. Algebra 41 (2013), 1-18.
[15] F. Mantese and I. Reiten, Wakamatsu tilting modules, J. Algebra 278 (2004), 532-552.
[16] X. Tang and Z. Y. Huang, Homological aspects of the adjoint cotranspose, Colloq. Math. 150 (2017), 293-311.
[17] T. Wakamatsu, On modules with trivial self-extensions, J. Algebra 114 (1988), 106-114.
[18] T. Wakamatsu, Stable equivalence for self-injective algebras and a generalization of tilting modules, J. Algebra 134 (1990), 298-325.
[19] T. Wakamatsu, Tilting modules and Auslander's Gorenstein property, J. Algebra 275 (2004), 3-39.
[20] R. Wisbauer, Static modules and equivalences, Interactions Between Ring Theory and Representations of Algebras (Murcia), Lecture Notes in Pure and Appl. Math. 210, Dekker, New York, 2000, pp.423-449.

[^0]: *2010 Mathematics Subject Classification: 18G25, 16E10, 16E30.
 ${ }^{\dagger}$ Keywords: Duality pairs, Auslander classes, Bass classes, Semidualizing bimodules, (Pre)covers, (Pre)envelopes, Cotorsion pairs, Auslander projective dimension.
 \ddagger-mail address: huangzy@nju.edu.cn

