EXTENSION CLOSURE OF ADJOINT COTORSIONFREE MODULES

XI TANG AND ZHAOYONG HUANG

Abstract

Let R and S be rings and ${ }_{R} \omega_{S}$ a semidualizing bimodule, and let $n \geqslant 1$. We characterize the extension closure of the category of adjoint k-cotorsionfree modules with respect to ω for any $1 \leqslant k \leqslant n$ in terms of the (strong) cograde conditions of certain modules.

1. Introduction

Throughout this paper, all rings are associative rings with units. For a ring R, we use $\operatorname{Mod} R$ to denote the category of left R-modules. Recall that a subcategory \mathcal{X} of $\operatorname{Mod} R$ is called extension closed provided that for any exact sequence

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

in $\operatorname{Mod} R$, if A and C are in \mathcal{X}, then so is B. The extension closure of certain subcategories has been proved to be important in characterizing rings. We mention a well-known result about the extension closure of the category of n-syzygy modules over a Noetherian algebra R ([2, Theorem 4.7]), which shows that the category of finitely generated i-syzygy modules is extension closed for any $1 \leqslant i \leqslant n$ if and only if R is quasi n-Gorenstein in the sense of [9]. Applying this theorem, under Serre's condition, Goto and Takahashi characterized a commutative Noetherian local ring in height less than n to be Gorenstein in terms of the extension closure of the category of finitely generated n-syzygy modules ($[6$, Theorem B$]$). The extension closure of various subcategories has been studied extensively, see [3]-[4], [10]-[11], [15] and references therein.

In particular, Huang [10] initialed the study of extension closure of the category of n-torsionfree modules with respect to a semidualizing bimodule ${ }_{R} \omega_{S}$ by using the properties of the (strong) grade of modules. In [16] and [18] we dualized the Auslander transpose and introduced the notions of n - ω-cotorsionfree modules and adjoint n - ω-cotorsionfree modules respectively. These two classes have many dual properties of relative n-torsionfree modules. It is thus natural to ask the following question:
Question 1.1. When are the category of n - ω-cotorsionfree modules and that of adjoint n - ω-cotorsionfree modules extension closed?

This question has been partially solved by Zhao and Zhang so far, and they proved that the category of i - ω-cotorsionfree modules is extension closed for any $1 \leqslant i \leqslant n$ if and only if the strong Tor-cograde of $\operatorname{Ext}_{R}^{i+1}(\omega, M)$ is at least i for any ω - i-syzygy module M and $1 \leqslant i \leqslant n$ ([22, Theorem 3.10]). The purpose of this

[^0]paper is to proceed with the study of Question 1.1. Indeed, we will investigate the extension closure of the category of adjoint n - ω-cotorsionfree modules.

The organization of this paper is as follows. Section 2 contains some basic definitions and preliminary results. Let R, S be arbitrary rings and let ${ }_{R} \omega_{S}$ be a semidualizing bimodule. In Section 3, we show that the categories of adjoint 1cotorsionfree modules and adjoint 2-cotorsionfree modules are extension closed if and only if $\operatorname{Tor}_{k-1}^{S}\left(\omega, \operatorname{Ext}_{R}^{k}(\omega, M)\right)=0$ for any left R-module M and $k=1,2$, and if and only if the Tor-cograde of $\operatorname{Ext}_{R}^{k}(\omega, M)$ with respect to ω is at least k for any left R-module M and $k=1,2$ (Theorem 3.10).

Let $\mathcal{A}_{\omega}(S)$ be the Auslander class with respect to ω. In Section 4, we show that the category of adjoint k - ω-cotorsionfree modules is extension closed for any $1 \leqslant k \leqslant n$, if and only if category of k - $\mathcal{A}_{\omega}(S)$-syzygy modules is extension closed for any $1 \leqslant k \leqslant n$, if and only if the strong Ext-cograde of $\operatorname{Tor}_{k+1}^{S}(\omega, N)$ with respect to ω is at least k for any left S-module N and $1 \leqslant k \leqslant n$, and if and only if the Tor-cograde of $\operatorname{Ext}_{R}^{k}(\omega, M)$ with respect to ω is at least k for any left module M and $1 \leqslant k \leqslant n$ (Theorem 4.6). As a consequence, we obtain some equivalent characterizations of right quasi n-Gorenstein rings (Corollary 4.8).

2. Preliminaries

This section is devoted to stating the definitions and basic properties of notions which are needed in the sequel.

Definition 2.1. ([1, 8]). Let R and S be rings. An (R, S)-bimodule ${ }_{R} \omega_{S}$ is called semidualizing if the following conditions are satisfied.
(a1) ${ }_{R} \omega$ admits a degreewise finite R-projective resolution.
(a2) ω_{S} admits a degreewise finite $S^{o p}$-projective resolution.
(b1) The homothety map ${ }_{R} R_{R} \xrightarrow{R \gamma} \operatorname{Hom}_{S^{o p}}(\omega, \omega)$ is an isomorphism.
(b2) The homothety map $s S_{S} \xrightarrow{\gamma_{S}} \operatorname{Hom}_{R}(\omega, \omega)$ is an isomorphism.
(c1) $\operatorname{Ext}_{R}^{\geqslant 1}(\omega, \omega)=0$.
(c2) $\operatorname{Ext}_{S^{\text {op }}}(\omega, \omega)=0$.
From now on, R and S are arbitrary rings and we fix a semidualizing bimodule ${ }_{R} \omega_{S}$. For convenience, We write

$$
\begin{gathered}
(-)_{*}:=\operatorname{Hom}(\omega,-), \\
{ }_{R} \omega^{\perp}:=\left\{M \in \operatorname{Mod} R \mid \operatorname{Ext}_{R}^{\geqslant 1}(\omega, M)=0\right\}, \\
\omega_{S}^{\top}:=\left\{N \in \operatorname{Mod} S \mid \operatorname{Tor}_{\geqslant 1}^{S}(\omega, N)=0\right\} .
\end{gathered}
$$

Following [8], set

$$
\begin{gathered}
\mathcal{F}_{\omega}(R):=\left\{\omega \otimes_{S} F \mid F \text { is flat in } \operatorname{Mod} S\right\} \\
\mathcal{P}_{\omega}(R):=\left\{\omega \otimes_{S} P \mid P \text { is projective in } \operatorname{Mod} S\right\}, \\
\mathcal{I}_{\omega}(S):=\left\{I_{*} \mid I \text { is injective in } \operatorname{Mod} R\right\}
\end{gathered}
$$

The modules in $\mathcal{F}_{\omega}(R), \mathcal{P}_{\omega}(R)$ and $\mathcal{I}_{\omega}(S)$ are called ω-flat, ω-projective and ω injective respectively. For a subcategory \mathcal{X} of $\operatorname{Mod} R(\operatorname{resp} . \operatorname{Mod} S)$, we use $\operatorname{Add} \mathcal{X}$ $($ resp. $\operatorname{Prod} \mathcal{X})$ to denote the subcategory of $\operatorname{Mod} R(\operatorname{resp} . \operatorname{Mod} S)$ consisting of modules isomorphic to direct summands of direct sums (resp. products) of modules in \mathcal{X}.

We write $(-)^{+}:=\operatorname{Hom}_{\mathbb{Z}}(-, \mathbb{Q} / \mathbb{Z})$, where \mathbb{Z} is the additive group of integers and \mathbb{Q} is the additive group of rational numbers. By [13, Proposition 2.4], we have

$$
\mathcal{P}_{\omega}(R)=\operatorname{Add}_{R} \omega \text { and } \mathcal{I}_{\omega}(S)=\operatorname{Prod} \omega^{+}
$$

Let $M \in \operatorname{Mod} R$ and $N \in \operatorname{Mod} S$. Then we have the following two canonical valuation homomorphisms

$$
\theta_{M}: \omega \otimes_{S} M_{*} \rightarrow M
$$

defined by $\theta_{M}(x \otimes f)=f(x)$ for any $x \in \omega$ and $f \in M_{*}$; and

$$
\mu_{N}: N \rightarrow\left(\omega \otimes_{S} N\right)_{*}
$$

defined by $\mu_{N}(y)(x)=x \otimes y$ for any $y \in N$ and $x \in \omega$. Recall that a module $M \in \operatorname{Mod} R$ is called ω-cotorsionless (resp. ω-coreflexive) if θ_{M} is an epimorphism (resp. an isomorphism) ([16]); and a module $N \in \operatorname{Mod} S$ is called adjoint ω cotorsionless (resp. adjoint ω-coreflexive) if μ_{N} is a monomorphism (resp. an isomorphism) ([19]).

Definition 2.2. ([8]).
(1) The Auslander class $\mathcal{A}_{\omega}(S)$ with respect to ω consists of all left S-modules N satisfying the following conditions.
(A1) $N \in \omega_{S}{ }^{\top}$.
(A2) $\omega \otimes_{S} N \in{ }_{R} \omega^{\perp}$.
(A3) N is adjoint ω-coreflexive.
(2) The Bass class $\mathcal{B}_{\omega}(R)$ with respect to ω consists of all left R-modules M satisfying the following conditions.
(B1) $M \in{ }_{R} \omega^{\perp}$.
(B2) $M_{*} \in \omega_{S}{ }^{\top}$.
(B3) M is ω-coreflexive.
For a module $M \in \operatorname{Mod} R$, we use

$$
\begin{equation*}
0 \rightarrow M \rightarrow I^{0}(M) \xrightarrow{g^{0}} I^{1}(M) \tag{2.1}
\end{equation*}
$$

to denote the minimal injective copresentation of M in $\operatorname{Mod} R$. For a module $N \in \operatorname{Mod} S$, we use

$$
\begin{equation*}
F_{1}(N) \xrightarrow{f_{0}} F_{0}(N) \rightarrow N \rightarrow 0 \tag{2.2}
\end{equation*}
$$

to denote the minimal flat presentation of N in $\operatorname{Mod} S$.
Definition 2.3. ([16, 18]). Let $M \in \operatorname{Mod} R$ and $N \in \operatorname{Mod} S$, and let $n \geqslant 1$.
(1) $\operatorname{cTr}_{\omega} M:=\operatorname{Coker}\left(g^{0}{ }_{*}\right)$ is called the cotranspose of M with respect to ω, where g^{0} is as in (2.1).
(2) M is called n - ω-cotorsionfree if $\operatorname{Tor}_{1 \leqslant i \leqslant n}^{S}\left(\omega, \operatorname{Tr}_{\omega} M\right)=0$.
(3) $\operatorname{acTr}_{\omega} N:=\operatorname{Ker}\left(1_{\omega} \otimes f_{0}\right)$ is called the adjoint cotranspose of N with respect to ω, where f_{0} is as in (2.2).
(4) N is called adjoint n - ω-cotorsionfree if $\operatorname{Ext}_{R}^{1 \leqslant i \leqslant n}\left(\omega, \operatorname{acTr}_{\omega} N\right)=0$.

We use $\mathrm{c} \mathcal{T}_{\omega}^{n}(R)$ (resp. $\left.\operatorname{ac} \mathcal{T}_{\omega}^{n}(S)\right)$ to denote the subcategory of $\operatorname{Mod} R$ (resp. $\operatorname{Mod} S$) consisting of n - ω-cotorsionfree (resp, adjoint n - ω-cotorsionfree) modules. By [16, Proposition 3.2], we have that a module in $\operatorname{Mod} R$ is ω-cotorsionless (resp. ω-coreflexive) if and only if it is in $\mathrm{c} \mathcal{T}_{\omega}^{1}(R)$ (resp. $\mathrm{c} \mathcal{T}_{\omega}^{2}(R)$). In particular, we have

$$
\begin{gathered}
\mathcal{F}_{\omega}(R) \subseteq \mathcal{B}_{\omega}(R) \subseteq c \mathcal{T}_{\omega}^{i}(R) \\
3
\end{gathered}
$$

for any $i \geqslant 1$ by [8, Corollary 6.1] and [16, Theorem 3.9]. On the other hand, by [18, Proposition 3.2], we have that a module in $\operatorname{Mod} S$ is adjoint ω-cotorsionless (resp. adjoint ω-coreflexive) if and only if it is in $\operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$ (resp. ac $\mathcal{T}_{\omega}^{2}(S)$). We have

$$
\mathcal{I}_{\omega}(S) \subseteq \mathcal{A}_{\omega}(S) \subseteq \operatorname{ac}_{\omega}^{i}(S)
$$

for any $i \geqslant 1$ by [8, Corollary 6.1] and [18, Proposition 3.4].
Definition 2.4. ([17])
(1) Let $M \in \operatorname{Mod} R$ and $n \geqslant 0$. The Ext-cograde of M with respect to ω is defined as E-cograde $\omega_{\omega} M:=\inf \left\{i \geqslant 0 \mid \operatorname{Ext}_{R}^{i}(\omega, M) \neq 0\right\}$; and the strong Ext-cograde of M with respect to ω, denoted by s.E-cograde ω M, is said to be at least n if E-cograde $\omega_{\omega} X \geqslant n$ for any quotient module X of M.
(2) Let $N \in \operatorname{Mod} S$ and $n \geqslant 0$. The Tor-cograde of N with respect to ω is defined as T-cograde ${ }_{\omega} N:=\inf \left\{i \geqslant 0 \mid \operatorname{Tor}_{i}^{S}(\omega, N) \neq 0\right\}$; and the strong Tor-cograde of N with respect to ω, denoted by s.T-cograde $\omega_{\omega} N$, is said to be at least n if T-cograde $\omega \geqslant n$ for any submodule Y of N.

Definition 2.5. ([20]) Let \mathcal{X} be a subcategory of an abelian category \mathcal{E} and $n \geqslant 1$. If there exists an exact sequence

$$
0 \rightarrow N \rightarrow X_{0} \rightarrow \cdots \rightarrow X_{n-1} \rightarrow M \rightarrow 0
$$

in \mathcal{E} with all X_{i} in \mathcal{X}, then N is called an $n-\mathcal{X}$-syzygy of M and M is called an $n-\mathcal{X}$-cosyzygy of N.

For subcategories \mathcal{X}, \mathcal{Y} of an abelian category \mathcal{E} and $n \geqslant 1$, we write

$$
\begin{aligned}
\Omega_{\mathcal{X}}^{n}(\mathcal{Y}) & :=\{N \in \mathcal{E} \mid N \text { is an } n \text { - } \mathcal{X} \text {-syzygy of some object in } \mathcal{Y}\}, \\
\operatorname{co} \Omega_{\mathcal{X}}^{n}(\mathcal{Y}) & :=\{M \in \mathcal{E} \mid M \text { is an } n \text { - } \mathcal{X} \text {-cosyzygy of some object in } \mathcal{Y}\} .
\end{aligned}
$$

In particular, $\Omega_{\mathcal{X}}^{0}(\mathcal{Y})=\mathcal{Y}=\operatorname{co} \Omega_{\mathcal{X}}^{0}(\mathcal{Y})$ and $\Omega_{\mathcal{X}}^{-1}(\mathcal{Y})=0=\cos _{\mathcal{X}}^{-1}(\mathcal{Y})$. For convenience, we write

$$
\begin{aligned}
\Omega_{\mathcal{A}}^{n}(S):= & \Omega_{\mathcal{A}_{\omega}(S)}^{n}(\operatorname{Mod} S), \Omega_{\mathcal{I}_{\omega}}^{n}(S):=\Omega_{\mathcal{I}_{\omega}(S)}^{n}(\operatorname{Mod} S), \Omega_{\mathrm{ac} \mathcal{T}_{\omega}^{i}}^{n}(S):=\Omega_{\mathrm{ac} \mathcal{T}_{\omega}^{i}}^{n}(\operatorname{Mod} S), \\
& \operatorname{co} \Omega_{\mathcal{B}}^{n}(R):=\operatorname{co} \Omega_{\mathcal{B}_{\omega}(R)}^{n}(\operatorname{Mod} R), \operatorname{co} \Omega_{\mathcal{F}_{\omega}}^{n}(R):=\operatorname{co} \Omega_{\mathcal{F}_{\omega}(R)}^{n}(\operatorname{Mod} R), \\
& \operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{n}(R):=\operatorname{co} \Omega_{\mathcal{P}_{\omega}(R)}^{n}(\operatorname{Mod} R), \operatorname{co} \Omega_{\mathrm{c} \mathcal{T}_{\omega}^{i}}^{n}(R):=\cos _{\mathrm{c} \mathcal{T}_{\omega}^{i}}^{n}(\operatorname{Mod} R) .
\end{aligned}
$$

3. Tor-cograde and extension closure

Our aim in this section is to show how the extension closure of the subcategories $\operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$ and $\operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$ is connected with the Tor-cograde of $\operatorname{Ext}_{R}^{k}(\omega, M)$ for any $M \in \operatorname{Mod} R$ and $k=1,2$.

In what follows, for any $i \geqslant 1$, we use \mathcal{C}_{i} (resp. \mathcal{D}_{i}) to denote a subcategory of $\operatorname{Mod} R($ resp. $\operatorname{Mod} S)$ satisfying

$$
\mathcal{F}_{\omega}(R) \subseteq \mathcal{C}_{i} \subseteq c \mathcal{T}_{\omega}^{i}(R) \quad\left(\text { resp. } \mathcal{I}_{\omega}(S) \subseteq \mathcal{D}_{i} \subseteq \operatorname{ac} \mathcal{T}_{\omega}^{i}(S)\right)
$$

We begin by proving the following lemma.
Lemma 3.1. For any $i \geqslant 1$, it holds that
(1) $\Omega_{\mathcal{D}_{i}}^{1}(S)=\operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$.
(2) $\cos _{\mathcal{C}_{i}}^{1}(R)=c \mathcal{T}_{\omega}^{1}(R)$.

Proof. (1) Since $\mathcal{I}_{\omega}(S) \subseteq \mathcal{D}_{i}$, we have $\operatorname{ac} \mathcal{T}_{\omega}^{1}(S) \subseteq \Omega_{\mathcal{D}_{i}}^{1}(S)$ by [18, Lemma 3.7(1)]. Now let $N \in \Omega_{\mathcal{D}_{i}}^{1}(S)$. We may assume that $f^{0}: N \mapsto H$ is a monomorphism in $\operatorname{Mod} S$ with $H \in \mathcal{D}_{i}$. As $\mathcal{D}_{i} \subseteq \operatorname{ac} \mathcal{T}_{\omega}^{i}(S) \subseteq \operatorname{ac}^{1}{ }_{\omega}(S)$, we have that μ_{H} a monomorphism. Then from the following commutative diagram

we get that μ_{N} is a monomorphism. Thus $N \in \operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$ and $\Omega_{\mathcal{D}_{i}}^{1}(S) \subseteq \operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$.
(2) Since $\mathcal{P}_{\omega}(R) \subseteq \mathcal{C}_{i}$, we have $c \mathcal{T}_{\omega}^{1}(R) \subseteq \operatorname{co} \Omega_{\mathcal{C}_{i}}^{1}(R)$ by [16, Lemma 3.6(1)]. Now let $M \in \operatorname{co} \Omega_{\mathcal{C}_{i}}^{1}(R)$. We may assume that $f_{0}: L \rightarrow M$ is an epimorphism in $\operatorname{Mod} R$ with $L \in \mathcal{C}_{i}$. As $\mathcal{C}_{i} \subseteq c \mathcal{T}_{\omega}^{i}(R) \subseteq c \mathcal{T}_{\omega}^{1}(R)$, we have that θ_{L} is an epimorphism. Then from the following commutative diagram

we get that θ_{M} is an epimorphism. Thus $M \in c \mathcal{T}_{\omega}^{1}(R)$ and $\cos _{\mathcal{C}_{i}}^{1}(R) \subseteq c \mathcal{T}{ }_{\omega}^{1}(R)$.
Lemma 3.2. The following statements are equivalent for any $i \geqslant 2$.
(1) $M \in \operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{2}(R)$.
(2) $M \in \operatorname{co} \Omega_{\mathcal{C}_{i}}^{2}(R)$.
(3) There is a module $N \in \operatorname{Mod} S$ such that $M \cong \omega \otimes_{S} N$.

Proof. (1) \Rightarrow (2) It is obvious.
$(2) \Rightarrow(3)$ Let $M \in \operatorname{co} \Omega_{\mathcal{C}_{i}}^{2}(R)$ and let

$$
L^{0} \xrightarrow{f} L^{1} \rightarrow M \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} R$ with $L^{0}, L^{1} \in \mathcal{C}_{i} \subseteq c \mathcal{T}_{\omega}^{i}(R)$. As $c \mathcal{T}_{\omega}^{i}(R) \subseteq c \mathcal{T}_{\omega}^{2}(R)$, we have that $\theta_{L^{0}}$ and $\theta_{L^{1}}$ are isomorphisms. Then from the following commutative diagram with exact rows

we get that the induced homomorphism h is an isomorphism, and thus $M \cong \omega \otimes_{S}$ Coker f_{*}.
(3) \Rightarrow (1) Suppose $M \cong \omega \otimes_{S} N$ for some $N \in \operatorname{Mod} S$, and let

$$
Q_{1} \rightarrow Q_{0} \rightarrow N \rightarrow 0
$$

be a projective presentation of N. Applying the functor $\omega \otimes_{S}$ - to it yields an exact sequence

$$
\omega \otimes_{S} Q_{1} \rightarrow \omega \otimes_{S} Q_{0} \rightarrow \omega \otimes_{S} N \rightarrow 0
$$

Since $\omega \otimes_{S} Q_{1}, \omega \otimes_{S} Q_{0} \in \mathcal{P}_{\omega}(R)$, we have $M \in \operatorname{co} \Omega_{\mathcal{P}_{\omega}(R)}^{2}$.
We give an analogue of Lemma 3.2.
Lemma 3.3. The following statements are equivalent for any $i \geqslant 2$.
(1) $N \in \Omega_{\tau_{\omega}}^{2}(S)$.
(2) $N \in \Omega_{\mathcal{D}_{i}}^{2}(S)$.
(3) There is a module $M \in \operatorname{Mod} R$ such that $N \cong M_{*}$.

Proof. (1) \Rightarrow (2) It is obvious.
$(2) \Rightarrow(3)$ Let $N \in \Omega_{\mathcal{D}_{i}}^{2}(R)$ and let

$$
0 \rightarrow N \rightarrow H^{0} \xrightarrow{g} H^{1}
$$

be an exact sequence in $\operatorname{Mod} S$ with $H^{0}, H^{1} \in \mathcal{D}_{i} \subseteq \operatorname{ac} \mathcal{T}_{\omega}^{i}(S)$. As $\operatorname{ac} \mathcal{T}_{\omega}^{i}(S) \subseteq$ $\operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$, we have that $\mu_{H^{0}}$ and $\mu_{H^{1}}$ are isomorphisms. Then from the following commutative diagram with exact rows

we get that the induced homomorphism h is an isomorphism, and thus $N \cong$ $\left(\operatorname{Ker}\left(1_{\omega} \otimes g\right)\right)_{*}$.
(3) \Rightarrow (1) Suppose $N \cong M_{*}$ for some $M \in \operatorname{Mod} R$, and let

$$
0 \rightarrow M \rightarrow I^{0} \rightarrow I^{1}
$$

be an injective copresentation of M. Applying the functor $(-)_{*}$ to it yields an exact sequence

$$
0 \rightarrow M_{*} \rightarrow I_{*}^{0} \rightarrow I_{*}^{1}
$$

Since $I_{*}^{0}, I_{*}^{1} \in \mathcal{I}_{\omega}(S)$, we have $N \in \Omega_{\mathcal{I}_{\omega}(S)}^{2}$.
Proposition 3.4. The following statements are equivalent for any $i \geqslant 2$.
(1) $M_{*} \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$ for any $M \in \operatorname{Mod} R$.
(2) $\omega \otimes_{S} N \in \operatorname{c\mathcal {T}}_{\omega}^{2}(R)$ for any $N \in \operatorname{Mod} S$.
(3) $c \mathcal{T}_{\omega}^{2}(R)=\operatorname{co} \Omega_{\mathcal{C}_{i}}^{2}(R)$.
(4) $\operatorname{ac}^{2}{ }_{\omega}^{2}(S)=\Omega_{\mathcal{D}_{i}}^{2}(S)$.

Proof. (1) $\Rightarrow(4)$ Let $N \in \Omega_{\mathcal{D}_{i}}^{2}(S)$. Then by Lemma 3.3 and (1) there is a module $M \in \operatorname{Mod} R$ such that $N \cong M_{*} \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$, and so $\Omega_{\mathcal{D}_{i}}^{2}(S) \subseteq \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$. The inclusion $\operatorname{ac} \mathcal{T}_{\omega}^{2}(S) \subseteq \Omega_{\mathcal{D}_{i}}^{2}(S)$ follows from [18, Lemma 3.7(2)].
$(4) \Rightarrow(1)$ Let $M \in \operatorname{Mod} R$. Then by Lemma 3.3 and (4), we have $M_{*} \in \Omega_{\mathcal{D}_{i}}^{2}(S)=$ $\operatorname{ac}^{2}{ }_{\omega}^{2}(S)$.

Similarly, we get $(2) \Leftrightarrow(3)$ by Lemma 3.2 and [16, Lemma 3.6(2)].
$(1) \Leftrightarrow(2)$ It follows from [20, Lemma 4.18].
Proposition 3.5. For any $n \geqslant 1$, the following statements are equivalent.
(1) T -cograde $\omega_{\omega} \operatorname{Ext}_{R}^{k}(\omega, M) \geqslant k-1$ for any $M \in \operatorname{Mod} R$ and $1 \leqslant k \leqslant n$.
(2) T -cograde $\omega \operatorname{Ext}_{R}^{k}(\omega, M) \geqslant k-1$ for any $M \in \Omega_{\mathcal{C}_{n}}^{k}(R)$ and $1 \leqslant k \leqslant n$.
(3) $\mathrm{E}^{-c o g r a d e} \omega_{\omega} \operatorname{Tor}_{k}^{S}(\omega, N) \geqslant k-1$ for any $N \in \operatorname{Mod} S$ and $1 \leqslant k \leqslant n$.
(4) $\mathrm{E}_{\mathrm{-cograde}}^{\omega} \operatorname{Tor}_{k}^{S}(\omega, N) \geqslant k-1$ for any $N \in \operatorname{co}^{\mathcal{D}_{n}}{ }^{k}(S)$ and $1 \leqslant k \leqslant n$.
(5) $c \mathcal{T}_{\omega}^{k}(R)=\cos _{\mathcal{C}_{n}}^{k}(R)$ for any $1 \leqslant k \leqslant n$.
(6) $\operatorname{ac}^{\omega}{ }_{\omega}^{k}(S)=\Omega_{\mathcal{D}_{n}}^{k}(S)$ for any $1 \leqslant k \leqslant n$.

Proof. $(2) \Rightarrow(5)$ By [16, Proposition 3.7], it suffices to prove $\operatorname{co} \Omega_{\mathcal{C}_{n}}^{k}(R) \subseteq c \mathcal{T}_{\omega}^{k}(R)$ for any $1 \leqslant k \leqslant n$. We proceed by induction on n. The cases for $n=1$ follows from Lemma 3.1.

Now let $M \in \operatorname{co} \Omega_{\mathcal{C}_{n}}^{n}(R)$ with $n \geqslant 2$ and let

$$
\begin{equation*}
W_{n-1} \xrightarrow{f_{n-1}} \cdots \rightarrow W_{1} \xrightarrow{f_{1}} W_{0} \xrightarrow{f_{0}} M \rightarrow 0 \tag{3.1}
\end{equation*}
$$

be an exact sequence in $\operatorname{Mod} R$ with all W_{i} in \mathcal{C}_{n}. By the induction hypothesis, we have $\operatorname{Im} f_{1} \in \mathrm{c} \mathcal{T}_{\omega}^{n-1}(R)$ and there is an exact sequence

$$
\begin{equation*}
V_{n-1} \xrightarrow{g_{n-1}} \cdots \rightarrow V_{1} \xrightarrow{g_{1}} W_{0} \xrightarrow{f_{0}} M \rightarrow 0 \tag{3.2}
\end{equation*}
$$

in $\operatorname{Mod} R$ with all V_{i} in $\mathcal{P}_{\omega}(R)$ by [16, Proposition 3.7]. Applying the functor $(-)_{*}$ to (3.2) gives an exact sequence

$$
\begin{equation*}
0 \rightarrow\left(\operatorname{Im} g_{1}\right)_{*} \rightarrow W_{0 *} \xrightarrow{f_{0 *}} M_{*} \rightarrow \operatorname{Ext}_{R}^{n}\left(\omega, \operatorname{Ker} g_{n-1}\right) \rightarrow 0 \tag{3.3}
\end{equation*}
$$

Set $N:=\operatorname{Im}\left(f_{0 *}\right)$ and let $f_{0_{*}}:=\alpha \pi$ (where $\pi: W_{0 *} \rightarrow N$ and $\alpha: N \hookrightarrow M_{*}$) be the natural epic-monic decompositions of $f_{0 *}$. Then we have the following commutative diagram with exact rows

Diagram (3.1)
So we have

$$
\theta_{M}\left(1_{\omega} \otimes \alpha\right)\left(1_{\omega} \otimes \pi\right)=\theta_{M}\left(1_{\omega} \otimes f_{0_{*}}\right)=f_{0} \theta_{W_{0}}=g\left(1_{\omega} \otimes \pi\right) .
$$

Because $1_{\omega} \otimes \pi$ is epic, we have $\theta_{M} \cdot\left(1_{\omega} \otimes \alpha\right)=g$ and the following commutative diagram with exact rows

Diagram (3.2)
Since $\operatorname{Im} g_{1}=\operatorname{Im} f_{1} \in c \mathcal{T}_{\omega}^{n-1}(R)$, we have that $\theta_{\operatorname{Im} g_{1}}$ is an epimorphism. So g is an isomorphism by the snake lemma, and hence $1_{\omega} \otimes \alpha$ is a monomorphism. Since $\omega \otimes_{S} \operatorname{Ext}_{R}^{n}\left(\omega, \operatorname{Ker} g_{n-1}\right)=0$ by assumption, we see that θ_{M} is an isomorphism and $M \in \mathrm{c} \mathcal{T}_{\omega}^{2}(R)$ by the diagram (3.2). This shows that the assertion holds true for $n=2$.

If $n>2$, then $\theta_{\operatorname{Im} g_{1}}$ is an isomorphism as $\operatorname{Im} g_{1} \in c \mathcal{T}_{\omega}^{n-1}(R)$, we also have $\operatorname{Tor}_{1}^{S}\left(\omega, W_{0 *}\right)=0$ by [16, Corollary $\left.3.4(3)\right]$. So h is monic and $\operatorname{Tor}_{1}^{S}(\omega, N)=0$ by the diagram (3.1). Moreover, it is clear that $\operatorname{Tor}_{1 \leqslant k \leqslant n-3}^{S}\left(\omega,\left(\operatorname{Im} g_{1}\right)_{*}\right)=0$ by [16, Corollary $3.4(3)]$. Because T-cograde $\omega_{\omega} \operatorname{Ext}_{R}^{n}\left(\omega, \operatorname{Ker} f_{n-1}\right) \geqslant n-1$ by assumption,
applying the dimension shifting to (3.3) yields $\operatorname{Tor}_{1 \leqslant k \leqslant n-2}^{S}\left(\omega, M_{*}\right)=0$. Therefore $M \in \mathrm{c} \mathcal{T}_{\omega}^{n}(R)$ by [16, Corollary 3.4(3)] again.
(5) \Rightarrow (1) For any $1 \leqslant k \leqslant n$, since $c \mathcal{T}_{\omega}^{k}(R) \subseteq \cos _{\mathcal{P}_{\omega}}^{k}(R) \subseteq \cos _{\mathcal{C}_{n}}^{k}(R)$, we have $c \mathcal{T}_{\omega}^{k}(R)=\operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{k}(R)$ by (5), and hence $c \mathcal{T}_{\omega}^{k}(R)=\operatorname{co} \Omega_{\mathcal{B}}^{k}(R)$ by [20, Proposition 4.17]. Now (1) follows from [20, Theorem 4.19].

The implications $(1) \Rightarrow(2)$ and $(3) \Rightarrow(4)$ are obvious.
$(1) \Leftrightarrow(3)$ It follows from [20, Theorem 4.19].
The proofs of $(4) \Rightarrow(6)$ and $(6) \Rightarrow(2)$ are similar to that of $(2) \Rightarrow(5)$ and (5) \Rightarrow (1) respectively.

Lemma 3.6. For any $M \in \operatorname{Mod} R$, there are two exact sequences

$$
\begin{gathered}
0 \rightarrow \operatorname{Ext}_{R}^{1}(\omega, M) \rightarrow \operatorname{cTr}_{\omega} M \xrightarrow{\pi} H \rightarrow 0, \\
0 \rightarrow H \xrightarrow{\lambda}\left(\omega \otimes_{S} \operatorname{cTr}_{\omega} M\right)_{*} \rightarrow \operatorname{Ext}_{R}^{2}(\omega, M) \rightarrow 0
\end{gathered}
$$

in $\operatorname{Mod} S$ such that $\operatorname{Hom}_{S}\left(\pi, \omega^{+}\right)$is an isomorphism.
Proof. By [17, Corollary 6.8], there is an exact sequence

$$
0 \rightarrow \operatorname{Ext}_{R}^{1}(\omega, M) \rightarrow \operatorname{cTr}_{\omega} M \xrightarrow{\mu_{\mathrm{c} \operatorname{Tr}_{\omega}} M}\left(\omega \otimes_{S} \operatorname{cTr}_{\omega} M\right)_{*} \rightarrow \operatorname{Ext}_{R}^{2}(\omega, M) \rightarrow 0
$$

in $\operatorname{Mod} S$. Put $H:=\operatorname{Im} \mu_{\mathrm{c} \operatorname{Tr}_{\omega} M}$ and assume that $\mu_{\operatorname{cTr}_{\omega} M}=\lambda \pi$, where π : $\mathrm{cTr}_{\omega} M \rightarrow H$ is an epimorphism and $\lambda: H \rightarrow\left(\omega \otimes_{S} \operatorname{cTr}_{\omega} M\right)_{*}$ is a monomorphism. Then we have the following exact sequences

$$
\begin{gathered}
0 \rightarrow \operatorname{Ext}_{R}^{1}(\omega, M) \rightarrow \operatorname{cTr}_{\omega} M \xrightarrow{\pi} H \rightarrow 0, \\
0 \rightarrow H \xrightarrow{\lambda}\left(\omega \otimes_{S} \operatorname{cTr}_{\omega} M\right)_{*} \rightarrow \operatorname{Ext}_{R}^{2}(\omega, M) \rightarrow 0 .
\end{gathered}
$$

In view of $\left[17\right.$, Lemma 6.1(2)], $1_{\omega} \otimes \mu_{\mathrm{c} \operatorname{Tr}_{\omega} M}$ is a monomorphism, and so $1_{\omega} \otimes \pi$ is an isomorphism. It follows from the adjoint isomorphism theorem that $\operatorname{Hom}_{S}\left(\pi, \omega^{+}\right) \cong$ $\left(1_{\omega} \otimes \pi\right)^{+}$is also an isomorphism.

Lemma 3.7. The following statements are equivalent for any $i \geqslant 1$.
(1) $\operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$ is extension closed.
(2) T -cograde $\omega_{\omega} \operatorname{Ext}_{R}^{1}(\omega, M) \geqslant 1$ for any $M \in \Omega_{\mathcal{C}_{i}}^{2}(R)$.
(3) T -cograde $\omega \operatorname{Ext}_{R}^{1}(\omega, M) \geqslant 1$ for any $M \in \operatorname{Mod} R$.

Proof. (2) \Rightarrow (1) Let

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} S$ with $A, C \in \operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$. By [18, Proposition 3.2], $\operatorname{Ker} \mu_{B} \cong \operatorname{Ext}_{R}^{1}\left(\omega, \operatorname{acTr}_{\omega} B\right)$. Notice that $\operatorname{acTr}_{\omega} B \in \Omega_{\mathcal{C}_{i}}^{2}(R)$, so

$$
\omega \otimes_{S} \operatorname{Ext}_{R}^{1}\left(\omega, \operatorname{acTr}_{\omega} B\right)=0
$$

by (2), and hence $\omega \otimes_{S} \operatorname{Ker} \mu_{B}=0$. Moreover, since $\mu_{C} g=\left(1_{\omega} \otimes g\right)_{*} \mu_{B}$ and μ_{C} is a monomorphism, we get $\operatorname{Ker} \mu_{B} \subseteq \operatorname{Ker} g \cong A$. Note that $A \in \operatorname{ac}^{1}{ }_{\omega}(S)$ and

$$
\operatorname{Hom}_{S}\left(\operatorname{Ker} \mu_{B}, \omega^{+}\right) \cong\left(\omega \otimes_{S} \operatorname{Ker} \mu_{B}\right)^{+}=0
$$

It follows from [18, Lemma 3.7] and [13, Proposition 3.7] that $\operatorname{Hom}_{S}\left(\operatorname{Ker} \mu_{B}, A\right)=0$, which implies $\operatorname{Ker} \mu_{B}=0$, and thus $B \in \operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$.
$(1) \Rightarrow(3)$ By Lemma 3.6, there is an exact sequence

$$
0 \rightarrow \operatorname{Ext}_{R}^{1}(\omega, M) \rightarrow \operatorname{cTr}_{8} M \xrightarrow{\pi} H \rightarrow 0
$$

in $\operatorname{Mod} S$ such that $\operatorname{Hom}_{S}\left(\pi, \omega^{+}\right)$is an isomorphism. Then

$$
\operatorname{Ker} \operatorname{Ext}_{S}^{1}\left(\pi, \omega^{+}\right) \cong \operatorname{Hom}_{S}\left(\operatorname{Ext}_{R}^{1}(\omega, M), \omega^{+}\right) \cong\left(\omega \otimes_{S} \operatorname{Ext}_{R}^{1}(\omega, M)\right)^{+}
$$

Suppose

$$
\alpha: 0 \rightarrow \omega^{+} \rightarrow X \stackrel{f}{\rightarrow} H \rightarrow 0
$$

is an element in $\operatorname{Ker~}_{\operatorname{Ext}}^{S}{ }_{S}^{1}\left(\pi, \omega^{+}\right)$, that is, $\operatorname{Ext}_{S}^{1}\left(\pi, \omega^{+}\right)(\alpha)=0$. Then we have the following pull-back diagram with the first row splitting:

Diagram (3.3)
So there is a homomorphism $u^{\prime}: \operatorname{cTr}_{\omega} M \rightarrow Y$ such that $u u^{\prime}=1_{{ }_{c \operatorname{Tr}_{\omega} M}}$. Since $\pi u=f t$, we have $\pi=f t u^{\prime}$. Note that $\left(\omega \otimes_{S} \mathrm{cTr}_{\omega} M\right)_{*} \in \operatorname{ac}^{\mathcal{T}}{ }_{\omega}^{1}(S)$ by [17, Lemma 6.1(1)]. Thus $H \in \operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$ since H is a submodule of $\left(\omega \otimes_{S} \mathrm{cTr}_{\omega} M\right)_{*}$ by Lemma 3.6. So $X \in \operatorname{ac}_{\omega}^{1}(S)$ by (1), and hence there is a monomorphism $0 \rightarrow X \rightarrow U^{0}$ in $\operatorname{Mod} S$ with $U^{0} \in \mathcal{I}_{\omega}(S)=\operatorname{Prod} \omega^{+}$. As $\operatorname{Hom}_{S}\left(\pi, \omega^{+}\right)$is an isomorphism, we have that $\operatorname{Hom}_{S}\left(\pi, U^{0}\right)$, and hence $\operatorname{Hom}_{S}(\pi, X)$, is an isomorphism by [11, Lemma 2.1]. Then there is a homomorphism $f^{\prime}: H \rightarrow X$ such $f^{\prime} \pi=t u^{\prime}$, and so $\pi=f f^{\prime} \pi$. But π is an epimorphism, thus $f f^{\prime}=1_{H}$, which implies that α splits, and thus $\omega \otimes_{S} \operatorname{Ext}_{R}^{1}(\omega, M)=0$.
$(3) \Rightarrow(2)$ It is trivial.
Lemma 3.8. For any $N \in \operatorname{Mod} S$, the following statements are equivalent.
(1) $\omega \otimes_{S} N \in \mathrm{c} \mathcal{T}_{\omega}^{2}(R)$.
(2) $\omega \otimes_{S}$ Coker $\mu_{N}=0$.

