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Abstract. For a ring R, we prove that all left R-modules have weak injec-
tive covers and weak injective preenvelopes. Then we characterize the right weak
injective dimension of modules in terms of the properties of left derived functors
of Hom and right derived functors of ⊗. For any n � 2, we prove that the global
right weak injective dimension of RM is at most n if and only if its global left
weak injective dimension is at most n− 2.

1. Introduction

The motivation for this paper is to extend the viewpoint stated by Sten-
ström in [20]: many results of a homological nature may be generalized from
coherent rings to arbitrary rings. In this process, finitely presented mod-
ules were in general replaced by super finitely presented modules, and the
so-called weak injective and weak flat modules appeared.

For an arbitrary ring R, it is not possible to describe all R-modules in
general. Unless each R-module is a direct sum of indecomposable ones, we
have to study some special classes of R-modules. A successful method to
overcome this obstacle is to approximate arbitrary modules by selecting some
known classes of modules. This approach has been used to investigate injec-
tive envelopes, projective covers, as well as pure-injective envelopes of mod-
ules by Matlis, Bass, Warfield et al. in the 1960’s. Note that (pre)envelopes
and (pre)covers are dual notions in the category theoretic sense and that
Lambek [13] showed that, over any ring, a module is flat if and only if its
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character module is injective. So Enochs [5] studied injective and flat cov-
ers, envelopes of modules. A classical result of Enochs says that a ring R is
left Noetherian if and only if every left R-module has an injective cover. He
also raised the well-known flat cover conjecture: every module over any ring
has a flat cover. It was proved by Bican, El Bashir and Enochs [1] in two
different ways.

Stenström [20] introduced the notion of FP-injective modules. A left
R-module M is said to be FP-injective (or absolutely pure) [16,20] if
Ext1R(F,M) = 0 for any finitely presented left R-module F . It is well-known
that this class of modules plays an important role in characterizing coher-
ent rings; and many results about injective modules over Noetherian rings
should have a counterpart about FP-injective modules (see [6,9,17,19,20]
and so on). Along the same lines, various generalizations of FP-injective
modules are given and some generalized coherent rings have been studied by
many authors (see e.g., [2,3,10,14,18,21]). Recently, Pinzon [19] showed that
every left R-module has an FP-injective cover if R is a left coherent ring.
This impels us to study the existence of weak injective covers over any ring,
and investigate weak injective dimension of modules in terms of left weak
injective resolutions of modules.

In this paper, we show that many results about (FP-)injective mod-
ules over coherent rings have a counterpart about weak injective modules,
and some known results are obtained as corollaries. In Section 2, we give
some terminology and some preliminary results. In Section 3, we first prove
that every left R-module has a weak injective cover and a weak injective
preenvelope. As applications, the duality properties of weak flat (resp. weak
injective) preenvelopes and weak injective (resp. weak flat) precovers are dis-
cussed. We prove that the injective envelope of any weak flat left R-module
is weak flat if and only if the weak flat cover of any injective left R-module
is injective. In Section 4, we obtain some criteria for computing the right
and left weak injective dimensions of modules in terms of the properties of
left derived functors of Hom. Then we deduce that the global right weak
injective dimension of a ring is at most n if and only if its global left weak
injective dimension is at most n− 2 for any n � 2. In Section 5, we first
show that −⊗R − is right balanced on MR × RM by WF ×WI, and then
we obtain some criteria for computing the right weak injective dimension of
modules and the global right weak injective dimension of a ring R in terms
of the properties of right derived functors of ⊗.

2. Preliminaries

Throughout this paper, R is an associative ring with identity, all mod-
ules are unitary, RM (resp. MR) is the category of left (resp. right) R-
modules and all subcategories of RM (resp. MR) are full and closed under
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isomorphisms. For an R-module M , the character module HomZ(M,Q/Z)
is denoted by M+, where Z is the additive group of integers and Q is the
additive group of rational numbers.

Definition 2.1 [6]. Let F be a subcategory of RM. The homomor-
phism f : F → M in RM with F ∈ F is called an F -precover of M if for
any homomorphism g : F0 → M in RM with F0 ∈ F , there exists a homo-
morphism h : F0 → F such that the following diagram commutes:

F0

g

��

h

���
�
�
�

F
f

�� M

The homomorphism f : F → M is called right minimal if an endomorphism
h : F → F is an automorphism whenever f = fh. An F -precover f : F → M
is called an F -cover if f is right minimal. F is called a covering subcate-
gory of RM if every module in RM has an F -cover. Dually, the notions
of an F -preenvelope, a left minimal homomorphism, an F -envelope and an
enveloping subcategory are defined.

