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Abstract. Given an additive category C and an integer n > 2. The high-
er differential additive category consists of objects X in C equipped with an

endomorphism ϵX satisfying ϵnX = 0. Let R be a finite-dimensional basic al-
gebra over an algebraically closed field and T the augmenting functor from
the category of finitely generated left R-modules to that of finitely generated

left R/(tn)-modules. It is proved that a finitely generated left R-module M is
τ -rigid (respectively, (support) τ -tilting, almost complete τ -tilting) if and only
if so is T (M) as a left R[t]/(tn)-module. Moreover, R is τm-selfinjective if and
only if so is R[t]/(tn).

1. Introduction

Let R be an arbitrary associative ring with unit. A module equipped with an
R-linear endomorphism of square zero is called a differential R-module. Since their
appearance in Cartan and Eilenberg’s treatise [10], differential modules has played
an important role in solving some problems from commutative algebra and algebra-
ic topology [5]. Indeed, differential R-modules are exactly modules over the ring of
dual numbers, that is, the ring R[ϵ] := R[t]/(t2) (the factor ring of the polynomial
ring R[t] in one variable t modulo the ideal generated by t2). For a positive integer
n > 2, Xu, Yang and Yao [31] introduced a higher analog of differential modules,
called n-th differential modules. More precisely, an n-th differential module is such
an R-module with an R-linear endomorphism of n-th power zero. Recently, Tang
and Huang [27] extended the theory of n-th differential modules to additive cate-
gories and related some homological behavior of R and those of the ring R[t]/(tn).
With the help of the theory of higher differential objects in additive categories, this
paper is concerned with investigating the transfer of some homological properties
between R and R[t]/(tn). The paper is organized as follows.

In Section 2, some terminology and notations are given. We also collect some
useful general facts in higher differential additive categories, which will be frequently
used in the sequel.

Let C be an additive category and T : C → C[ϵ]n the augmenting functor. In Sec-
tion 3, we establish the relation between the (pre)covers (respectively, (pre)envelopes)
in C and C[ϵ]n, and prove that for a subcategory X of C, X is precovering (respec-
tively, preenveloping) in C if and only if T (X ) is precovering (respectively, preen-
veloping) in C[ϵ]n (Theorem 3.3).
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We devote the rest part of the paper to expose some applications of the obtained
results. Let R be a left noetherian ring and Rω a Wakamatsu tilting module with
S = End(Rω). In Section 4, we prove that an R[t]/(tn)-module M is GT (ω)-
projective if and only if M is Gω-projective as an R-module; and that an S[t]/(tn)-
module N is in the Auslander class AT (ω)(S[t]/(t

n)) if and only if N is in the
Auslander class Aω(S) (Theorem 4.7). Moreover, we prove that for an artin algebra
R, R/(tn) is CM-finite (respectively, CM-free) implies that so is R (Proposition 4.9);
and for a finite dimensional algebra R over an algebraically closed field, if R[t]/(tn)
is representation finite, then so is R (Proposition 4.12). We give examples to
illustrate that neither the converses of these two propositions hold true in general.

In Section 5, we focus on the τ -tilting theory of higher differential module cat-
egories. Let R be a finite-dimensional basic algebra over an algebraically closed
field. We prove that a finitely generated left R-module M is τ -rigid (respectively,
(support) τ -tilting, almost complete τ -tilting) if and only if so is T (M) as a left
R[t]/(tn)-module (Theorem 5.5). Then we apply it to study the transfer of the
Bongartz complement and two-term (pre)silting complexes between R and R/(tn).

Section 6 deals with an application to m-precluster tilting subcategories of mod-
ule categories. Actually, we show that an artin algebra R is τm-selfinjective if and
only if so is R[t]/(tn) (Theorem 6.4).

2. Preliminaries

Throughout this paper, R is an associative ring with unit. We use ModR (re-
spectively, modR) to denote the class of (respectively, finitely generated) left R-
modules. For a module M ∈ ModR, we use pdR M to denote the projective
dimension of M .

Now we start by recalling from [27] some definitions and notations. Let C be an
additive category and n > 2. An n-th differential object of C is a pair (X, ϵX), where
X ∈ ob C and ϵX ∈ EndC(X) satisfying ϵnX = 0. We define the higher differential
additive category C[ϵ]n as follows: The objects of C[ϵ]n are n-th differential objects,
and the set of morphisms from (X, ϵX) to (Y, ϵY ) consists of morphisms f : X → Y
of C satisfying the equality fϵX = ϵY f .

Next we introduce two functors between C and C[ϵ]n.

(1) The forgetful functor F : C[ϵ]n → C is defined on the objects (X, ϵX) of
C[ϵ]n by F (X, ϵX) = X and on the morphisms f in C[ϵ]n by F (f) = f .

(2) We define the augmenting functor T : C → C[ϵ]n, which takes an objectX of
C to the object T (X) = (X⊕n, ϵX⊕n) of C[ϵ]n withX⊕n = X ⊕X ⊕ · · · ⊕X︸ ︷︷ ︸

n

and

ϵX⊕n :=


0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . .

. . .
...

0 0 · · · 1 0


n×n,
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and takes a morphism f in C to the morphism
f 0 · · · 0
0 f · · · 0
...

...
. . .

...
0 0 · · · f


n×n

in C[ϵ]n.
We state some preliminary results on C[ϵ]n as follows.

Fact 2.1. Let C be an additive category, and let M,N ∈ ob C and (X, ϵX) ∈
ob C[ϵ]n.

(1) If R is a ring and C = ModR, then (ModR)[ϵ]n ∼= Mod(R[t]/(tn)).
(2) Both (F, T ) and (T, F ) are adjoint pairs.
(3) f ∈ HomC[ϵ]n(T (M), T (N)) if and only if

f =


a1 0 0 · · · 0
a2 a1 0 · · · 0
a3 a2 a1 · · · 0
...

...
...

. . .
...

an an−1 an−2 · · · a1

 with ai ∈ HomC(M,N).

(4) If f ∈ HomC[ϵ]n(T (M), (X, ϵX)), then f = (f ′, ϵXf ′, · · · , ϵn−1
X f ′) with f ′ ∈

HomC(M,X).
(5) If g ∈ HomC[ϵ]n((X, ϵX), T (M)), then g = (g′ϵn−1

X , · · · , g′ϵX , g′)T with g′ ∈
HomC(X,M).

Proof. The assertions (1), (2) and (3) follow from [27, p.130], [27, Proposition 3.1]
and [27, Proposition 3.4] respectively. The assertions (4) and (5) are obvious. �

The following definition is cited from [9].