Proof. By [17, Lemma 6.1(2)], we have $\theta_{\omega \otimes{ }_{S} N}\left(1_{\omega} \otimes \mu_{N}\right)=1_{\omega \otimes \otimes_{S} N}$. It follows that $\theta_{\omega \otimes_{S} N}$ is a split epimorphism and

$$
\operatorname{Ker} \theta_{\omega \otimes_{S} N} \cong \operatorname{Coker}\left(1_{\omega} \otimes \mu_{N}\right) \cong \omega \otimes_{S} \operatorname{Coker} \mu_{N}
$$

Now the assertion follows easily.
Lemma 3.9. If $\operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$ is extension closed, then $\omega \otimes_{S} N \in c \mathcal{T}_{\omega}^{2}(R)$ for any $N \in \operatorname{Mod} S$.

Proof. By the definition of adjoint cotranspose, there is an exact sequence

$$
0 \rightarrow \operatorname{acTr}_{\omega} N \rightarrow \omega \otimes_{S} F_{1} \rightarrow \omega \otimes_{S} F_{0} \rightarrow \omega \otimes_{S} N \rightarrow 0
$$

in $\operatorname{Mod} R$ with F_{0}, F_{1} flat. Let $K:=\operatorname{Im}\left(\omega \otimes_{S} F_{1} \rightarrow \omega \otimes_{S} F_{0}\right)$. We have

$$
\text { Coker } \mu_{N} \cong \operatorname{Ext}_{R}^{2}\left(\omega, \operatorname{acTr}_{\omega} N\right) \cong \operatorname{Ext}_{R}^{1}(\omega, K)
$$

by [18, Proposition 3.2]. By assumption and Lemma 3.7, we have $\omega \otimes_{S}$ Coker $\mu_{N}=$ 0 . Thus $\omega \otimes_{S} N \in c \mathcal{T}_{\omega}^{2}(R)$ by Lemma 3.8.

We are now in a position to prove the main result of this section.
Theorem 3.10. The following statements are equivalent for any $i \geqslant 1$.
(1) $\operatorname{ac}^{\mathcal{T}_{\omega}^{k}}(S)$ is extension closed for $k=1,2$.
(2) $\operatorname{Tor}_{k-1}^{S}\left(\omega, \operatorname{Ext}_{R}^{k}(\omega, M)\right)=0$ for any $M \in \Omega_{\mathcal{C}_{i}}^{2}(R)$ and $k=1,2$.
(3) T -cograde $\mathrm{\omega}_{\mathrm{Ext}}^{R} \operatorname{Ex}_{R}^{k}(\omega, M) \geqslant k$ for any $M \in \Omega_{\mathcal{C}_{i}}^{2}(R)$ and $k=1,2$.
(4) $\operatorname{Tor}_{k-1}^{S}\left(\omega, \operatorname{Ext}_{R}^{k}(\omega, M)\right)=0$ for any $M \in \operatorname{Mod} R$ and $k=1,2$.
(5) T-cograde $\omega_{\omega} \operatorname{Ext}_{R}^{k}(\omega, M) \geqslant k$ for any $M \in \operatorname{Mod} R$ and $k=1,2$.

Proof. (1) \Rightarrow (5) By Lemma 3.6, there are two exact sequences

$$
\begin{gather*}
0 \rightarrow \operatorname{Ext}_{R}^{1}(\omega, M) \rightarrow \operatorname{cTr}_{\omega} M \xrightarrow{\pi} H \rightarrow 0 \tag{3.4}\\
0 \rightarrow H \xrightarrow{\lambda}\left(\omega \otimes_{S} \operatorname{cTr}_{\omega} M\right)_{*} \xrightarrow{\beta} \operatorname{Ext}_{R}^{2}(\omega, M) \rightarrow 0 \tag{3.5}
\end{gather*}
$$

in $\operatorname{Mod} S$ such that $\operatorname{Hom}_{S}\left(\pi, \omega^{+}\right)$is an isomorphism and $\lambda \pi=\mu_{\operatorname{cTr}_{\omega} M}$. Since $\operatorname{Hom}_{S}\left(\pi, \omega^{+}\right) \cong(\omega \otimes \pi)^{+}$by the adjoint isomorphism theorem, it follows that $(\omega \otimes \pi)^{+}$and $\omega \otimes \pi$ are isomorphisms.

By Lemma 3.7, it is easy to see that T-cograde ${ }_{\omega} \operatorname{Ext}_{R}^{1}(\omega, M) \geqslant 1$ and $\omega \otimes_{S}$ $\operatorname{Ext}_{R}^{1}(\omega, M)=0$. Then by the adjoint isomorphism theorem, we have that

$$
\operatorname{Hom}_{S}\left(\operatorname{Ext}_{R}^{1}(\omega, M), \omega^{+}\right) \cong\left(\omega \otimes_{S} \operatorname{Ext}_{R}^{1}(\omega, M)\right)^{+}=0
$$

and $\operatorname{Ext}_{S}^{1}\left(\pi, \omega^{+}\right)$is a monomorphism. We know from [17, Lemma 6.1(2)] that $\operatorname{Hom}_{S}\left(\mu_{\mathrm{c} \operatorname{Tr}_{\omega} M}, \omega^{+}\right)$is an epimorphism. Then the fact that

$$
\operatorname{Hom}_{S}\left(\mu_{\operatorname{cTr}_{\omega} M}, \omega^{+}\right)=\operatorname{Hom}_{S}\left(\pi, \omega^{+}\right) \operatorname{Hom}_{S}\left(\lambda, \omega^{+}\right)
$$

in which $\operatorname{Hom}_{S}\left(\pi, \omega^{+}\right)$is an isomorphism (by Lemma 3.6) implies that $\operatorname{Hom}_{S}\left(\lambda, \omega^{+}\right)$ is also an epimorphism. On the other hand, note that

$$
\operatorname{Ext}_{S}^{1}\left(\mu_{\operatorname{cTr}_{\omega} M}, \omega^{+}\right)=\operatorname{Ext}_{S}^{1}\left(\pi, \omega^{+}\right) \operatorname{Ext}_{S}^{1}\left(\lambda, \omega^{+}\right)
$$

and $\operatorname{Ext}_{S}^{1}\left(\pi, \omega^{+}\right)$is a monomorphism by the above argument. Applying the functor $\operatorname{Hom}_{S}\left(-, \omega^{+}\right)$to (3.5) gives

$$
\operatorname{Ker} \operatorname{Ext}_{S}^{1}\left(\mu_{\operatorname{cTr}_{\omega} M}, \omega^{+}\right) \cong \operatorname{Ker}_{\operatorname{Ext}}^{S}{ }_{S}^{1}\left(\lambda, \omega^{+}\right) \cong \operatorname{Ext}_{S}^{1}\left(\operatorname{Ext}_{R}^{2}(\omega, M), \omega^{+}\right)
$$

Let

$$
\alpha: 0 \rightarrow \omega^{+} \rightarrow X \xrightarrow{f}\left(\omega \otimes_{S} \operatorname{cTr}_{\omega} M\right)_{*} \rightarrow 0
$$

be an element in $\operatorname{Ker} \operatorname{Ext}_{S}^{1}\left(\mu_{\mathrm{cTr}_{\omega} M}, \omega^{+}\right)$, that is, $\operatorname{Ext}_{S}^{1}\left(\mu_{\operatorname{cTr}_{\omega} M}, \omega^{+}\right)(\alpha)=0$. Then we have the following pull-back diagram with the first row splitting:

So there is a homomorphism $u^{\prime}: \operatorname{cTr}_{\omega} M \rightarrow Y$ such that $u u^{\prime}=1_{\operatorname{cTr}_{\omega} M}$. Since $\mu_{\operatorname{cTr}_{\omega} M} u=f t$, we have

$$
\mu_{\mathrm{cTr}_{\omega} M}=f t u^{\prime}
$$

By Lemma 3.9, we have $\omega \otimes_{S} \operatorname{cTr}_{\omega} M \in \mathrm{c} \mathcal{T}_{\omega}^{2}(R)$. It follows from [19, Proposition 6.4] that $\left(\omega \otimes_{S} \operatorname{cTr}_{\omega} M\right)_{*} \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$. Since $\operatorname{ac}^{\omega}{ }_{\omega}^{2}(S)$ is extension closed by (1), we have $X \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$. As $\mu_{X} t u^{\prime}=\left(1_{\omega} \otimes t u^{\prime}\right)_{*} \mu_{\mathrm{cTr}}^{\omega}$ M , we have

$$
\begin{aligned}
& \mu_{\mathrm{cTr}_{\omega} M}=f t u^{\prime}=f \mu_{X}^{-1}\left(1_{\omega} \otimes t u^{\prime}\right)_{*} \mu_{\mathrm{cTr}}^{\omega} \text { } M \text { and } \\
& \left(1_{\left(\omega \otimes \otimes_{S} \operatorname{Cr} \operatorname{Tr}_{\omega} M\right)_{*}}-f \mu_{X}^{-1}\left(1_{\omega} \otimes t u^{\prime}\right)_{*}\right) \mu_{\mathrm{c} \operatorname{Tr}_{\omega} M}=0,
\end{aligned}
$$

and hence

$$
\begin{gathered}
\left.\left(1_{(\omega \otimes S} \mathrm{cTr} r_{\omega} M\right)_{*}-f \mu_{X}^{-1}\left(1_{\omega} \otimes t u^{\prime}\right)_{*}\right) \lambda=0 . \\
10
\end{gathered}
$$

By the universal property of cokernels, there is a homomorphism $g: \operatorname{Ext}_{R}^{2}(\omega, M) \rightarrow$ $\left(\omega \otimes_{S} \mathrm{cTr}_{\omega} M\right)_{*}$ such that

$$
1_{\left(\omega \otimes_{S} c \operatorname{Tr}_{\omega} M\right)_{*}}-f \mu_{X}^{-1}\left(1_{\omega} \otimes t u^{\prime}\right)_{*}=g \beta .
$$

In addition, Since $\operatorname{Ext}_{R}^{2}(\omega, M) \cong \operatorname{Coker} \mu_{\text {cTr }}^{\omega}$ M , we have

$$
\omega \otimes_{S} \operatorname{Ext}_{R}^{2}(\omega, M)=0
$$

by Lemma 3.8. It follows from the adjoint isomorphism theorem that

$$
\operatorname{Hom}_{S}\left(\operatorname{Ext}_{R}^{2}(\omega, M), \omega^{+}\right) \cong\left(\omega \otimes_{S} \operatorname{Ext}_{R}^{2}(\omega, M)\right)^{+}=0
$$

Moreover, since $\left(\omega \otimes_{S} c \operatorname{Tr}_{\omega} M\right)_{*} \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$, we have that $\left(\omega \otimes_{S} c \operatorname{Tr}_{\omega} M\right)_{*}$ is isomorphic to a submodule of some module in $\operatorname{Prod} \omega^{+}$by [18, Lemma 3.7]. Then

$$
\operatorname{Hom}_{S}\left(\operatorname{Ext}_{R}^{2}(\omega, M),\left(\omega \otimes_{S} \operatorname{cTr}_{\omega} M\right)_{*}\right)=0
$$

So $g=0$ and

$$
1_{\left(\omega \otimes \otimes_{S} \mathrm{cTr}\right.}^{\omega M)_{*}} \mid=f \mu_{X}^{-1}\left(1_{\omega} \otimes t u^{\prime}\right)_{*}
$$

which means $\alpha=0$. It follows from $\left[5\right.$, Theorem 3.2.1] that $\operatorname{Tor}_{1}^{S}\left(\omega, \operatorname{Ext}_{R}^{2}(\omega, M)\right)=$ 0 , and thus T-cograde $\omega_{\omega} \operatorname{Ext}_{R}^{2}(\omega, M) \geqslant 2$.

The implications $(3) \Rightarrow(2),(4) \Rightarrow(2)$ and $(5) \Rightarrow(3)+(4)$ are trivial.
(2) \Rightarrow (1) Let

$$
0 \rightarrow A \rightarrow B \xrightarrow{f} C \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} S$ with $A, C \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$. Then $B \in \operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$ by (2) and Lemma 3.7. It follows from [18, Proposition 3.2] that

$$
\text { Coker } \mu_{B} \cong \operatorname{Ext}_{R}^{2}\left(\omega, \operatorname{acTr}_{\omega} B\right)
$$

Consider the following diagram with exact rows

where $A^{\prime} \cong \operatorname{Ker}\left(1_{\omega} \otimes f\right)_{*}$ and h is an induced homomorphism. By the snake lemma, we get an exact sequence

$$
\begin{equation*}
0 \rightarrow A \xrightarrow{h} A^{\prime} \rightarrow \operatorname{Ext}_{R}^{2}\left(\omega, \operatorname{acTr}_{\omega} B\right) \rightarrow 0 . \tag{3.6}
\end{equation*}
$$

Since $\operatorname{acTr}_{\omega} B \in \Omega_{\mathcal{C}_{i}}^{2}(R)$, we have

$$
\omega \otimes_{S} \text { Coker } \mu_{B} \cong \omega \otimes_{S} \operatorname{Ext}_{R}^{2}\left(\omega, \operatorname{acTr}_{\omega} B\right)=0
$$

by Lemmas 3.8 and 3.9. Also we have $\operatorname{Tor}_{1}^{S}\left(\omega, \operatorname{Ext}_{R}^{2}\left(\omega, \operatorname{acTr}_{\omega} B\right)\right)=0$ by (2). Applying the functor $\omega \otimes$ - to (3.6) yields that $1_{\omega} \otimes h$ is an isomorphism. Since A^{\prime} is a submodule of $\left(\omega \otimes_{S} B\right)_{*}$, we have $A^{\prime} \in \operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$, and thus $\mu_{A^{\prime}}$ is a monomorphism. On the other hand, since μ_{A} is an isomorphism and

$$
\left(1_{\omega} \otimes h\right)_{*} \mu_{A}=\mu_{A^{\prime}} h
$$

we get that $\mu_{A^{\prime}}$ is an epimorphism, and hence an isomorphism, which implies that h is also an isomorphism. Thus μ_{B} is an isomorphism and $B \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$.

4. Strong Ext-cograde and extension closure

In this section, we characterize the extension closure of the class ac $\mathcal{T}_{\omega}^{k}(S)$ for any $1 \leqslant k \leqslant n$ in terms of the strong cograde of $\operatorname{Tor}_{k+1}^{S}(\omega, C)$ for any $C \in \cos \Omega_{\mathcal{D}_{i}}^{k}(S)$ and $1 \leqslant k \leqslant n$.

Let

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} R$. Then one gets two exact sequences

$$
\begin{align*}
0 & \rightarrow \operatorname{Im}\left(1_{\omega} \otimes f\right) \tag{4.1}
\end{align*} \rightarrow \omega \otimes_{S} B \xrightarrow{1_{\omega} \otimes g} \omega \otimes_{S} C \rightarrow 0, ~=~\left(\operatorname{Ker}_{\omega} \otimes f\right) \rightarrow \omega \otimes_{S} A \rightarrow \operatorname{Im}\left(1_{\omega} \otimes f\right) \rightarrow 0 .
$$

Applying the functor $(-)_{*}$ to (4.1) yields the following diagram with exact rows

Diagram (4.1)
where α is an induced homomorphism. It is easy to check that the following diagram

Diagram (4.2)
is commutative with the bottom row exact.
The following two lemmas are useful in this section.
Lemma 4.1. The following statements are equivalent for any $C \in \operatorname{ac}^{1}{ }_{\omega}^{1}(S)$.
(1) s.E-cograde $\omega_{\omega} \operatorname{Tor}_{1}^{S}(\omega, C) \geqslant 1$.
(2) If

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

is an exact sequence in $\operatorname{Mod} R$ with $A \in \operatorname{ac}^{1}{ }_{\omega}^{1}(S)$, then $B \in \operatorname{ac}_{\omega}^{1}(S)$.
Proof. (1) \Rightarrow (2) Since $\operatorname{Ker}\left(1_{\omega} \otimes f\right)$ is a quotient module of $\operatorname{Tor}_{1}^{S}(\omega, C)$, we have $\left(\operatorname{Ker}\left(1_{\omega} \otimes f\right)\right)_{*}=0$ by (1). Then it follows from the diagram (4.2) that α is a monomorphism. Applying the snake lemma to diagram (4.1) gives that μ_{B} is also a monomorphism, and so $B \in \operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$.
$(2) \Rightarrow(1)$ Let L be a quotient module of $\operatorname{Tor}_{1}^{S}(\omega, C)$. Then L^{+}is a submodule of $\operatorname{Ext}_{S}^{1}\left(C, \omega^{+}\right)\left(\cong\left[\operatorname{Tor}_{1}^{S}(\omega, C)\right]^{+}\right)$. Since $\omega \in \mathcal{B}_{\omega}\left(S^{o p}\right)$, for any cardinal ζ, we have $\omega^{+\varsigma} \in \mathcal{A}_{\omega}(S)$ by [12, Theorem 3.3]. Thus

$$
\operatorname{Ext}_{S}^{1}\left(\omega^{+\zeta}, \omega^{+}\right) \cong\left[\operatorname{Tor}_{S}^{1}\left(\omega, \omega^{+^{\zeta}}\right)\right]^{+}=0
$$

It follows from the proof of [21, Lemma 6.9] or the dual result of [22, Lemma 3.4] that there is a cardinal λ such that there is an exact sequence

$$
\begin{equation*}
0 \rightarrow \omega^{+^{\lambda}} \xrightarrow{\xrightarrow{f}} D \rightarrow C \rightarrow 0 \tag{4.3}
\end{equation*}
$$

in $\operatorname{Mod} R$ with Coker $\operatorname{Hom}_{S}\left(f, \omega^{+}\right) \cong L^{+}$. Then we get the following commutative diagram with the top and bottom rows exact:

Diagram (4.3)
Since $\omega^{+^{\lambda}} \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$, we have $D \in \operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$ by (2). It follows that g is an epimorphism and $L^{+} \otimes_{R} \omega=0$. Since ω admits a degreewise finite projective resolution, we have

$$
\begin{equation*}
L^{+} \otimes_{R} \omega \cong \operatorname{Hom}_{R}(\omega, L)^{+}=0 \tag{4.4}
\end{equation*}
$$

by [5, Theorem 3.2.11]. Thus $\operatorname{Hom}_{R}(\omega, L)=0$ and s.E-cograde $\operatorname{Tor}_{1}^{S}(\omega, C) \geqslant$ 1.

Lemma 4.2. The following statements are equivalent for any $C \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$.
(1) s.E-cograde ${ }_{\omega} \operatorname{Tor}_{1}^{S}(\omega, C) \geqslant 2$.
(2) If

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

is an exact sequence in $\operatorname{Mod} R$ with $A \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$, then $B \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$.
Proof. (1) \Rightarrow (2) Since $\operatorname{Ker}\left(1_{\omega} \otimes f\right)$ is a quotient module of $\operatorname{Tor}_{1}^{S}(\omega, C)$, we have

$$
\left[\operatorname{Ker}\left(1_{\omega} \otimes f\right)\right]_{*}=0=\operatorname{Ext}_{R}^{1}\left(\omega, \operatorname{Ker}\left(1_{\omega} \otimes f\right)\right)
$$

by (1). Since $A \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$ by assumption, from the diagram (4.2) we know that α is an isomorphism. Notice that $C \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$, so $B \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$ by the diagram (4.1).
$(2) \Rightarrow(1)$ By [12, Theorem 3.3], we have that $\omega^{+^{\lambda}} \in \mathcal{A}_{\omega}(S)$ with λ same as that in the proof of $(2) \Rightarrow(1)$ in Lemma 4.1. Then the middle term D in the exact sequence (4.3) is in $\operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$ by (2). It follows from the diagram (4.3) that $L^{+} \otimes_{R} \omega=0$. Thus

$$
\operatorname{Hom}_{R}(\omega, L)=0
$$

by the exact sequence (4.4).
Applying the functor $\operatorname{Hom}_{S}\left(-, \omega^{+}\right)$to the exact sequence (4.3) gives an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Hom}_{S}\left(C, \omega^{+}\right) \xrightarrow{\delta} \operatorname{Hom}_{S}\left(D, \omega^{+}\right) \xrightarrow{\theta} \operatorname{Hom}_{S}\left(\omega^{+^{\lambda}}, \omega^{+}\right) \rightarrow L^{+} \rightarrow 0 \tag{4.5}
\end{equation*}
$$

in $\operatorname{Mod} R^{o p}$. Then we get the following commutative diagram with exact rows

where h is an induced homomorphism. As $C, D \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$, we have that both $\left(\mu_{C}\right)^{+}$and $\left(\mu_{D}\right)^{+}$are isomorphisms, and so h is also an isomorphism. On the other hand, from the exact sequence (4.5) we get the following commutative diagram with the top row exact:

Diagram (4.5)
Because both h and $\left(\mu_{\omega^{+\lambda}}\right)^{+}$are isomorphisms, we have $\operatorname{Tor}_{1}^{S}\left(L^{+}, \omega\right)=0$, and thus $\operatorname{Ext}_{R}^{1}(\omega, L)=0$. The proof is finished.
Theorem 4.3. The following statements are equivalent for any $C \in \operatorname{ac} \mathcal{T}_{\omega}^{n}(S)$ and $n \geqslant 1$.
(1) s.E-cograde $\omega_{\omega} \operatorname{Tor}_{1}^{S}(\omega, C) \geqslant n$.
(2) If

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

is an exact sequence in $\operatorname{Mod} S$ with $A \in \operatorname{ac} \mathcal{T}_{\omega}^{n}(S)$, then $B \in \operatorname{ac} \mathcal{T}_{\omega}^{n}(S)$.
Proof. The cases for $n=1$ and $n=2$ follow from Lemmas 4.1 and 4.2 respectively. Now suppose $n \geqslant 3$,
(1) \Rightarrow (2) By Lemma 4.2, we have $B \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$. Since $C \in \operatorname{ac} \mathcal{T}_{\omega}^{n}(S)$, we have $\operatorname{Ext}_{R}^{i}\left(\omega, \omega \otimes_{S} C\right)=0$ for any $1 \leqslant i \leqslant n-2$ by [18, Corollary 3.3(3)]. On the other hand, since $\operatorname{Ker}\left(1_{\omega} \otimes f\right)$ is a quotient module of $\operatorname{Tor}_{1}^{S}(\omega, C)$, we have $\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Ker}\left(1_{\omega} \otimes f\right)\right)=0$ for any $0 \leqslant i \leqslant n-1$ by (1). Then it is induced from the exact sequence (4.2) that $\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Im}\left(1_{\omega} \otimes f\right)\right)=0$ for any $1 \leqslant i \leqslant n-2$. Thus it follows from the exact sequence (4.1) that $\operatorname{Ext}_{R}^{i}\left(\omega, \omega \otimes_{S} B\right)=0$ for any $1 \leqslant i \leqslant n-2$, and so $B \in \operatorname{ac} \mathcal{T}_{\omega}^{n}(S)$.
$(2) \Rightarrow$ (1) It follows from the exact sequence (4.4) that there are two exact sequences

$$
\begin{aligned}
0 \rightarrow & \operatorname{Hom}_{S}\left(C, \omega^{+}\right) \xrightarrow{\delta} \operatorname{Hom}_{S}\left(D, \omega^{+}\right) \rightarrow \operatorname{Im} \theta \rightarrow 0 \\
& 0 \rightarrow \operatorname{Im} \theta \rightarrow \operatorname{Hom}_{S}\left({\left.\omega^{+^{\lambda}}, \omega^{+}\right) \rightarrow L^{+} \rightarrow 0}^{\text {a }}\right.
\end{aligned}
$$

By (2), we have $D \in \operatorname{ac} \mathcal{T}_{\omega}^{n}(S)$. From the proof of Lemma 4.2, we know that $\delta \otimes_{R} 1_{\omega}$ is a monomorphism and

$$
\operatorname{Tor}_{1}^{S}\left(L^{+}, \omega\right)=0=L^{+} \otimes_{R} \omega
$$

Moreover, it is easy to verify that $\operatorname{Tor}_{2 \leqslant i \leqslant n-1}^{S}\left(L^{+}, \omega\right)=0$. Since

$$
\left[\operatorname{Ext}_{R}^{i}(\omega, L)\right]^{+} \cong \operatorname{Tor}_{i}^{S}\left(L^{+}, \omega\right)
$$

for any $i \geqslant 0$ by [5, Theorem 3.2.1], it follows that $\left[\operatorname{Ext}_{R}^{0 \leqslant i \leqslant n-1}(\omega, L)\right]^{+}=0$, and hence $\operatorname{Ext}_{R}^{0 \leqslant i \leqslant n-1}(\omega, L)=0$. The proof is finished.
Proposition 4.4. Suppose $n \geqslant 1$ and $\mathcal{D}_{n} \subseteq \omega_{S}{ }^{\top}$. Then the following assertions hold.
(1) If $\Omega_{\mathcal{D}_{n}}^{k}(S)$ is extension closed for any $1 \leqslant k<n$, then $\operatorname{ac} \mathcal{T}_{\omega}^{k}(S)=\Omega_{\mathcal{D}_{n}}^{k}(S)$ for any $1 \leqslant k \leqslant n$, and hence $\operatorname{Add} \Omega_{\mathcal{D}_{n}}^{k}(S)=\Omega_{\mathcal{D}_{n}}^{k}(S)$ for any $1 \leqslant k \leqslant n$.
(2) If $\operatorname{Add} \Omega_{\mathcal{D}_{n}}^{k}(S)$ is extension closed for any $1 \leqslant k \leqslant n$, then $\operatorname{Add} \Omega_{\mathcal{D}_{n}}^{k}(S)=$ $\Omega_{\mathcal{D}_{n}}^{k}(S)$ for any $1 \leqslant k \leqslant n$.
Proof. (1) We proceed by induction on n. When $n=1$, the assertion follows from Lemma 3.1.

Now suppose $n \geqslant 2$ and $\operatorname{ac} \mathcal{T}_{\omega}^{k}(S)=\Omega_{\mathcal{D}_{n}}^{k}(S)$ for any $1 \leqslant k \leqslant n-1$. Let $N \in \operatorname{co} \Omega_{\mathcal{D}_{n}}^{n}(S)$ and let

$$
A_{n-1} \rightarrow \cdots \rightarrow A_{0} \rightarrow N \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} S$ with all A_{j} in \mathcal{D}_{n}. Set $L:=\operatorname{Im}\left(A_{n-1} \rightarrow A_{n-2}\right)$. Then $L \in \Omega_{\mathcal{D}_{n}}^{n-1}(S)=\operatorname{ac} \mathcal{T}_{\omega}^{n-1}(S)$. By Theorem 4.3, we have

$$
\text { s.E-cograde } \omega \operatorname{Tor}_{n}^{S}(\omega, N)=\text { s.E-cograde }{ }_{\omega} \operatorname{Tor}_{1}^{S}(\omega, L) \geqslant n-1
$$

Then $\operatorname{ac} \mathcal{T}_{\omega}^{k}(S)=\Omega_{\mathcal{D}_{n}}^{k}(S)$ for any $1 \leqslant k \leqslant n$ by Proposition 3.5. Because $\operatorname{ac} \mathcal{T}_{\omega}^{k}(S)$ is closed under direct sums and direct summands for any $k \geqslant 1$, we have $\operatorname{Add} \Omega_{\mathcal{D}_{n}}^{k}(S)=$ $\Omega_{\mathcal{D}_{n}}^{k}(S)$ for any $1 \leqslant k \leqslant n$.
(2) We proceed by induction on n. By Lemma 3.1, we have $\Omega_{\mathcal{D}_{n}}^{1}(S)=\operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$. Since $\operatorname{Add} \operatorname{ac}^{1}{ }_{\omega}^{1}(S)=\operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$, the case for $n=1$ follows. Let $n \geqslant 2$. By the induction hypothesis, we have that $\operatorname{Add} \Omega_{\mathcal{D}_{n}}^{k}(S)=\Omega_{\mathcal{D}_{n}}^{k}(S)$ is extension closed for any $1 \leqslant k<n$, it follows from (1) that ac $\mathcal{T}_{\omega}^{n^{n}}(S)=\Omega_{\mathcal{D}_{n}}^{n}(S)$. Thus $\Omega_{\mathcal{D}_{n}}^{n}(S)$ is closed under direct sums and direct summands and $\operatorname{Add} \Omega_{\mathcal{D}_{n}}^{n}(S)=\Omega_{\mathcal{D}_{n}}^{n}(S)$.

Theorem 4.5. Suppose $n \geqslant 1$ and $\mathcal{D}_{n} \subseteq \omega_{S}{ }^{\top}$. Then the following statements are equivalent.

(2) $\Omega_{\mathcal{D}_{n}}^{k}(S)$ is extension closed for any $1 \leqslant k \leqslant n$.
(3) $\Omega_{\mathcal{D}_{n}}^{k}(S)$ is extension closed and $\operatorname{ac} \mathcal{T}_{\omega}^{k}(S)=\Omega_{\mathcal{D}_{n}}^{k}(S)$ for any $1 \leqslant k \leqslant n$.
(4) $\operatorname{ac}^{\mathcal{T}}{ }_{\omega}^{k}(S)$ is extension closed for any $1 \leqslant k \leqslant n$.
(5) $\operatorname{Add} \Omega_{\mathcal{D}_{n}}^{k}(S)$ is extension closed for any $1 \leqslant k \leqslant n$.

Proof. (1) \Rightarrow (2) By Proposition 3.5, we have $\operatorname{ac} \mathcal{T}_{\omega}^{k}(S)=\Omega_{\mathcal{D}_{n}}^{k}(S)$ for any $1 \leqslant k \leqslant$ n. Let $N \in \operatorname{ac} \mathcal{T}_{\omega}^{k}(S)$. Then there is an exact sequence

$$
0 \rightarrow N \rightarrow U_{0} \rightarrow U_{1} \rightarrow \cdots \rightarrow U_{k-1} \rightarrow L \rightarrow 0
$$

in $\operatorname{Mod} S$ with all U_{i} in \mathcal{D}_{n} by [18, Proposition 3.8]. Notice that $L \in \operatorname{co} \Omega_{\mathcal{D}_{n}}^{k}(S)$, so

$$
\text { s.E-cograde } \operatorname{Tor}_{1}^{S}(\omega, N)=\text { s.E-cograde } \operatorname{Tor}_{k+1}^{S}(\omega, L) \geqslant k .
$$

It follows from Theorem 4.3 that $\Omega_{\mathcal{D}_{n}}^{k}(S)$ is extension closed for any $1 \leqslant k \leqslant n$.
$(5) \Leftrightarrow(2) \Rightarrow(3)$ It follows from Proposition 4.4.
$(3) \Rightarrow(4)$ It is obvious.
$(4) \Rightarrow(1)$ We proceed by induction on n. Let $N \in \operatorname{co} \Omega_{\mathcal{D}_{n}}^{1}(S)$ and let

$$
0 \rightarrow L \rightarrow D \rightarrow N \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} S$ with $D \in \mathcal{D}_{n}$. By Lemma 3.1, we have $L \in \operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$. Thus

$$
\text { s.E-cograde } \omega \operatorname{Tor}_{2}^{S}(\omega, N)=\text { s.E-cograde }{ }_{\omega} \operatorname{Tor}_{1}^{S}(\omega, L) \geqslant 1
$$

by Theorem 4.3. The case for $n=1$ follows.
Suppose $n \geqslant 2$. By the induction hypothesis, we have s.E-cograde $\omega_{\omega} \operatorname{Tor}_{k+1}^{S}(\omega, N) \geqslant$ k for any $N \in \operatorname{co} \Omega_{\mathcal{D}_{n}}^{k}(S)$ and $1 \leqslant k \leqslant n-1$. From Proposition 3.5, we know that $\operatorname{ac} \mathcal{T}_{\omega}^{k}(S)=\Omega_{\mathcal{D}_{n}}^{k}(S)$ for any $1 \leqslant k \leqslant n$. Now let $N \in \operatorname{co}_{\mathcal{D}_{n}}^{n}(S)$ and let

$$
0 \rightarrow L \rightarrow D_{0} \rightarrow D_{1} \rightarrow \cdots \rightarrow D_{n-1} \rightarrow N \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} S$ with all D_{i} in \mathcal{D}_{n}. Then $L \in \operatorname{ac} \mathcal{T}_{\omega}^{n}(S)$, and hence

$$
\text { s.E-cograde }{ }_{\omega} \operatorname{Tor}_{n+1}^{S}(\omega, N)=\text { s.E-cograde }{ }_{\omega} \operatorname{Tor}_{1}^{S}(\omega, L) \geqslant n
$$

by Theorem 4.3.
Since $\mathcal{A}_{\omega}(S)$ contains all projective left S-modules by [8, Lemma 4.1], any left S-module is in $\operatorname{co} \Omega_{\mathcal{A}}^{k}(S)$ for any $k \geqslant 1$. Moreover, we have $\mathcal{A}_{\omega}(S)=\operatorname{ac} \mathcal{T}(S) \cap \omega_{S}{ }^{\top}$ by [18, Theorem 3.11].
Theorem 4.6. The following statements are equivalent.
(1) s.E-cograde $\omega_{\omega} \operatorname{Tor}_{k+1}^{S}(\omega, N) \geqslant k$ for any $N \in \operatorname{Mod} S$ and $1 \leqslant k \leqslant n$.
(2) T -cograde $\omega_{\omega} \operatorname{Ext}_{R}^{k}(\omega, M) \geqslant k$ for any $M \in \operatorname{Mod} R$ for any $1 \leqslant k \leqslant n$.
(3) $\Omega_{\mathcal{A}}^{k}(S)$ is extension closed for any $1 \leqslant k \leqslant n$.
(4) $\Omega_{\mathcal{A}}^{k}(S)$ is extension closed and $\operatorname{ac}^{\mathcal{T}}{ }_{\omega}^{k}(S)=\Omega_{\mathcal{A}}^{k}(S)$ for any $1 \leqslant k \leqslant n$.
(5) $\operatorname{ac} \mathcal{T}_{\omega}^{k}(S)$ is extension closed for any $1 \leqslant k \leqslant n$.
(6) $\operatorname{Add} \Omega_{\mathcal{A}}^{k}(S)$ is extension closed for any $1 \leqslant k \leqslant n$.

Proof. By [20, Proposition 4.12], we have (1) $\Leftrightarrow(2)$. The other implications follow from Theorem 4.5 by replacing \mathcal{D}_{n} with $\mathcal{A}_{\omega}(S)$.

Recall from [14] that a ring R is called semiregular if $R / J(R)$ is von Neumann regular and idempotents can be lifted modulo $J(R)$, where $J(R)$ is the Jacobson radical of R. The class of semiregular rings includes: (i) von Neumann regular rings; (ii) semiperfect rings; (iii) left cotorsion rings; and (iv) right cotorsion rings. See [7] for the definitions of left cotorsion rings and right cotorsion rings.
Corollary 4.7. Let R be semiregular and $n \geqslant 1$. Then the following statements are equivalent.
(1) s.E-cograde $\omega \operatorname{Tor}_{k+1}^{S}(\omega, N) \geqslant k$ for any $N \in \operatorname{Mod} S$ and $1 \leqslant k \leqslant n$.
(2) s.T-cograde $\omega_{\omega} \operatorname{Ext}_{S^{o p}}^{k+1}\left(\omega, N^{\prime}\right) \geqslant k$ for any $N^{\prime} \in \operatorname{Mod} S^{o p}$ and $1 \leqslant k \leqslant n$.
(3) $c \mathcal{T}_{\omega}^{k}\left(S^{o p}\right)$ is extension closed for any $1 \leqslant k \leqslant n$.
(4) $\operatorname{ac} \mathcal{T}_{\omega}^{k}(S)$ is extension closed for any $1 \leqslant k \leqslant n$.

Proof. By the dual proof of Theorem 4.6, we get (2) $\Leftrightarrow(3)$. The assertions (1) $\Leftrightarrow(2)$ and $(1) \Leftrightarrow(4)$ follow from from $[20$, Theorem 4.14$]$ and Theorem 4.6 respectively.

Recall that an artin algebra R is called right quasi n-Gorenstein if the projective dimension of the i-term in a minimal injective resolution of R_{R} is at most i for any $1 \leqslant i \leqslant n([9])$. Let D be the ordinary duality between $\bmod R$ and $\bmod R^{o p}$. Then $D(R)$ is a semidualizing (R, R)-bimodule. It is induced from [20, Example 4.20] that R is right quasi n-Gorenstein if and only if s.E-cograde $\omega_{\omega} \operatorname{Tor}_{i+1}^{R}(D(R), N) \geqslant i$ for any $N \in \operatorname{Mod} R$ and $1 \leqslant i \leqslant n$.

Corollary 4.8. Let R be an artin algebra and $n \geqslant 1$. Then the following statements are equivalent.
(1) R is right quasi n-Gorenstein.
(2) $c \mathcal{T}_{D(R)}^{k}\left(R^{o p}\right)$ is extension closed for any $1 \leqslant k \leqslant n$.
(3) $\operatorname{ac} \mathcal{T}_{D(R)}^{k}(R)$ is extension closed for any $1 \leqslant k \leqslant n$.

Proof. It is a consequence of Corollary 4.7.

Acknowledgements. This research was partially supported by NSFC (Grant Nos. 11971225, 12171207, 12061026), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and NSF of Guangxi Province of China (Grant No. 2020GXNSFAA159120).

References

[1] T. Araya, R. Takahashi and Y. Yoshino, Homological invariants associated to semidualizing bimodules, J. Math. Kyoto Univ. 45 (2005), 287-306.
[2] M. Auslander and I. Reiten, Syzygy modules for noetherian rings, J. Algebra 183 (1996), 167-185.
[3] B. Bhmler and R. Marczinzik, On the Extension-Closed Property for the Subcategory $\operatorname{Tr}\left(\Omega^{2}(\bmod -A)\right)$, Algebras Represent. Theory (2022), https://doi.org/10.1007/s10468-022-10140-7.
[4] S. Dey and R. Takahashi, On the subcategories of n-torsionfree modules and related modules, Collect. Math. (2021), https://doi.org/10.1007/s13348-021-00338-1.
[5] E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra. de Gruyter Exp. in Math. 30, Walter de Gruyter, Berlin, New York, 2000.
[6] S. Goto and R. Takahashi, Extension closedness of syzygies and local Gorensteinness of commutative rings, Algebras Represent. Theory 19 (2016), 511-521.
[7] P. A. Guil Asensio and I. Herzog, Left cotorsion rings, Bull. London Math. Soc. 36 (2004), 303-309.
[8] H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), 781-808.
[9] Z. Y. Huang, Syzygy modules for quasi k-Gorenstein rings, J. Algebra 299 (2006), 21-32.
[10] Z. Y. Huang, Extension closure of k-torsionfree modules, Comm. Algebra 27 (1999), 1457-1464.
[11] Z. Y. Huang, Extension closure of relative syzygy modules, Sci China Ser A: Math 46 (2003), 611-620.
[12] Z. Y. Huang, Duality pairs induced by Auslander and Bass classes, Georgian Math. J. 28 (2021), 867-882.
[13] Z. F. Liu, Z. Y. Huang and A. M. Xu, Gorenstein projective dimension relative to a semidualizing bimodule, Comm. Algebra 41 (2013), 1-18.
[14] W. K. Nicholson, Semiregular modules and rings, Canad. J. Math. 28 (1976), 1105-1120.
[15] R. Takahashi, When is there a nontrivial extension-closed subcategory?, J. Algebra 331 (2011), 388-399.
[16] X. Tang and Z. Y. Huang, Homological aspects of the dual Auslander transpose, Forum Math. 27 (2015), 3717-3743.
[17] X. Tang and Z. Y. Huang, Homological aspects of the dual Auslander transpose II, Kyoto J. Math. 57 (2017), 17-53.
[18] X. Tang and Z. Y. Huang, Homological aspects of the adjoint cotranspose, Colloq. Math. 150 (2017), 293-311.
[19] X. Tang and Z. Y. Huang, Coreflexive modules and semidualizing modules with finite projective dimension, Taiwanese J. Math. 21 (2017), 1283-1324.
[20] X. Tang and Z. Y. Huang, Cograde conditions and cotorsion pairs, Publ. Res. Inst. Math. Sci. 56 (2020), 445-502.
[21] J. Trlifaj, Whitehead test modules, Trans. Amer. Math. Soc. 348 (1996), 1521-1554.
[22] G. Q. Zhao and B. Zhang, Homological behavior of relative cotorsionfree and cosyzygy modules, Algebra Colloq. 26 (2019), 467-478.

College of Science, Guilin University of Technology, Guilin 541004, Guangxi Province, P.R. China,

E-mail address: tx5259@sina.com.cn
Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, P.R. China

E-mail address: huangzy@nju.edu.cn
URL: http://maths.nju.edu.cn/~huangzy/

[^0]: Key words and phrases: Semidualizing bimodules; (Strong) Ext-cograde, (Strong) Tor-cograde; Extension closed; Adjoint n-cotorsionfree modules.

 2020 Mathematics Subject Classification: 18G25, 18G15, 16E30.

