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Abstract

Let R, S be arbitrary associative rings and C' a semidualizing (R, S)-bimodule. For a subcat-
egory J (resp. 7)) of the category of left R-modules (resp. left S-modules), we introduce
H-Gorenstein projective and flat modules (resp. J-Gorenstein injective modules). Under
certain conditions, we prove that the JZz-Gorenstein projective dimension of any left R-module
is at most n if and only if the projective dimension of any C-injective left S-module and the
injective dimension of any module in 57 are at most n. The dual result about the .7-Gorenstein
injective dimension of modules also holds true. As a consequence, we get that the supremum
of the C-Gorenstein projective dimensions of all left R-modules and that of the C-Gorenstein
injective dimensions of all left S-modules are identical; and the maximum of the common value
of the quantities and its symmetric common value is at least the supremum of the C-Gorenstein
flat dimensions of all left R-modules. Moreover, we obtain some equivalent characterizations
for the finiteness of the left and right injective dimensions of rCyg in terms of the properties of
the projective and injective dimensions of modules relative to various classes of C-Gorenstein
modules. As an application, we provide some support for the Wakamatsu tilting conjecture.

Key Words: C-Gorenstein classes, #¢-Gorenstein projective dimension, .#¢-Gorenstein flat
dimension, Z¢-Gorenstein injective dimension, C-Gorenstein global dimension, Finite injective
dimension.
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1 Introduction

Semidualizing modules and related Auslander and Bass classes in commutative rings was intro-
duced by Foxby [14] and by Golod [18]. Then Holm and White [2I] extended them to arbitrary
associative rings. Many authors have studied the properties of semidualizing modules and re-
lated modules, see [14, [16} 18], 20, 21} 24], 25 28], [31]-[33], [37]-[45] and the references therein.
Let R and S be arbitrary rings and rCs a semidualizing bimodule, and let Ac(S) and Be(R)
be the Auslander and Bass classes with respect to C respectively. It was shown in [21, Theorem
1] that there exists the following Foxby equivalence:

C®57
Ac(S) ~ Be(R).
Homp(C,—)

For other Foxby equivalences between some subclasses of Ac(S) and that of Bo(R), the reader
is referred to [2I, Theorem 1] and [32] Theorem 4.6]. Among various research areas on semid-
ualizing modules, one basic theme is to extend the “absolute” classical results in homological
algebra to the “relative” setting with respect to semidualizing modules.

One of our motivations comes from the following Gorenstein versions of two classical results:
for any ring R, the left Gorenstein weak global dimension of R is at most the maximum of



its left and right Gorenstein global dimensions (6, Corollary 1.2(1)]), and the Gorenstein weak
global dimension of R is left and right symmetric ([9, Corollary 2.5]). On the other hand, as an
extension of [2, Theorem 4.20], [22) Theorem] and [23, Theorem 1.4], the author proved that a
left and right Noetherian ring R is n-Gorenstein if and only if the Gorenstein projective (resp.
injective, flat) dimension of any left R-module is at most n ([29, Theorem 1.2]). Our another
motivation comes from this work. We are interested in whether these results have relative
counterparts with respect to semidualizing modules.

The paper is organized as follows. In Section 2, we give some terminology and some prelim-
inary results. In Section 3, assume that R is an arbitrary ring and Mod R is the category of left
R-modules. Let 2 C & be subcategories of Mod R with & additive, and let

e Xy X =2 XY syl sy

be an exact sequence in Mod R. By using the &-coproper Z-coresolutions of all X; and the &-
proper Z-resolutions of all Y7 we construct a grid-type commutative diagram (Theorem .
This construction is crucial in studying the behavior of the projective and injective dimensions
of modules relative to various classes of relative Gorenstein modules. As mentioned above, the
symmetry of the Gorenstein weak global dimension of any ring was proved in [9, Corollary 2.5],
which is a consequence of [I1, Theorem 5.3]. Note that the latter one depends on the construction
of projective resolutions of certain modules by using the horseshoe lemma (see the proof of [11]
Lemma 5.2] for details). However, the horseshoe lemma is inapplicable in the relative case. Our
above construction not only overcomes this difficulty, but also gives some wider applications in
the sequel.

Let R,S be arbitrary rings and rCyg a semidualizing bimodule, and let % (resp. .7) of
be a subcategory of Mod R (resp. Mod S-modules). In Section 4, we introduce .#¢-Gorenstein
projective and flat modules (resp. J-Gorenstein injective modules). In fact, our research
will be conducted under this unified framework. Assume that .7 is a resolving subcategory of
the Auslander class A¢(S) and ## = {C ®s T | T € T} is precovering in Mod R which is
closed under finite direct sums and direct summands. Under certain conditions, we obtain some
equivalent characterizations for the #-Gorenstein flat dimension of any module being at most
n (Proposition . Moreover, we prove the following result.

Theorem 1.1. (Theorem For any n > 0, the following statements are equivalent.
(1) The s#c-Gorenstein projective dimension of any left R-module is at most n.
(2) The projective dimension of any C-injective left S-module and the injective dimension of
any module in F are at most n.
(3) The C-projective dimension of any injective left R-module and the C-injective dimension
of any module in J are at most n.

Assume that J¢ is a coresolving subcategory of the Bass class Bo(R) and .7 := {Hompg(C, H) |
H € s} is preenveloping in Mod R which is closed under finite direct sums and direct sum-
mands. Then the dual of Theorem about the Jc-Gorenstein injective dimension of modules
also holds true (Theorem . Note that under the assumption in either Theorem or
Theorem there exists the following Foxby equivalence:

C®s—
T ~ .
Hompg(C,—)

In Section 5, we give some applications of the above results. Under certain conditions, we
establish the left and right symmetry of the C-Gorenstein flat dimension of any module being



at most n (Theorem . In addition, we prove the following theorem, which is the C-version
of [I1, Theorem 4.1].

Theorem 1.2. (Theorem For any n > 0, the following statements are equivalent.
(1) The C-Gorenstein projective dimension of any left R-module is at most n.
(2) The C-Gorenstein injective dimension of any left S-module is at most n.
(3) The projective dimension of any C-injective left S-module and the injective dimension of
any C-projective left R-module are at most n.
(4) The C-projective dimension of any injective left R-module and the C-injective dimension
of any projective left S-module are at most n.

As an immediate consequence of Theorem we get that the supremum of the C-Gorenstein
projective dimensions of all left R-modules and that of the C-Gorenstein injective dimensions
of all left S-modules are identical, and call the common value of these two quantities the left
C-Gorenstein global dimension Go-gldim of R and S. Symmetrically, the right C'-Gorenstein
global dimension Gg-gldim® of R and S is defined. We prove that if Go-gldim® < oo, then
any C-projective left R-module is C-flat (Theorem .

For a module M € Mod R, we use G¢-fdgp M to denote the C-Gorenstein flat dimension of
M. Set spclfc R := sup{the C-projective dimensions of all C-flat left R-modules}. By using
Theorem and the relationship between spclfc R and the C-Gorenstein projective dimension
of any C-Gorenstein flat module (Lemma , we obtain the following result, which is the
C-versions of [6, Corollary 1.2(1)] and part of [9, Theorem 3.3].

Theorem 1.3. (Theorem [5.18|) It holds that
(1) sup{G¢-fdg M | M € Mod R} < max{G¢-gldim, G¢-gldim°}.
(2) If S is a right Noetherian ring, then

Ge-gldim < sup{G¢g-fdg M | M € Mod R} + spclfc R.

We give some equivalent characterizations for the finiteness of the left and right injective
dimensions of rCyg in terms of the properties of the projective and injective dimensions of
modules relative to some classes of C-Gorenstein modules as follows. It is the C-version of [29]
Theorem 1.2], but the proof here is essentially not parallel to that of [29].

Theorem 1.4. (Theorem Let R be a left and right Noetherian ring and n > 0. Then the
following statements are equivalent.
(1) The left and right injective dimensions of rCs are at most n.
2) The C-Gorenstein projective dimension of any left R-module is at most n.
The C-Gorenstein injective dimension of any left R-module is at most n.
The C-Gorenstein flat dimension of any left R-module is at most n.
The C-strongly Gorenstein flat dimension of any left R-module is at most n.
The C-projectively coresolved Gorenstein flat dimension of any left R-module is at most
n.
(1)°P Opposite side version of (i) (2 <1 < 6).
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The Wakamatsu tilting conjecture states that if R and S are artin algebras, then the left
and right injective dimensions of rCg are identical ([6]). It still remains open. Recall that a left
and right Noetherian ring R is called Gorenstein if its left and right self-injective dimensions are
finite. As an application of Theorem [I.4] we prove that if R and S are Gorenstein rings, then
the left and right injective dimensions of zCg are identical (Theorem [5.22)3)).



2 Preliminaries

Throughout this papers, all rings are arbitrary associative rings. Let R be a ring. We use Mod R
to denote the category of left R-modules, and all subcategories of Mod R involved are full and
closed under isomorphisms. We use P(R), F(R) and Z(R) to denote the subcategories of Mod R
consisting of projective, flat and injective modules respectively. For a module M € Mod R, we
use Addr M to denote the subcategory of Mod R consisting of direct summands of direct sums
of copies of M, and use pdp M, fdgp M and idr M to denote the projective, flat and injective
dimensions of M respectively.

Definition 2.1. ([12),13]) Let 2" be a subcategory of Mod R.

(1) A homomorphism f : X — Y in Mod R with X € 2 is called an 2 -precover of Y if
Homp (X', f) is epic for any X’ € 27; and an 2 -precover f : X — Y is called an 2 -
cover of Y if any endomorphism A : X — X is an automorphism whenever f = fh. The
subcategory 2" is called (pre)covering in Mod R if any module in Mod R admits an 2 -
(pre)cover. Dually, the notions of an 2"-(pre)envelope and a (pre)enveloping subcategory
are defined.

(2) The subcategory 2" is called resolving if P(R) C 2 and 2" is closed under extensions
and kernels of epimorphisms. Dually, the notion of coresolving subcategories is defined.