Definition 2.2. Let C be an additive category. A kernel-cokernel pair (i, p) in C
is a pair of composable morphisms A

i→ B
p→ C such that i is a kernel of p and p

is a cokernel of i. We shall call i an admissible monic and p an admissible epic.
An exact category (C,E ) is an additive category C with a class E of kernel-cokernel

pairs which is closed under isomorphisms and satisfies the following axioms:

[E0] For all objects C ∈ C, the identity morphism 1C is an admissible monic.
[E0op] For all objects C ∈ C, the identity morphism 1C is an admissible epic.
[E1] The class of admissible monics is closed under compositions.

[E1op] The class of admissible epics is closed under compositions.
[E2] The push-out of an admissible monic along an arbitrary morphism exists

and yields an admissible monic.
[E2op] The pull-back of an admissible epic along an arbitrary morphism exists and

yields an admissible epic.

Elements of E are called short exact sequences.

According to [9, 22], an additive category C is called idempotent complete if every
idempotent endomorphism e = e2 of an object X ∈ ob C splits, that is, there exists
a factorization

X
π−→ Y

ι−→ X
3
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of e with πι = 1Y .
Let (C,E ) be an exact category, and let EF be the class of pairs of composable

morphisms in C[ϵ]n that become short exact sequences in C via the forgetful functor
F . The following result characterizes projective (respectively, injective) objects of
C[ϵ]n in terms of that of C.

Lemma 2.3. ([27, Proposition 3.6]) Let (C,E ) be an idempotent complete exact
category. Then we have

(1) P is a projective object of (C[ϵ]n,EF ) if and only if P ∼= T (Q) for some
projective object Q of C.

(2) I is an injective object of (C[ϵ]n,EF ) if and only if I ∼= T (E) for some
injective object E of C.

Let X be a class of objects in an additive category C and M ∈ ob C. Recall
that an X -precover of M is a morphism f : X → M in C with X ∈ X such that
any morphism g : X ′ → M in C with X ′ ∈ X factors through f . An X -precover
f : X → M of M is an X -cover if every endomorphism g : X → X in C with
fg = f is an automorphism. We call the class X precovering in C if any M ∈ ob C
has an X -precover. Dually, the notions of preenvelopes and preenveloping classes
are defined (cf. [14]).

3. Precovering and Preenveloping Classes

From now on, we fix an exact category (C,E ). This section investigates how to
construct precovering and preenveloping classes in C[ϵ]n via the augmenting functor
T .

A sequence (of finite or infinite length):

· · · → Xm
fm−→ · · · → X1

f1−→ X0
f0−→ M → 0

in C is called an X -resolution of M if all Xi are in X and

0 → Ker fi → Xi → Im fi → 0

is a short exact sequence for any i > 0 (note: Im f0 = M); furthermore, such an X -
resolution is called proper if it remains exact after applying the functor HomC(X,−)
for any X ∈ X . Dually, the notions of an X -coresolution and an X -coproper
coresolution of M are defined.

Proposition 3.1. Let X be a subcategory of (C,E ) and (M, ϵM ) ∈ ob C[ϵ]n.

(1) If

0 → L
λ−→ X

π−→ M → 0 (3.1)

is a short exact sequence in C such that π is an X -precover of M , then there
is a short exact sequence

0 → (L⊕X⊕(n−1), ϵ)
g−→ T (X)

f−→ (M, ϵM ) → 0 (3.2)
4
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in (C[ϵ]n,EF ) such that f is a T (X )-precover of (M, ϵM ), where f =
(π, ϵMπ, · · · , ϵn−1

M π) and

g =


λ h 0 · · · 0
0 −1 h · · · 0
0 0 −1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 −1


n×n

with h ∈ EndC(X).

(2) If

0 → M
λ′

−→ X
π′

−→ L → 0 (3.3)

is a short exact sequence in C such that λ′ is an X -preenvelope of M , then
there is a short exact sequence

0 → (M, ϵM )
f ′

−→ T (X)
g′

−→ (L⊕X⊕(n−1), ϵ) → 0 (3.4)

in (C[ϵ]n,EF ) such that f ′ is a T (X )-preenvelope of (M, ϵM ), where f ′ =
(λ′ϵn−1

M , · · · , λ′ϵM , λ′)T and

g′ =


π′ 0 0 · · · 0
−1 h′ 0 · · · 0
0 −1 h′ · · · 0
...

...
. . .

. . .
...

0 0 0 · · · h′


n×n

with h′ ∈ EndC(X).

Proof. (1) Since π is admissible epic, [9, Proposition 2.9] implies that T (π) is ad-
missible epic. Then

f = (π, ϵMπ, · · · , ϵn−1
M π) = p′MT (π)

is also admissible epic by [27, Lemma 3.5], where p′M = (1, ϵM , · · · , ϵn−1
M ). As π is

an X -precover of M , there is a morphism h ∈ EndC(X) such that πh = ϵMπ. Thus
fg = 0.

Now we prove that (3.2) is a short exact sequence. Let

t = (t1, t2, · · · , tn)T : C → X⊕n

be a morphism in C such that ft = 0. Then

πt1 + ϵMπt2 + · · ·+ ϵn−1
M πtn = 0,

and hence

πt1 + πht2 + · · ·+ πhn−1tn = 0.

Since λ is the kernel of π, there exists a unique morphism s1 : C → L such that

λs1 = t1 + ht2 + · · ·+ hn−1tn.

Set

si := −hn−itn − hn−i−1tn−1 − · · · − hti+1 − ti (2 6 i 6 n− 1) and sn := −tn.

Clearly s = (s1, s2, · · · , sn)T : C → L⊕X⊕(n−1) satisfies gs = t. We conclude that
g is the kernel of f .

Now we show that f is the cokernel of g. Let

u = (u1, u2, · · · , un) : X
⊕n → C

5
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be a morphism in C such that ug = 0. Then

(u1λ, u1h− u2, · · · , un−1h− un) = 0.

Since π is the cokernel of λ, there exists a unique morphism p : M → C such that
pπ = u1. Notice that πh = ϵMπ, so πhi = ϵiMπ and

pϵiMπ = pπhi = u1h
i = u2h

i−1 = · · · = uih = ui+1

for any 1 6 i 6 n − 1. It follows that pf = u and f is the cokernel of g. There-
fore we conclude that (3.2) is a short exact sequence. Consequently we get an
endomorphism ϵ ∈ EndC(L ⊕ X⊕n−1) satisfying gϵ = ϵX⊕ng. Then ϵn = 0 since
ϵnX⊕n = 0.

Now let β ∈ HomC[ϵ]n(T (X
′), (M, ϵM )). Then β = (β′, εMβ′, · · · , εn−1

M β′) with
β′ ∈ HomC(X

′,M) by Fact 2.1(4). Since π : X → M is an X -precover of M , there
exists a morphism γ : X ′ → X such that πγ = β′. Thus fT (γ) = β and f is a
T (X )-precover of (M, ϵM ).

(2) It is dual to (1). �
As a consequence, we get the following

Corollary 3.2. Let X be an additive subcategory of C and (M, ϵM ) ∈ ob C[ϵ]n.
(1) If

· · · → Xm
fm−→ · · · → X1

f1−→ X0
f0−→ M → 0

is a proper X -resolution in C, then there exists a proper T (X )-resolution

· · · → X ′
m

f ′
m−→ · · · → X ′

1

f ′
1−→ X ′

0

f ′
0−→ (M, ϵM ) → 0

in C[ϵ]n with X ′
i = T (Xi ⊕X

(n−1)
i−1 ⊕ · · · ⊕X

(n−1)i

0 ).
(2) If

0 → M
g0−→ X0

g1−→ · · · gm−→ Xm → · · ·
is a coproper X -coresolution in C, then there exists a coproper T (X )-coresolution

0 → (M, ϵM )
g′
0−→ X ′

0

g′
1−→ · · · g′

m−→ X ′
m → · · ·

in C[ϵ]n with X ′
i = T (Xi ⊕X

(n−1)
i−1 ⊕ · · · ⊕X

(n−1)i

0 ).

Proof. (1) Set Mi+1 := Ker fi for any i > 0. By Proposition 3.1(1), there exists a
short exact sequence

0 → (M1 ⊕X
⊕(n−1)
0 , ϵ) → T (X0) → (M, ϵM ) → 0 (3.5)

in C[ϵ]n such that HomC[ϵ]n(T (X), (3.5)) is exact for any X ∈ ob C. Note that

0 → M2 → X1 ⊕X
⊕(n−1)
0 → M1 ⊕X

⊕(n−1)
0 → 0 (3.6)

is a short exact sequence in C such that HomC(X, (3.6)) is exact for any X ∈ ob C.
Then by Proposition 3.1(1) again, we have a short exact sequence

0 → (M2⊕(X1⊕X
⊕(n−1)
0 )⊕(n−1), ϵ′) → T (X1⊕X

⊕(n−1)
0 ) → (M1⊕X

⊕(n−1)
0 , ϵ) → 0

(3.7)
in C[ϵ]n such that HomC[ϵ]n(T (X), (3.7)) is exact for any X ∈ ob C. Continuing in
this way, we obtain the desired sequence.

(2) It is dual to (1). �
The following result will be used frequently in the sequel.
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Theorem 3.3. Let X be a subcategory of C and M ∈ ob C. Then the following
statements hold.

(1) f : X → M is an X -(pre)cover of M if and only if T (f) : T (X) → T (M)
is a T (X )-(pre)cover of T (M).

(2) g : M → X is an X -(pre)envelope of M if and only if T (g) : T (M) → T (X)
is a T (X )-(pre)cover of T (M).

(3) X is precovering in C if and only if T (X ) is precovering in C[ϵ]n.
(4) X is preenveloping in C if and only if T (X ) is preenveloping in C[ϵ]n.

Proof. We will only prove (1) and (3). Dually, we get (2) and (4).
(1) We first prove the necessity. Given a morphism f ′ ∈ HomC[ϵ]n(T (X

′), T (M))
with X ′ ∈ X . By Fact 2.1(3), f ′ has the following form

a1 0 0 · · · 0
a2 a1 0 · · · 0
a3 a2 a1 · · · 0
...

...
...

. . .
...

an an−1 an−2 · · · a1

 with ai ∈ HomC(X
′,M).

By assumption, there exists a morphism b : X ′ → X in C such that fb = a1. Set

h :=


b 0 0 · · · 0
a2 b 0 · · · 0
a3 a2 b · · · 0
...

...
...

. . .
...

an an−1 an−2 · · · b

 .

It is easy to verify that T (f)h = f ′. Hence T (f) : T (X) → T (M) is a T (X )-
precover of T (M). Moreover, suppose that f is an X -cover of M . Now given a
endomorphism

h′ :=


c1 0 0 · · · 0
c2 c1 0 · · · 0
c3 c2 c1 · · · 0
...

...
...

. . .
...

cn cn−1 cn−2 · · · c1

 ∈ EndC[ϵ]n(T (X)).

If T (f)h′ = T (f), then fc1 = f . Thus c1 must be an isomorphism since f is an
X -cover of M . It follows that h′ is also an isomorphism and T (f) : T (X) → T (M)
is a T (X )-cover of T (M).

Next we prove the sufficiency. Let f ′ : X ′ → M be a morphism in C. Since
T (f) : T (X) → T (M) is a T (X )-(pre)cover of T (M), by Fact 2.1(3) there exists a
morphism

h :=


h1 0 0 · · · 0
h2 h1 0 · · · 0
h3 h2 h1 · · · 0
...

...
...

. . .
...

hn hn−1 hn−2 · · · h1

 ∈ HomC[ϵ]n(T (X
′), T (X))

7
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such that T (f)h = T (f ′). Namely,
f 0 0 · · · 0
0 f 0 · · · 0
0 0 f · · · 0
...

...
...

. . .
...

0 0 0 · · · f




h1 0 0 · · · 0
h2 h1 0 · · · 0
h3 h2 h1 · · · 0
...

...
...

. . .
...

hn hn−1 hn−2 · · · h1

 =


f ′ 0 0 · · · 0
0 f ′ 0 · · · 0
0 0 f ′ · · · 0
...

...
...

. . .
...

0 0 0 · · · f ′

 .

One can get that fh1 = f ′. It means that f : X → M is an X -precover of M .
Finally, it is not hard to prove that f : X → M is an X -cover of M provided that
T (f) : T (X) → T (M) is a T (X )-cover of T (M).

(3) The necessity follows from the proof of Proposition 3.1(1).
In the following, we prove the sufficiency. Let M ∈ ob C. By assumption, there

exists a T (X )-precover f : T (X) → T (M) of T (M). We may assume that f has
the following form

f =


f1 0 0 · · · 0
f2 f1 0 · · · 0
f3 f2 f1 · · · 0
...

