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Abstract. Let R and S be rings and RωS a semidualizing bimodule, and
let n > 1. We characterize the extension closure of the category of adjoint

k-cotorsionfree modules with respect to ω for any 1 6 k 6 n in terms of the

(strong) cograde conditions of certain modules.

1. Introduction

Throughout this paper, all rings are associative rings with units. For a ring R,
we use ModR to denote the category of left R-modules. Recall that a subcategory
X of ModR is called extension closed provided that for any exact sequence

0→ A→ B → C → 0

in ModR, if A and C are in X , then so is B. The extension closure of certain
subcategories has been proved to be important in characterizing rings. We mention
a well-known result about the extension closure of the category of n-syzygy modules
over a Noetherian algebra R ([2, Theorem 4.7]), which shows that the category of
finitely generated i-syzygy modules is extension closed for any 1 6 i 6 n if and only
if R is quasi n-Gorenstein in the sense of [9]. Applying this theorem, under Serre’s
condition, Goto and Takahashi characterized a commutative Noetherian local ring
in height less than n to be Gorenstein in terms of the extension closure of the
category of finitely generated n-syzygy modules ([6, Theorem B]). The extension
closure of various subcategories has been studied extensively, see [3]–[4], [10]–[11],
[15] and references therein.

In particular, Huang [10] initialed the study of extension closure of the category
of n-torsionfree modules with respect to a semidualizing bimodule RωS by using
the properties of the (strong) grade of modules. In [16] and [18] we dualized the
Auslander transpose and introduced the notions of n-ω-cotorsionfree modules and
adjoint n-ω-cotorsionfree modules respectively. These two classes have many dual
properties of relative n-torsionfree modules. It is thus natural to ask the following
question:

Question 1.1. When are the category of n-ω-cotorsionfree modules and that of
adjoint n-ω-cotorsionfree modules extension closed?

This question has been partially solved by Zhao and Zhang so far, and they
proved that the category of i-ω-cotorsionfree modules is extension closed for any
1 6 i 6 n if and only if the strong Tor-cograde of Exti+1

R (ω,M) is at least i for
any ω-i-syzygy module M and 1 6 i 6 n ([22, Theorem 3.10]). The purpose of this

Key words and phrases: Semidualizing bimodules; (Strong) Ext-cograde, (Strong) Tor-cograde;

Extension closed; Adjoint n-cotorsionfree modules.
2020 Mathematics Subject Classification: 18G25, 18G15, 16E30.

1



Xi Tang and Zhaoyong Huang

paper is to proceed with the study of Question 1.1. Indeed, we will investigate the
extension closure of the category of adjoint n-ω-cotorsionfree modules.

The organization of this paper is as follows. Section 2 contains some basic
definitions and preliminary results. Let R,S be arbitrary rings and let RωS be a
semidualizing bimodule. In Section 3, we show that the categories of adjoint 1-
cotorsionfree modules and adjoint 2-cotorsionfree modules are extension closed if
and only if TorSk−1(ω,ExtkR(ω,M)) = 0 for any left R-module M and k = 1, 2, and

if and only if the Tor-cograde of ExtkR(ω,M) with respect to ω is at least k for any
left R-module M and k = 1, 2 (Theorem 3.10).

Let Aω(S) be the Auslander class with respect to ω. In Section 4, we show
that the category of adjoint k-ω-cotorsionfree modules is extension closed for any
1 6 k 6 n, if and only if category of k-Aω(S)-syzygy modules is extension closed

for any 1 6 k 6 n, if and only if the strong Ext-cograde of TorSk+1(ω,N) with
respect to ω is at least k for any left S-module N and 1 6 k 6 n, and if and only if
the Tor-cograde of ExtkR(ω,M) with respect to ω is at least k for any left module
M and 1 6 k 6 n (Theorem 4.6). As a consequence, we obtain some equivalent
characterizations of right quasi n-Gorenstein rings (Corollary 4.8).

2. Preliminaries

This section is devoted to stating the definitions and basic properties of notions
which are needed in the sequel.

Definition 2.1. ([1, 8]). Let R and S be rings. An (R,S)-bimodule RωS is called
semidualizing if the following conditions are satisfied.

(a1) Rω admits a degreewise finite R-projective resolution.
(a2) ωS admits a degreewise finite Sop-projective resolution.

(b1) The homothety map RRR
Rγ→ HomSop(ω, ω) is an isomorphism.

(b2) The homothety map SSS
γS→ HomR(ω, ω) is an isomorphism.

(c1) Ext>1
R (ω, ω) = 0.

(c2) Ext>1
Sop(ω, ω) = 0.

From now on, R and S are arbitrary rings and we fix a semidualizing bimodule

RωS . For convenience, We write

(−)∗ := Hom(ω,−),

Rω
⊥ := {M ∈ ModR | Ext>1

R (ω,M) = 0},

ωS
> := {N ∈ ModS | TorS>1(ω,N) = 0}.

Following [8], set

Fω(R) := {ω ⊗S F | F is flat in ModS},

Pω(R) := {ω ⊗S P | P is projective in ModS},
Iω(S) := {I∗ | I is injective in ModR}.

The modules in Fω(R), Pω(R) and Iω(S) are called ω-flat, ω-projective and ω-
injective respectively. For a subcategory X of ModR (resp. ModS), we use AddX
(resp. ProdX ) to denote the subcategory of ModR (resp. ModS) consisting of
modules isomorphic to direct summands of direct sums (resp. products) of modules
in X .
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We write (−)+ := HomZ(−,Q/Z), where Z is the additive group of integers and
Q is the additive group of rational numbers. By [13, Proposition 2.4], we have

Pω(R) = AddR ω and Iω(S) = Prodω+.

Let M ∈ ModR and N ∈ ModS. Then we have the following two canonical
valuation homomorphisms

θM : ω ⊗S M∗ →M

defined by θM (x⊗ f) = f(x) for any x ∈ ω and f ∈M∗; and

µN : N → (ω ⊗S N)∗

defined by µN (y)(x) = x ⊗ y for any y ∈ N and x ∈ ω. Recall that a module
M ∈ ModR is called ω-cotorsionless (resp. ω-coreflexive) if θM is an epimorphism
(resp. an isomorphism) ([16]); and a module N ∈ ModS is called adjoint ω-
cotorsionless (resp. adjoint ω-coreflexive) if µN is a monomorphism (resp. an
isomorphism) ([19]).