Let 2" be a subcategory of Mod R. We write
12 :={AcModR | Ext]%l(A,X) =0 for any X € 2},
2+ :={AcModR | EXt%l(X,A) =0 for any X € 2}
Let # be a subcategory of Mod R°P. We write
B :={M e ModR | Torgl(B,M) =0 for any B € £}.
Let M € Mod R. The Z -projective dimension Z -pd M of M is defined as
inf{n | there exists an exact sequence 0 - X,, » -+ - X; - Xo - M — 0

in Mod R with all X; € 27},

and set 2 -pd M = oo if no such integer exists. Dually, the 2 -injective dimension 2 -id M of
M is defined as

inf{n | there exists an exact sequence 0 — M — X° = X! ... 5 X" -0

in Mod R with all X* € 2},

and set 2"-id M = oo if no such integer exists. For any n > 0, we use 2 -pd=" (resp. 2 -id<") to
denote the subcategory of Mod R consisting of modules with 2 -projective (resp. 2 -injective)
dimension at most n.

2.1 Relative preresolving and precoresolving subcategories

Let & be a subcategory of Mod R. Recall from [13] that a sequence

e S > S > S3—---



in Mod R is called Hompg(&, —)-ezact (resp. Homp(—, &)-ezact) if it is exact after applying the
functor Homp(E, —) (resp. Homp(—, F)) for any E € &.

Let 2 C 2 be subcategories of Mod R. We recall some notions from [27]. The subcategory
2 is called an &-proper generator (resp. &-coproper cogenerator) for 2 if for any X € 27, there
exists a Homp (&', —) (resp. Homp(—, &))-exact exact sequence

0—->X'-D—X—0(resp. 0 > X - D — X' —0)

in Mod R with D € 9 and X’ € 2. The subcategory 2 is called &-preresolving (resp. &-
precoresolving) in Mod R if the following conditions are satisfied.

(a) 2" admits an &-proper generator (resp. & -coproper cogenerator).

(b) For any Homp(&', —)-exact (resp. Homp(—, &)-exact) exact sequence

0— A — Ay — A3 =0

in Mod R, if Ay, A3 € 27, then Ay € 2.
An &-preresolving subcategory 2 is called &-resolving (resp. &-coresolving) if the following
condition is satisfied.
(c) For any Homp(&', —)-exact (resp. Homp(—, &)-exact) exact sequence

0—)A1—>A2—)A3—>0

in Mod R, if both Ay, Az € 2" (resp. A1, Az € Z7), then A} € 2 (resp. A3 € Z).
If & = P(R) (resp. Z(R))), then &-resolving (resp. &-coresolving) subcategories are exactly
resolving (resp. coresolving) subcategories.
Let & and 2 be subcategories of Mod R. We define

resg 2 = {M € Mod R | there exists a Homp (&, —)-exact exact sequence

-+—=>D;j—--+— Dy — Dy — M — 0in Mod R with all D; in Z}.
Dually, we define

Co?é;g/@ :={M € Mod R | there exists a Homp(—, &)-exact exact sequence
0—+M—D"—D!'—... 5 D' — ... in ModR with all D' in 2}.
For later use, we need the following two lemmas.

Lemma 2.2. Let 2 and & be subcategories of Mod R.
(1) Assume that 2 is &-precoresolving in Mod R admitting an &-coproper cogenerator 9. If
2-pd=" is closed under direct summands for any n > 0, then we have

2 -pdA=9-pdA

for any A€ X+,
(2) Assume that X is &-preresolving in Mod R admitting an &-proper generator 9. If 2-id<"
1s closed under direct summands for any n > 0, then we have

Z-idA=92-idA

for any A € + 2.



Proof. (1) Tt is clear that 2-pd A < 2-pd A for any A € Mod R. Now suppose A € 2+ and
Z-pd A =n < oo. By [27, Theorem 4.7], there exists an exact sequence

0—-Y—>X—-A4—-0

in Mod R with X € 2 and Z-pdY < n — 1. Since Z is an &-coproper cogenerator for 2,
there exists an exact sequence
0-X—-D—X —0

in Mod R with D € 2 and X’ € 2. Consider the following push-out diagram:
0 0

I
|
Y
I
I
Y
I
I
Y

0 Y X A 0
0-->Y-->D-—->Y'—-50

X/ X/

0 0.

By the middle row in this diagram, we have Z-pd Y’ < n. Since A € 2+, the rightmost column
in the above diagram splits and A is a direct summand of Y’. Furthermore, since 2-pd=" is
closed under direct summands, we have Z-pd A < n.

(2) It is dual to (1). O

Lemma 2.3. Let 9 and & be subcategories of Mod R.
(1) If 2 C +&, then 2 is an &-coproper cogenerator for +& N CO?E-}\S_@@/.@. Furthermore, if
9 C+EENE, then ~&N co?e\s@a/@ is & -precoresolving in Mod R.
(2) If & C &L, then P is an &-proper generator for &+ ﬁrgs_\g/@. Furthermore, if 2 C £&+N&,
then &+ N re/s;o@ is & -preresolving in Mod R.
Proof. (1) Set 2" =:1+&nN co?é;g/.@. Let X € 2. Then there exists a Homp(—, &)-exact exact

sequence
0>X—>D—>X =0

in Mod R with D € 2 and X' € co?ésig»/@. Since 2 C +&, we have 2 C 2 and X’ € +&. Thus
X' € L& Ncoresg Z and 2 is an &-coproper cogenerator for 2.

If 2 C &, then it is easy to see that coresg Z is closed under &-coproper extensions by [26],

Lemma 3.1(2)]. Thus, if 2 C +& N &, then & N coresg Z is &-precoresolving in Mod R.
(2) It is dual to (1). O

2.2 Semidualizing bimodules and related module classes

We say that a module M € Mod R admits a degreewise finite R-projective resolution if there
exists an exact sequence
o= P> > P —>FPh—>M-—=0

in Mod R with all P; finitely generated projective.



Definition 2.4. ([I 21]). Let R and S be arbitrary rings. An (R-S)-bimodule rCyg is called
semidualizing if the following conditions are satisfied.

(al) rC admits a degreewise finite R-projective resolution.
a s admits a degreewise finite S°P-projective resolution.
2) Cs admits a deg ise finite S°P-projecti luti
(bl) The homothety map rRpg 5 Homgor (C,C) is an isomorphism.

Extz'(C,0) = 0.

)
)
(b2) The homothety map sS5 23 Hompg(C, C) is an isomorphism.
)
) ExtZ.,(C,C) = 0.

Recall from [43] that a module T" € Mod R is called generalized tilting if the following condi-
tions are satisfied: (1) g7 admits a degreewise finite R-projective resolution; (2) Extlz%1 (T,T) =

0; and (3) gR € coresaqq, T addr T, where addr T is the subcategory of Mod R consisting of
direct summands of finite direct sums of g7T. Generalized tilting modules are usually called
Wakamatsu tilting modules, see [0, [33]. Note that a bimodule grCyg is semidualizing if and only
if RC is Wakamatsu tilting with S = End(zC), and if and only if Cg is Wakamatsu tilting with
R = End(Cs) ([45, Corollary 3.2]). Typical examples of semidualizing bimodules include the
free module of rank one and the dualizing module over a Cohen-Macaulay local ring. For more
examples of semidualizing bimodules, the reader is referred to [21], 39, [44].

In the following, R and S are arbitrary rings and we fix a semidualizing bimodule rCg. We
write

(=)» := Hom(C, -),

and write
Pco(R) :={C®s P | P eP(S)}, Pc(SP):= {P’ ®rC | P e P(RP)},

Fo(R):={C®sP|FeFS)}, Fo(SP%):={F @rC|F € F(R?)},
Zo(S) :={I. | I € Z(R)}, Zc(RP):={I,|I € Z(S?)}.
The modules in Po(R) (resp. Po(SP)), Fo(R) (resp. Fo(SP)) and Ze(S) (resp. Zo(RP)) are
called C-projective, C-flat and C-injective respectively. When rCg = rRpr, C-projective, C-flat

and C-injective modules are exactly projective, flat and injective modules respectively.
Let M € Mod R. Then we have a canonical evaluation homomorphism

Oy : C®s My — M

defined by 0p(x® f) = f(x) for any x € C and f € M,. The module M is called C-coreflezive if
s is an isomorphism (see [39]). We use Corc(R) to denote the subcategory of Mod R consisting
of C-coreflexive modules.

Let N € ModS. Then we have a canonical evaluation homomorphism

NN:N—>(0®SN)*

defined by un(y)(z) = 2@y for any y € N and = € C. The module N is called adjoint
C-coreflexive if py is an isomorphism. We use Acoto(S) to denote the subcategory of Mod S
consisting of adjoint C-coreflexive modules.

Definition 2.5. ([21])
(1) The Auslander class Ac(S) with respect to C consists of all left S-modules N satisfying
(A1) NeCs';



(A2) Ext3'(C,C ®g N) = 0;
(A3) N € Acotc(9).
(2) The Bass class Bo(R) with respect to C' consists of all left R-modules M satisfying
(Bl) M € rC+;
(B2) Tors,(C,M,) = 0;
(B3) M € Cor¢(R).
Symmetrically, the Auslander class Ac(R°P) in Mod R°P and the Bass class Bo(S°P) in Mod SP
are defined.

Lemma 2.6. It holds that
(1) fdg I. = Fo(R)-pd I and pdg I. = Pc(R)-pd I for any I € Z(R).
(2) fdper I, = Fc(S°P)-pdI" and pdgep I, = Pc(S°P)-pd I for any I' € T(SP).

Proof. (1) Let I be an injective left R-module. Since I € Bo(R) by [21, Lemma 4.1], we have
Fco(R)-pdI = fdg I, and and pdg I, = Pc(R)-pd I by 41, Lemma 2.6(1)(2)].
(2) It is the symmetric version of (1). O

Recall from [I5] that a module N € Mod S is called weak flat if Tory (X, M) = 0 for any right
S-module X admitting a degreewise finite S°P-projective resolution; and a module M € Mod R
is called weak injective if Ext}g(X , M) = 0 for any left R-module X admitting a degreewise finite
R-projective resolution. Symmetrically, the notions of weak flat modules in Mod R°? and weak
injective modules in Mod S are defined. In [§], weak flat modules and weak injective modules
are called level modules and absolutely clean modules respectively.

We use WF(S) (resp. WZ(R)) to denote the subcategory of Mod S (resp. Mod R) consisting
of weak flat (resp. weak injective) modules, and use WF(R) (resp. WZ(SP)) to denote the
subcategory of Mod RP (resp. Mod S°P) consisting of weak flat (resp. weak injective) modules.
We write

WFc(R) :={C®@s F|FeWF(S)} and WFc(SP) :={F @rC | F' € WF(R?)},
WZIc(S) :={L | I € WI(R)} and WZc(RP) :={I. | I' € WI(S)}.
Lemma 2.7. ([41, Lemma 2.5(1)], [40, Corollary 3.5(2)] and [16, Corollary 2.3])
(1) P(S)UZc(S) € F(S) UZe(S) S WF(S) UZe(S) € Ac(S) © +Ze(S) N Acotc(S).
(2) Z(R) UPc(R) C Z(R) U Fo(R) C I(R) UWFc(R) C Be(R) € Po(R)*: N Core(R).
Let # be a subcategory of Mod R°P. Recall that a sequence in Mod R is called (Z ®p —)-
exact if it is exact after applying the functor B ® p — for any B € %. The following notions

were introduced by Holm and Jorgensen [20] over commutative rings. The following are their
non-commutative versions.

Definition 2.8. ([32, 37])
(1) A module M € Mod R is called C-Gorenstein projective if

M € *Pc(R) N coresp,,(r) Po(R).

Symmetrically, the notion of C'-Gorenstein projective modules in Mod S°P is defined.
(2) A module M € Mod R is called C-Gorenstein flat if M € Zc(R°P)T and there exists an
(Zo(RP) @ g —)-exact exact sequence

0-M-Q"=>Q"— - - =>Q ' — -

in Mod R with all Q% in Fo(R). Symmetrically, the notion of C-Gorenstein flat modules
in Mod S°P is defined.



(3) A module N € Mod S is called C-Gorenstein injective if

N e Ic<S)J' Mresz.(s) Zo(S).
Symmetrically, the notion of C'-Gorenstein injective modules in Mod R°P is defined.

We use GPc(R) (resp. GFc¢(R)) to denote the subcategory of Mod R consisting of C-
Gorenstein projective (resp. flat) modules, and use GZ<(S) to denote the subcategory of
Mod S consisting of C-Gorenstein injective modules. Symmetrically, we use GPc(SP) (re-
sp. GFc(S)) to denote the subcategory of Mod S consisting of C-Gorenstein projective
(resp. flat) modules, and use GZc(RP) to denote the subcategory of Mod R consisting of
C-Gorenstein injective modules. When pCs = rRpr, C-Gorenstein projective, flat and injective
modules are exactly Gorenstein projective, flat and injective modules respectively ([13], 19]).

For a subcategory 2" of Mod R (or Mod R°P), we write

2T ={XT|Xe2}

where (=) = Homgz(—, Q/Z) with Z the additive group of integers and Q the additive group
of rational numbers.

Lemma 2.9. It holds that
(1) Fo(R) € H[Zo(R?)T] = Zc(R™)T.
(2) P(R)UPc(R) C GPc(R) and Pe(R) € Fo(R) C GFc(R).

Proof. (1) The former inclusion follows from [37, Lemma 4.13], and the latter equality follows
from [I7, Lemma 2.16(b)].

(2) Note that the former assertion has been proved in [46, Proposition 2.6] in the commutative
case and the argument there is also valid in the non-commutative case. For the latter assertion,
it is easy to that Pc(R) C Fco(R) and that the inclusion Fo(R) € GF¢(R) follows from (1) and
the definition of C-Gorenstein flat modules. O]

By Lemma [2.9(1) and [I7, Lemma 2.16(a)], we have

GFc(R) = H[Zc (RPN cores,,(rory+ Fo(R),

GFc(SP) =LZo(9)t] N coresz,,(sy+ Fc(SP).

3 A construction of a grid-type commutative diagram
In this section, R is an arbitrary ring. Let
N = RTT SR G (N . R D L

be an exact sequence in Mod R. By using special coresolutions of all X; and special resolutions
of all Y7, we will construct a grid-type commutative diagram, which plays a crucial role in the
sequel. We begin with the following observation.

Lemma 3.1. Let Z be a subcategory of Mod R, and let

0—>X1—>DL>X2—>0 (3.1)

be an exact sequence in Mod R with D € 9.



(1) Assume that (3.1) is Hompg(Z2, —)-ezact and

0 1 2 7 . att1
0—-w' L pt Ly pt L. . Ly pid . (3.2)

is an evact sequence in Mod R with all D' € 9. If (3.2) is both Hompg(—, D)-ezact and
Homp(—, X9)-exact, then it also Hompg(—, X;)-exact.
(2) Assume that (3.1) is Hompg(—, Z)-exact and

oo =Dy == Dy =Dy —Wy—0 (3.3)

is an exact sequence in Mod R with all D; € 2. If (3.3) is both Hompg(D, —)-ezact and
Homp(X1, —)-ezxact, then it also Homp(Xs, —)-exact.

Proof. (1) For any i > 1, let W = Im ¢’ and let g° = A7’ be the epic-monic decomposition of
g" with ©* : D=1 — W% and \' : W* »— D’. Note that (3.1) is Hompg(Z, —)-exact and (3.2) is
both Hompg(—, D)-exact and Hompg(—, X2)-exact by assumption. So for any ¢ > 0, we get the
following commutative diagram with exact columns and rows:

0 0 0

. . H NOX .
0 — Homp(Wit1, X1) — Homp(D', X1 X omp (W7, X1)

0 — Hompg(Wit! D) — Hompg(D?, D) — Homp (Wi D) —=0

Homp (Wil f) Homp(W*,f)

0 —— Homg(Wit!, X3) —— Hompg(D?, X3) — Homp(W?*, X5) —=0

0,

where A = ¢gY. Then each Hompg(W?, f) is epic. Thus by the snake lemma, each Hompg(\?, X1)
is epic and the assertion follows.
(2) It is dual to (1). O

For the sake of simplicity, we introduce the following notions.

Definition 3.2. Let 2 and & be subcategories of Mod R. Let X € Mod R. A module B €

Mod R is said to satisfy the (X, coresg 2)-coproper property if any Homp(—, &)-exact exact
sequence

0-X—-D"=D' ... D — ...

in Mod R with all D in & is Hompg(—, B)-exact; dually, the module B is said to satisfy the
(resg 9, X)-proper property if any Hompg(&, —)-exact exact sequence

o= Dy— - =Dy Dy —-X =0

in Mod R with all D; in & is Homp(B, —)-exact.
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In the following result, we construct certain (co)resolutions of modules, which form a grid-
type commutative diagram. It is crucial in studying the behavior of the projective and injective
dimensions of modules relative to various classes of C-Gorenstein modules.

Theorem 3.3. Let 9,&,8" be subcategories of Mod R such that 9 C &N &' and 2 is additive,
and let

. Cl{i+1

. 1 2 7
by T By T xS y0 eyt of ey ot (3.4)

be an eract sequence in Mod R with X; € coresg 9 and Y7 € resg: 9 for any i,j > 0. Set
M = Im§ and let § = a'fy be the epic-monic decomposition of § with fo : X° — M and
a® : M — Y. If one of the following two conditions is satisfied:

(1) Y7 satisfies the (Xi,coje\s_g/@)-copmper property for any 1,5 > 0,

(2) X; satisfies the (rm, Y7)-proper property for any i,j >0,
then there exists the following commutative diagram with exact columns and rows:

Jit1
0 X; DY D} D;
fi
f2
0 X DY Di D
fi
0 Xo DY D} D}
fo
0 M-l yo ol y1 o o yi @7
0 0 0 0

i Mod R with all D; in 9, such that all rows but the bottom one are Hompg(—, &)-exact and all
columns but the leftmost one are Hompg (&', —)-exact.

Proof. (1) Set K; :=Im f; and M* := Ima’ for any i > 0. Since X € coresg 2 and Y7 satisfies
the (Xo, coresg Z)-coproper property for any j > 0, there exists a Homp(—, &)-exact exact
sequence

0
0= Xo— D= X, =0 (3.5)
in Mod R with D° € 2 and X, € co?(;;.@, which is also Hompg(—, Y7)-exact for any j > 0. So

11



there exists a homomorphism h° € Hompg (D%, Y°) such that the following diagram

0
K
0 —= Xo—=> DO X}, 0
‘ |
fo | 0 \
o0 Y \
0 M Yo e 0
0

commutes. Since Y0 € resg 2, there exists a Homp(&”7, —)-exact exact sequence
0—-Y) =Dy 2 v% =0 (3.6)

in Mod R with Dy € 2 and Yy € resger 2. Then we get the following commutative diagram with
exact columns and rows:

0 0 0
| |
| |
¥ Y
O-->K;1—---—- >K? fffff >K£1)77>O
|
|
() )
0 Xo ° DY xV 0
|
fO (h0790) ‘
al Yl
0 M Yo M 0
|
|
\
0 0 0,

Diagram (3.1(1))

where D) = D° @ Dy(€ ) and X(()l) = X ® Dy. By the exact sequence (3.5), we have

X{, € coresg 2, and hence Xc()l) S co?(;;@. It is easy to see that the middle row in Diagram
(3.1(1)) is Homp(—, &)-exact and Hompg(—, Y7)-exact for any j > 0 and that the middle column
is Homp(&”, —)-exact. Moreover, the middle column yields the following pullback diagram:

0 Yy KY DO 0
L
0 vY Dy —2-y0 0.

12



Since the lower row is Hompg(&”, —)-exact, it follows from [26, Lemma 2.4(1)] that the upper
row is also Homp(&”, —)-exact, and hence Homp(Z, —)-exact as 2 C &”. It implies that the

upper row splits and K = YOO @® DY, which yields K¢ € resgr 2. Since 2 C & and YV satisfies
the (Xj, co?é\s:go/@)—coproper property for any ¢ > 0, it follows from Lemma (1) and the exact
sequence (3.6) that Yy, and hence K9, satisfies the (X,;,co?cgg/@)—coproper property for any
1> 0.