...
...

. . .
...

fn fn−1 fn−2 · · · f1

with fi ∈ HomC(X,M).

We will show that f1 : X → M is an X -precover of M . Given a morphism g :
X ′ → M with X ′ ∈ X . Since f : T (X) → T (M) is a T (X )-precover, there exists
a morphism h : T (X ′) → T (X) such that fh = T (g). Note that h must have the
following form

h =


h1 0 0 · · · 0
h2 h1 0 · · · 0
h3 h2 h1 · · · 0
...

...
...

. . .
...

hn hn−1 hn−2 · · · h1

with hi ∈ HomC(X
′, X).

It implies f1h1 = g. So X is precovering in C. �

4. Wakamatsu tilting subcategories

In this section, assume that the given exact category (C,E ) has enough pro-
jectives. We will apply the established results in the previous section to study
Wakamatsu tilting subcategories through the functor T .

Let W be a subcategory of C. We use AddW (respectively, addW) to denote the
subcategory of C consisting of objects isomorphic to direct summands of (respective-

ly, finite) direct sums of objects in W. We write ⊥W := {X ∈ C | Ext>1
C (X,W ) =

0 for any W ∈ W} and XW := {X0 ∈ ⊥W | there exist short exact sequences

0 → X0 → W 0 → X1 → 0, 0 → X1 → W 1 → X2 → 0, · · ·
in C with all W i ∈ W and Xi ∈ ⊥W}.

Definition 4.1. ([15, Definition 3.1]) Let W an additive subcategory of C. We
say that W is a Wakamatsu tilting subcategory of C if it satisfies the following
conditions.

(1) W is self-orthogonal, that is, W ⊆ ⊥W.
8
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(2) XW contains all projectives in C.

Remark 4.2.
(1) It is trivial that the subcategory of C consisting of all projectives is Waka-

matsu tilting in C.
(2) Let R be a left noetherian ring and C = modR. Recall from [15] that a

module ω ∈ modR is calledWakamatsu tilting (or semidualizing) if addω
is a Wakamatsu tilting subcategory of C. This definition coincides with the
usual one (cf. [4, 18, 25, 30]).

(3) Let R be a left noetherian ring and ω a Wakamatsu tilting module. If
C = ModR and W = Addω, then XW is exactly the class of all Gω-
projective modules (see [23, Definition 2.5]).

(4) Let R be a left noetherian ring and ω a Wakamatsu tilting module with
S = EndR(ω). According to [18], the Auslander class Aω(S) with respect
to ω consists of all left S-modules N satisfying the following conditions: (a)

TorS>1(ω,N) = 0 = Ext>1
R (ω, ω ⊗S N), and (b) N ∼= HomR(ω, ω ⊗S N). If

C = ModR and W = {HomR(ω, I) | I is injective}, then XW is exactly the
Auslander class Aω(S) (see [28, Theorem 3.11(1)]).

Proposition 4.3. Let C be idempotent complete and W an additive and self-
orthogonal subcategory of C. Then the following statements hold for any (M, ϵM ) ∈
C[ϵ]n.

(1) M ∈ ⊥W if and only if (M, ϵM ) ∈ ⊥T (W).
(2) M ∈XW if and only if (M, ϵM ) ∈XT (W).

Proof. (1) Let

· · · → T (Pm) → T (Pm−1) → · · · → T (P1) → T (P0) → (M, ϵM ) → 0

be a projective resolution of (M, ϵM ) in C[ϵ]n. Then by Lemma 2.3,

· · · → FT (Pm) → FT (Pm−1) → · · · → FT (P1) → FT (P0) → M → 0

is a projective resolution of M . For any W ∈ W and i > 1, by Fact 2.1(2) we have

HomC[ϵ]n(T (Pi), T (W )) ∼= HomC(FT (Pi),W ).

This isomorphism gives the assertion.
(2) By (1), we have that M ∈ ⊥W if and only if (M, ϵM ) ∈ ⊥T (W). If M ∈ XW ,

then (M, ϵM ) ∈ XT (W) by Corollary 3.2(2). Conversely, if (M, ϵM ) ∈ XT (W), then
there exist short exact sequences

0 → (M, ϵM ) → T (W 0) → X1 → 0, 0 → X1 → T (W 1) → X2 → 0, · · ·
in C[ϵ]n with all T (W i) ∈ T (W) and Xi ∈ ⊥T (W). So by (1), we get short exact
sequences

0 → M → FT (W 0) → F (X1) → 0, 0 → F (X1) → FT (W 1) → F (X2) → 0, · · ·
in C with all FT (W i) ∈ W and F (Xi) ∈ ⊥W. It follows that M ∈XW . �

This induces the following easy consequence.

Corollary 4.4. Let C be idempotent complete and W an additive and self-orthogonal
subcategory of C. Then W is a Wakamatsu tilting subcategory of C if and only if
T (W) is a Wakamatsu tilting subcategory of C[ϵ]n.

Proof. It follows from Proposition 4.3 and [15, Proposition 3.2]. �
9
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The following definition is cited from [6].

Definition 4.5. Let R be a ring and m > 0. A left R-module ω is called m-tilting
if and only if the following conditions are satisfied.

(1) pdR ω 6 m.
(2) ω ∈⊥ω(λ) for every cardinal λ.
(3) There exists an Addω-coresolution

0 → R → ω0 → · · · → ωm → 0

in ModR.

By applying Proposition 4.3, we also get the following result.

Proposition 4.6. Let R be a ring and m > 0. Then ω is an m-tilting R-module
if and only if T (ω) is an m-tilting R[t]/(tn)-module.

Proof. Observe that T (Addω) = AddT (ω). It is easy to see that pdR ω 6 m if and
only if pdR[t]/(tn) T (ω) 6 m. Moreover, for every cardinal λ, the fact that ω ∈ ⊥ω(λ)

if and only if T (ω) ∈ ⊥T (ω)(λ) follows from the proof of Proposition 4.3(1). If R
admits an Addω-coresolution

0 → R → ω0 → · · · → ωm → 0

in ModR, then applying the exact functor T to it yields an AddT (ω)-coresolution

0 → T (R) → T (ω0) → · · · → T (ωm) → 0

of T (R) in ModR[t]/(tn). Conversely, if T (R) admits an AddT (ω)-coresolution

0 → T (R) → T (ω0) → · · · → T (ωm) → 0

in ModR[t]/(tn), then it follows from [29, Lemma 4.6] that there exists an Addω-
coresolution

0 → R → ω′
0 → · · · → ω′

m → 0

of R in ModR. The proof is finished. �
The main result in this section is the following theorem.

Theorem 4.7. Let R be a left noetherian ring and ω a Wakamatsu tilting module
with S = End(Rω). Then the following statements hold.

(1) If M ∈ ModR[t]/(tn), then M is GT (ω)-projective if and only if M is Gω-
projective as an R-module.

(2) If N ∈ ModS[t]/(tn), then N ∈ AT (ω)(S[t]/(t
n)) if and only if N ∈ Aω(S).

Proof. Note that R is left noetherian if and only if so is R[t]/(tn) by [27, Corol-
lary 3.8(1)]. Also note that End(R[t]/(tn)T (ω)) ∼= S[t]/(tn) and T (HomR(ω, I)) ∼=
HomT (R)(T (ω), T (I)) for any injective leftR-module I. Then in view of Remark 4.2,
Proposition 4.3 and Corollary 4.4, we get the assertions. �

Taking W to be the subcategory of C consisting of all projectives, objects in
XW are called Gorenstein projective (see [15, Definition 3.7]). In our setting, The-
orem 4.7(1) can be regarded as a generalisation of [31, Theorem 3.10(1)].

Let R be an artin algebra. A module M ∈ modR is called semi-Gorenstein-

projective provided that Ext>1
R (M,R) = 0. Moreover, R is said to be left weakly

Gorenstein if any semi-Gorenstein-projective module is Gorenstein-projective (see
[26]).

10
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Corollary 4.8. Let R be an artin algebra and M ∈ modR[t]/(tn). Then the
following statements hold.

(1) M is semi-Gorenstein-projective R-module if and only if M is semi-Gorenstein-
projective R[t]/(tn)-module.

(2) R is left weakly Gorenstein if and only if R[t]/(tn) is left weakly Gorenstein.

Proof. (1) It follows from Proposition 4.3(1).
(2) It follows from (1) and Theorem 4.7(1). �

Let R be an artin algebra. Recall from [7, 8] that R is called Cohen-Macaulay
finite (CM-finite, for short) provided there are only finitely many pairwise non-
isomorphic indecomposable finitely generated Gorenstein projective R-modules.
Recall from [11] that R is called CM-free if all its finitely generated Gorenstein
projective modules are projective.

Proposition 4.9. Let R be an artin algebra. If R[t]/(tn) is CM-finite (respectively,
CM-free), then so is R.

Proof. Let R[t]/(tn) be CM-finite and {G1, G2, · · · , Gm} the set of all pairwise
non-isomorphic indecomposable finitely generated Gorenstein projective R[t]/(tn)-
modules. For each i, since Gi is finitely generated as an R-module, Gi can be
decomposed as a direct sum of finitely many indecomposable R-modules, that is,

Gi =
⊕ij

j=1 G
j
i . Because Gi is a Gorenstein projective R[t]/(tn)-module, it follows

that Gi is a Gorenstein projective R-module by Theorem 4.7(1). Thus each Gj
i is

a Gorenstein projective R-module as well.
Now let G be an indecomposable Gorenstein projective R-module. Then T (G)

is an indecomposable Gorenstein projective R[t]/(tn)-module by Theorem 4.7(1).
So T (G) is isomorphic to some Gi as an R[t]/(tn)-module, which implies that T (G)

is also isomorphic to Gi as an R-module. Thus G is isomorphic to some Gj
i . It

follows that R is CM-finite.
Assume that R[t]/(tn) is CM-free. If G is a finitely generated Gorenstein pro-

jective R-module, then T (G) is a Gorenstein projective R[t]/(tn)-module by Theo-
rem 4.7(1). By assumption, there exists a projective module P such that T (G) ∼=
T (P ). Thus G is projective as an R-module, and therefore R is CM-free. �

In the following, we study the transfer of representation type between R and
R/(tn).

Definition 4.10. ([12]) If R is a ring and G is an R-module. We say G is a generic
module if it is indecomposable, of infinite length over R, but of finite length when
regarded in the natural way as a module over its endomorphism ring.

We need the following observation.

Lemma 4.11. If R is an artin algebra and G ∈ ModR, then G is a generic R-
module if and only if T (G) is a generic R[t]/(tn)-module.

Proof. By [27, Proposition 3.4], we have that G is indecomposable if and only if
so is T (G). Note that R is an artin algebra if and only if so is R[t]/(tn) by the
proof of [27, Theorem 3.13], and note that a module over an arin algebra has finite
length if and only if it is finitely generated. Thus G is of infinite length over R if
only if T (G) is of infinite length over R[t]/(tn). On the other hand, by Theorem

11
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3.3(2), we have that R admits an addG-preenvelope if and only if T (R) admits an
addT (G)-preenvelope. Now the assertion follows from [3, Proposition 1.2]. �
Proposition 4.12. Let R be a finite dimensional algebra over algebraically closed
field. If R[t]/(tn) is representation finite, then so is R.

Proof. Note that a finite dimensional algebra over an algebraically closed field is
representation finite if and only if it has no generic modules ([13, p.157, Corol-
lary]). If R is representation infinite, then there exists a generic R-module G. Thus
T (G) is a generic R[t]/(tn)-module by Lemma 4.11. It follows that R[t]/(tn) is
representation infinite. �

The following example illustrates that neither the converses of Propositions 4.9
and 4.12 hold true in general.

Example 4.13. Let R be a finite-dimensional algebra over an algebraically closed
field.

(1) If R is hereditary of type A2, then R[t]/(tn) with n > 5 is the algebra given
by the quiver

• α //β
$$

• γ
zz

modulo the ideal generated by {βn, γn, αβ − γα}. It is well known that R
is representation finite, but R[t]/(tn) is not CM-finite by [24, Lemma 4.4],
and hence not representation finite.

(2) If R is given by the quiver

•
α ??���

β
��?

??

• γ
��?

??

• δ

??���
•

modulo the ideal generated by {γα−δβ}, then R[t]/(t2) is the algebra given
by the quiver

•ϵ ::

α ??���

β
��?

??

•

ε

��
γ
��?

??

• δ

??���

ζ

ZZ

• ηdd

modulo the ideal generated by {γα− δβ, ϵ2, ε2, ζ2, η2, αϵ− εα, γε−ηγ, βϵ−
ζβ, δζ − ηδ}. Since R has finite global dimension, R is CM-free. However,
R[t]/(t2) is not CM-free by [19, Example 4.10].

5. Support τ-tilting modules

In this section, R is a finite-dimensional basic algebra over an algebraically closed
field k and D := Homk(−, k). We use τR to denote the Auslander-Reiten trans-
lation and use projR to denote the category of finitely generated projective left
R-modules. For a module M in modR, we use TrR(M) to denote the Auslander
transpose of M . In fact, R[t]/(tn) is also a finite-dimensional basic algebra over k.
We will study how the τ -tilting theory in modR can be lifted to that in R[t]/(tn).

12
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Firstly we need the following lemma.

Lemma 5.1. Let M ∈ modR and S = R[t]/(tn). Then the following statements
hold.

(1) τS(T (M)) ∼= T (τR(M)).
(2) τ−1

S (T (M)) ∼= T (τ−1
R (M)).

(3) HomS(T (M), τS(T (M))) ∼= HomR(M
n, τR(M)).

Proof. (1) Note that T (M) = S ⊗R M . For any P ∈ projR, we claim that there
exists an isomorphism

HomS(T (P ), S) ∼= HomR(P,R)⊗R S.

Suppose P = Re for some idempotent e. Then

HomS(T (Re), S) ∼= HomS(Se, S) ∼= eS ∼= T (eR)

= HomR(Re,R)⊗R S ∼= HomR(P,R)⊗R S.

The claim is proved. Now let

P1
f1−→ P0

f0−→ M → 0

be a minimal projective presentation of M . Since T is an exact functor, it follows
from Theorem 3.3(1) that

T (P1)
T (f1)−→ T (P0)

T (f0)−→ T (M) → 0

is a minimal projective presentation of T (M). Then we get the following diagram
with exact rows

HomS(T (P0), S)
HomS(T (f1),S) //

α

��

HomS(T (P1), S)

β

��

// TrS(T (M))

γ

��

// 0

HomR(P0, R) ⊗R S
HomR(f1,R)⊗RS// HomR(P1, R) ⊗R S // TrR(M) ⊗R S // 0.

By the claim above, both α and β are isomorphisms. Thus the induced map γ is
also an isomorphism. Therefore we have

τS(T (M)) ∼= D(TrR(M)⊗R S)

∼= HomR(S, τR(M))

∼= S ⊗R HomR(R, τR(M))

∼= T (τR(M)).

(2) From the proof of (1), we have

TrS(T (M)) ∼= TrR(M)⊗R S ∼= T (TrR(M)).

Thus we have

τ−1
S (T (M)) ∼= TrS(D(T (M)))

∼= TrS(T (D(M)))

∼= T TrR(D(M))

∼= T (τ−1
R (M)).

13
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(3) By(1), we have

HomS(T (M), τS(T (M))) ∼= HomS(T (M), T (τR(M)))

∼= HomR(FT (M), τR(M))

∼= HomR(M
n, τR(M)).

�

For a module M in modR, |M | is the number of pairwise non-isomorphic direct
summands of M . The next two definitions are due to Adachi, Iyama and Reiten
[2].

Definition 5.2. A module M ∈ modR is called

(1) τ -rigid if HomR(M, τR(M)) = 0.
(2) τ -tilting (respectively, almost complete τ -tilting) if it is τ -rigid and |M | =

|R| (respectively, |M | = |R| − 1).
(3) support τ -tilting if there exists an idempotent e of R such that M is a

τ -tilting (R/⟨e⟩)-module.

Definition 5.3. Let (M,P ) be a pair with M ∈ modR and P ∈ projR.

(1) We call (M,P ) a τ -rigid pair if M is τ -rigid and HomR(P,M) = 0.
(2) We call (M,P ) a support τ -tilting (respectively, almost complete support

τ -tilting) pair if (M,P ) is a τ -rigid pair and |M |+ |P | = |R| (respectively,
|M |+ |P | = |R| − 1).

The following result is crucial in proving Theorem 5.5.

Proposition 5.4. Let (M,P ) be a pair with M ∈ modR and P ∈ projR. Then
the following statements hold.

(1) (M,P ) is a τ -rigid pair if and only if (T (M), T (P )) is a τ -rigid pair.
(2) (M,P ) is a support τ -rigid (respectively, almost complete support τ -tilting)

pair if and only if (T (M), T (P )) is a support τ -rigid (respectively, almost
complete support τ -tilting) pair.

Proof. (1) If HomR(P,M) = 0, then

HomR[t]/(tn)(T (P ), T (M)) ∼= HomR(P, FT (M)) = HomR(P,M
n) = 0

by Fact 2.1(2). Conversely, it is easy to check that HomR(P,M) = 0 when
HomR[t]/(tn)(T (P ), T (M)) = 0. So Lemma 5.1(3) gives the result.

The assertion (2) follows from (1) and [27, Proposition 3.4]. �

The main result in this section is stated as follows.

Theorem 5.5. Let M ∈ modR. Then the following statements hold.

(1) M is a τ -rigid R-module if and only if T (M) is a τ -rigid R[t]/(tn)-module.
(2) M is a τ -tilting R-module if and only if T (M) is a τ -tilting R[t]/(tn)-

module.
(3) M is an almost complete τ -tilting R-module if and only if T (M) is an

almost complete support τ -tilting R[t]/(tn)-module.
(4) M is a support τ -tilting R-module if and only if T (M) is a support τ -tilting

R[t]/(tn)-module.

14
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Proof. Using [2, Proposition 2.3], we deduce that (M,P ) is a τ -rigid (respectively,
support τ -tilting, almost complete support τ -tilting) pair if and only if M is a
τ -rigid (respectively, τ -tilting, almost complete τ -tilting) (R/⟨e⟩)-module, where
Re ∼= P with e an idempotent. Hence we get (4) immediately by Proposition
5.4(2). On the other hand, when we take P = 0, it is true that (M, 0) is a τ -rigid
(respectively, support τ -tilting, almost complete support τ -tilting) pair if and only
if M is a τ -rigid (respectively, τ -tilting, almost complete τ -tilting) R-module. So
the assertions (1)–(3) follow from Proposition 5.4 again. �

Given a τ -rigid module M , we use P (⊥τR(M)) to denote the direct sum of one
copy of each indecomposable Ext-projective module in ⊥τR(M) up to isomorphism,
where ⊥τR(M) = {X ∈ modR | HomR(X, τR(M))} = 0, and use U to denote the
direct sum of one copy of each indecomposable Ext-projective module in ⊥τR(M)
up to isomorphism that does not belong to addM . Then M ⊕U is τ -tilting and U
is called the Bongartz τ -complement of M (see [2]). For a module M ∈ modR, we
use FacM to denote the category of factor modules of finite direct sums of copies
of M .

The following result describes that the functor T preserves and reflects the Bon-
gartz τR-complement of a τ -rigid module.

Corollary 5.6. Let M,U ∈ modR. Then U is the Bongartz τR-complement of M
if and only if T (U) is the Bongartz τR[t]/(tn)-complement of T (M).

Proof. It follows from Theorem 5.5 that M is a τ -rigid R-module if and only if
T (M) is a τ -rigid R[t]/(tn)-module.

We first prove the necessity. Since M⊕U is τ -tilting by assumption, HomR(M⊕
U, τR(M ⊕ U)) = 0 implies that U ∈ ⊥τR(M) and U is a τ -rigid R-module. Hence

HomR[t]/(tn)(T (U), τR[t]/(tn)(T (M)) ∼= HomR[t]/(tn)(T (U), T (τR(M)))

∼= HomR(U,FT (τR(M))) = 0.

Thus T (U) ∈ ⊥τR[t]/(tn)(T (M)) and FacT (U) ⊆ ⊥τR[t]/(tn)(T (M)). Note that
⊥τR(M) ⊆ ⊥τR(U) by [2, Proposition 2.9 and Lemma 2.11]. If there exists an
R[t]/(tn)-module X such that HomR[t]/(tn)(X, τR[t]/(tn)(T (M))) = 0, then

HomR[t]/(tn)(X,T (τR(M))) ∼= HomR(FX, τR(M)) = 0,

and so

HomR[t]/(tn)(X, τR[t]/(tn)(T (U))) ∼= HomR(FX, τR(U)) = 0.

It follows that
⊥τR[t]/(tn)(T (M)) ⊆ ⊥τR[t]/(tn)(T (U)).

Therefore, in view of [2, Proposition 2.9] again, we have

T (U) ∈ addP (⊥τR[t]/(tn)(T (M))).

Since

|T (M)⊕ T (U)| = |M ⊕ U | = |R| = |R[t]/(tn)|,
T (U) comprises all the indecomposable Ext-projective modules in ⊥τR[t]/(tn)(T (M))
up to isomorphism not in addT (M). Consequently T (U) is the Bongartz τR[t]/(tn)-
complement of T (M).

15
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Next we prove the sufficiency. Since T (M⊕U) is τ -tilting by assumption, M⊕U
is τ -tilting by Theorem 5.5 and HomR[t]/(tn)(T (M ⊕ U), τR[t]/(tn)(T (M ⊕ U)) = 0.
It follows that

HomR(FT (U), τR(M)) ∼= HomR[t]/(tn)(T (U), τR[t]/(tn)(T (M))) = 0.

Thus HomR(U, τR(M)) = 0 and FacU ⊆ ⊥τR(M). New let X ∈ modR such that
HomR(X, τR(M)) = 0, then HomR[t]/(tn)(TX, T (τR(M)) = 0 by Fact 2.1(3). Be-

cause ⊥τR[t]/(tn)(T (M)) ⊆ ⊥τR[t]/(tn)(T (U)) by [2, Proposition 2.9] and assumption,
we have

HomR(FT (X), τR(U)) ∼= HomR[t]/(tn)(T (X), T (τR(U)) = 0.

So HomR(X, τR(U)) = 0, which implies ⊥τR(M) ⊆ ⊥τR(U). It follows from [2,
Proposition 2.9] again that U ∈ addP (⊥τR(M)). The fact that

|M ⊕ U | = |T (M)⊕ T (U)| = |R[t]/(tn)| = |R|

gives the result. �

Definition 5.7. ([2, Definition 1.5]) Let P ∈ Kb(projR).

(1) We call P presilting if HomKb(projR)(P, P [i]) = 0 for any i > 1.

(2) We call P silting if it is presilting and satisfies thickP = Kb(projR), where
thickP is the smallest full subcategory of Kb(projR) that contains P and
is closed under cones, [±1], direct summands and isomorphisms.

Our next corollary concerns two-term (pre)silting complexes.

Corollary 5.8. Let

P1
f−→ P0

g−→ M → 0

be a minimal projective presentation of M in modR. Then P = (P1
f−→ P0) is

(pre)silting if and only if T (P ) = (T (P1)
T (f)−→ T (P0)) is (pre)silting.

Proof. By Theorem 3.3(1) and assumption,

T (P1)
T (f)−→ T (P0)

T (g)−→ T (M) → 0

is a minimal projective presentation of T (M). We have that P = (P1
f→ P0) is

presilting if and only if Coker f is a τ -rigid R-module by [2, Lemma 3.4], and if and

only if T (Coker f) is a τ -rigid R[t]/(tn)-module by Theorem 5.5. So P = (P1
f−→

P0) is presilting if and only if T (P ) = (T (P1)
T (f)−→ T (P0)) is presilting.

Next, we have that

A → B → C → A[1]

is a triangle in Kb(projR) if and only if

T (A) → T (B) → T (C) → T (A)[1]

is a triangle in Kb(projR[t]/(tn)). Thus it follows from [1, Lemma 2.15] that

P = (P1
f−→ P0) is silting if and only if T (P ) = (T (P1)

T (f)−→ T (P0)) is silting. �

Following [17], R is called a tilted algebra if R is an algebra of the form EndH(T ),
where H is a hereditary artin algebra and T is a 1-tilting module in modH. Recall
from [2] that a module M ∈ modR is sincere if every simple R-module appears as
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a composition factor in M . This is equivalent to the fact that HomR(P,M) ̸= 0 for
every indecomposable summand P of R.

Proposition 5.9. If R[t]/(tn) is a tilted algebra, then so is R.

Proof. Observe that an algebra R is tilted if and only if there exists a sincere module
M ∈ modR such that either HomR(X,M) = 0 or HomR(M, τR(X)) = 0 for any
indecomposable module X ∈ modR ([21, Theorem]).

IfR[t]/(tn) is a tilted algebra, then there exists a sincere moduleM ∈ modR[t]/(tn)
such that either HomR[t]/(tn)(X,M) = 0 or HomR[t]/(tn)(M, τR[t]/(tn)(X)) = 0 for
any indecomposable moduleX ∈ modR[t]/(tn). For any indecomposable projective
R-module P , we have

HomR(P, F (M)) ∼= HomR[t]/(tn)(T (P ),M) ̸= 0,

which implies that F (M) is a sincere R-module. Given an indecomposable R-
module X. Since HomR(X,F (M) ∼= HomR[t]/(tn)(T (X),M) and

HomR(F (M), τR(X)) ∼= HomR[t]/(tn)(M,T (τR(X)))

∼= HomR[t]/(tn)(M, τR[t]/(tn)(T (X))) (by Lemma 5.1),

it follows that R is a tilted algebra. �

However, the converse of Proposition 5.9 does not hold true in general.