Definition 2.2. ([8]).

(1) The Auslander class Aω(S) with respect to ω consists of all left S-modules
N satisfying the following conditions.

(A1) N ∈ ωS>.
(A2) ω ⊗S N ∈ Rω

⊥.
(A3) N is adjoint ω-coreflexive.

(2) The Bass class Bω(R) with respect to ω consists of all left R-modules M
satisfying the following conditions.

(B1) M ∈ Rω
⊥.

(B2) M∗ ∈ ωS>.
(B3) M is ω-coreflexive.

For a module M ∈ ModR, we use

0→M → I0(M)
g0−→ I1(M) (2.1)

to denote the minimal injective copresentation of M in ModR. For a module
N ∈ ModS, we use

F1(N)
f0−→ F0(N)→ N → 0 (2.2)

to denote the minimal flat presentation of N in ModS.

Definition 2.3. ([16, 18]). Let M ∈ ModR and N ∈ ModS, and let n > 1.

(1) cTrωM := Coker(g0∗) is called the cotranspose of M with respect to ω,
where g0 is as in (2.1).

(2) M is called n-ω-cotorsionfree if TorS16i6n(ω, cTrωM) = 0.
(3) acTrω N := Ker(1ω⊗f0) is called the adjoint cotranspose of N with respect

to ω, where f0 is as in (2.2).

(4) N is called adjoint n-ω-cotorsionfree if Ext16i6nR (ω, acTrω N) = 0.

We use cT nω(R) (resp. acT nω(S)) to denote the subcategory of ModR (resp.
ModS) consisting of n-ω-cotorsionfree (resp, adjoint n-ω-cotorsionfree) modules.
By [16, Proposition 3.2], we have that a module in ModR is ω-cotorsionless (resp.
ω-coreflexive) if and only if it is in cT 1

ω(R) (resp. cT 2
ω(R)). In particular, we have

Fω(R) ⊆ Bω(R) ⊆ cT iω(R)
3
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for any i > 1 by [8, Corollary 6.1] and [16, Theorem 3.9]. On the other hand, by
[18, Proposition 3.2], we have that a module in ModS is adjoint ω-cotorsionless
(resp. adjoint ω-coreflexive) if and only if it is in acT 1

ω(S) (resp. acT 2
ω(S)). We

have

Iω(S) ⊆ Aω(S) ⊆ acT iω(S)

for any i > 1 by [8, Corollary 6.1] and [18, Proposition 3.4].

Definition 2.4. ([17])

(1) Let M ∈ ModR and n > 0. The Ext-cograde of M with respect to ω is
defined as E-cogradeωM := inf{i > 0 | ExtiR(ω,M) 6= 0}; and the strong
Ext-cograde of M with respect to ω, denoted by s.E-cogradeωM , is said to
be at least n if E-cogradeωX > n for any quotient module X of M .

(2) Let N ∈ ModS and n > 0. The Tor-cograde of N with respect to ω is

defined as T-cogradeω N := inf{i > 0 | TorSi (ω,N) 6= 0}; and the strong
Tor-cograde of N with respect to ω, denoted by s.T-cogradeω N , is said to
be at least n if T-cogradeω Y > n for any submodule Y of N .

Definition 2.5. ([20]) Let X be a subcategory of an abelian category E and n > 1.
If there exists an exact sequence

0→ N → X0 → · · · → Xn−1 →M → 0

in E with all Xi in X , then N is called an n-X -syzygy of M and M is called an
n-X -cosyzygy of N .

For subcategories X ,Y of an abelian category E and n > 1, we write

ΩnX (Y) := {N ∈ E | N is an n-X -syzygy of some object in Y},

coΩnX (Y) := {M ∈ E |M is an n-X -cosyzygy of some object in Y}.
In particular, Ω0

X (Y) = Y = coΩ0
X (Y) and Ω−1X (Y) = 0 = coΩ−1X (Y). For conve-

nience, we write

ΩnA(S) := ΩnAω(S)(ModS), ΩnIω (S) := ΩnIω(S)(ModS), ΩnacT iω
(S) := ΩnacT iω

(ModS),

coΩnB(R) := coΩnBω(R)(ModR), coΩnFω (R) := coΩnFω(R)(ModR),

coΩnPω (R) := coΩnPω(R)(ModR), coΩncT iω (R) := coΩncT iω (ModR).

3. Tor-cograde and extension closure

Our aim in this section is to show how the extension closure of the subcategories
acT 1

ω(S) and acT 2
ω(S) is connected with the Tor-cograde of ExtkR(ω,M) for any

M ∈ ModR and k = 1, 2.
In what follows, for any i > 1, we use Ci (resp. Di) to denote a subcategory of

ModR (resp. ModS) satisfying

Fω(R) ⊆ Ci ⊆ cT iω(R) (resp. Iω(S) ⊆ Di ⊆ acT iω(S)).

We begin by proving the following lemma.

Lemma 3.1. For any i > 1, it holds that

(1) Ω1
Di(S) = acT 1

ω(S).

(2) coΩ1
Ci(R) = cT 1

ω(R).
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Proof. (1) Since Iω(S) ⊆ Di, we have acT 1
ω(S) ⊆ Ω1

Di(S) by [18, Lemma 3.7(1)].

Now let N ∈ Ω1
Di(S). We may assume that f0 : N � H is a monomorphism in

ModS with H ∈ Di. As Di ⊆ acT iω(S) ⊆ acT 1
ω(S), we have that µH a monomor-

phism. Then from the following commutative diagram

N //
f0

//

µN

��

H

µH

��
(ω ⊗S N)∗

(1ω⊗f0)∗// (ω ⊗S H)∗,

we get that µN is a monomorphism. Thus N ∈ acT 1
ω(S) and Ω1

Di(S) ⊆ acT 1
ω(S).