Since Y'! satisfies the (Xo, Co?é;;@)—coproper property, it follows from the middle row in
Diagram (3.1(1)) that Y'! also satisfies the (X(()l),co?e_z\s_g/@)—coproper property. Similar to the
above argument, we get the following commutative diagram with exact columns and rows:

0 0 0

[ [
| I
Y Y

077>K£1) 77777 >KV11 ***** >K£2)**>0
|
I
Y

0—= X" Dy X —=0
I
I
N

0 Mt yl M2 0
|
I
Y
0 0 0’

Diagram (3.1(2))

such that the middle row is Homp(—, &)-exact and the middle column is Hompg(&”, —)-exact,

and such that Ki € resg 2 satisfies the (X, coresg 2)-coproper property for any i > 0.
Continuing this process and splicing Diagram (3.1(1)), (3.1(2)), - - - from left to right, we get
the following commutative diagram with exact columns and rows:

0 0 0 0
0 K KY Ki Ki
0 Xo D)) D} D}
fo
0 M-_eyo oy o o yi 7
0 0 0 0

Diagram (3.2(1))

13



in Mod R with all Dg in 2, such that all columns but the leftmost one are Homp(—, &)-exact
and the middle row Homp (&', —)-exact, and such that K{ € resgr 9 satisfies the (X, coresg 2)-
coproper property for any ¢,j > 0.

Similar to the above argument, we get the following commutative diagram with exact columns
and rows:

0 0 0 0
0 Ko K9 K} K3
0 X DY D} Di
0 K, KY Kl Ki

0 0 0 0

Diagram (3.2(2))

in Mod R with all D{ in 2, such that all columns but the leftmost one are Homp(—, &)-exact

and the middle row Homp/(&”, —)-exact, and such that K% € resgr 9 satisfies the (X, coresg 2)-
coproper property for any ¢,7 > 0.

Continuing this process and splicing Diagram (3.2(1)), (3.2(2)), - - - from bottom to top, we
get the desired commutative diagram.

(2) It is similar to (1). O

It is trivial that in the exact sequence (3.4), if
0-M—-Y' syl o5yl ...
is an injective coresolution of M, then the condition (1) in Theorem is satisfied; and if
=Xy = =2 Xy 2 Xg>M—=0

is a projective resolution of M, then the condition (2) in Theorem is satisfied.

4 (-Gorenstein modules

From now on, assume that R and S are arbitrary rings and rCs is semidualizing bimodule. We
introduce the following notions, which are useful in providing unified proofs of related results.

Definition 4.1.
(1) Let 2 be a subcategory of Mod R. A module M € ModR is called J¢-Gorenstein
projective if M € - and there exists a Hompg(—, 7 )-exact exact sequence

0-M-G" -G - ... G — -
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in Mod R with all G* in Pc(R). Symmetrically, the notion of #--Gorenstein projective
modules in Mod SP is defined.

Let 7 be a subcategory of Mod R. A module M € Mod R is called ¢ -Gorenstein flat if
M € To(R°P) T and there exists an (Z¢(RP) ®r —)-exact exact sequence

0—-M-—-HH' > ... 5 H — ...

in Mod R with all H? in 2#. Symmetrically, the notion of J#--Gorenstein flat modules in
Mod S is defined.

Let 7 be a subcategory of Mod S. A module N € Mod S is called J-Gorenstein injective
if N € .7+ and there exists a Homg(.7, —)-exact exact sequence

o= Bp—= o> E - Fy—>N—=0

in Mod S with all E; in Z¢(S). Symmetrically, the notion of Jo-Gorenstein injective
modules in Mod RP is defined.

Let .2 be a subcategory of Mod R. We use GP¢ () and GF(.#°) to denote the sub-
categories of Mod R consisting of #-Gorenstein projective modules and #¢-Gorenstein flat
modules respectively. We have

GPc(H#) =L N cores p Po(R).

By Lemma [2.9(1) and [I7, Lemma 2.16(a)], we have

GFc(H) =*Te(RP)TIN coresy,, (gory+ A -

Let 7 be a subcategory of ModS. We use GZ¢(7) to denote the subcategory of Mod S
consisting of Z-Gorenstein injective modules. We have

4.1

GIo(T) =T+ Nresy Io(S).

H¢-Gorenstein flat and projective dimensions

In this subsection, assume that .7 is a resolving subcategory of A¢x(S) and

H ={CosT|TeT}

which is closed under finite direct sums and direct summands. By [42] Lemma 2.4(3)], there
exists the following Foxby equivalence:

Acotc(S) ~ Corc(R),

which induces the following Foxby equivalence:

C®R®s—
T ~ .
(=)«

Lemma 4.2. It holds that
(1) Po(R) € A C Be(R) C PC(R)L.
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(2) A is a Po(R)-resolving subcategory of Mod R with a Pc(R)-proper generator Po(R).
(3) The subcategory A -pd=" is closed under direct summands for any n > 0.

Proof. (1) By Lemma (2), we have Bo(R) C Po(R)*. Since P(S) € 7 C Ac(S), the
assertion follows easily.

(2) It follows from [38], Proposition 3.7 and Theorem 3.9] and [31, Lemma 3.5(1)].

(3) Since 47 is closed under finite direct sums and direct summands, the assertion follows
from the former two assertions and [27), Corollary 3.9]. O

A module M € Mod R is said to admit an infinite Z-coproper coresolution if there exists a
Homp(—, Z)-exact exact sequence

0-M-—-D"-D!'—... 5D -

in Mod R with all D? € 2; dually, the module M is said to admit an infinite Z-proper resolution
if there exists a Homp(Z, —)-exact exact sequence

= Di—=---—=>Dy —-Dyg—M—=0
in Mod R with all D; € 9.

Lemma 4.3. If M € Mod R with 5 -pd M < n with n > 0, then M admits an infinite Pc(R)-
proper resolution
=G = =G =G> M—0

in Mod R, such that Im(G,, = G,—1) € H.
Proof. 1t follows from Lemma[1.22) and [27, Theorem 3.6]. O

The following lemma is a consequence of Theorem [3.3] which plays a crucial role in the
sequel.

Lemma 4.4. Let M € Mod R, and let

A S S g s M0

be a projective resolution of M in Mod R. If -pdI < n for any I € Z(R), then there exists
an exact sequence

fz+1

f2

1
LI Imip Doy g0 Fop B S g I (4.1)
in Mod R with all K! in 5.
Proof. Let M € Mod R and let
i+1
L N N L - NN [N £ B PN (4.2)

be an exact sequence in Mod R with all P; in P(R) and all I* in Z(R), such that M = Im . By
Lemma (2), all P; are in GPc(R) C coresp,, gy Pc(R).

By assumption, we have J#-pdI* < n for any ¢ > 0. The assertion for the case n = 0 is
trivial. Now suppose n > 1. It follows from Lemma that all I' are in resp,(g) Pc(R). Then
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by Theorem (1), there exists the following commutative diagram with exact columns and
TOWS

0 0 0 0
0 K, KO K} - Ki
0 Pry ngl }171 — Q) —
fnfl
|
f2 ‘
v
0 P QY Q1 Q1
f1
0 P Q0 Q0 Qo
0 M oo o of g
0 0 0 0

in Mod R with all Q;- in Po(R) and K, = Im f,, such that all columns but the leftmost one
are Homp(Pc(R), —)-exact. It follows from Lemma [4.2[1)(2) and [27, Theorem 3.8(1)] that all
K! are in /. From the exact sequence (4.2) and the top row in the above diagram, we get the
desired exact sequence (4.1) such that K, = Im fj. O

Under certain conditions, we obtain some equivalent characterizations for the J--Gorenstein
flat dimension of any module being at most n.

Proposition 4.5. For any n > 0, consider the following conditions.
(1) GFc(H)-pd M < n for any M € Mod R.
(2) T-pdE <n for any E € Zc(S), and fdper E' < n for any E' € Zc:(RP).
(3) A-pdI <n for any I € Z(R), and Fc(S?)-pdI' <n for any I' € Z(SP).
We have (2) <= (3).
If # C Io(RP) T (equivalently # C [Ic(RP)]T), then (2) = (1); and if further GF () is
closed under [Zc(R°P)] -coproper extensions, then the above three conditions are equivalent.

Proof. Because Z(R) C Bc(R) and Z(SP) C Ba(SP), we get (2) <= (3) by [31, Theorem 3.2].
In the case for J# C Zc(R°P) T, we will prove (2) + (3) = (1). Let M € Mod R and let

LA p dy L Pyp Iyp o

be a projective resolution of M in Mod R. By (3), we have s#-pd [ < n for any I € Z(R). Then
from Lemma [4.4{(1) we get an exact sequence

1 2 7 . +1
L egp fep g0 g P F e 1 (4.3)
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in Mod R with all K in J#, such that Im fo = Im f,,.

Let E' € Zc(R). By (2), we have fdger E' < n. Since # C Ic(R°)T, applying the functor
E' ®p — to the exact sequence (4.3), it is to see that each Im f; and each Im f? are in ET Tt
follows that the exact sequence (4.3) is (Zo(R?) ®p —)-exact. So Im fy, and hence Im f,,, is in
GFc (). This yields GF ¢ ()-pd M < n.

Finally, suppose that /# C Zo(RP)" (equivalently 7 C [Io(RP)]Y) and GFo(H#) is
closed under [Z¢(RP)|"-coproper extensions, then GF () is [Zo(RP)|T-precoresolving in
Mod R admitting an [Z¢(RP)|"-coproper cogenerator 7. We will prove (1) = (2).

Let E' € Zo(RP). Since GFc () C Ic(RP)T, it follows from (1) and dimension shifting
that Torf, ., (E',M) = 0 for any M € Mod R, and so fdger B’ < n. On the other hand, let
E € Z¢(S). Then E = I, for some I € Z(R). By (1), we have GF¢(7)-pdI < n. By Lemma
4.2(3), we have that for any m > 0, the class J#-pd=" is closed under direct summands for
any m > 0. It follows from Lemma [2.2(1) that /#-pdI = GFc(H#)-pdI < n, and hence
T-pd E = #-pd1 < n by Lemma [2.6(1). O

In the following result, we give some equivalent characterizations for the .7#-Gorenstein
projective dimension of any module being at most n.

Theorem 4.6. For any n > 0, the following statements are equivalent.
(1) GPc(#)-pd M < n for any M € Mod R.
(2) pdg E <n for any E € Zc:(S), and idg H < n for any H € 7.
(3) Pc(R)-pdI <n for any I € I(R), and Zc(S)-idT <n for any T € .

Proof. Because Z(R) C Bo(R) and 7 C Ba(R), we get (2) <= (3) by [31], Proposition 4.1(2)
and Corollary 4.4(1)].
(2)+(3) = (1) Let M € Mod R and let

Jp ok p hop oo

be a projective resolution of M in Mod R. By (3), we have Po(R)-pdI < n for any I € Z(R).
Then from Lemma [4.4[1) we get an exact sequence

7 . 141
g Ip oy g0 S P g T (4.4)

in Mod R with all K} in Pc(R), such that Im fy = Im f,.
Let H € . By (2), we have idg H < n. Since

A C Bc(R) C Po(R)*

by Lemma[2.7(2), applying the functor Hompg(—, H) to the exact sequence (4.4), it is to see that
each Im f; and each Im f? are in ~H. It follows that the exact sequence (4.4) is Hompg(—, 7)-
exact. So Im fy, and hence Im f,, is in GPc(7). This yields GPo(H)-pd M < n.

(1) = (2) Let H € 2. Since GP¢(s#) C +#, it follows from (1) and dimension shifting
that Ext%nH(M, H) = 0 for any M € ModR, and so idg H < n. On the other hand, let
E € Ic(S). Tt is trivial that Po(R) C J#. Since Po(R) C +2# by [A1, Lemma 2.5(1)], we
have that GP¢(4¢) is s -precoresolving in Mod R admitting a .7-coproper cogenerator Pc(R)
by Lemma 1). In addition, the class Po(R)-pd=" is closed under direct summands for any
m > 0 by Lemma [4.2(3), it follows from (1) and Lemma [2.2(1) that Pc(R)-pdI = GP¢(H#)-
pd < n for any I € Z(R), and hence pdg E < n for any E € Z¢(S) by Lemma [2.6/1). O

We give a sufficient condition for a module in +.2 implying that it is in GP¢ (7).

18



Proposition 4.7. If M €+ with GPc(#)-pd M < oo, then M € GP¢ ().
Proof. Let M € +2# with GPc(¢)-pd M = n < co. Then there exists an exact sequence
0—=+G,—=- =G —-Gyp—M—=0

in Mod R with all G; in GP () (C +5). Since M € +#, this exact sequence is Homp(—, 7#)-

exact. For any 0 < i < n, there exists a Homp(—, 5 )-exact exact sequence
0 1 j
0-G —=Q —=Q = —Q —--

in Mod R with all Qf in Po(R)(C ). By [26, Theorem 3.4], we get the following two
Homp(—, 7 )-exact exact sequences

0= M —Q— &LgQ = 0@ = &l e@Q — -+ (4.5)

0= Qn—= Q1 ®Qy = = &0 5 &L 2 8@ > Q0. (4.6)
Since Po(R) C 2, the exact sequence (4.6) splits, and hence @ € Po(R). It follows from the

—_—

exact sequence (4.5) that M € cores» Pc(R), and thus M € GP¢(5€). O

4.2 J-Gorenstein injective dimension

In this subsection, assume that J# is a coresolving subcategory of B¢ (R) and
T :={H,| H e X}

which is closed under finite direct sums and direct summands. As in the beginning of Subsection
4.1, there exists the following Foxby equivalence:

CRs—
T ~ .
(=)«

The proofs of the following three results are completely dual to that of Lemmas |4.2
respectively, so we omit them.

Lemma 4.8. [t holds that
(1) Ze(S) € .7 C Ac(S) € +Ze(S).
(2) 7 is an Zg(S)-coresolving subcategory of Mod S with an Zco(S)-coproper cogenerator
Zc(S).

(3) The subcategory T -id=" is closed under direct summands for any n > 0.
The proof of Lemma [4.10] needs to use the following lemma.

Lemma 4.9. If N € Mod S with 7-idN < n with n > 0, then N admits an infinite Zc(S)-
coproper coresolution
0N—-E'SE' ... 5 E ...

in Mod S, such that Im(E"~! — E") € 7.

The following result is a consequence of Theorem
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Lemma 4.10. Let N € Mod S, and let
gl 1 92 gi i gi+l
O=+N—=Ih—1 — - —1—7
be an injective coresolution of N in Mod S. If 7-d P < n for any P € P(S), then there exists
an exact sequence

n+1
gz+l Tn gi Tn 91 In g" I’n+1 ..

in Mod S with all T]* in T .

In the following result, we give some equivalent characterizations for the J-Gorenstein
injective dimension of any module being at most n. It is dual to Theorem [£.6] but we still give
the proof for the reader’s convenience.

Theorem 4.11. For any n > 0, the following statements are equivalent.
(1) GZc(T7)-4d N <n for any N € Mod S.
(2) idr @ < n for any Q € Pc(R), and pdgT <n for anyT € .
(3) Zc(S)-id P < n for any P € P(S), and Pc(R)-pd H < n for any H € .

Proof. Because P(S) C Ac(S) and 52 C Bo(R), we get (2) <= (3) by [31], Propositions 4.3(1)
and 4.1(2)].
(2) + (3) = (1) Let N € Mod S and let
1 2 7 e
0Nl 1t 2. . 219
be an injective coresolution of N in Mod S. By (3), we have Z¢(5)-id P < n for any P € P(S).
Then from Lemma, we get an exact sequence

I S 9 g 9 T et 9 (4.7)

in Mod S with all T in Z¢(S), such that Im g° = Tm g™.
Let T € 7. By (2), we have pdgT < n. Since

T C Ac(S) € Za(S)

by Lemma 1), applying the functor Homg(7T, —) to the exact sequence (4.7), it is to see

that each image in this exact sequence is in 7. It follows that the exact sequence (4.7) is

Hompg (7, —)-exact. So Im ¢°, and hence Im ¢", is in GZ¢(.7). This yields GZ¢(7)-id N < n.
(1) = (2) Let T € 7. Since GZ(.7) C T+, it follows from (1) and dimension shifting that

ExtE"H(T, N) =0 for any N € Mod S, and so pdg7T < n. On the other hand, let @ € Pc(R).

it is trivial that Z¢(S) € 7. Since Z¢(S) € F+ by Lemma (1), we have that GZ¢(.7) is

T -preresolving in Mod S admitting a 7 -proper generator Z¢(S) by Lemma In addition,

4.8

the class Z¢(S)-id=™ is closed under direct summands for any m > 0 by Lemma |4.8{(3), it follows
from (1) and Lemma [2.2)2) that Z¢(S)-id P = GZ¢(7)-id P < n for any P € P(S), and hence

idr @ <n for any @ € Pc(R) by [31, Proposition 4.3(1)]. O

We give a sufficient condition for a module in .7+ implying that it is in GZ¢(.7) as follows.
It is dual to Proposition (.7}

Proposition 4.12. If N € 7+ with GIc(7)-id N < oo, then N € GLco(.7).
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5 Applications

5.1 Usual C-Gorenstein modules

Following the usual customary notation, we write
Go-pdr M := GPc(R)-pd M, Ge-fdg M :=GFc(R)-pd M, Ge-idger M := GZc(RP)-id M.

Ge-pdgor N := GPc(S?)-pd N, Ge-fdger N := GFc(S?)-pd N, Ge-idg N :=GZc(S)-id N.
Following the notations below Definition we have

GFc(R) = GFo(Fo(R)) and GFo(SP) = GF o (Fo(SP)).

Lemma 5.1. It holds that
(1) If S is a right coherent ring, then GFc(R) is closed under extensions.
(2) If R is a left coherent ring, then GF o (S°P) is closed under extensions.

Proof. (1) Let S be a right coherent ring, and let
0— M — My — M3z —0
be an exact sequence in Mod R with M;, M3 € GF¢(R). Then
0— My — My — M —0

is an exact sequence in Mod R?. By [29, Theorem 4.17(2)], we have M;", My~ € GZc(R%P).
Then My € GZ¢(RP) by [29, Remark 4.4(3)(b)], which implies My € GF(R) by [29, Theorem
4.17(2)] again.

(2) It is the symmetric version of (1). O

Under certain conditions, we establish the left and right symmetry of the C-Gorenstein flat
dimension of any module being at most n.

Theorem 5.2. For any n > 0, consider the following conditions.
(1) Ge-fdr M <n for any M € Mod R.
(2) Geo-fdgor N < n for any N € Mod S°P.
(3) fds E <n for any E € Zc(S), and fdger E' < n for any E' € Tc(RP).
(4) Fo(R)-pdI <n for any I € Z(R), and Fc(SP)-pdI' < n for any I' € T(S°P).
We have (1) <= (3) <= (4) = (2). Furthermore, it holds that
(a) If GFc(R) is closed under Zo(RP) -coproper extensions, then (1) <= (3) < (4).
(b) If GFc(S°P) is closed under Zc(S)™-coproper extensions, then (2) <= (3) <= (4).
(¢) If R is a left coherent ring and S is a right coherent ring, then the conditions (1)—(4) are
equivalent.

Proof. By Lemma (1), we have Fo(R) C L[Zc(RP)1] = Zo(RP)T. Tt is trivial that F(S) is
resolving, and note that F¢(R) is closed under finite direct sums and direct summands by [21]
Proposition 5.1(a)]. Then the assertions (1) <= (3) <= (4) and (a) follow from Proposition [4.5]
by setting 7 = F(S) and . = Fc(R). Symmetrically, we get the assertions (3) <= (4) = (2)
and (b). The assertion (c) follows from the assertions (a), (b) and Lemma [5.1] O

When rCs = rRg, we write

G-fdgp M := Geo-fdg M and G-fdper N := Go-fdger N
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Corollary 5.3. ([9, Theorem 2.4]) For any n > 0, the following statements are equivalent.
(1) G-fdgr M < n for any M € Mod R.
(2) G-fdror N < n for any N € Mod R°P.
(3) fdr E < n for any E € Z(R), and fdrer E' < n for any E' € Z(R°P).

Proof. Since the class of Gorenstein flat left (resp. right) R-modules is closed under extensions
by [36, Theorem 4.11], the assertion follows from Theorem by putting rCs = rRRg. ]

It is clear that
GPc(R) = GPc(Pe(R)) and GPc(SP) = GPo(Po(S™)),
GZco(S) = GZe(Zo(S)) and GZo(R?) = GIo(Zo(RP)).

In the following result, we show that the C-Gorenstein projective dimension of any left R-
module is at most n if and only if the C-Gorenstein injective dimension of any left S-module is
at most n.

Theorem 5.4. For any n > 0, it holds that
(1) The following statements are equivalent.
(1.1) Ge-pdr M < n for any M € Mod R.
(1.2) Ge-idg N < n for any N € Mod S.
(1.3) pdg E <n for any E € Zc(S), and idr H < n for any H € Pc(R).
(1.4) Po(R)-pdI <mn for any I € Z(R), and Zc(S)-idT < n for any T € P(S).
(2) The following statements are equivalent.
(2.1) Go-pdger N' < n for any N € Mod S°P.
(2.2) Geo-idger M’ < n for any M’ € Mod R°P.
(2.3) pdger E' < n for any E' € Ze(RP), and idger H' < n for any H' € Pc(SP).
(2.4) Po(SP)-pd I’ <n for any I' € Z(SP), and Ze(RP)-idT" < n for any T' € P(RP).

Proof. (1) Tt is trivial that P(S) is resolving, and note that Pc(R) is closed under finite direct
sums and direct summands by [2I) Proposition 5.1(b)]. Then the assertion (1.1) <= (1.3) <=
(1.4) follows from Theorem by setting .7 = P(S) and 5 = Pc(R). On the other hand,
it is trivial that Z(R) is coresolving, and note that Zo(S) is closed under finite direct sums
and direct summands by [2I, Proposition 5.1(c)]. Then the assertion (1.2) <= (1.3) <= (1.4)
follows from Theorem by setting . = Z(R) and .7 = Z¢(S5).

(2) It is the symmetric version of (1). O

We introduce the C-versions of strongly Gorenstein flat modules and projectively coresolved
Gorenstein flat modules as follows.

Definition 5.5.
(1) A module M € Mod R is called C-strongly Gorenstein flat if

Me+Fo(R)N coresr.,(r) Po(R).

Symmetrically, the notion of C'-Gorenstein projective modules in Mod S°P is defined.
(2) A module M € Mod R is called C-projectively coresolved Gorenstein flat if M € Tc(RP)"
and there exists an (Zo(RP) ® g —)-exact exact sequence

0-M-Q=Q'— - - Q' —

in Mod R with all Q° in Po(R). Symmetrically, the notion of C-projectively coresolved
Gorenstein flat modules in Mod SP is defined.
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We use SGFc(R) (resp. PGFc(R)) to denote the subcategory of Mod R consisting of C-
strongly Gorenstein flat modules (resp. C-projectively coresolved Gorenstein flat modules).
Symmetrically, we use SGF(S) (resp. PGFc(S)) to denote the subcategory of Mod S
consisting of C-strongly Gorenstein flat modules (resp. C-projectively coresolved Gorenstein
flat modules). When rCs = rRpg, C-strongly Gorenstein flat modules and C-projectively core-
solved Gorenstein flat modules are exactly strongly Gorenstein flat modules [10] and projectively
coresolved Gorenstein flat modules [36] respectively. Following the notations below Definition
4.1} we have

SGFc(R) = GPc(Fe(R)) and SGF(SP) = GPo(Fo(SP)),
PGFc(R) = GFc(Pc(R)) and PGF(S?) = GFc(Pc(SP)).

Proposition 5.6.

(1) For any n >0, consider the following conditions.
(1.1) PGFc(R)-pd M <n for any M € Mod R.
(1.2) pdg E <n for any E € Zc:(S), and fdror E' < n for any E' € Zc(RP).
(1.3) Po(R)-pdI <n for any I € Z(R), and Fc(SP)-pd I’ <n for any I' € Z(S°P).
We have (1.1) <= (1.2) <= (1.3). Furthermore, if PGFc(R) is closed under Zo:(RP)"-
coproper extensions, then all these three conditions are equivalent.

(2) For any n >0, consider the following conditions.
(1.1) PGFc(SP)-pd N <n for any N € Mod S°P.
(1.2) pdger E' < n for any E' € Ze(RP), and fdg E < n for any E € Zc(S).
(1.3) Po(SP)-pd I’ <n for any I' € Z(S°P), and Fc(R)-pdI < n for any I € Z(R).
We have (2.1) <= (2.2) <= (2.3). Furthermore, if PGFc(S) is closed under Zc(S)™-
coproper extensions, then all these three conditions are equivalent.

Proof. (1) By Lemma we have
Po(R) € Fo(R) € HIo(RT)*] = To(R™)'.

Then the assertion follows from Proposition 4.5 by setting .7 = P(S) and 5 = Pc(R).
(2) It is the symmetric version of (1). O

Proposition 5.7. For any n > 0, it holds that

(1) The following statements are equivalent.
(1.1) SGFc(R)-pd M <n for any M € Mod R.
(1.2) pdg E <n for any E € Zc(S), and idg H < n for any H € Fc(R).
(1.3) Po(R)-pdI <n for any I € Z(R), and Zc(S)-idT <n for any T € F(95).

(2) The following statements are equivalent.
(2.1) SGFc(S?)-pd N < n for any N € Mod S°.
(2.2) pdgep E' < n for any E' € Zc(RP), and idger H' < n for any H' € Fc(SP).
(2.3) Pc(SP)-pd I’ < n for any I' € Z(S°), and Zc(RP)-idT" < n for any T' € F(R°P).

Proof. Tt follows from Theorem [4.6| by setting .7 = F(S) and .2 = Fc(R).
(2) It is the symmetric version of (1). O

5.2 Other C-Gorenstein modules

In the following result, we show that the GP ¢ (Bc(R))-projective dimension of any left R-module
is at most n if and only if the GZ¢(Ac(9))-injective dimension of any left S-module is at most
n.
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Theorem 5.8. For any n > 0, it holds that

(1) The following statements are equivalent.

(1.1) GPc(Bc(R))-pd M < n for any M € Mod R.

2) GZc(Ac(S9))4d N < n for any N € Mod S.
3) pdg E <n for any E € Zc(S), and idg H < n for any H € Bc(R).
A) Po(R)-pdI <n for any I € Z(R), and Zc:(S)-idT < n for any T € Ac(S).
5) idr Q < n for any Q € Pc(R), and pdgT <n for any T € Ac(S).

1.6) Zc(S)-id P < n for any P € P(S), and Pc(R)-pd H < n for any H € Bo(R).

2.1) GPc(Bo(S°P))-pd N < n for any N € Mod S.

2) GZo(Ac(RP))-id M’ < n for any M’ € Mod RP.

3) pdpey E' < n for any E' € Zc(RP), and idger H < n for any H € Bc(S°P).

A4) Pc(SP)-pdI' < n for any I' € Z(S°P), and Zc(RP)-AdT < n for any T € Ac(RP).

5) idger Q" < n for any Q" € Pc(SP), and pdgrep T" < n for any T' € Ac(RP).

6) Zc(RP)-id P < n for any P € P(R), and Pc(S°?)-pdH' < n for any H €
Be(5°).

Proof. By [21, Theorem 6.2], we have that A¢(S) is resolving. By [28, Theorem 3.3(2)] and
[21L Proposition 4.2(a)], we have that Bo(R) is covering in Mod R and closed under finite direct
sums and direct summands. Now the assertion (1.1) <= (1.3) <= (1.4) follows from Theorem
[4.6] by setting .7 = Ac(S) and 2 = Bo(R).

By [21, Theorem 6.2], we have that Bo(R) is coresolving. By [28, Theorem 3.5(1)] and [21]
Proposition 4.2(a)], we have that A¢(S) is preenveloping in Mod S and closed under finite direct
sums and direct summands. Now the assertion (1.2) <= (1.5) <= (1.6) follows from Theorem
by setting . = Bo(R) and 7 = A¢(S).

(1.3) + (1.4) = (1.5) Since Pc(R) C Be(R) by Lemma [2.7)(2), we have idg @ < n for any
Q € Pc(R) by (1.3). Now let T' € A¢(S). Then Zo(S)-idT < n by (1.4), and thus there exists
an exact sequence

0-T—E"E' —... 5 E" >0

in Mod S with all E* in Zo(S). By (1.3), we have pdg E* < n for any 0 < i < n. It follows that
pdgT < n.

Dually, we get (1.5) 4+ (1.6) = (1.3).

(2) It is the symmetric version of (1). O

When rCgs = gRp, it is easy to see that Bo(R) = Mod R = A¢(S), and hence
GPc(Bc(R)) = P(R) and GZc(Ac(S)) = Z(R).

It yields
GPc(Be(R))-pd M = pdr M and GZc(Ac(S))-idM =idg M

for any M € Mod R. Thus, putting gCs = gRpg in Theorem[5.8] from the equivalence (1.1) <>
(1.2) we get the following well-known classical result (cf. [35, Theorem 8.14]).

Corollary 5.9. For any ring R, we have
sup{pdr M | M € Mod R} = sup{idr M | M € Mod R}.
The common value of the quantities is known as the left global dimension of R.

Proposition 5.10. For any n > 0, it holds that
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(1) The following statements are equivalent.
(1.1) GPcWFc(R))-pd M < n for any M € Mod R.
(1.2) pdg E <n for any E € Zc(S), and idg H < n for any H € WFc(R).
(1.3) Pc(R)-pdI <n for any I € Z(R), and Zc(S)-dT < n for any T € WF(S).
(2) The following statements are equivalent.
(2.1) GPcWFc(S))-pd N <n for any N € Mod S°.
(2.2) pdrer E' <n for any E' € Ic(R°P), and idgor H' < n for any H' € WF ¢ (SP).
(2.3) Po(SP)-pdI'" < n for any I' € Z(S?), and Zc(RP)-idT" < n for any T' €
WF(RP).

Proof. Tt follows from [I5, Proposition 2.6(2)] that W (.S) is resolving, and note that WF o (R)
is closed under finite direct sums and direct summands by [16, Proposition 2.8]. Then the
assertion follows from Theorem 4.6 by setting .7 = WF(S) and 5 = WFc(R).

(2) It is the symmetric version of (1). O

Proposition 5.11. For any n > 0, it holds that

(1) The following statements are equivalent.
(1.1) GZcWZe(5))-idN <n for any N € Mod S.
(1.2) idgr @ < n for any Q € Pc(R), and pdgT < n for any T € WIc(S5).
(1.3) Ze(S)-id P < n for any P € P(S), and Pc(R)-pd H <n for any H € WI(R).

(2) The following statements are equivalent.
(2.1) GZIc(WIc(RP))-idM' < n for any M' € Mod R°P.
(2.2) idger Q" < m for any Q" € Pco(SP), and pdger T' < n for any T' € WZc(RP).
(2.3) Zc(RP)-id P' < n for any P’ € P(R), and Pc(S?)-pdH' < n for any H' €

WI(SP).

Proof. (1) It follows from [I5, Proposition 2.6(1)] that WZ(R) is coresolving, and note that
WZc(S) is closed under finite direct sums and direct summands by [16, Proposition 2.8]. Then
the assertion follows from Theorem by setting ## = WI(R) and J = WZ¢(S).

(2) It is the symmetric version of (1). O

5.3 (-Gorenstein global dimension

In the following result, the assertion (1) follows from Theorem and the assertion (2) follows
from Corollary

Corollary 5.12. It holds that
(1) If R is a left coherent ring and S is a right coherent ring, then

sup{G¢-fdg M | M € Mod R} = sup{G¢-fdger N | N € Mod S?}.
(2) ([9, Corollary 2.5]) We have
sup{G-fdg M | M € Mod R} = sup{G-fdger N | N € Mod R?}.

As an immediate consequence of Theorem [5.4] we get the following corollary, which is the
C-version of [0, Theorem 1.1].

Corollary 5.13. It holds that
(1) sup{Ge-pdr M | M € Mod R} = sup{G¢-idg N | N € Mod S}.
(2) sup{G¢-pdr M | M € Mod SP} = sup{G¢-idg N | N € Mod R°P}.
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We call the common value of the quantities in Corollary[5.13] (1) and (2) the left C-Gorenstein
global dimension and right C'-Gorenstein global dimension of R and S respectively, and denote
them by G¢-gldim and G¢-gldim® respectively.

A well-known open question is: whether or when is a Gorenstein projective module Goren-
stein flat? It also makes sense for the C-version of this question. As an application of Theorem
[6.4] we get the following result.

Theorem 5.14. If G¢-gldim® < oo, then GPc(R) C GFc(R).
Proof. Let G € GPc(R) and let
PP PG sG s 5 G (5.1)

be a Hompg(—, Po(R))-exact exact sequence in Mod R with all P; projective and all G* in Po(R),
such that G = Im(Py — G°). Let E’ € Ic(R°). By Lemma (2), we have that each G* is in
E'". Suppose G-gldim® = n < co. Then

deOP El S deop El S n

by Theorem Using dimension shifting it is easy to see that each image in the exact sequence
(5.1) is also in E'". 1t follows that (5.1) is (E' ® g —)-exact, and thus G € GFc(R). O

We need the following easy observation.

Lemma 5.15. It holds that
(1) A module M € Fo(R) if and only if M € Ze:(RP).
(2) If S is a right Noetherian ring, then a module N € Zc(R°P) if and only if NT € Fo(R).

Proof. (1) It follows from [29, Theorem 4.17(1)].

(2) Let N € Mod R?. If N € Z¢:(RP), then NT € F¢(R) by [41, Lemma 2.3(2)]. Conversely,
if Nt € Fo(R), then Nt € Zo(R°) by (1). Since N is a pure submodule of Nt by [I7,
Corollary 2.21(b)], it follows from [2I, Lemma 5.2(b)] that N € Z¢(RP). O

In the following result, we establish the relationship among some kinds of C-Gorenstein
modules, in which the first assertion is the C-version of [30, Theorem 2].

Lemma 5.16. It holds that
(1) If S is a right Noetherian ring, then SGFc(R) = PGFc(R).
(2) SGFc(R) C GPc(R), with equality when Po(R)-pd X < oo for any X € Fo(R).
(3) Assume that one of the following conditions is satisfied:
(3.1) S is a right Noetherian ring and Pc(R)-pd X < oo for any X € Fo(R);
(3.2) R is a left Noetherian ring and S is a right Noetherian ring with idr C' < co.
Then

SGFc(R) =PGFc(R) =GPc(R) € GFc(R).
Proof. Let M € Mod R, and let
i P PP Q" Q= Q- (5.2)

be an exact sequence in Mod R with all P; projective and all Q' in Pc(R), such that M =
Im(Py — Q). Set M* :=Im(Q" — Q') for any i > 0.
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(1) Suppose M € SGF¢(R). In this case, the exact sequence (5.2) may be assumed to be
Hompg(—, Fo(R))-exact. Since Zo(R?)" C Fe(R) by Lemma [5.15(2), the exact sequence (5.2)
is Hompg(—, Zo(RP)™)-exact, and hence (Zo(R) @ —)-exact. This yields M € PGF(R).

Conversely, suppose M € PGFc(R). In this case, the exact sequence (5.2) may be assumed
to be (Z¢(RP) ® —)-exact. By Lemma [5.15 and [8, Theorem A.6], as part of (5.2), the complex

= PP = By
is Homp(—, Fo(R))-exact, which implies that the exact sequence
=P = >P —>F—-M=0

is also Hompg(—, Fo(R))-exact. Thus M € +Fo(R).
Consider the (Z¢(RP) ® —)-exact (equivalently Hompg(—, Zo(RP)™)-exact) exact sequence

0—-M—Q"— M°—o0.

Let
o Pl P PY QY0

be a projective resolution of QY in Mod R. It is Hompg(—,Zc(R%)")-exact by [37, Lemma
4.13]. Then, according to [26, Theorem 3.6], we get the following Hompg(—, Zc(R)™)-exact
(equivalently (Z¢(RP) ® —)-exact) exact sequence

s PP o= Po P — P — M0,

which is Hompg(—, Fo(R))-exact by Lemma and [8, Theorem A.6] again. This yields M° €
LFc(R). Similarly, we get M* € + Fo(R) for any i > 1. It follows that the exact sequence (5.2)
is Homp(—, Fc(R))-exact, and thus M € SGFc(R).

(2) It is trivial that SGFc(R) € GPc(R). Conversely, let M € GPc(R). In this case,
the exact sequence (5.2) may be assumed to be Hompg(—, Pc(R))-exact. Then M € +Pc(R).
Suppose Pc(R)-pd X < oo for any X € Fo(R). Then M € +F¢(R) by dimension shifting.
Note that all M? are in GP¢(R) by [32, Corollary 2.10]. Then, similarly, we get M* € + Fo(R)
for any @ > 0. It follows that the exact sequence (5.2) is Homp(—, Fo(R))-exact, and thus
M e SGFc(R).

(3) Tt is trivial that PGF(R) C GFc(R). So, the case for (3.1) follows immediately from
(1) and (2). On the other hand, when R is a left Noetherian ring with idr C' < oo, it follows
from [41), Corollary 3.2] and [4, Theorem 1.1] that Pc(R)-pd X < oo for any X € Fe(R), and
thus the case for (3.2) follows from the former assertion. O

We write
spclfc R := sup{Pc(R)-pd M | M € Fco(R)}.

Lemma 5.17. If S is a right Noetherian ring, then
Ge-pdr M < spclfc R

for any M € GFc(R).
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Proof. Let M € GF¢(R). Then there exists an (Zo(RP) ®r —)-exact exact sequence
ims PPl P FO s Pl S FT (5.3)

in Mod R with all P; projective and all F7 in Fg(R), such that M = Im(Py — F°). Sup-
pose spclfc R = t < oo. Then for any j > 0, we have Pc(R)-pd F? < t, and hence FJ €

resp,,(r) Pc(R) by Lemma
On the other hand, by Lemma [5.16{3.1), we have

P, € GPc(R) = SGFo(R) C coresz,,(r) Po(R)

for any ¢ > 0. Then by Theorem 2), we get the following commutative diagram with exact
columns and rows:

0 0 0 0
0 K Ky K} K}
0 Py Gi_q th71 — e — Gg | —
|
v
0 P G Gl G
0 P G G§ Gl
0 M FO F! Fi
0 0 0 0

in Mod R with all G;- in Po(R), such that the middle ¢ rows are Hompg(—, Fo(R))-exact and
all columns but the leftmost one are Homp(Pc(R), —)-exact. By Lemma [5.15(2), the middle
t rows are Homp(—,Z¢o(R)T)-exact, equivalently (Zo(RP) ®p —)-exact. The exact sequence
(5.3) implies that the leftmost column and the bottom row in this diagram are (Z¢(R?) @ —)-
exact. By Lemma[2.9] we have that all columns in the above diagram are (Zo(R%) ® g —)-exact,
and hence the top row is also (Z¢(RP) @ —)-exact.

Since M € GF¢(R) C Io(R%) ", we have K; € Io(R%)". Since Po(R)-pd FJ < t for any
j >0, it follows from Lemma [4.2(2) (with # = Po(R)) and [27, Theorem 3.8(1)] that all K7
are in Po(R), and thus K; € PGF¢(R). Thus by Lemma[5.16{(3.1), we have K; € GP¢(R) and
Ge-pdp M < t. 0

In the following result, assertions (1) and (2) are the C-versions of [0, Corollary 1.2(1)] and
part of [9, Theorem 3.3] respectively.
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Theorem 5.18. It holds that
(1) sup{G¢-fdg M | M € Mod R} < max{G¢-gldim, G¢-gldim}.
(2) If S is a right Noetherian ring, then

Ge-gldim < sup{G¢g-fdg M | M € Mod R} + spclfc R.

Proof. (1) Suppose max{G¢-gldim, G¢-gldim®”} = n < co. Let M € Mod R. Then Go-pdp M <
n and there exists an exact sequence

0—-G,—--—>G —-Gy—M—0

in Mod R with all G; in GPc(R). By Theorem we have that all G; are in GF¢(R), and
thus Gg-fdrp M < n. The assertion follows.
(2) Suppose {Ge-fdg M | M € Mod R} = s < oo and spclfc R =t < oo. Let M € Mod R
and let
0—-Gs—-—>G —-Gy—M—=0

be an exact sequence in Mod R with all G; in GF¢(R). By Lemma we have Go-pdr G; <t
for any 0 < i < s. By [29, Theorem 3.2 and Remark 4.4(3)(a)], it is easy to get Go-pdp M < s+t,
and thus Gg-gldim < s+ ¢. O

5.4 Finite injective dimension

Lemma 5.19. It holds that
(1) Let R be a left Noetherian ring. Then we have
(1.1) idr C = sup{fdger E' | E' € Ic:(RP)} = sup{Fc(SP)-pdI' | I' € Z(S°P)}.
(1.2) IfidpC =n < oo and M € Mod R with Fc(R)-pd M < oo, then Pc(R)-pd M < n.
(2) Let S be a right Noetherian ring. Then we have
(2.1) idger C =sup{fds E | E € Z¢:(S)} = sup{Fc(R)-pdI | I € Z(R)}.
(2.2) If idgor C = n < 00 and N € Mod S with Fc(S?)-pd N < oo, then Pc(SP)-
pd N <n.

Proof. (1) In (1.1), the first equality follows from [24, Lemma 17.2.4(2)], and the second one
follows from Lemma ).

(1.2) Let M € Mod R with Fo(R)-pd M = m < co. By Lemma there exists an exact
sequence

R L L N T eIy V ey

in Mod R with all G; in Pc(R), such that Im f,,, € Fo(R). By [39, Proposition 3.4(1)], we have
that Im f,,, is isomorphic to a direct summand of a direct limit of a family of modules in which
each is a finite direct sum of copies of rRC. Then idg Im f,,, < idg C = n by [4, Theorem 1.1].
We claim that m < n. Otherwise, if m > n, then Ext% (M,Im f,) = 0. It follows from
Lemma (2) and dimension shifting that Exth(Im f,,,_1,Im f,,,) = 0. It implies that the exact
sequence
0—->Imf, >Gn1—Imfr1—0

splits and G,,—1 = Im f;, ® Im fy,,—1. Then Im f,,—1 € Pc(R) by [21, Proposition 5.1(b)], and

thus Fo(R)-pd M < m — 1, which is a contradiction. The claim is proved. Then Im f,+1 €

Fco(R). By using an argument similar to above, we get Im f,, € Po(R) and Po(R)-pd M < n.
(2) It is the symmetric version of (1). O
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Let R be a left Noetherian ring and S a right Noetherian ring. By [25, Theorem 2.7], we
have that idr C' = idgor C' if both of them are finite. In the following result, we give some
equivalent characterizations for the finiteness of idr C' and idger C' in terms of the properties
of the projective and injective dimensions of modules relative to some classes of C-Gorenstein
modules. It is the C-version of [29, Theorem 1.2].

Theorem 5.20. Let R be a left Noetherian ring and S a right Noetherian ring. Then for any
n > 0, the following statements are equivalent.

(1) idRC:idSopCSH.

(2) Geg-pdr M <n for any M € Mod R.

(3) Ge-idg N <n for any N € Mod S.

(4) Ge-fdg M <n for any M € Mod R.

(5) PGFc(R)-pd M <n for any M € Mod R.
(6) SGFco(R)-pdM <n for any M € Mod R.
(1)°P Symmetric version of (i) with 2 < i <6.

Proof. By Theorem and Lemma [5.19(1.1)(2.1), we have (1) <= (4). By Theorem [5.4(1),
we have (2) <= (3). By Lemma [5.16[1)(2), we have (6) <= (5) => (2).

(2) = (1) By (2) and Theorem [5.4(1), we have idr C < n and fdg E < pdg E < n for any
E € Z¢(S). By Lemma[5.19(2.1), we have idge» C' < n.

(1) + (4) = (5) By (4) and Theorem we have that Fo(R)-pdI < n for any I € Z(R)
and that Fo(S)-pd I’ < n for any I' € Z(S°). It follows from (1) and Lemma [5.19(1.2) that
Pc(R)-pdI < n for any I € Z(R). Now the assertion follows from Proposition [5.6{1).

By symmetry, the proof is finished. O

The following result is a consequence of Theorem [5.20

Corollary 5.21. Let R be a left Noetherian ring and S a right Noetherian ring with idr C' =
idgor C' < 00. Then the following assertions hold.

(1) 8GFc(R) = PGFc(R) = GPc(R) = *Pc(R) = *Fo(R).

(2) GT(S) = To(S)*

(3) GFc(R) =Zc(RP)".

Proof. (1) By Lemma [5.16{(3.2), we have SGF¢(R) = PGFc(R) = GPc(R). By Theorem
we have Geo-pdp M < oo and SGFc(R)-pd M < oo for any M € ModR. It follows from
Proposition 4.7 that GP¢(R) = +Pc(R) and SGFc(R) = L Fo(R).

(2) By Theorem we have G¢-idg N < oo for any N € Mod S. Now the assertion follows
from Proposition

(3) Let M € Zc(R°P)T. By Theorem we have Gg-idgor MT < n. Let E € Zo(RP). Tt
follows from [I7, Lemma 2.16(b)] that

Exthop (B, M) 2 [Torl}(E, M)]" =0

for any i > 1, that is, M+ € Zo(R°)*. Then M+ € GZ(R) by the symmetric version of (2),
and thus M € GF¢(R) by |29, Theorem 4.17(2)]. O

Recall that a left and right Noetherian ring R is called n-Gorenstein with n > 0 if idr R =
idror R < n. The Wakamatsu tilting conjecture states that if R and S are artin algebras, then
the left and right injective dimensions of rCs are identical ([6]). It still remains open. The
following result provides some support for this conjecture.
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Theorem 5.22. It holds that
(1) If R is an n-Gorenstein ring, then idr C < n if and only if Go-pdr M < n for any
M € Mod R.
(2) If S is an n-Gorenstein ring, then idger C < n if and only if Go-pdger N < n for any
N € Mod S°.
(3) If R and S are Gorenstein rings, then idp C = idger C.

Proof. (1) We first prove the sufficiency. Let M € Mod R. Then Gg-pdp M < n and there
exists an exact sequence

0—-G,—- =G -G —M—=0
in Mod R with all G; in GP¢(R). Applying the functor Hompg(—, C) to it yields

Ext™ (M, C) = Ext(G,,C) =0

for any ¢ > 1, and thus idgr C < n.
In the following, we prove the necessity. Let M € Mod R and let

0O—-K,—>PFP, 11— =P —>Fp—->M-=—=0
be an exact sequence in Mod R with all P; projective. By dimension shifting, we have
Ext’ (K, X) 2 Ext};™ (M, X) =0

for any X € Mod R with idg X < n and ¢ > 1. Since idg C' < n, we have idr Q < n for any
Q € Pc(R) by 4, Theorem 1.1], and so K,, € *Pc(R).

Since R is an n-Gorenstein ring, the Gorenstein projective dimension of M is at most n by
[29] Theorem 1.2], and hence K,, is Gorenstein projective. Thus there exists an exact sequence

0—-K,—-P P —»...5pP ...

in Mod R with all P! in P(R). Since P(R) C GP¢(R), there exists a Hompg(—, Pc(R))-exact
exact sequence ' ' ' '

0= P —5Q)—Q1 = —Q;— -
in Mod R with all Qg in Po(R) for any 4,7 > 0. By [26, Theorem 3.8], we get the following

exact sequence

1 2 m . m-+1
0K, > QL Qtaol L Dam i 1 (5.4)

in Mod R. By [21}, Proposition 5.1(b)], we have all & ,Q¢, . are in Pc(R). Then we have
Extp(Im f, Q) = Extf" (Im /™", Q) = 0

for any @Q € Pc(R) and m > 1, which implies that the exact sequence (5.4) is Hompg(—, Po(R))-
exact. Thus K, € GPc(R) and Go-pdp M < n.

(2) It is the symmetric version of (1).

(3) Suppose idrC' < oco. In this case, we may suppose that R is an n-Gorenstein ring
and idr C < n for some n > 0. By (1) and Theorem we have idger C' = idg C < n.
Symmetrically, if idgor C' < 00, then idg C' = idger C' by (2) and Theorem O
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