Example 5.10. Let R be semisimple. It is obvious that R is a tilted algebra and
the global dimension of R[t]/(tn) is infinite. If R[t]/(tn) is tilted, then the global
dimension must be finite by [16, Proposition 2.1], which is a contradiction. So
R[t]/(tn) is not a tilted algebra.

6. m-precluster tilting subcategories

Throughout this section, R is an artin algebra and m > 1. A subcategory C
of modR is called a generator (respectively, cogenerator) if R ∈ C (respectively,
D(R) ∈ C), where D is the usual duality between modR and modRop.

Definition 6.1. ([20])

(1) A subcategory C of modR is called m-cluster tilting if C is precovering and
preenveloping and

C = {M ∈ modR | Ext16i<m
R (M, C) = 0}

= {M ∈ modR | Ext16i<m
R (C,M) = 0}.

(2) C is called an m-precluster tilting subcategory if it satisfies the following
conditions.
(i) C is a generator–cogenerator for modR.
(ii) τm(C) := τRΩ

m−1(C) ⊆ C and τ−1
m (C) := τ−1

R Ω−(m−1)(C) ⊆ C, where
Ωm−1 and Ω−(m−1) are the (m− 1)-th syzygy and cosyzygy functors
respectively.

(iii) Ext16i<m
R (C, C) = 0.

(iv) C is a precovering and preenveloping subcategory of modR.
If moreover C admits an additive generator M , then we say that M is an
m-precluster tilting module.

(3) R is called τm-selfinjective if R admits an m-precluster tilting module.
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Proposition 6.2. Let C be an additive subcategory of modR closed under direct
summands. Then C is m-precluster tilting in modR if and only if T (C) is m-
precluster tilting in modR[t]/(tn).

Proof. It is trivial that C is a generator–cogenerator for modR if and only if T (C) is a
generator–cogenerator for modR[t]/(tn). By Theorem 3.3 and Lemma 5.1, we have
that τm(C) ⊆ C (respectively, τ−1

m (C) ⊆ C) if and only if τm(T (C)) ⊆ T (C) (respec-

tively, τ−1
m (T (C)) ⊆ C). Using [31, Theorem 3.9], we get that Ext16i<m

R (C, C) = 0 if

and only if Ext16i<m
R[t]/(tn)(T (C), T (C)) = 0. Finally, it follows from Theorem 3.3 that

C is precovering and preenveloping in modR if and only if T (C) is precovering and
preenveloping in modR[t]/(tn). Consequently, the assertion holds true. �

However, Proposition 6.2 is not true form-cluster tilting subcategories in general,
as illustrated in the following example.

Example 6.3. Let R = k be a algebraically closed field and C = mod k. It is
obvious that C is m-cluster tilting. But T (C) = proj k[t]/(tn) is not m-cluster
tilting, since k[t]/(tn) is not semisimple.

Now we can state the following result.

Theorem 6.4. R is τm-selfinjective if and only if R[t]/(tn) is τm-selfinjective.

Proof. The necessity follows from Proposition 6.2 directly.
In the following, we prove the sufficiency. In view of [20, Propositon 3.5], R

is τm-selfinjective if and only if R ∈ Im and Ext16i<m
R (Im, Im) = 0 with Im =

add{τ im(D(R))}∞i=0. Since

T (add{τ im(D(R))}∞i=0) = add{τ im(D(T (R)))}∞i=0

by Lemma 5.1, we have that R is τm-selfinjective by [31, Theorem 3.9(1)]. �
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[3] L. Angeleri Hügel, A. Tonolo and J. Trlifaj, Tilting preenvelopes and cotilting precovers,

Algebr. Represent. Theory 4 (2001), 155–170.
[4] T. Araya, R. Takahashi and Y. Yoshino, Homological invariants associated to semi-

dualizing bimodules, J. Math. Kyoto Univ. 45 (2005), 287–306.
[5] L. L. Avramov, R. Buchweitz and S. Iyengar, Class and rank of differential modules,

Invent. Math. 169 (2007), 1–35.
[6] S. Bazzoni, A characterization of n-cotilting and n-tilting modules, J. Algebra 273

(2004), 359–372.
[7] A. Beligiannis, Cohen-Macaulay modules, (co)torsion paris and virtually Gorenstein

algebras, J. Algebra 288 (2005), 137–211.

[8] A. Beligiannis and I. Reiten, Homological and homotopical aspect of torsion theories,
Memoirs Amer. Math. Soc. 188, Amer. Math. Soc., Providence, RI, 2007.

[9] T. Bühler, Exact Categories, Expo. Math. 28 (2010), 1–69.

18



Homological transfer between additive categories and higher differential additive categories

[10] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton,

1956.
[11] X. W. Chen, Algebras with radical square zero are either self-injective or CM-free, Proc.

Amer. Math. Soc. 140 (2012), 93–98.

[12] W. W. Crawley-Boevey, Tame algebras and generic modules, Proc. Lond. Math. Soc. 63
(1991), 241–265.

[13] W. W. Crawley-Boevey, Modules of finite length over their endomorphism rings, in:
S. Brenner and H. Tachikawa (Eds.), Representations of Algebras and Related Topics,

London Math. Soc. Lecture Note Ser. 168, Cambridge Univ. Press, Cambridge, 1992,
pp.127–184.

[14] S. Crivei, M. Prest and B. Torrecillas, Covers in finitely accessible categories, Proc.
Amer. Math. Soc. 138 (2010), 1213–1221.

[15] H. Enomoto, Classifying exact categories via Wakamatsu tilting, J. Algebra 485 (2017),
1–44.

[16] S. Gastaminza, D. Happel, M. I. Platzeck, J. Redondo and L. Unger, Global dimensions
for endomorphism algebras of tilting modules, Arch. Math. 75 (2000), 247–255.

[17] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982),
399–443.

[18] H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ.

47 (2007), 781–808.
[19] W. Hu, X.-H. Luo, B.-L. Xiong and G. Zhou, Gorenstein projective bimodules via

monomorphism categories and filtration categories, J. Pure Appl. Algebra 223 (2019),
1014–1039.

[20] O. Iyama and Ø. Solberg, Auslander–Gorenstein algebras and precluster tilting, Adv.
Math. 326(2018), 200–240.
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