The following two lemmas play a crucial role in this paper.

Lemma 2.2 ([6, Proposition 5.2.2]). If F is a full subcategory of RM
closed under direct sums, then a module M in RM has an F -precover if
and only if there exists a cardinal number ℵα such that any homomor-
phism D → M with D ∈ F has a factorization D → C → M with C ∈ F
and |C| � ℵα.

Recall that a short exact sequence 0 → A
f→ B → C → 0 in RM is called

pure if the functor HomR(F,−) preserves its exactness for every finitely pre-
sented left R-module F . In this case f(A) is called a pure submodule of B
(cf. [6,9]).

Lemma 2.3 ([1, Theorem 5]). For each cardinal λ, there exists a car-
dinal κ such that for any M ∈ RM and for any L � M such that |M | � κ
and |M/L| � λ, the submodule L contains a nonzero submodule that is pure
in M .

Definition 2.4 [8]. A module M in RM (resp. N in MR) is said to be
weak injective (resp. weak flat) if Ext1R(F,M) = 0 (resp. TorR1 (N,F ) = 0) for
any super finitely presented left R-module F , that is, for any left R-module
F satisfying that there is an exact sequence: · · · → Pn → · · · → P1 → P0 →
F → 0 in RM with each Pi finitely generated and projective. We use WI
(resp. WF) to denote the full subcategory of RM (resp. MR) consisting of
weak injective modules (resp. weak flat modules).
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Remark 2.5. (1) In [15], Lee gave a definition of weak-injective modules
as follows. An R-module D is called weak-injective if Ext1R(M,D) = 0 for all
R-modules M of weak dimension � 1. The notion of weak injective modules
given in Definition 2.4 is different from the one in [15].

(2) It is trivial that an FP-injective module is weak injective. When R
is left coherent, a module in RM is FP-injective if and only if it is weak in-
jective. It was showed in [11, Corollary 3.8] that, even for a left and right
coherent ring R, an FP-injective left R-module does not have a decomposi-
tion as a direct sum of indecomposable FP-injective submodules in general.
This also shows that, for a ring R, a weak injective left R-module does not
in general have a decomposition as a direct sum of indecomposable weak
injective submodules.

(3) It is trivial that a flat module is weak flat. When R is left coherent,
a module in MR is flat if and only if it is weak flat.

Proposition 2.6. (1) Let 0 → A → B → C → 0 be an exact sequence
in RM with A weak injective. Then B is weak injective if and only if C is
weak injective.

(2) Let 0 → A → B → C → 0 be an exact sequence in MR with C weak
flat. Then B is weak flat if and only if A is weak flat.

Proof. (1) Let (†) 0 → A → B → C → 0 be a short exact sequence with
A weak injective. For any super finitely presented left R-module F , applying
HomR(F,−) to the sequence (†), we get the following exact sequence:

0 = Ext1R(F,A) → Ext1R(F,B) → Ext1R(F,C) → Ext2R(F,A) = 0

by [8, Proposition 3.1]. Now the assertion (1) follows clearly.
(2) The proof is similar to that of (1), so we omit it. �
By Proposition 2.6, we have that WI is coresolving in RM and WF is

resolving in MR in the sense of [9].

Definition 2.7 [8]. For a module M in RM, the weak injective dimen-
sion of M , denoted by widR(M), is defined as inf

{
n | Extn+1

R (F,M) = 0

for any super finitely presented left R-module F
}
. If no such n exists, set

widR(M) = ∞.
For a module N in MR, the weak flat dimension of N , denoted by

wfdR(N), is defined as inf
{
n | TorRn+1(N,F ) = 0 for any super finitely pre-

sented left R-module F
}
. If no such n exists, set wfdR(N) = ∞.

The left super finitely presented dimension of R, denoted by
l.sp.gldim(R), is defined as sup

{
pdR(M) | M is a super finitely presented

left R-module
}
.
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Lemma 2.8 ([8, Theorem 3.8]). (1) l.sp.gldim(R) � w.gl.dim(R), with
equality l.sp.gldim(R) = w.gl.dim(R) when R is a left coherent ring.

l.sp.gldim(R) = sup
{
widR(M) | M is a left R-module

}

= sup
{
wfdR(N) | N is a right R-module

}
.

Let M be in RM and F a subcategory of RM. Following [6], a sequence
E in RM is called HomR(F ,−) (resp. HomR(−,F)) exact if HomR(F,E)
(resp. HomR(E, F )) is exact for any F ∈ F ; a left (resp. right) F -resolution
of M is a HomR(F ,−) (resp. HomR(−,F)) exact complex · · · → F1 → F0

→ M → 0 (resp. 0 → M → F 0 → F 1 → · · · ) with each Fi (resp. F
i) in F .

For a left F -resolution · · · → F1 → F0 → M → 0 of M , set

K0 = M, K1 = Ker(F0 → M), Ki = Ker(Fi−1 → Fi−2) for i � 2.

The nth kernel Kn (n � 0) is called the nth F -syzygy of M .
For a right F -resolution 0 → M → F 0 → F 1 → · · · of M , set

L0 = M, L1 = Coker(M → F 0), Li = Coker
(
F i−2 → F i−1

)
for i � 2.

The nth cokernel Ln (n � 0) is called the nth F -cosyzygy of M .
Following [6, Definition 8.4.1], the left F -dimension of M , denoted by

left F -dim M , is defined as inf{n | there exists a left F -resolution of the
form 0 → Fn → · · · → F0 → M → 0}. If there exists no such n, set left
F -dim M = ∞. The global left F -dimension of RM, denoted by gl left
F -dimR M, is defined to be sup{left F -dimM | M ∈ RM} and is infinite
otherwise. The right versions can be defined similarly, and they are denoted
by right F -dimM and gl right F -dimRM respectively.

3. Weak injective covers and preenvelopes

In this section, we show that all left R-modules have weak injective covers
and weak injective preenvelopes. The duality properties of weak flat (resp.
weak injective) preenvelopes and weak injective (resp. weak flat) precovers
are discussed, and some known results are obtained as corollaries.

The following theorem is the main result in this section.

Theorem 3.1. Every module in RM has a weak injective cover.

Proof. Let M be in RM with |M | = λ. We first prove that M has a
weak injective precover. Let κ be a cardinal as in Lemma 2.3. By Lemma 2.2,
it suffices to show that any homomorphism A → M in RM with A weak in-
jective factors through a weak injective module B with |B| � κ.
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Consider any homomorphism f : A → M in RM with A weak injective.
If |A| � κ, then the assertion holds by taking B = A. So we may assume that
|A| > κ. Let K = Ker f . Since A/K can be embedded in M , it follows that
|A/K| � λ. Thus K contains a nonzero submodule A0 which is pure in A
by Lemma 2.3. The pure exact sequence 0 → A0 → A → A/A0 → 0 induces
a split exact sequence 0 → (A/A0)

+ → A+ → A+
0 → 0. Hence (A/A0)

+ is
weak flat since A+ is weak flat by [8, Theorem 2.10]. Therefore, A/A0 is
weak injective by [8, Theorem 2.10] again.

If |A/A0| � κ, then the desired result follows immediately since f factors
through A/A0. Now suppose that |A/A0| > κ. Set L = {X | A0 � X � K
and A/X is weak injective}. It is obvious that L ̸= ∅ since A0 ∈ L. Let
{Xi ∈ L | i ∈ I} be an ascending chain. Then we have that A0 � ∪Xi � K
and A/∪Xi = A/ lim−→Xi = lim−→(A/Xi) is weak injective by [8, Proposition 2.6]

since A/Xi is weak injective. Thus ∪Xi ∈ L. By the Zorn lemma, L has a
maximal element B.

Next we claim that |A/B| � κ. Otherwise, suppose |A/B| > κ. Be-
cause B � K, there exists g : A/B → M such that Ker g = K/B. Notice
that

∣∣ (A/B)/(K/B)
∣∣ = |A/K| � λ, so K/B contains a nonzero submodule

B′/B which is pure in A/B by Lemma 2.3. Then B′/B is weak injective by
[8, Proposition 2.9]. Therefore, A/B′ ∼= (A/B)/(B′/B) is weak injective by
Proposition 2.6(1). This implies that B′ ∈ L, which gives a contradiction to
the maximality of B.

Finally, it is clear that A/B is weak injective and f factors through A/B.
It follows from [8, Proposition 2.3] that WI is closed under direct sums, and
hence M has a weak injective precover by Lemma 2.2. In addition, since WI
is closed under direct limits by [8, Proposition 2.6], M has a weak injective
cover by [22, Theorem 2.2.8]. �

As applications of Theorem 3.1, we have

Corollary 3.2 ([22, Theorem 2.4.2]). If R is left Noetherian, then ev-
ery module M in RM has an injective cover.

Corollary 3.3 ([19, Corollary 2.7]). If R is left coherent, then every
module M in RM has an FP-injective cover.

It was shown in [6, Proposition 6.2.4] that the subcategory of RM con-
sisting of FP-injective modules is preenveloping. The next theorem extends
this result.

Theorem 3.4. Every module in RM has a weak injective preenvelope.

Proof. Let M be in RM. By [6, Lemma 5.3.12], there exists a cardinal
number ℵα such that for any R-homomorphism f : M → N with N weak
injective, there exists a pure submodule S of N such that |S| � ℵα and
f(M) ⊂ S. Since N is weak injective, S is weak injective by [8, Proposition
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2.9]. It follows from [8, Proposition 2.3] that WI is closed under direct
products. Therefore, M has a weak injective preenvelope by [6, Proposition
6.2.1]. �

In [5], Enochs proved that R is right coherent if and only if every left
R-module has a flat preenvelope ([5, Proposition 5.1]). For any ring R,
we showed [8, Theorem 2.15] that every right R-module has a weak flat
preenvelope. Eklof and Trlifaj proved [4, Theorem 12] that if B is a subcat-
egory of RM, then every module in MR has a KerTorR1 (−,B)-cover, where
KerTorR1 (−,B) =

{
A | TorR1 (A,B) = 0 for any B ∈ B

}
. By taking B as the

subcategory of RM consisting of all super finitely presented modules, one
can deduce immediately that every right R-module has a weak flat cover.
Here we have

Proposition 3.5. (1) If f : C → D is a weak flat preenvelope of a mod-
ule C in MR, then f+ : D+ → C+ is a weak injective precover of C+ in RM.

(2) If f : C → D is a weak injective preenvelope of a module C in RM,
then f+ : D+ → C+ is a weak flat precover of C+ in MR.

Proof. By [8, Remark 2.2 and Theorem 2.10], we have WF+ � WI
and WI+ � WF . Now both assertions follows immediately from [7, Corol-
lary 3.2]. �

Corollary 3.6. Let R be a left coherent ring.
(1) ([7, Corollary 3.3]) If f : A → F in MR is a flat preenvelope of A,

then f+ : F+ → A+ is an (FP-)injective precover of A+ in RM.
(2) If f : A → E in RM is an (FP-)injective preenvelope of A, then f+ :

E+ → A+ is a flat precover of A+ in MR.

Proof. Since weak injective left R-modules coincide with FP-injective
left R-modules and weak flat right R-modules coincide with flat right R-
modules over a left coherent ring R, the assertions follow from Propositions
3.5(1) and (2), respectively. �

Let C be a covering subcategory and E an enveloping subcategory of RM.
For a module M in RM, the C-cover and the E-envelope of M are denoted by
C0(M) and E0(M) respectively. The following proposition is of independent
interest.

Proposition 3.7. Let C be a covering subcategory and E an enveloping
subcategory of RM, such that both C and E are closed under direct sum-
mands. Then the following statements are equivalent.

(1) E0(M) ∈ C for any M ∈ C.
(2) C0(N) ∈ E for any N ∈ E .

Proof. (1) ⇒ (2). For any N ∈ E , suppose that α : C0(N) → N is the
C-cover of N and β : C0(N) → E0

(
C0(N)

)
is the E -envelope of C0(N). Then
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there exists θ : E0
(
C0(N)

)
→ N such that α = θβ. On the other hand,

since E0
(
C0(N)

)
∈ C by (1), there exists λ : E0

(
C0(N)

)
→ C0(N) such that

αλ = θ. So α = αλβ, and hence λβ is an isomorphism since α is a cover.
It implies that C0(N) is a direct summand of E0

(
C0(N)

)
. Since E is closed

under direct summands by assumption, C0(N) ∈ E .
Dually we get (2) ⇒ (1). �
We denote by E0(M) (resp. WF0(M)) the injective envelope (resp. the

weak flat cover) of a module M in RM. By Proposition 3.7, we get imme-
diately the following

Corollary 3.8. The following statements are equivalent.
(1) E0(M) is weak flat for any weak flat left R-module M .
(2) WF0(N) is injective for any injective left R-module N .

The following result was proved in [12, Theorem 2.2] when R is a com-
mutative Noetherian ring.

Corollary 3.9. The following statements are equivalent.
(1) E0(M) is flat for any flat left R-module M .
(2) F0(I) (the flat cover of I) is injective for any injective left R-module I .

4. Left derived functors of Hom and right WI-dimension of
modules

In this section, we investigate the right WI-dimension of modules in
terms of left derived functors of Hom and the left WI-resolutions of mod-
ules. Some known results in [6] are developed.

By Theorem 3.1, we have that every left R-module has a weak injective
cover. So every left R-module M has a left WI-resolution, that is, there
exists a HomR(WI,−) exact complex · · · → E1 → E0 → M → 0 (not neces-
sarily exact) in RM with each Ei weak injective. On the other hand, every
left R-module M has a weak injective preenvelope by Theorem 3.4. Thus M
has a right WI-resolution, that is, there exists a HomR(−,WI) exact com-
plex 0 → M → E0 → E1 → · · · in RM with each Ei weak injective. Clearly,
this complex is exact.

The following result shows that the left super finitely presented dimen-
sion of R and the global right weak injective dimension of RM are identical.

Proposition 4.1. (1) widR(M) = rightWI-dimM for any M ∈ RM.
(2) l.sp.gldim(R) = gl rightWI-dimR M.

Proof. (1) Let M be in RM. It is obvious that widR(M) � rightWI-
dimM . Conversely, suppose that widR(M) = n < ∞. Take a partial right
WI-resolution of M :

0 → M → E0 → E1 → · · · → En−1
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Set L = Coker(En−2 → En−1). Thus we get the following exact sequence:

0 → M → E0 → E1 → · · · → En−1 → L → 0

in RM. Then L is weak injective by [8, Proposition 3.3]. Consequently,
right WI-dimM � n.

(2) This result follows directly from (1) and Lemma 2.8. �

Proposition 4.2. If l.sp.gldim(R) <∞, then l.sp.gldim(R) = wid(RR).

Proof. It is clear that wid(RR) � l.sp.gldim(R) by Lemma 2.8. Now it
suffices to show that if l.sp.gldim(R) = n < ∞, then wid(RR) � n. For any
super finitely presented left R-module F , there exists some M in RM such
that ExtnR(F,M) ̸= 0. Let 0 → K → P → M → 0 be an exact sequence in

RM with P free. Then we have the following exact sequence:

ExtnR(F, P ) → ExtnR(F,M) → Extn+1
R (F,K).

Since l.sp.gldim(R) = n, we have Extn+1
R (F,K) = 0. It follows that

ExtnR(F, P ) ̸= 0 and ExtnR(F,RR) ̸= 0. So wid(RR) � n. �
By Proposition 4.2, we immediately have the following

Corollary 4.3 ([20, Proposition 3.5]). Let R be left coherent. If
w.gl.dim(R) < ∞, then w.gl.dim(R) = FP-id(RR).

By [6, Definition 8.2.13], we can easily see that HomR(−,−) is left bal-
anced on RM× RM by WI ×WI. Let ExtWI

n (−,−) denote the nth left
derived functor of HomR(−,−) with respect to WI ×WI. For any M and
N in RM, ExtWI

n (M,N) can be computed by using a right WI-resolution
of M or a left WI-resolution of N . Let

0 → M
f0

→ E0 f1

→ E1 → · · ·

be a right WI-resolution of M in RM. Applying HomR(−, N) to the se-
quence, we get the deleted complex

· · · → HomR(E
1, N)

HomR(f1,N)−→ HomR(E
0, N) → 0.

Then ExtWI
n (M,N) is exactly the nth homology of the above complex, and

there exists a canonical homomorphism:

σ : ExtWI
0 (M,N) = HomR(E

0, N)/ ImHomR(f
1, N) → HomR(M,N),

which is defined by

σ
(
α+ ImHomR(f

1, N)
)
= αf0 for any α ∈ HomR(E

0, N).
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Proposition 4.4. The following statements are equivalent for any
M ∈ RM.

(1) M is weak injective.
(2) σ : ExtWI

0 (M,N) → HomR(M,N) is an epimorphism for any
N ∈ RM.

(3) σ : ExtWI
0 (M,M) → HomR(M,M) is an epimorphism.

Proof. (1) ⇒ (2) is clear by letting E0 = M .
(2) ⇒ (3) is trivial.
(3) ