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Abstract. We provide a description of the endomorphism algebra of any Gorenstein
projective support τ -tilting module over gentle algebras via geometric models. By using
it, we show that a gentle algebra A is representation-finite if and only if the endomorphism
algebra of any Gorenstein projective support τ -tilting A-module is representation-finite.

1. Introduction

Tilting theory plays a central role in the representation theory of algebras, in which
tilting modules are fundamental. On the other hand, mutation is an operation for a
certain class of objects in a fixed category to construct a new object from a given one by
replacing a summand, which is possible only when the given object has two complements.
Happel and Unger [15] gave some necessary and sufficient conditions under which mutation
of tilting modules is possible; however, mutation of tilting modules is not always possible.
As a generalization of tilting theory, τ -tilting theory was introduced by Adachi, Iyama and
Reiten [1]. In τ -tilting theory, support τ -tilting modules are important since the mutations
of support τ -tilting modules always exist. Recently, Gorenstein projective support τ -
tilting modules, introduced by Xie and Zhang [24], were used to study functorially finite
Gorenstein torsion pairs over finite dimensional algebras. For a finite dimensional algebra
A, there is a bijection between the set of all isomorphism classes of Gorenstein projective
support τ -tilting A-modules and the set of all functorially finite Gorenstein torsion pairs of
A-modules; and the CM-τ -tilting finiteness is left and right symmetric, see [24, Theorems
1.2 and 1.3].

Gentle algebras were introduced by Assem and Skowroński [4] as appropriate context

in the study of algebras derived equivalent to hereditary algebras of type ÜA. Their module
categories and derived categories were studied by many authors, see [2,8,9,11,18,22,23] and
references therein. The geometric models of gentle algebras first appeared, albeit implicit-
ly, in work of Haiden, Katzerkov and Kontsevich [14]. After that, Baur-Coelho-Simões [7]
and Opper-Plamondon-Schroll [20] provided the axiomatic definitions of geometric models
of module categories and derived categories for gentle algebras, respectively. To be more
precise, all indecomposable objects in module category (respectively, derived categories)
are described by special curves in surfaces; all irreducible morphisms between two inde-
composable modules in module categories are described by the pivot elementary moves
of curves; and all morphisms between two indecomposable complexes in derived cate-
gories are described by the intersections of two curves respectively corresponding to the
above indecomposable objects. He, Zhou and Zhu [16] investigated the geometric models
of module categories over skew-gentle algebras (a generalization of gentle algebras), and
they provided another geometric characterization of irreducible morphisms between two
indecomposable modules by the intersections of curves respectively corresponding to the
above indecomposable modules. Furthermore, they pointed out that any support τ -tilting
module corresponds to a generalized dissection (see Definition 4.1) of marked ribbon sur-
faces.
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In the representation theory of algebras, determining whether an algebra is representation-
finite is fundamental and important. By using the “brick-τ -tilting correspondence” [12],
Plamondon proved that a gentle algebra is representation-finite if and only if it is τ -tilting
finite [21, Theorem 1.1]. In this paper, we will study Gorenstein projective support τ -
tilting modules over gentle algebras via geometric models, and then show that a gentle
algebra A is representation-finite if and only if the endomorphism algebra of any Goren-
stein projective support τ -tilting A-module is representation-finite.

The paper is organized as follows. In Section 2, we recall some terminology and some
preliminary results needed in this paper. In particular, we give the definition of gentle
algebras and some related notions related to their geometric models. In Section 3, by
using geometric models we provide a description of any subalgebra of a gentle algebra as
well as an alternative proof of a result by Butler and Ringel [9] which states that a gentle
algebra is representation-finite if and only if its quiver has no band.

Let A be a gentle algebra and SEA• (A) its marked ribbon surface. In Section 4, we prove
that the marked ribbon surface of the Cohen-Macaulay-Auslander algebra Acma of A can
be given as follows: If any full formal •-arc system of SEA• (A) provides no∞-elementary •-
polygon (see FIGURE 2.1), then the marked ribbon surface of Acma is homotopic to SEA• (A);
otherwise, for each∞-elementary •-polygon Pi with `i vertices pi1, pi2, . . ., pi`i in clockwise
order, we add `i new marked points qi1, qi2, . . ., qi`i clockwise arranging on the unmarked
boundary component bi corresponding to Pi and add `i new •-arcs wij whose endpoints
are pij and qij (1 ≤ j ≤ `i) (Theorem 4.9).

In Section 5, we prove the main results in this paper.

Theorem 1.1. Let A be a finite dimensional basic algebra over an algebraically closed
field. If A is gentle, then it holds that

(1) (Theorem 5.2) The category modA of finitely generated right A-modules contains at
least one non-trivial G-projective τ -tilting module if and only if some full relational
oriented cycle C = α1 · · ·α` (s(α1) =: v1) of the quiver of A has at least one vertex
vi (1 ≤ i ≤ `) which is not a target of any arrow except αi.

(2) (Theorem 5.5) The algebra A is representation-finite if and only if the endomor-
phism algebra EndAT is representation-finite for any Gorenstein projective support
τ -tilting module A-module T .

In Section 6, we give an example to illustrate that the Gorenstein projective condition
in Theorem 1.1(2) is necessary (Example 6.1). It is known that any tilting right A-module
T over an arbitrary finite dimensional algebra A is a tilting left B-module BT with B =
End(TA) and End(BT ) ∼= A. We give some examples to show that this property cannot
be generalized to G-projective τ -tilting modules even over gentle algebras (Examples 6.5
and 6.6).

2. The geometric models of module categories for gentle algebras

In this paper, assume that A = kQ/I is a basic finite dimensional k-algebra over an
algebraically closed field k, where I is an admissible ideal of kQ and Q = (Q0,Q1) is
a finite quiver with Q0,Q1 the sets of all vertices and arrows, respectively. We use s, t
to denote two functions from Q1 to Q0 which send each arrow to its source and target,
respectively. The multiplication α1α2 of two arrows α1 and α2 in Q1 is defined by the
concatenation if t(α1) = s(α2) or zero if t(α1) 6= s(α2). All A-modules considered are
basic right A-modules. We use modA to denote the category of finitely generated right
A-modules. For a set S, we use ]S to denote the cardinality of S.

Definition 2.1. [4] We say A ∼= kQ/I is a gentle algebra if it satisfies (G1)–(G4) as
follows:

(G1) Any vertex in Q0 is the source of at most two arrows and the target of at most
two arrows.
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(G2) For any α ∈ Q1, there is at most one arrow β whose source (respectively, target)
is t(α) (respectively, s(α)) such that αβ ∈ I (respectively, βα ∈ I).

(G3) For each arrow α ∈ Q1, there is at most one arrow β whose source (respectively,
target) is t(α) (respectively, s(α)) such that αβ /∈ I (respectively, βα /∈ I).

(G4) I is generated by paths of length 2.

2.1. Marked surfaces. A marked surface is a pair (S,M) defined by connected oriented
Riemann surface with non-empty boundary ∂S and a finite subset M of ∂S, where each
element in M, denoted by •, is called a marked point. A curve a : [0, 1]→ S is a function
such that one of the following conditions holds:

• a(0), a(1) ∈ ∂S and a(t)|0<t<1 ⊆ S\∂S;
• a(0) = a(1), a(t)|0≤t≤1 ⊆ S\∂S and is not homotopic to a point.

All curves are considered up to isotopy. The number of intersections of two curves will be
taken as the minimal number of intersections when varying these curves isotopically.

A •-arc a is a curve such that a(0) and a(1) are marked points. Furthermore, a formal
•-arc system (=•-FAS) ∆• of marked surfaces is a collection of •-arcs such that:

• a1 ∩ a2 ∩ (S\∂S) = ∅ holds for any a1, a2 ∈ ∆•; and
• each elementary •-polygon enclosed by ∆• has at least one edge which does not

belong to ∆•. In particular, an ∞-elementary •-polygon P is an elementary •-
polygon such that P has unique edge b ⊆ ∂S which is a boundary component
of S without marked points (FIGURE 2.1). The boundary component b is called
unmarked.

Furthermore, ∆• is called a full formal •-arc system (=•-FFAS) if every elementary •-
polygon has a unique edge which does not belong to ∆•.

an a1

a2

a3a4

... b

Figure 2.1. ∞-elementary •-polygon.

Definition 2.2. [7] A marked ribbon surface is a triple S• = (S,M,∆•), where ∆• is a
•-FFAS.

Remark 2.3.
(1) Let S• be a marked ribbon surface and let be Y the finite subset of ∂S whose

elements are represented by symbols ◦◦◦ and called dual marked points such that
marked points in M and Y alternate along every boundary component. Then we
can define the notion of formal ◦◦◦-arc system (=◦◦◦-FAS) (respectively, full formal
◦◦◦-arc system (=◦◦◦-FFAS)) ∆◦ which is dual of •-FAS (respectively, •-FFAS), i.e.,

– for any two curves c1, c2 ∈ ∆◦, we have c1 ∩ c2 ∩ (S\∂S) = ∅;
– each elementary ◦◦◦-polygon enclosed by ∆• has at least one edge which does

not belong to ∆◦.
(2) For any •-FFAS ∆• (respectively, ◦◦◦-FFAS ∆◦), there is a unique ◦◦◦-FFAS ∆◦ (re-

spectively, •-FFAS ∆•) such that
– for any •-arc a in ∆•, there is a unique ◦◦◦ arc a? such that a ∩ a? 6= ∅ and
](a ∩ a?) = 1 hold;
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– for any ◦◦◦-arc a in ∆•, there is a unique • arc a? such that a? ∩ a 6= ∅ and
](a? ∩ a) = 1 hold;

We say one of ∆• and ∆◦ is the dual of the other, and denote by ∆• = ∆?
◦ or

∆◦ = ∆?
•.

(3) In [20], any •-FFAS ∆• is called a ribbon graph of the marked surface, and the
◦◦◦-FFAS ∆◦ = ∆?

• is called the lamination corresponding ∆•.

Notation 2.4.
(1) We use EP•(S•) (respectively, EP◦(S•)) to denote the set of elementary •-polygons

(respectively, elementary ◦◦◦-polygons) of S•.
(2) For any digon in EP•(S•), we add a point ��� on the side which is the subset of ∂S,

and say it is a extra marked point. We use E to denote the set of extra marked
points and use SE• to denote the marked ribbon surface with extra marked points.
For simplicity, SE• is still called a marked ribbon surface in the sequel.

Remark 2.5. The set E can be seen as a subset of Y.

Every marked ribbon surface induces a gentle algebra by the following construction.

Construction 2.6. Let SE• = (S,M,∆•)
E be a marked ribbon surface. Then SE• is the

marked ribbon surface of A(SE• ) = kQ/I, where

Step 1: there is a bijection v : ∆• → Q0, that is, each arc can be viewed as a vertex in Q0;
Step 2: for any two •-arcs a1 and a2 that meet in a common endpoint, there is an arrow

α : v(a1)→ v(a2) if a1 precedes a2 in the counterclockwise order about p;
Step 3: the ideal I is generated by such composition αβ where v−1(s(α)), v−1(s(β)),

v−1(t(β)) are edges of the same elementary polygon.

Remark 2.7. By [7, Theorem 2.10], we have that the corresponding SE• 7→ A(SE• ) given in
Construction 2.6 induces a bijection between the set of homotopy classes of marked ribbon
surfaces and that of isoclasses of gentle algebras. Therefore, up to homotopy equivalence,
for any gentle algebra A, there is a unique marked ribbon surface SE• such that A ∼= A(SE• ).
We say that SE• is the marked ribbon surface of A and denote it by SEA• (A). For simplicity,
we use “∼” to denote the homotopy equivalence of two marked ribbon surfaces. Thus,
A ∼= B if and only if SEA• (A) ∼ SEB• (B).

2.2. Permissive curves. The definition of permissive curves is given by Baur and Coelho
Simões [7, Definition 3.1], which is used to describe indecomposable modules over gentle
algebras. Now we recall some related notions.

For simplicity, we define that a curve on the marked ribbon surface SE• = (S,M,∆•)
E is

a function c : [0, 1]→ S such that c(t) ∈ S\∂S for any 0 < t < 1, one of c(0), c(1) ∈M∪E
and c(0) = c(1) ∈ S\∂S holds; and say that c is consecutively crossing u, v ∈ ∆• if the
segment of c between the points p1 = c ∩ u and p2 = c ∩ v does not cross any other
arc in ∆•. Let B be an unmarked boundary component of S. Note that any curve c is
considered up to isotopy. The intersection number is the minimal number of intersections
with varying the curves isotopically. We always assume that the curve c has minimal
intersection number with ∆•.

Definition 2.8. [7, Definition 3.1] Let SE• = (S,M,∆•)
E be a marked ribbon surface

and let c : [0, 1]→ S be a curve.

(1) The curve c is called permissible if it the following conditions are satisfied.
(a) The winding number of c around any unmarked boundary component of S is

either 0 or 1;
(b) If c consecutively crosses two (possibly not distinct) arcs u and v in Γ, then

u and v have a common endpoint p ∈M, and locally we have a triangle with
p a vertex.

(2) A permissible closed curve is a closed curve c satisfying Condition (1)(b).
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Definition 2.9. [7, Definition 3.5] Two permissible curves c1 and c2 in SE• are called
equivalent, if one of the following conditions holds:

(1) There is a sequence of consecutive edges δ1, · · · , δk of an elementary •-polygon P
in which none of said edges is as in Case I in FIGURE 2.2, such that

– c1 is homotopic to the concatenation of c2 and δ1, · · · , δk; and
– c1 starts at an endpoint of δ1 (respectively, δk), c2 starts at an endpoint of δk

(respectively, δ1), and their first cross with ∆• is the same edge of P.
(2) The starting points of c1 and c2 are marked points of an elementary •-polygon P

of Case I or II shown in FIGURE 2.2; their first cross with ∆•, say δ, is with the
same edge of P and the segments of c1 and c2 between δ and their ending points
are isotopic.

Case I Case II

Figure 2.2. The elementary •-polygon P is of the form Case I (respec-
tively, Case II); in this case, S has an unmarked boundary which is an edge
of P, thus the number of edges equals 2 (respectively, 3).

We use PC(SE• ) to denote the set of equivalence classes of permissible curves with
endpoints lying in M ∪ E , and use CC(SE• ) to denote the set of homotopy classes of
permissible curves without endpoints. Then, for any two curves c1, c2 ∈ [c], it is easy to
see that

{a ∈ ∆• | a ∩ c1 ∩ (S\∂S) 6= ∅} = {a ∈ ∆• | a ∩ c2 ∩ (S\∂S) 6= ∅}. (2.1)

For each curve c, we always suppose that it consecutively cross ac1, a
c
2, · · · , acn(c) (n(c) ∈ N),

and denote:

• ci,j (1 ≤ i < j ≤ n(c)− 1) the segment of c obtained by aci and acj cutting c; and
• c0,i (respectively, cj,n(c)+1) the segment of c obtained by c(0) and aci (respectively,
acj and c(1)) cutting c.

Furthermore, by (2.1), we say that ci,j is elementary if [c] ∈ PC(SE• ) and j = i + 1, and
say that c is trivial (or zero) if n(c) = 1, that is, c = c0,1 is an elementary segment.

Theorem 2.10.
(1) (Butler-Ringel [23, Proposition 2.3] and Wald-Waschbüsch [9, Section 3]) Let A be

a gentle algebra and J the set of Jordan blocks with non-zero eigenvalue. Then
any indecomposable right A-module is either a string module or a band module.

(2) (Baur-Coelho-Simoes [7, Theorem 3.8, Theorem 3.9]) Furthermore, there exists a
bijection

M : PC(SEA• (A)) ∪ (CC(SEA• (A))×J )→ ind(modA)

Remark 2.11. The indecomposable module isomorphic to M([c]) is string if c ∈ PC(SEA• (A));
and the indecomposable module isomorphic to M([b],JJJ) is band if (b,JJJ) ∈ CC(SEA• (A))×
J . The original definitions of string modules and band modules are given by Butler and
Ringel in [9, Section 3].

3. Representation-finite gentle algebras

From now on, assume that A = kQ/I is a gentle algebra.
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3.1. Subsurfaces and subquivers.

Definition 3.1 (Marked ribbon subsurfaces). Given a marked ribbon surface SE• =
(S,M,∆•)

E . A marked ribbon subsurface (or simply, subsurface) of SE• is a quadruplebSbE• = ( bS, ÓM, Ò∆•, bE) such thatbS ⊆ S, ÓM⊆M, Ò∆• ⊆ ∆• and bE is induced by Ò∆•.
In the case that bSbE• is a subsurface of SE• , we write bSbE• - SE• .

Notation 3.2. We use M|bS and ∆•|bS to denote the restrictions of M and ∆• on bS
respectively.

Lemma 3.3. Let ÒA = kÒQ/bI be a subalgebra of the gentle algebra A = kQ/I, where ÒQ is

a subquiver of Q and bI = {αβ ∈ I | α ∈ ÒQ, β ∈ ÒQ}. Then there is a unique subsurface bSbE•
of SEA• (A), such that the marked ribbon surface S

EbA• (ÒA) of ÒA is homotopy equivalent to bSbE•
and the following diagram

ÒQ0
⊆ //

v
��

Q0

v

��Ò∆• ⊆ // ∆•

(3.1)

commutes.

Proof. The uniqueness is clear. In the following, we will prove the existence.
Consider the ◦◦◦-FFAS ∆◦ = ∆?

•, which divides SEA• (A) to some elementary ◦◦◦-polygons
P1, P2, · · · , Pn and any elementary ◦◦◦-polygons Pi is homotopic to the marked surface of−→
Ami , which is of the form as shown in FIGURE 3.1. The •-marked point p corresponds to

p

∼−→

p

∗∗∗

∗∗∗

∗∗∗

∗∗∗

∗∗∗

Figure 3.1. The marked ribbon surface of a gentle algebra which is type
−→
A .

the path ℘ = α1 · · ·αmi over Q such that the following conditions hold:

• αjαj+1 /∈ I for any 1 ≤ j ≤ mi − 1;
• βα1 ∈ I holds for any arrow β satisfying t(β) = s(α1); and
• αmiγ ∈ I holds for any arrow γ satisfying t(αmi) = s(γ).

Indeed, ℘ is the path αi1 · · ·αit−1 on the subquiver

−→
Ami = v(i,1)

αi
1−→ v(i,2)

αi
2−→· · ·

αi
t−1−→ v(i,mi),

and S•(A) is the union of all elementary ◦◦◦-polygons. Here ℘ is called a non-trivial permitted
thread in [6] or a maximal path in [20].

On the other hand, it is easy to see that the quiver Q = (Q0,Q1, s, t) of A satisfies the
following unions

Q0 =
n[
i=1

(
−→
Ami)0, Q1 =

n[
i=1

(
−→
Ami)1,
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and for any arrows α : v(i,j−1) → v(i,j) and β : v(i′,j′) → v(i′,j′+1) satisfying v(i,j) = v(i′,j′),
we have that αβ ∈ I if and only if

v(i,j−1)
αi
j−1−→(v(i,j) = v(i′,j′))

αi′
j′−→ v(i′,j′+1)

is not a subquiver of any
−→
Ami . Thus for any subquiver ÒQ of Q, we have a union ÒQ =

nS
i=1

ÒQi
such that ÒQi ⊆ −→Ami , where ÒQi is a disjoint union of some connected subquivers of

−→
Ami .

Without loss of generality, suppose that ÒQi =
Shi
k=1

−→
A (i, ık, k), where

−→
A (i, ık, k) is some

connected subquiver of
−→
Ami with 1 ≤ ık ≤ k ≤ mi and k < ık+1 for all k. Then

−→
A (i, ık, k) is the subquiver

v(i,ık)
α(i,ık)−→ v(i,ık+1)

α(i,ık+1)−→ · · ·
α(i,k−2)−→ v(i,k−1)

α(i,k−1)−→ v(i,k)

corresponding to the subsurface which is of the form as shown in FIGURE 3.2.

p

v(i,ık) v(i,k)

Figure 3.2. The subsurface corresponding to A(i, ık, k) = k
−→
A (i, ık, k).

Thus, the marked ribbon surface of ÒA is a union of some subsurfaces of SEA• (A):

bSbE• =
n[
i=1

hi[
k=1

bSbE(A(i,ık,k))• (A(i, ık, k)) ∼ S
EbA• (ÒA),

where the second union is a disjoint union. Which is as desired. �

Example 3.4. Let A = kQ/I, where Q =

7
α74

{{
1

α′12
((

α12

66 2
α23 // 3 4

α43oo 6

α65{{

α67
cc

5
α54

cc

and I = 〈α12α23, α74α43〉. Then SEA• (A) = (S(A),M(A),∆•(A))EA and ∆◦(A) = ∆?
•(A)

is shown as in FIGURE 3.3.
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2

1 3 4

5 6

7

Figure 3.3. SEA• (A)

Consider the subquiver ÒQ = ÒQ1 × ÒQ2 which is obtained by removing arrows α43, α65, α67

and the vertex 6, where

ÒQ1 = ÒQ2 = 7
α74

||
1

α′12
))

α12

55 2
α23 // 3 4

5.
α54

cc

Then bSbE• (kÒQ/bI) is of the form as shown in FIGURE 3.4, and bSbE• (kÒQ/bI) contains two parts:

the marked ribbon surface of kÒQ1/〈α12α23〉 and that of kÒQ2.

2

1

3 5

4

7

���

'←− '−→1

2

3���

S•(kÒQ1/〈α12α23〉)

5

4

7

S•(kÒQ2)p

p

p

Figure 3.4. S•(kÒQ1/〈α12α23〉) ∪ S•(kÒQ2) ∼ S•(ÒA) ⊆ S•(A).

3.2. Representation-finite gentle algebras. Recall that a finite dimensional k-algebra
Λ is representation-finite if ind(modΛ), the set of isoclasses of indecomposable Λ-modules,
is a finite set; otherwise Λ is representation-infinite.

Notation 3.5.
(1) We say that the bound quiver (Q, I) of a gentle algebra A = kQ/I has a cycle C

(of length n), if there is a path ℘ of length n on the underlying graph of Q such
that its starting point equals to its ending point. Moreover, the cycle C is called

basic if it is type of ÜAn, and C is called a cycle without relation if any path in C
does not belong to I. Furthermore, a cycle C without relation is called a band if
it is not a power C t (t ≥ 2) of some cycle C .
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(2) We define Λ(C ) = kÒQ/bI induced by a cycle C is the algebra whose quiver ÒQ is the
subquiver of Q such that all vertices and arrows are given by C and the admissible
ideal bI is generated by all paths of length two in C .

In the following, we provide a description of the following result by geometric models.

Proposition 3.6. [9] A gentle algebra A = kQ/I is representation-finite if and only if
(Q, I) has no band.

By Proposition 3.6, it is easy to see that any gentle algebra A is representation-infinite
if and only if CC(SEA• (A))6=∅. Note that any band on the quiver of A corresponds to some
permissible curve without endpoints in CC(SEA• (A)) by Theorem 2.10(2). We may give
another proof of Proposition 3.6 by using the marked surfaces SEA• (A).

Since CC(SEA• (A)) 6= ∅ and J is an infinite set, we have that A is representation-
infinite. Thus, we only need to prove the following assertion:

If (Q, I) has no band, then A is representation-finite.

For this, it suffices to consider the following two cases:

(1) A is a gentle tree, that is, Q contains no cycle.

(2) For any subquiver ÒQ of Q induced by a cycle C , there exists a path ℘ = αβ on Q
which is a relation.

In the case (1), the surface SEA• (A) is a disc and ]M = ]Q0+2 (see [20, Corollary 1.23]).
Thus CC(SEA• (A)) = ∅ and

]ind(modA) = ]PC(SEA• (A)) ≤
]Q0+2X
r=0

�
]Q0+2
r

�
= 2]Q0+2 <∞.

In the case (2), we have ÒA = kÒQ/bI such that bI 6= 0, and S•(kÒQ) ∼ S•(Λ(C )) (the length
of C is n ≥ 2), where Λ(C ) is the algebra whose quiver is the subquiver of (Q, I) induced
by C . Then every curve b without endpoint encircles some boundary component(s) of

S•(kÒQ/bI). Moreover, there is no permissible curve c ∈ PC(SEA• (A)) such that c contains
a segment consecutively cross aci , a

c
i+1, · · · , acj = aci (j > i). Otherwise, without loss of

generality, assume acı 6= ac (for any i ≤ ı 6=  < j), and consider the curve ĉ without
endpoints such that the following conditions hold:

• aĉ1 = aĉn(ĉ)+1 = ac1; and

• for any 1 ≤ k ≤ n(ĉ), ĉk,k+1 and ci+k−1,i+k are segments corresponding to the
same arrow (note: i + n(ĉ) = j) (for example, see the cyan curve ĉ as shown in
FIGURE 3.5).

aci = acj

c

ĉ

Figure 3.5. ĉ is a permissible curve without endpoint induced by c.
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Then ĉ is a permissible curve in CC(SEA• (A)), and so modA contains a band module
corresponding to M(ĉ, JJJn(λ)) (λ 6= 0). By Construction 2.6, Q has a band which is of the
form

v(aci ) v(aci+1) · · · v(acj−1),

which contradicts assumption.
Immediately, CC(SEA• (A)) = ∅, and so sup

c∈PC(S
EA
• (A))

n(c) < ∞. Then ]ind(modA) =

]PC(SEA• (A)) <∞ because the number of marked points of SEA• (A) is finite.

4. Gorenstein projective support τ-tilting modules

4.1. Generalized dissections. He, Zhou and Zhu [16] provided a description of support
τ -tilting modules over gentle algebras by marked ribbon surfaces.

Definition 4.1. Let SE• = (S,M,∆•)
E be a marked ribbon surface, and let D• be a set

of some permissible curves.

• We say that D• is a partial generalized dissection (=PGD) if the following condi-
tions are satisfied.

– every curve in D• can not be homotopic to any boundary segment;
– (c1 ∩ c2) ∩ (S\∂S) = ∅ for any curves c1, c2 ∈ D•; and
– D• contains no closed curve.

• We say that D• is a generalized dissection (=GD) if D• is a maximal PGD, that is,
for any permissible curve c′ /∈ D•, we have (c ∩ c′) ∩ (S\∂S) /∈ ∅ for some c ∈ D•.

We use PGD(SE• ) (respectively, GD(SE• )) to denote the set of partial dissections (re-
spectively, maximal partial dissections) of the marked ribbon surface SE• .

Theorem 4.2. [16, Theorem B] There is a bijection

M : GD(SEA• (A)) → sτ -tilt(A)
D• 7→ M(D•) :=

L
c∈D•

M([c])

from the collection of all generalized dissections of SEA• (A) to that of all isomorphism
classes of support τ -tilting modules.

4.2. Gorenstein projective τ-tilting modules. A module G ∈ modA is called Goren-
stein projective (=G-projective) if there is an exact sequence of projective modules

· · · −→ P−2
d−2

−→P−1
d−1

−→P 0 d0

−→P 1 d1

−→P 2 −→ · · ·
in modA which remains exact after applying the functor HomA(−, A), such that G ∼=
Imd−1 [5, 13]. Obviously, every projective module is G-projective. We use G-projA to
denote the subcategory of modA consisting of all G-projective modules.

Let (Q, I) be the bound quiver of some gentle algebra A = kQ/I having at least one
cycle Ci = αi1 · · ·αi`i (1 ≤ i ≤ r) with s(αij) = vij = t(αij−1), where j = (j mod `j) + 1.
For example,

vi2
// v13

''
vi1

88

•.

ww
vi`i

ff

vi,`i−1
oo

We call Ci an oriented cycle of A. Furthermore, it is called full relational if any path of
length two on it lies in I. We use froc(A) to denote the set of all full relational oriented
cycles of A.

Let M ∈ modA. We use |M | to denote the number of non-isomorphic indecomposable
direct summands of M . Recall from [1] that M is called τ -tilting if HomA(M, τM) = 0
and |M | = |A|, where τ is the Auslander-Reiten translation functor. Moreover, M is called
support τ -tilting if M is τ -tilting over A/(e) with e an idempotent of A.
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Definition 4.3. [19] An A-module T is called G-projective (support) τ -tilting if T is
G-projective and (support) τ -tilting; in particular, we say it is non-trivial if T /∈ projA.

We use GPsτ -tilt(A) to denote the subcategory of modA consisting of all G-projective
support τ -tilting A-modules.

Definition 4.4. Let SEA• (A) be a marked ribbon surface. A G-projective curve c is a
permissible curve in PC(SEA• (A)) such that one of following conditions is satisfied.

(a) c is a projective curve corresponding to aci , say ℘(aci ), that is, there is a unique
integer 1 ≤ i ≤ n(c) such that
(i) ac1, a

c
2, · · · , aci have a common endpoint p which is right to c, and there is no

arc a ∈ ∆• with endpoint p such that a is left to ac1 at the point p;
(ii) aci , a

c
i+1, · · · , acn(c) have common endpoint q which is left to c, and there is no

arc â ∈ ∆• with endpoint q such that â is left to ac1 at the point q.
(See FIGURE 4.1, the permissible curve c is projective, the point ◦◦◦ is an element in
M∪ E .)

(b) c is the permissible curve such that: ac1, a
c
2, · · · , acn(c) satisfies condition (a)(i); ac1

is an edge of an ∞-elementary •-polygon P; and c0,1 lies in the inner of P.
(We provide an example in FIGURE 4.2, the permissible curve set PC(SE• ) of the

marked ribbon surface SE• contains three G-projective curves).

q p
aci c(0)

c(1)

· · ·aci−1

ac2
ac1

· · · aci−1
ac2

ac1

Figure 4.1. Projective curve.

1

2

3
4

5

6
7

8 9

Figure 4.2. G-Projective curve.

Kalck proved in [17, Theorem 2.5] that any indecomposable module G is G-projective
if and only if G is isomorphic to either eA (e is a primitive idempotent of A) or αA (α
is an arbitrary arrow on any full relational oriented cycle). Thus, we immediately obtain
the following proposition to describe all indecomposable G-projective modules over gentle
algebras by marked ribbon surfaces by Construction 2.6.

Proposition 4.5. For any c ∈ PC(SEA• (A)), the module M([c]) is indecomposable projec-
tive (respectively, G-projective) if and only if c is a projective (respectively, G-projective)
curve.

Let froc(A) = {Ci | 1 ≤ i ≤ r}. We use Pi to denote the ∞-elementary •-polygon
corresponding to Ci, and use EP∞• (SEA• (A)) to denote the set of all ∞-elementary •-
polygons. As shown in FIGURE 4.3, in clockwise direction, we denote by pi1, · · · , pi`i the
vertices of Pi (`i is the length of Ci). The arc with endpoints pij and pij+1 is denoted by

aij , where 1 ≤ j ≤ `i and j = j mod `i + 1. Moreover, the non-projective G-projective
curve with endpoint pij is denoted by gij .
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pi1

pi2

pi3

pi`i

ai`i ai1

ai2

ai3

ai,`i−1

gi1

gi2

gi3

gi,`i−1

gi`i

bi

Figure 4.3. Non-projective G-projective curves and ∞-elementary •-polygon.

Notation 4.6. We say that a GD is a Gorenstein-projective generalized dissection (=GPGD)
if all elements of GD are G-projective curves.

By Theorem 4.2, we have the following corollary.

Corollary 4.7. Let D• be a set of some permissible curves in SEA• (A). Then M(D•) ∈
GPsτ -tilt(A) if and only if D• is a GPGD.

4.3. Endomorphism algebras of G-projective support τ-tilting modules. Set
S(A) :=

L
M∈G-proj(A)M . The Cohen-Macaulay-Auslander (= CM-Auslander) algebra

Acma of A is defined by Acma := EndAS(A). Now we recall the descriptions of CM-
Auslander algebras of gentle algebras introduced by Chen and Lu [10]. We use the follow-
ing notations:

• Qfroc
1 : the set of all arrows on full relational oriented cycles of A;

• Qcma: the quiver (Qcma
0 ,Qcma

1 , s, t), where

– Qcma
0 = Q0∪ÜQ0 where ÜQ0 is a set for which we have a bijection ω : Qfroc

1 → ÜQ0;

– Qcma
1 = (Q1\Qfroc

1 )∪ ÜQ1 where ÜQ1 := Qfroc,−
1 ∪Qfroc,+

1 is the disjoint union of

Qfroc,−
1 := {α− | α ∈ Qfroc

1 } and Qfroc,+
1 := {α+ | α ∈ Qfroc

1 };
– s(α−) = s(α), t(α+) = t(α) and t(α−) = ω(α) = s(α+) hold for any α ∈ Qfroc

1 .
• Icma: the ideal of kQcma generated by the following paths of length two:

– αβ with α, β ∈ Q1\Qfroc
1 ;

– α+β− with t(α) = s(β).

The following result was proved by Chen and Lu [10, Theorem 3.5]. It should be pointed
out that it can be easily deduced by the descriptions of G-projective modules (Proposition
4.5) and irreducible morphisms (see [7, Proposition 3.21]).

Theorem 4.8. [10, Theorem 3.5] For the algebra A = kQ/I, we have

Acma = kQcma/Icma.

Now we give a description of the CM-Auslander algebra of A by the marked ribbon
surfaces SEA• (A) = (S(A),M(A),∆•(A))EA . Assume that SEA• (A) has r ∞-elementary
polygons P1, · · · , Pr. For any Pi, let αij be the arrow corresponding to the angle of Pi
whose edges are pij−1 and pij (see FIGURE 4.4 I). Let

• Scma(A) = S(A);

• Mcma(A) =M(A)∪
St
i=1

ÝMi, where ÝM1, · · · , ÝMt are sets of new marked points
such that

– there is a bijection between
St
i=1

ÝMi and ÜQ0; and

– all marked points in ÝMi = {qij | 1 ≤ j ≤ `i} clockwise arrange on bi, where
`i is the number of edges of Pi which belong to ∆•(A);

• ∆cma
• (A) = ∆•(A) ∪Ý∆•, where Ý∆• is the set of all new curves with endpoints pij

and qij ;
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• EcmaA is induced by ∆cma
• (A).

pi1

pi2

pi3

pi`i

αi1

αi2

αi3

αi`i

ai`i ai1

ai2

ai3

ai,`i−1 bi

I: the ∞-elementary •-polygon Pi

wi1

wi2

wi3

wi`i

α−i1 α+
i1

α−i2

α+
i2

α−i3

α+
i3

α−
i`i

α+
i`i

pi1

pi2

pi3

pi`i
qi1

qi2

qi3

qi`i

ai`i ai1

ai2

ai3

ai,`i−1 bi

II: Mcma(A) and ∆cma
• (A)

Figure 4.4. The marked ribbon surface of the CM-Auslander algebra of a
gentle algebra: the change of ∞-elementary •-polygon Pi.

Theorem 4.9. There is a homotopy equivalence

S
EAcma
• (Acma) ∼

�
Scma(A),Mcma(A),∆cma

• (A)
�EcmaA .

Proof. We index the elements of froc(A) as {Ci | 1 ≤ i ≤ r}. Let (Scma(A),Mcma(A),∆cma
• (A))E

cma
A =

SE• and A(SE• ) = kQ′/I ′. It suffices to prove A(SE• ) = Acma.
Note that there is a bijection between froc(A) and EP∞• (SE• ). As shown in the FIGURE

4.4 I, any angle (whose vertex is pij where 1 ≤ j ≤ `i) of the ∞-elementary •-polygon Pi
corresponds to an arrow αij ∈ Q1, it is changed to two arrows α−ij and α+

ij in Qcma
1 by

adding the arc wij (whose endpoints are pij and qij) in •-FFAS ∆•(A). Then it is easy to
see that Q′0 = Qcma

0 and Q′1 = Qcma
1 by Construction 2.6 and Theorem 4.8.

On the other hand, we have α+
ijα
−
i j+1 ∈ I ′ and α−ijα

+
ij /∈ I ′ by Construction 2.6 and

Theorem 4.8, because s(α−ij), t(α
−
ij) = ω(αij) = wij = s(α+

ij) and t(α+
ij) are sides of same

elementary •-polygon in EP•(S
E
• ) (see FIGURE 4.4 II). Thus Icma = I ′. �

From the proof of Theorem 4.9 we immediately deduce the following corollary.

Corollary 4.10. [10, Theorem 4.4] A gentle algebra A is representation-finite if and only
if Acma is representation-finite.

Proof. Indeed, there is a bijection between CC(SEA• (A)) and CC(S
EAcma
• (Acma)). By Propo-

sition 3.6, the proof is complete. �

Remark 4.11. The vertices of the quiver Qcma correspond to the indecomposable G-
projective A-modules as follows:

Q0
1−1→ projA, v 7→ P (v) and ÜQ0

1−1→ projA\G-projA, ω(αij) 7→M([gij ]),

where αij is the arrow on the cycle Ci ∈ froc(A) such that s(αij) = vij and gij the non-
projective G-projective curve with endpoint pij (1 ≤ j ≤ `i). Thus, ω(αij) corresponds to

the arc wij in the •-FFAS ∆•(A
cma) of S

EAcma
• (Acma).

The following result provide a description of the endomorphism algebra of a G-projective
support τ -tilting module by marked ribbon surfaces.

Proposition 4.12. Let T ∈ GPsτ -tilt(A) and B = EndAT . Then SEB• (B) is homotopic

to a subsurface of S
EAcma
• (Acma) which is induced by removing some arc in ∆•(A

cma).
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Proof. Let EndAT = kQ′/I ′. Since T is a direct summand of S(A), we have Q′0 ⊆ Qcma
0 .

Then ∆•(B) ⊆ ∆•(A
cma) by the bijection between the •-FFAS of the marked ribbon

surfaces and the vertices of the quiver of A. Now, removing all arcs in ∆•(A
cma)\∆•(B)

and then removing all marked points in M(Acma) which are not endpoints of arcs in

∆•(B), we obtain a subsurface of S
EAcma
• (Acma), which is homotopic to SEB• (B). �

5. Main results

5.1. The existence of non-trivial G-projective τ-tilting modules. Recall that a
torsion pair (T ,F) a (trivial) Gorenstein torsion pair if T is a (trivial) G-projective torsion
class, that is, the basic Ext-projective generator in T is (trivial) G-projective. In [24], Xie
and Zhang used G-projective support τ -tilting modules to describe all Gorenstein torsion
pairs over finite dimensional algebras. Furthermore, Li and Zhang provided a construction
of non-trivial G-projective τ -tilting modules over tensor algebras and lower triangular
matrix algebras [19, Corollary 3.11 and Proposition 3.14]. In this subsection, we provide
another construction of non-trivial G-projective τ -tilting modules over gentle algebras.

Lemma 5.1. Let A be a gentle algebra with at least one full relational oriented cycle
Ci and T ∈ GPsτ -tilt(A). Then at most one of the indecomposable G-projective module
G(vij) := αijA and the indecomposable projective module P (vi j−1) is a direct summand
of T .

Proof. First of all, we have EP∞• (SEA• (A)) 6= ∅ by assumption. Let Pi ∈ EP∞• (SE• ) be the
elementary •-polygon corresponding to Ci. Then

G(vij)
∼= M([gij ]) and P (vij−1)

∼= M([℘(aij−1)]).

It is easy to see that gij ∩ ℘(aij−1)∩ (S\∂S) 6= ∅ for any 1 ≤ j ≤ `i. Thus, if both G(vij)

and P (vij−1) are direct summands of T , then

M−1(T ) := {c ∈ PC(SEA• (A)) |M([c]) is a direct summand of T}
is not a GPGD, which contradicts Corollary 4.7. �

Now we are in a position to state the first main result.

Theorem 5.2. Let A = kQ/I be a gentle algebra. Then A has a non-trivial G-projective
τ -tilting module if and only if there is a cycle Ci ∈ froc(A) such that Ci has a vertex vij
(j = (j mod `i) + 1) which is not a target of any arrow except αij−1.

Proof. If every vertex vij of any full relational oriented cycle Ci is a target of some arrow
α with α 6= αij−1, then there exists an arc a in the •-FFAS ∆•(A) of SEA• (A) such that

s(α) = v(a) (in this case, we have t(α) = s(αij−1) (= v(aij) = vij) ). Thus,

gij ∩ ℘(a) ∩ (S\∂S) 6= ∅ and gij ∩ ℘(aij−1) ∩ (S\∂S) 6= ∅ (see FIGURE 5.1) (5.1)

by Theorem 4.2. Assume that T ∈ GPsτ -tilt(A) is non-trivial G-projective τ -tilting,
d1(T ) is the number of projective direct summands of T and d2(T ) is the number of non-
projective G-projective direct summands of T . Then |T | = d1(T ) + d2(T ) and d2(T ) > 0.

Ci

aij−1 aij

a

αij−1

α

℘(a) ℘(aij)

gij

Figure 5.1. In this figure, the point “•” is an element in EA.
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Thus, if G(vij)
∼= M([gij ]) ≤⊕ T , then, by (5.1), we have that P (v(a)) ∼= M(℘(a)) and

P (v(aij))
∼= M(℘(aij−1)) and neither of them is a direct summand of T ; that is, if d2(T ) =

1, then d1(T ) ≤ ]Q0−2. Furthermore, by using induction, we have d1(T ) ≤ ]Q0−2d2(T ).
It follows that

]Q0 = |T | ≤ d2(T ) + ]Q0 − 2d2(T ) = ]Q0 − d2(T ) < ]Q0,

which is a contradiction.
If there is a vertex vij of Ci ∈ froc(A) such that vij is not a target of any arrow except

αij−1, then there is a unique aij−1 such that ℘(aij−1) ∩ gij ∩ (S\∂S) 6= ∅. Thus,

M(gij−1)⊕
M

v
ij−1
6=v∈Q0

evA ∈ GPsτ -tilt(A)

is non-trivial. �

Corollary 5.3. Assume that froc(A) = {Ci | 1 ≤ i ≤ t}. Then for any T ∈ GPsτ -tilt(A),
we have

T =
M
i∈I

Gi⊕
M
j∈J

Pj and ]I ≤
X

1≤i≤t
b`i/2c,

where Gi ∈ ind(G-projA)\projA and Pi ∈ projA.

Proof. It is easy to see that

gij ∩ aij = pij , gij ∩ aij+1 ∩ (S\∂S) 6= ∅ and gij ∩ gij+2 ∩ (S\∂S) = ∅.

Thus any GPGD contains at most b`i/2c G-projective curves which belong to {gij | 1 ≤
j ≤ `i}. Therefore, ]I ≤

Pt
i=1b`i/2c by Corollary 4.7. �

5.2. Representation-types of gentle algebras and endomorphism algebras of G-
projective support τ-tilting modules.

Lemma 5.4. Let bSbE• - SE• . If A(bSbE• ) is representation-infinite, then so is A(SE• ).

Proof. Since A(bSbE• ) is representation-infinite, the quiver of A(bSbE• ) has a band C (of length

n) by Proposition 3.6. Then, up to homotopy, we have S
EΛ(C)
• (Λ(C )) - bSbE• - SE• , Thus

∅ 6= CC(S
EΛ(C)
• (Λ(C ))) ⊆ CC(bSbE• ) ⊆ CC(SE• ).

Then A(SE• ) is representation-infinite by Theorem 2.10. �

The following theorem is the second main result.

Theorem 5.5. Let A = kQ/I be a gentle algebra. Then A is representation-finite if and
only if B = EndAT is representation-finite for any T ∈ GPsτ -tilt(A).

Proof. If B is representation-finite for any G-projective support τ -tilting module T , then
A ∼= EndAA is representation-finite because A is a trivial G-projective support τ -tilting.

In the following, we will prove the necessity. If gl.dimA < ∞, then all G-projective
modules are projective. Thus any T ∈ GPsτ -tilt(A) is a direct summand of A. We have

B := EndAT ≤⊕ EndAÒT ∼= A. Therefore, B is representation-finite.
If gl.dimA = ∞, assume that there is a module T ∈ GPsτ -tilt(A) such that B =

EndAT = kQB/IB is representation-infinite, then, up to homotopy, we have

S
EΛ(C)
• (Λ(C )) - SEB• (B)

Theorem 4.9
- S

EAcma
• (Acma) (5.2)

by Proposition 4.12, where C is the subquiver induced by some band of QB (the existence
of C is given by Proposition 3.6). Thus, Acma is representation-infinite by (5.2) and
Lemma 5.4. It follows from Corollary 4.10 that A is representation-infinite. �
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6. Examples

In this section, we provide some examples for G-projective support τ -tilting modules.
First of all, we give the following example shows that the G-projective condition in The-
orem 5.5 is necessary.

Example 6.1. Let A = kQ/I be a gentle algebra where Q is as shown in the left figure
in FIGURE 6.1 and I = 〈αβ, γδ, ζη, ηζ〉.

2
β

##
1

α
;;

γ ##

4

3
δ

;;

ζ
||

5

η

<<

���

���

Figure 6.1. The gentle algebra in Example 6.1 and its marked ribbon surface.

We get a GD of SEA• (A) as shown in the right figure in FIGURE 6.1, as shown in the red
dissection, which corresponds to the support τ -tilting module

T = 2⊕ 2
4 ⊕ 2

1
3
5
⊕ 2

4

5
3 ⊕ 2

1
3
5,

which is not G-projective. Then one uses the Auslander–Reiten quiver of A to compute
that A′ = EndAT = kQ′/I ′, where

2

α21





α23 // 3

α34

��

Q′ = and I ′ = 〈α12α21, α21α12, α14α45〉.

1

α12

II

α14

// 4 α45

// 5

The bound quiver (Q′, I ′) has bands, for example, a12a23a34a
−1
14 is a band. Thus, by

Proposition 3.6, we have that A′ is representation-infinite.

���

���

(T1 = 3
5

1
2 ⊕ 2

4 ⊕ 5
3
4 ⊕ 4⊕ 5)

���

���

(T2 = 0⊕ 2
4 ⊕ 5

3
4 ⊕ 4⊕ 3

4)

Figure 6.2. The GPGDs corresponding to T1 and T2, respectively.

Moreover, we can check that any non-trivial G-projective support τ -tilting A-module is
a direct summand of T1 or T2, where T1 and T2 correspond to GPGD as shown in FIGURE
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6.2. We have EndAT1 = kQI/II and EndAT2 = kQII/III, where

2
α′24

��
QI = 1

α′12
??

α′13
��

4
α′45 // 5, II = 〈α′12α′24, α′13α′24〉;

3
α′34

??

and

QII = 1
α′′12 // 2 3

α′′32oo 4,
α′′43oo III = 0.

It is easy to see that EndAT1 and EndAT2 are representation-finite. It follows that EndAT
is representation-finite for any non-trivial G-projective support τ -tilting module T .

In the following, we provide a general method to construct a non-trivial G-projective
support τ -tilting module T over a representation-infinite gentle algebra A with infinite
global dimension such that EndAT is representation-infinite. We need the following lemma
to show that this construction is always feasible.

Lemma 6.2. Assume that A = kQ/I is a gentle algebra with at least one full relational

oriented cycle. Let ÒQ be a subquiver of Q and bI = 〈αβ ∈ I | α ∈ ÒQ1, β ∈ ÒQ1〉 such thatÒA := kÒQ/bI is a gentle algebra with a unique full relational oriented cycle. Then for anyÒA-module ÒT ∈ GPsτ -tilt(ÒA), there is an A-module T ∈ GPsτ -tilt(A) such that if EndbAÒT
is representation-infinite, then so is EndAT .

Proof. Let g = gij ∈ PC(bSbE• ) be a non-projective G-projective curve consecutively cross

arcs bag1, · · · , bagn(g) in ∆•(ÒA) (see FIGURE 6.3 (1)), where

bSbE• := S
EbA• (ÒA) = (S(ÒA),M(ÒA),∆•(ÒA))

EbA
is the marked ribbon surface of ÒA. Since ÒQ is a subquiver of Q, we have, up to homotopy,

bSbE• - SEA• (A) (6.1)

by Lemma 3.3. Furthermore, consider the set

X = {a ∈ ∆•(A) | a is left to the ai,j−1 at the marked point pij}
denoted by
===== {ak ∈ ∆•(A) | 1 ≤ k ≤ N}.

We have {bagj | 1 ≤ j ≤ n(g)} ⊆ X. Let g′ ∈ PC(SEA• (A)) be the curve consecutively cross

a1, · · · , aN . Then g′ is a non-projective G-projective curve by Proposition 4.5 (see FIGURE

6.3 (2)).

biai,j−1

aij = bag1pij
bag2

bagn(g)

gij

(1)

biai,j−1

aij = a1
pij

a2

aN

g′ = ϕ(gij)

(2)

Figure 6.3.
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Similarly, for any projective curve ℘ in bSbE• , we can get a projective curve ℘′ in SEA• (A). It

induces an injection ϕ between the set of all G-projective curves in PC(bSbE• ) and that of
all G-projective curves in PC(SEA• (A)) by g 7→ g′.

Suppose ÒT =
Lr
j=1M([cj ]). Then there is a GPGD D of bSbE• such that cj ∈ D is G-

projective for any 1 ≤ j ≤ r, and
Lr
j=1M([ϕ(cj)]) is a support τ -tilting A-module by

the definition of support τ -tilting modules. Thus, for any c 6= c′, ϕ(D) = {ϕ(c) | c ∈ D}
satisfies ϕ(c)∩ϕ(c′)∩(S\∂S) = ∅, that is, ϕ(D) is a PGD of SEA• (A). Then, by [7, Theorem
3.15], we have

EndbAÒT ∼= EndA
�M
c∈D

M([ϕ(c)])
�

(= EndAM([ϕ(D)])).

(Indeed, all irreducible morphisms can be corresponded by the pivot elementary moves of

permissible curves. Thus, all arrows of the quivers of EndbAÒT and EndAM([ϕ(D)]) can be

given by the angles of elementary •-polygons obtained by GPGD cutting bSbE• and SEA• (A),
respectively).

For any arc a ∈ ∆•(A)\∆•(ÒA), define c(a) to be:

• a, if a ∩ η ∩ (S\∂S) = ∅ for all η ∈ ϕ(D);
• ℘(a), otherwise.

Then D′ = ϕ(D) ∪ {c(a) | a ∈ ∆•(A)\∆•(ÒA)} is a GPGD of SEA• (A), and so T := M(D′)
∈ GPsτ -tilt(A).

Since M([ϕ(D)]) is a direct summand of T , we have that EndAM([ϕ(D)]) is a direct

summand of EndAT . Furthermore, if EndbAÒT is representation-infinite, then so is EndAT .
�

All gentle algebras with infinite global dimension to the following three classes:

(I) The quiver of A contains the subquiver QI which is an oriented cycle Ci connected
to a band C such that Ci and C have no common arrow (cf. FIGURE 6.4). In this
case, write eI :=

P
v∈(QI)0

εv, where εv is the path of length zero corresponding to

the vertex v ∈ (QI)0 (naturally, II = 〈αβ ∈ I | α, β ∈ (QI)1〉).
(II) The quiver of A contains the subquiver QII which is an oriented cycle Ci with a

band C such that Ci and C have at least one common arrow (cf. FIGURE 6.5). In
this case, write eII :=

P
v∈(QII)0

εv (naturally, III = 〈αβ ∈ I | α, β ∈ (QII)1〉).
(III) The quiver of A has no band. In this case, A is representation-finite, and its quiver

has at least one full relational oriented cycle.

full relation
oriented cycle

Ci
band

Figure 6.4. (I)

full relation
oriented cycle

Ci
band

Figure 6.5. (II)

Set AI := kQI/II and AII := kQII/III. Assume that A is a representation-infinite.
Then the quiver Q has at least one band Cn and has at least one full relational oriented
cycle Ci.

Now we provide a method to construct a non-trivial G-projective support τ -tilting
A-module T such that B = EndAT is representation-infinite. Note that there are the
following two cases:

Case 1. Q has a subquiver which is of the form QI;
Case 2. Q has a subquiver which is of the form QII.

We only give the construction in Case 1, the construction in Case 2 is similar.
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Construction 6.3.
Step 1. Select the subsurface S

EI(AI)
• of SEA• (A) (cf. the left picture in FIGURE 6.6). The

existence of S
EI(AI)
• is given by Lemma 3.3, and the number of projective curves

crossed by gi1 is at least one.

b

pi1

pi2

pi3

pi`i

ai1

ai2

ai`i

℘(ai`i)

℘(ai1)

℘(ai2)

℘(ai,`i−1)

gi1

gi2

gi,`i−1

gi`i

���

���

���
b

pi1

pi2

pi3

pi`i

ai1

ai2ai`i

℘(ai`i)
℘(ai2)

gi2gi`i

���

���

���

Figure 6.6. There exists a permissible curve b without endpoint in Case I or II.

Step 2. Set

X := {gij ∈ PC(SEI• (AI)) | 2 ≤ j ≤ `i is even};
Y := {℘ ∈ PC(SEI• (AI)) | ℘ is projective}.

Then ]Y = ](QI)0. By Lemma 5.1, we have ℘(ai,j−1) ∩ gij ∩ (S\∂S) 6= ∅.
Step 3. Removing all the above projective curves ℘(ai,j−1) from Y , we obtain a subset

Y ′ of Y such that ]Y ′ = ](QI)0 − ]X. Then

gij ∩ ℘(a) ∩ (S\∂S) = ∅ for any a ∈ Y ′, and gij ∩ gij+2 ∩ (S\∂S) = ∅,

Step 4. Let D• := X ∪ Y ′ be a GPGD. Then M(D•) ∈ GPsτ -tilt(A) is non-trivial and
its endomorphism algebra EndAM(D•) is representation-infinite.

Indeed, D• is a GPD satisfying

]D• = ]X + ]Y ′ = ]X + (](QI)0 − ]X) = ](QI)0.

It follows from [16, Corollary 5.8], Proposition 4.5 and Corollary 4.7 that M(D•) ∈
GPsτ -tilt(AI). Note that for each vertex v in band, the projective module P (v)AI

corresponding to ℘(v−1(v)) ∈ SEI• (AI) is a direct summand of ÒT . Thus, EndbAÒT
is representation-infinite. By Lemma 6.2, EndAT is representation-infinite, where
T = M(D•) ∈ GPsτ -tilt(A) is non-trivial.

We also give another example to illustrate our results.
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Example 6.4. Let A = kQ/I be a gentle algebra where Q =

11 1
β

))

α12

55 2
α23

��

6

δ��
5

α51
@@

γ′

``

3

α34ww

δ′

��
10

γ >>

4
α45

gg

η′ww

7

9 8
η

gg

and I = 〈α12α23, α23α34, α34α45, α45α51, α51α12, γγ
′, δδ′, ηη′〉. Consider the gentle algebraÒA = kÒQ/bI given by ÒQ =

1
β

))

α12

55 2
α23

��
5

α51
@@

3

α34ww
4

α45

gg

and bI = 〈α12α23, α23α34, α34α45, α45α51, α51α12〉. Then S
EbA• (ÒA) - SEA• (A) and the GPDGÒD = {gi2, gi4, ℘(ai2), ℘(ai4), ℘(ai5)} of S

EbA• (ÒA) can be seen as a PGD D of SEA• (A), see

FIGURE 6.7. In this case, ÒD corresponds to the G-projective τ -tilting ÒA-module

���

���

���

pi4 = pi1

pi2pi3

pi5

(1) S
EbA• (ÒA)

������

��� ���

��� ���

pi4 = pi1

pi2pi3

pi5

(2) SEA• (A)

������

��� ���

��� ���

pi4 = pi1

pi2pi3

pi5

(3) M(D′) ∈ GPsτ -tilt(A)

Figure 6.7. Constructing T = M(D′) such that EndAT is representation-infinite.

ÒT = 2⊕ 5⊕ 2
1

2
3
⊕ 2

3 ⊕ 4
5,

and ϕ(ÒD) corresponds to the support τ -tilting A-module

2⊕ 5
10 ⊕ 2

1
2
3
7

⊕ 2
3
7
⊕ 9

4
5
11
,

where ϕ is the injection defined in the proof of Lemma 6.2. Thus, ϕ(ÒD) can be embedded

into a GPGD D′ = ϕ(ÒD)∪{c(a) | a ∈ ∆•(A)\∆•(ÒA)} of SEA• (A) which corresponds to the
G-projective τ -tilting A-module

T := M(D′) = 2⊕ 5
10 ⊕ 2

1
2
3
7

⊕ 2
3
7
⊕ 9

4
5
11
⊕ 7⊕ 9⊕ 11. (see FIGURE 6.7 (3)).

Then EndAT is representation-infinite by Proposition 3.6.

It is known that any tilting right A-module T over an arbitrary finite dimensional k-
algebra A is a tilting left B-module BT with B = End(TA) and End(BT ) ∼= A. However,
we will give some examples to show that the following statements might be false when TA
is a G-projective τ -tilting right A-module over a gentle algebra A. That is, the following
properties (a) and (b) do not hold in general.
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(a) BT is G-projective τ -tilting, where B = End(TA).
(b) End(BT ) ∼= A.

See Examples 6.5 and 6.6.
The following example shows that there is a G-projective τ -tilting right A-module T

over a gentle algebra A such that neither (a) nor (b) holds.

Example 6.5. Let A = kQ/〈αβ, βγ, γα〉, where Q is

2

3

1

6

4 5.
α

βγ

We write

T1 = 4, T2 = 4
1

2
5
, T3 = 1

4, T4 = 6
3

1
4
, T5 = 6, T6 = 5.

Then we may verify that TA =
L6
i=1 Ti is a G-projective support τ -tilting module, and

B = End(TA) is isomorphic to kQ′/〈a32a21〉, where Q′ is

1 2
a21oo

a26

��

3
a32oo 4

a43oo a45 // 5

6.

We have

BT ∼= k k4
[1 0 0 0]oo

[0 0 0 1]
��

k2

�
1 0
0 1
0 0
0 0

�
oo k4

[10 0
1

0
0

0
0]oo [0 0 0 1] // k

k,

∼=
4
3
2
1
⊕

4
3
2 ⊕ 2⊕ 4⊕ 4

5 ⊕ 2
6

is neither G-projective nor G-injective because the simple module 2 is neither projective
nor injective. Furthermore, we have End(BT ) = kQ′′/〈α53α32〉 which is not isomorphic to
A, where Q′′ is

1 2
α21oo 6

4 3

α32

OO

α34

oo 5.

α56

OO

α53

oo

The following example shows that there is a G-projective τ -tilting right A-module T
over a gentle algebra A such that (a) holds but (b) does not.

Example 6.6. Let A = kQ/〈a12a23, a23a34, a34a45, a45a56, a56a61〉, where Q is

9 1
a12 // 2 //

a23

!!

7

6

a61
==aa

3

a34}}
5

a56

aa

4a45

oo

}}
8.

Then

T = 1
2
7
⊕ 2

7 ⊕ 7⊕ 3
4
8
⊕ 4

8 ⊕ 8⊕ 5
6
9
⊕ 6

9 ⊕ 9
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is a G-projective τ -tilting right A-module. We have B := End(TA) ∼= (kA1
3) ⊕ (kA2

3) ⊕
(kA3

3), where

Ai3 = (i, 1) −→ (i, 2) −→ (i, 3)

for any 1 ≤ i ≤ 3. Furthermore, we have that BT is isomorphic to

3M
i=1

�
(i,1)

(i,2)

(i,3)

⊕ (i,1)
(i,2) ⊕ (i, 1)

�
,

which is a G-projective τ -tilting left B-module (Note that the indecomposable projective
left B-module corresponding to the vertex i in the quiver of B is induced by paths with
the ending point i, this is the opposite of the case of the indecomposable projective right
A-module).

The following example shows that there is a G-projective τ -tilting right A-module T
over a gentle algebra A with infinite global dimension such that both (a) and (b) hold.

Example 6.7. Let A = kQ/〈x2〉, where Q is

x 1 2.

Then TA = 2
1

1
2
⊕ 2 is a G-projective τ -tilting right A-module and B := End(TA) ∼= A.

Furthermore,

BT ∼=
h

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

i
k4

[1 0 0 0]
k ∼= 1

1 ⊕
1
1
2.

It is easy to check that T is a G-projective τ -tilting left B-module.

We have not found any example of a non-trivial G-projective τ -tilting right A-module
T over a gentle algebra A such that (b) holds but (a) does not.
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