(2) Since Pω(R) ⊆ Ci, we have cT 1
ω(R) ⊆ coΩ1

Ci(R) by [16, Lemma 3.6(1)]. Now

let M ∈ coΩ1
Ci(R). We may assume that f0 : L�M is an epimorphism in ModR

with L ∈ Ci. As Ci ⊆ cT iω(R) ⊆ cT 1
ω(R), we have that θL is an epimorphism. Then

from the following commutative diagram

ω ⊗S L∗
1ω⊗f0∗//

θL

��

ω ⊗S M∗

θM

��
L

f0 // // M,

we get that θM is an epimorphism. ThusM ∈ cT 1
ω(R) and coΩ1

Ci(R) ⊆ cT 1
ω(R). �

Lemma 3.2. The following statements are equivalent for any i > 2.

(1) M ∈ coΩ2
Pω

(R).

(2) M ∈ coΩ2
Ci(R).

(3) There is a module N ∈ ModS such that M ∼= ω ⊗S N .

Proof. (1)⇒ (2) It is obvious.
(2)⇒ (3) Let M ∈ coΩ2

Ci(R) and let

L0 f→ L1 →M → 0

be an exact sequence in ModR with L0, L1 ∈ Ci ⊆ cT iω(R). As cT iω(R) ⊆ cT 2
ω(R),

we have that θL0 and θL1 are isomorphisms. Then from the following commutative
diagram with exact rows

ω ⊗S L0
∗
1ω⊗f∗ //

θL0

��

ω ⊗S L1
∗

θL1

��

// ω ⊗S Coker f∗

h

��

// 0

L0 f // L1 // M // 0,

we get that the induced homomorphism h is an isomorphism, and thus M ∼= ω ⊗S
Coker f∗.

(3)⇒ (1) Suppose M ∼= ω ⊗S N for some N ∈ ModS, and let

Q1 → Q0 → N → 0

be a projective presentation of N . Applying the functor ω ⊗S − to it yields an
exact sequence

ω ⊗S Q1 → ω ⊗S Q0 → ω ⊗S N → 0.
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Since ω ⊗S Q1, ω ⊗S Q0 ∈ Pω(R), we have M ∈ coΩ2
Pω (R). �

We give an analogue of Lemma 3.2.

Lemma 3.3. The following statements are equivalent for any i > 2.

(1) N ∈ Ω2
Iω

(S).

(2) N ∈ Ω2
Di(S).

(3) There is a module M ∈ ModR such that N ∼= M∗.

Proof. (1)⇒ (2) It is obvious.
(2)⇒ (3) Let N ∈ Ω2

Di(R) and let

0→ N → H0 g−→ H1

be an exact sequence in ModS with H0, H1 ∈ Di ⊆ acT iω(S). As acT iω(S) ⊆
acT 2

ω(S), we have that µH0 and µH1 are isomorphisms. Then from the following
commutative diagram with exact rows

0 // N //

h

��

H0 g //

µH0

��

H1

µH1

��
0 // (Ker(1ω ⊗ g))∗ // (ω ⊗S H0)∗

(1ω⊗g)∗// (ω ⊗S H1)∗,

we get that the induced homomorphism h is an isomorphism, and thus N ∼=
(Ker(1ω ⊗ g))∗.

(3)⇒ (1) Suppose N ∼= M∗ for some M ∈ ModR, and let

0→M → I0 → I1

be an injective copresentation of M . Applying the functor (−)∗ to it yields an exact
sequence

0→M∗ → I0∗ → I1∗ .

Since I0∗ , I
1
∗ ∈ Iω(S), we have N ∈ Ω2

Iω (S). �

Proposition 3.4. The following statements are equivalent for any i > 2.

(1) M∗ ∈ acT 2
ω(S) for any M ∈ ModR.

(2) ω ⊗S N ∈ cT 2
ω(R) for any N ∈ ModS.

(3) cT 2
ω(R) = coΩ2

Ci(R).

(4) acT 2
ω(S) = Ω2

Di(S).

Proof. (1) ⇒ (4) Let N ∈ Ω2
Di(S). Then by Lemma 3.3 and (1) there is a module

M ∈ ModR such that N ∼= M∗ ∈ acT 2
ω(S), and so Ω2

Di(S) ⊆ acT 2
ω(S). The

inclusion acT 2
ω(S) ⊆ Ω2

Di(S) follows from [18, Lemma 3.7(2)].

(4)⇒ (1) LetM ∈ ModR. Then by Lemma 3.3 and (4), we haveM∗ ∈ Ω2
Di(S) =

acT 2
ω(S).

Similarly, we get (2)⇔ (3) by Lemma 3.2 and [16, Lemma 3.6(2)].
(1)⇔ (2) It follows from [20, Lemma 4.18]. �

Proposition 3.5. For any n > 1, the following statements are equivalent.

(1) T-cogradeω ExtkR(ω,M) > k − 1 for any M ∈ ModR and 1 6 k 6 n.

(2) T-cogradeω ExtkR(ω,M) > k − 1 for any M ∈ ΩkCn(R) and 1 6 k 6 n.

(3) E-cogradeω TorSk (ω,N) > k − 1 for any N ∈ ModS and 1 6 k 6 n.
6
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(4) E-cogradeω TorSk (ω,N) > k − 1 for any N ∈ coΩkDn(S) and 1 6 k 6 n.

(5) cT kω(R) = coΩkCn(R) for any 1 6 k 6 n.

(6) acT kω(S) = ΩkDn(S) for any 1 6 k 6 n.

Proof. (2)⇒ (5) By [16, Proposition 3.7], it suffices to prove coΩkCn(R) ⊆ cT kω(R)
for any 1 6 k 6 n. We proceed by induction on n. The cases for n = 1 follows
from Lemma 3.1.

Now let M ∈ coΩnCn(R) with n > 2 and let

Wn−1
fn−1−→ · · · →W1

f1−→W0
f0−→M → 0 (3.1)

be an exact sequence in ModR with all Wi in Cn. By the induction hypothesis, we
have Im f1 ∈ cT n−1ω (R) and there is an exact sequence

Vn−1
gn−1−→ · · · → V1

g1−→W0
f0−→M → 0 (3.2)

in ModR with all Vi in Pω(R) by [16, Proposition 3.7]. Applying the functor (−)∗
to (3.2) gives an exact sequence

0→ (Im g1)∗ →W0∗
f0∗−→M∗ → ExtnR(ω,Ker gn−1)→ 0. (3.3)

Set N := Im(f0∗) and let f0∗ := απ (where π : W0∗ � N and α : N ↪→M∗) be the
natural epic-monic decompositions of f0∗. Then we have the following commutative
diagram with exact rows

TorS1 (ω,N)
h // ω ⊗S (Im g1)∗ //

θIm g1

��

ω ⊗S W0∗
1ω⊗π //

θW0

��

ω ⊗S N

g

��

// 0

0 // Im g1 // W0
f0 // M // 0.

Diagram (3.1)

So we have

θM (1ω ⊗ α)(1ω ⊗ π) = θM (1ω ⊗ f0∗) = f0θW0
= g(1ω ⊗ π).

Because 1ω ⊗ π is epic, we have θM · (1ω ⊗ α) = g and the following commutative
diagram with exact rows

ω ⊗S N

g

��

1ω⊗α // ω ⊗S M∗ //

θM

��

ω ⊗S ExtnR(ω,Ker gn−1) // 0

M M.

Diagram (3.2)

Since Im g1 = Im f1 ∈ cT n−1ω (R), we have that θIm g1 is an epimorphism. So g is
an isomorphism by the snake lemma, and hence 1ω ⊗ α is a monomorphism. Since
ω⊗S ExtnR(ω,Ker gn−1) = 0 by assumption, we see that θM is an isomorphism and
M ∈ cT 2

ω(R) by the diagram (3.2). This shows that the assertion holds true for
n = 2.

If n > 2, then θIm g1 is an isomorphism as Im g1 ∈ cT n−1ω (R), we also have

TorS1 (ω,W0∗) = 0 by [16, Corollary 3.4(3)]. So h is monic and TorS1 (ω,N) = 0 by

the diagram (3.1). Moreover, it is clear that TorS16k6n−3(ω, (Im g1)∗) = 0 by [16,
Corollary 3.4(3)]. Because T-cogradeω ExtnR(ω,Ker fn−1) > n − 1 by assumption,
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applying the dimension shifting to (3.3) yields TorS16k6n−2(ω,M∗) = 0. Therefore
M ∈ cT nω(R) by [16, Corollary 3.4(3)] again.

(5) ⇒ (1) For any 1 6 k 6 n, since cT kω(R) ⊆ coΩkPω (R) ⊆ coΩkCn(R), we have

cT kω(R) = coΩkPω (R) by (5), and hence cT kω(R) = coΩkB(R) by [20, Proposition
4.17]. Now (1) follows from [20, Theorem 4.19].

The implications (1)⇒ (2) and (3)⇒ (4) are obvious.
(1)⇔ (3) It follows from [20, Theorem 4.19].
The proofs of (4) ⇒ (6) and (6) ⇒ (2) are similar to that of (2) ⇒ (5) and

(5)⇒ (1) respectively. �

Lemma 3.6. For any M ∈ ModR, there are two exact sequences

0→ Ext1R(ω,M)→ cTrωM
π−→ H → 0,

0→ H
λ−→ (ω ⊗S cTrωM)∗ → Ext2R(ω,M)→ 0

in ModS such that HomS(π, ω+) is an isomorphism.

Proof. By [17, Corollary 6.8], there is an exact sequence

0→ Ext1R(ω,M)→ cTrωM
µcTrω M−→ (ω ⊗S cTrωM)∗ → Ext2R(ω,M)→ 0

in ModS. Put H := ImµcTrωM and assume that µcTrωM = λπ, where π :
cTrωM → H is an epimorphism and λ : H → (ω ⊗S cTrωM)∗ is a monomor-
phism. Then we have the following exact sequences

0→ Ext1R(ω,M)→ cTrωM
π−→ H → 0,

0→ H
λ−→ (ω ⊗S cTrωM)∗ → Ext2R(ω,M)→ 0.

In view of [17, Lemma 6.1(2)], 1ω⊗µcTrωM is a monomorphism, and so 1ω⊗π is an
isomorphism. It follows from the adjoint isomorphism theorem that HomS(π, ω+) ∼=
(1ω ⊗ π)+ is also an isomorphism. �

Lemma 3.7. The following statements are equivalent for any i > 1.

(1) acT 1
ω(S) is extension closed.

(2) T-cogradeω Ext1R(ω,M) > 1 for any M ∈ Ω2
Ci(R).

(3) T-cogradeω Ext1R(ω,M) > 1 for any M ∈ ModR.

Proof. (2)⇒ (1) Let

0→ A
f−→ B

g−→ C → 0

be an exact sequence in ModS with A,C ∈ acT 1
ω(S). By [18, Proposition 3.2],

KerµB ∼= Ext1R(ω, acTrω B). Notice that acTrω B ∈ Ω2
Ci(R), so

ω ⊗S Ext1R(ω, acTrω B) = 0

by (2), and hence ω⊗S KerµB = 0. Moreover, since µCg = (1ω ⊗ g)∗µB and µC is
a monomorphism, we get KerµB ⊆ Ker g ∼= A. Note that A ∈ acT 1

ω(S) and

HomS(KerµB , ω
+) ∼= (ω ⊗S KerµB)+ = 0.

It follows from [18, Lemma 3.7] and [13, Proposition 3.7] that HomS(KerµB , A) = 0,
which implies KerµB = 0, and thus B ∈ acT 1

ω(S).
(1)⇒ (3) By Lemma 3.6, there is an exact sequence

0→ Ext1R(ω,M)→ cTrωM
π−→ H → 0
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in ModS such that HomS(π, ω+) is an isomorphism. Then

Ker Ext1S(π, ω+) ∼= HomS(Ext1R(ω,M), ω+) ∼= (ω ⊗S Ext1R(ω,M))+.

Suppose

α : 0→ ω+ → X
f→ H → 0

is an element in Ker Ext1S(π, ω+), that is, Ext1S(π, ω+)(α) = 0. Then we have the
following pull-back diagram with the first row splitting:

0 // ω+ // Y
u //

t

��

cTrωM //

π

��

0

0 // ω+ // X
f // H // 0.

Diagram (3.3)

So there is a homomorphism u′ : cTrωM → Y such that uu′ = 1cTrωM . Since
πu = ft, we have π = ftu′. Note that (ω ⊗S cTrωM)∗ ∈ acT 1

ω(S) by [17, Lemma
6.1(1)]. Thus H ∈ acT 1

ω(S) since H is a submodule of (ω ⊗S cTrωM)∗ by Lemma
3.6. So X ∈ acT 1

ω(S) by (1), and hence there is a monomorphism 0 → X → U0

in ModS with U0 ∈ Iω(S) = Prodω+. As HomS(π, ω+) is an isomorphism, we
have that HomS(π, U0), and hence HomS(π,X), is an isomorphism by [11, Lemma
2.1]. Then there is a homomorphism f ′ : H → X such f ′π = tu′, and so π = ff ′π.
But π is an epimorphism, thus ff ′ = 1H , which implies that α splits, and thus
ω ⊗S Ext1R(ω,M) = 0.

(3)⇒ (2) It is trivial. �

Lemma 3.8. For any N ∈ ModS, the following statements are equivalent.

(1) ω ⊗S N ∈ cT 2
ω(R).

(2) ω ⊗S CokerµN = 0.

Proof. By [17, Lemma 6.1(2)], we have θω⊗SN (1ω ⊗ µN ) = 1ω⊗SN . It follows that
θω⊗SN is a split epimorphism and

Ker θω⊗SN
∼= Coker(1ω ⊗ µN ) ∼= ω ⊗S CokerµN .

Now the assertion follows easily. �

Lemma 3.9. If acT 1
ω(S) is extension closed, then ω ⊗S N ∈ cT 2

ω(R) for any
N ∈ ModS.

Proof. By the definition of adjoint cotranspose, there is an exact sequence

0→ acTrω N → ω ⊗S F1 → ω ⊗S F0 → ω ⊗S N → 0

in ModR with F0, F1 flat. Let K := Im(ω ⊗S F1 → ω ⊗S F0). We have

CokerµN ∼= Ext2R(ω, acTrω N) ∼= Ext1R(ω,K)

by [18, Proposition 3.2]. By assumption and Lemma 3.7, we have ω⊗S CokerµN =
0. Thus ω ⊗S N ∈ cT 2

ω(R) by Lemma 3.8. �

We are now in a position to prove the main result of this section.

Theorem 3.10. The following statements are equivalent for any i > 1.

(1) acT kω(S) is extension closed for k = 1, 2.

(2) TorSk−1(ω,ExtkR(ω,M)) = 0 for any M ∈ Ω2
Ci(R) and k = 1, 2.

9
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(3) T-cogradeω ExtkR(ω,M) > k for any M ∈ Ω2
Ci(R) and k = 1, 2.

(4) TorSk−1(ω,ExtkR(ω,M)) = 0 for any M ∈ ModR and k = 1, 2.

(5) T-cogradeω ExtkR(ω,M) > k for any M ∈ ModR and k = 1, 2.

Proof. (1)⇒ (5) By Lemma 3.6, there are two exact sequences

0→ Ext1R(ω,M)→ cTrωM
π−→ H → 0, (3.4)

0→ H
λ−→ (ω ⊗S cTrωM)∗

β−→ Ext2R(ω,M)→ 0 (3.5)

in ModS such that HomS(π, ω+) is an isomorphism and λπ = µcTrωM . Since
HomS(π, ω+) ∼= (ω ⊗ π)+ by the adjoint isomorphism theorem, it follows that
(ω ⊗ π)+ and ω ⊗ π are isomorphisms.

By Lemma 3.7, it is easy to see that T-cogradeω Ext1R(ω,M) > 1 and ω ⊗S
Ext1R(ω,M) = 0. Then by the adjoint isomorphism theorem, we have that

HomS(Ext1R(ω,M), ω+) ∼= (ω ⊗S Ext1R(ω,M))+ = 0

and Ext1S(π, ω+) is a monomorphism. We know from [17, Lemma 6.1(2)] that
HomS(µcTrωM , ω

+) is an epimorphism. Then the fact that

HomS(µcTrωM , ω
+) = HomS(π, ω+) HomS(λ, ω+)

in which HomS(π, ω+) is an isomorphism (by Lemma 3.6) implies that HomS(λ, ω+)
is also an epimorphism. On the other hand, note that

Ext1S(µcTrωM , ω
+) = Ext1S(π, ω+) Ext1S(λ, ω+)

and Ext1S(π, ω+) is a monomorphism by the above argument. Applying the functor
HomS(−, ω+) to (3.5) gives

Ker Ext1S(µcTrωM , ω
+) ∼= Ker Ext1S(λ, ω+) ∼= Ext1S(Ext2R(ω,M), ω+).

Let

α : 0→ ω+ → X
f→ (ω ⊗S cTrωM)∗ → 0

be an element in Ker Ext1S(µcTrωM , ω
+), that is, Ext1S(µcTrωM , ω

+)(α) = 0. Then
we have the following pull-back diagram with the first row splitting:

0 // ω+ // Y
u //

t

��

cTrωM //

µcTrω M

��

0

0 // ω+ // X // (ω ⊗S cTrωM)∗ // 0.

So there is a homomorphism u′ : cTrωM → Y such that uu′ = 1cTrωM . Since
µcTrωMu = ft, we have

µcTrωM = ftu′.

By Lemma 3.9, we have ω⊗S cTrωM ∈ cT 2
ω(R). It follows from [19, Proposition

6.4] that (ω⊗S cTrωM)∗ ∈ acT 2
ω(S). Since acT 2

ω(S) is extension closed by (1), we
have X ∈ acT 2

ω(S). As µXtu
′ = (1ω ⊗ tu′)∗µcTrωM , we have

µcTrωM = ftu′ = fµ−1X (1ω ⊗ tu′)∗µcTrωM and

(1(ω⊗ScTrωM)∗ − fµ
−1
X (1ω ⊗ tu′)∗)µcTrωM = 0,

and hence

(1(ω⊗ScTrωM)∗ − fµ
−1
X (1ω ⊗ tu′)∗)λ = 0.

10
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By the universal property of cokernels, there is a homomorphism g : Ext2R(ω,M)→
(ω ⊗S cTrωM)∗ such that

1(ω⊗ScTrωM)∗ − fµ
−1
X (1ω ⊗ tu′)∗ = gβ.

In addition, Since Ext2R(ω,M) ∼= CokerµcTrωM , we have

ω ⊗S Ext2R(ω,M) = 0

by Lemma 3.8. It follows from the adjoint isomorphism theorem that

HomS(Ext2R(ω,M), ω+) ∼= (ω ⊗S Ext2R(ω,M))+ = 0.

Moreover, since (ω ⊗S cTrωM)∗ ∈ acT 2
ω(S), we have that (ω ⊗S cTrωM)∗ is iso-

morphic to a submodule of some module in Prodω+ by [18, Lemma 3.7]. Then

HomS(Ext2R(ω,M), (ω ⊗S cTrωM)∗) = 0.

So g = 0 and

1(ω⊗ScTrωM)∗ = fµ−1X (1ω ⊗ tu′)∗,

which means α = 0. It follows from [5, Theorem 3.2.1] that TorS1 (ω,Ext2R(ω,M)) =
0, and thus T-cogradeω Ext2R(ω,M) > 2.

The implications (3)⇒ (2), (4)⇒ (2) and (5)⇒ (3) + (4) are trivial.
(2)⇒ (1) Let

0→ A→ B
f−→ C → 0

be an exact sequence in ModS with A,C ∈ acT 2
ω(S). Then B ∈ acT 1

ω(S) by (2)
and Lemma 3.7. It follows from [18, Proposition 3.2] that

CokerµB ∼= Ext2R(ω, acTrω B).

Consider the following diagram with exact rows

0 // A //

h

��

B
f //

µB

��

C //

µC

��

0

0 // A′ // (ω ⊗S B)∗
(1ω⊗f)∗// (ω ⊗S C)∗,

where A′ ∼= Ker(1ω⊗f)∗ and h is an induced homomorphism. By the snake lemma,
we get an exact sequence

0→ A
h−→ A′ → Ext2R(ω, acTrω B)→ 0. (3.6)

Since acTrω B ∈ Ω2
Ci(R), we have

ω ⊗S CokerµB ∼= ω ⊗S Ext2R(ω, acTrω B) = 0

by Lemmas 3.8 and 3.9. Also we have TorS1 (ω,Ext2R(ω, acTrω B)) = 0 by (2).
Applying the functor ω⊗− to (3.6) yields that 1ω⊗h is an isomorphism. Since A′ is
a submodule of (ω⊗SB)∗, we have A′ ∈ acT 1

ω(S), and thus µA′ is a monomorphism.
On the other hand, since µA is an isomorphism and

(1ω ⊗ h)∗µA = µA′h,

we get that µA′ is an epimorphism, and hence an isomorphism, which implies that
h is also an isomorphism. Thus µB is an isomorphism and B ∈ acT 2

ω(S). �

11
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4. Strong Ext-cograde and extension closure

In this section, we characterize the extension closure of the class acT kω(S) for any

1 6 k 6 n in terms of the strong cograde of TorSk+1(ω,C) for any C ∈ coΩkDi(S)
and 1 6 k 6 n.

Let

0→ A
f−→ B

g−→ C → 0

be an exact sequence in ModR. Then one gets two exact sequences

0→ Im(1ω ⊗ f)→ ω ⊗S B
1ω⊗g−→ ω ⊗S C → 0, (4.1)

0→ Ker(1ω ⊗ f)→ ω ⊗S A→ Im(1ω ⊗ f)→ 0. (4.2)

Applying the functor (−)∗ to (4.1) yields the following diagram with exact rows

0 // A
f //

α

��

B
g //

µB

��

C //

µC

��

0

0 // (Im(1ω ⊗ f))∗ // (ω ⊗S B)∗ // (ω ⊗S C)∗,

Diagram (4.1)

where α is an induced homomorphism. It is easy to check that the following diagram

A

µA

��

A

α

��
0 // (Ker(1ω ⊗ f))∗ // (ω ⊗S A)∗ // (Im(1ω ⊗ f))∗ // Ext1R(ω,Ker(1ω ⊗ f))

Diagram (4.2)

is commutative with the bottom row exact.
The following two lemmas are useful in this section.

Lemma 4.1. The following statements are equivalent for any C ∈ acT 1
ω(S).

(1) s.E-cogradeω TorS1 (ω,C) > 1.
(2) If

0→ A
f−→ B

g−→ C → 0

is an exact sequence in ModR with A ∈ acT 1
ω(S), then B ∈ acT 1

ω(S).

Proof. (1) ⇒ (2) Since Ker(1ω ⊗ f) is a quotient module of TorS1 (ω,C), we have
(Ker(1ω ⊗ f))∗ = 0 by (1). Then it follows from the diagram (4.2) that α is a
monomorphism. Applying the snake lemma to diagram (4.1) gives that µB is also
a monomorphism, and so B ∈ acT 1

ω(S).

(2) ⇒ (1) Let L be a quotient module of TorS1 (ω,C). Then L+ is a submodule

of Ext1S(C,ω+)(∼= [TorS1 (ω,C)]+). Since ω ∈ Bω(Sop), for any cardinal ζ, we have

ω+ζ ∈ Aω(S) by [12, Theorem 3.3]. Thus

Ext1S(ω+ζ , ω+) ∼= [Tor1S(ω, ω+ζ )]+ = 0.

It follows from the proof of [21, Lemma 6.9] or the dual result of [22, Lemma 3.4]
that there is a cardinal λ such that there is an exact sequence

0→ ω+λ f−→ D → C → 0 (4.3)
12
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in ModR with Coker HomS(f, ω+) ∼= L+. Then we get the following commutative
diagram with the top and bottom rows exact:

HomS(D,ω+)⊗R ω
g //

∼=
��

HomS(ω+λ , ω+)⊗R ω //

∼=
��

L+ ⊗R ω // 0

[(ω ⊗S D)∗]
+ //

(µD)+

��

[(ω ⊗S ω+λ)∗]
+

(µ
ω+λ

)+

��
D+ // (ω+λ)+ // 0.

Diagram (4.3)

Since ω+λ ∈ acT 2
ω(S), we have D ∈ acT 1

ω(S) by (2). It follows that g is an
epimorphism and L+ ⊗R ω = 0. Since ω admits a degreewise finite projective
resolution, we have

L+ ⊗R ω ∼= HomR(ω,L)+ = 0 (4.4)

by [5, Theorem 3.2.11]. Thus HomR(ω,L) = 0 and s.E-cogradeω TorS1 (ω,C) >
1. �

Lemma 4.2. The following statements are equivalent for any C ∈ acT 2
ω(S).

(1) s.E-cogradeω TorS1 (ω,C) > 2.
(2) If

0→ A
f−→ B

g−→ C → 0

is an exact sequence in ModR with A ∈ acT 2
ω(S), then B ∈ acT 2

ω(S).

Proof. (1)⇒ (2) Since Ker(1ω ⊗ f) is a quotient module of TorS1 (ω,C), we have

[Ker(1ω ⊗ f)]∗ = 0 = Ext1R(ω,Ker(1ω ⊗ f))

by (1). Since A ∈ acT 2
ω(S) by assumption, from the diagram (4.2) we know that

α is an isomorphism. Notice that C ∈ acT 2
ω(S), so B ∈ acT 2

ω(S) by the diagram
(4.1).

(2) ⇒ (1) By [12, Theorem 3.3], we have that ω+λ ∈ Aω(S) with λ same as
that in the proof of (2) ⇒ (1) in Lemma 4.1. Then the middle term D in the
exact sequence (4.3) is in acT 2

ω(S) by (2). It follows from the diagram (4.3) that
L+ ⊗R ω = 0. Thus

HomR(ω,L) = 0

by the exact sequence (4.4).
Applying the functor HomS(−, ω+) to the exact sequence (4.3) gives an exact

sequence

0→ HomS(C,ω+)
δ−→ HomS(D,ω+)

θ−→ HomS(ω+λ , ω+)→ L+ → 0 (4.5)
13
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in ModRop. Then we get the following commutative diagram with exact rows

HomS(C,ω+)⊗R ω
δ⊗1ω //

∼=
��

HomS(D,ω+)⊗R ω //

∼=
��

Im θ ⊗R ω // 0

((ω ⊗S C)∗)
+ //

(µC)+

��

((ω ⊗S D)∗)
+ //

(µD)+

��

Im θ ⊗R ω //

h
��

0

0 // C+ // D+ // ω+λ
+

// 0,

Diagram (4.4)

where h is an induced homomorphism. As C,D ∈ acT 2
ω(S), we have that both

(µC)+ and (µD)+ are isomorphisms, and so h is also an isomorphism. On the other
hand, from the exact sequence (4.5) we get the following commutative diagram with
the top row exact:

0 // TorS1 (L+, ω) // Im θ ⊗R ω //

h

��

((ω ⊗S ω+λ )∗)+(∼= HomS(ω+λ , ω+) ⊗R ω)

(µ
ω+λ

)+

��
(ω+λ )+ (ω+λ )+.

Diagram (4.5)

Because both h and (µ
ω+λ )+ are isomorphisms, we have TorS1 (L+, ω) = 0, and thus

Ext1R(ω,L) = 0. The proof is finished. �

Theorem 4.3. The following statements are equivalent for any C ∈ acT nω(S) and
n > 1.

(1) s.E-cogradeω TorS1 (ω,C) > n.
(2) If

0→ A
f→ B

g→ C → 0

is an exact sequence in ModS with A ∈ acT nω(S), then B ∈ acT nω(S).

Proof. The cases for n = 1 and n = 2 follow from Lemmas 4.1 and 4.2 respectively.
Now suppose n > 3,

(1) ⇒ (2) By Lemma 4.2, we have B ∈ acT 2
ω(S). Since C ∈ acT nω(S), we

have ExtiR(ω, ω ⊗S C) = 0 for any 1 6 i 6 n − 2 by [18, Corollary 3.3(3)]. On

the other hand, since Ker(1ω ⊗ f) is a quotient module of TorS1 (ω,C), we have
ExtiR(ω,Ker(1ω ⊗ f)) = 0 for any 0 6 i 6 n − 1 by (1). Then it is induced from
the exact sequence (4.2) that ExtiR(ω, Im(1ω ⊗ f)) = 0 for any 1 6 i 6 n − 2.
Thus it follows from the exact sequence (4.1) that ExtiR(ω, ω ⊗S B) = 0 for any
1 6 i 6 n− 2, and so B ∈ acT nω(S).

(2) ⇒ (1) It follows from the exact sequence (4.4) that there are two exact
sequences

0→ HomS(C,ω+)
δ−→ HomS(D,ω+)→ Im θ → 0,

0→ Im θ → HomS(ω+λ , ω+)→ L+ → 0.

By (2), we have D ∈ acT nω(S). From the proof of Lemma 4.2, we know that δ⊗R 1ω
is a monomorphism and

TorS1 (L+, ω) = 0 = L+ ⊗R ω.
14
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Moreover, it is easy to verify that TorS26i6n−1(L+, ω) = 0. Since

[ExtiR(ω,L)]+ ∼= TorSi (L+, ω)

for any i > 0 by [5, Theorem 3.2.1], it follows that [Ext06i6n−1R (ω,L)]+ = 0, and

hence Ext06i6n−1R (ω,L) = 0. The proof is finished. �

Proposition 4.4. Suppose n > 1 and Dn ⊆ ωS
>. Then the following assertions

hold.

(1) If ΩkDn(S) is extension closed for any 1 6 k < n, then acT kω(S) = ΩkDn(S)

for any 1 6 k 6 n, and hence Add ΩkDn(S) = ΩkDn(S) for any 1 6 k 6 n.

(2) If Add ΩkDn(S) is extension closed for any 1 6 k 6 n, then Add ΩkDn(S) =

ΩkDn(S) for any 1 6 k 6 n.

Proof. (1) We proceed by induction on n. When n = 1, the assertion follows from
Lemma 3.1.

Now suppose n > 2 and acT kω(S) = ΩkDn(S) for any 1 6 k 6 n − 1. Let
N ∈ coΩnDn(S) and let

An−1 → · · · → A0 → N → 0

be an exact sequence in ModS with all Aj in Dn. Set L := Im(An−1 → An−2).

Then L ∈ Ωn−1Dn (S) = acT n−1ω (S). By Theorem 4.3, we have

s.E-cogradeω TorSn(ω,N) = s.E-cogradeω TorS1 (ω,L) > n− 1.

Then acT kω(S) = ΩkDn(S) for any 1 6 k 6 n by Proposition 3.5. Because acT kω(S) is

closed under direct sums and direct summands for any k > 1, we have Add ΩkDn(S) =

ΩkDn(S) for any 1 6 k 6 n.

(2) We proceed by induction on n. By Lemma 3.1, we have Ω1
Dn(S) = acT 1

ω(S).

Since Add acT 1
ω(S) = acT 1

ω(S), the case for n = 1 follows. Let n > 2. By the
induction hypothesis, we have that Add ΩkDn(S) = ΩkDn(S) is extension closed for
any 1 6 k < n, it follows from (1) that acT nω(S) = ΩnDn(S). Thus ΩnDn(S) is closed
under direct sums and direct summands and Add ΩnDn(S) = ΩnDn(S). �

Theorem 4.5. Suppose n > 1 and Dn ⊆ ωS
>. Then the following statements are

equivalent.

(1) s.E-cogradeω TorSk+1(ω,N) > k for any N ∈ coΩkDn(S) and 1 6 k 6 n.

(2) ΩkDn(S) is extension closed for any 1 6 k 6 n.

(3) ΩkDn(S) is extension closed and acT kω(S) = ΩkDn(S) for any 1 6 k 6 n.

(4) acT kω(S) is extension closed for any 1 6 k 6 n.
(5) Add ΩkDn(S) is extension closed for any 1 6 k 6 n.

Proof. (1)⇒ (2) By Proposition 3.5, we have acT kω(S) = ΩkDn(S) for any 1 6 k 6

n. Let N ∈ acT kω(S). Then there is an exact sequence

0→ N → U0 → U1 → · · · → Uk−1 → L→ 0

in ModS with all Ui in Dn by [18, Proposition 3.8]. Notice that L ∈ coΩkDn(S), so

s.E-cogradeω TorS1 (ω,N) = s.E-cogradeω TorSk+1(ω,L) > k.

It follows from Theorem 4.3 that ΩkDn(S) is extension closed for any 1 6 k 6 n.
(5)⇔ (2)⇒ (3) It follows from Proposition 4.4.
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(3)⇒ (4) It is obvious.
(4)⇒ (1) We proceed by induction on n. Let N ∈ coΩ1

Dn(S) and let

0→ L→ D → N → 0

be an exact sequence in ModS with D ∈ Dn. By Lemma 3.1, we have L ∈ acT 1
ω(S).

Thus

s.E-cogradeω TorS2 (ω,N) = s.E-cogradeω TorS1 (ω,L) > 1

by Theorem 4.3. The case for n = 1 follows.
Suppose n > 2. By the induction hypothesis, we have s.E-cogradeω TorSk+1(ω,N) >

k for any N ∈ coΩkDn(S) and 1 6 k 6 n − 1. From Proposition 3.5, we know that

acT kω(S) = ΩkDn(S) for any 1 6 k 6 n. Now let N ∈ coΩnDn(S) and let

0→ L→ D0 → D1 → · · · → Dn−1 → N → 0

be an exact sequence in ModS with all Di in Dn. Then L ∈ acT nω(S), and hence

s.E-cogradeω TorSn+1(ω,N) = s.E-cogradeω TorS1 (ω,L) > n

by Theorem 4.3. �

Since Aω(S) contains all projective left S-modules by [8, Lemma 4.1], any left

S-module is in coΩkA(S) for any k > 1. Moreover, we have Aω(S) = acT (S)∩ ωS>
by [18, Theorem 3.11].

Theorem 4.6. The following statements are equivalent.

(1) s.E-cogradeω TorSk+1(ω,N) > k for any N ∈ ModS and 1 6 k 6 n.

(2) T-cogradeω ExtkR(ω,M) > k for any M ∈ ModR for any 1 6 k 6 n.
(3) ΩkA(S) is extension closed for any 1 6 k 6 n.

(4) ΩkA(S) is extension closed and acT kω(S) = ΩkA(S) for any 1 6 k 6 n.

(5) acT kω(S) is extension closed for any 1 6 k 6 n.
(6) Add ΩkA(S) is extension closed for any 1 6 k 6 n.

Proof. By [20, Proposition 4.12], we have (1)⇔ (2). The other implications follow
from Theorem 4.5 by replacing Dn with Aω(S). �

Recall from [14] that a ring R is called semiregular if R/J(R) is von Neumann
regular and idempotents can be lifted modulo J(R), where J(R) is the Jacobson
radical of R. The class of semiregular rings includes: (i) von Neumann regular
rings; (ii) semiperfect rings; (iii) left cotorsion rings; and (iv) right cotorsion rings.
See [7] for the definitions of left cotorsion rings and right cotorsion rings.

Corollary 4.7. Let R be semiregular and n > 1. Then the following statements
are equivalent.

(1) s.E-cogradeω TorSk+1(ω,N) > k for any N ∈ ModS and 1 6 k 6 n.

(2) s.T-cogradeω Extk+1
Sop (ω,N ′) > k for any N ′ ∈ ModSop and 1 6 k 6 n.

(3) cT kω(Sop) is extension closed for any 1 6 k 6 n.

(4) acT kω(S) is extension closed for any 1 6 k 6 n.

Proof. By the dual proof of Theorem 4.6, we get (2)⇔ (3). The assertions (1)⇔ (2)
and (1) ⇔ (4) follow from from [20, Theorem 4.14] and Theorem 4.6 respectively.

�
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Recall that an artin algebra R is called right quasi n-Gorenstein if the projective
dimension of the i-term in a minimal injective resolution of RR is at most i for any
1 6 i 6 n ([9]). Let D be the ordinary duality between modR and modRop. Then
D(R) is a semidualizing (R,R)-bimodule. It is induced from [20, Example 4.20]

that R is right quasi n-Gorenstein if and only if s.E-cogradeω TorRi+1(D(R), N) > i
for any N ∈ ModR and 1 6 i 6 n.

Corollary 4.8. Let R be an artin algebra and n > 1. Then the following statements
are equivalent.

(1) R is right quasi n-Gorenstein.

(2) cT kD(R)(R
op) is extension closed for any 1 6 k 6 n.

(3) acT kD(R)(R) is extension closed for any 1 6 k 6 n.

Proof. It is a consequence of Corollary 4.7. �
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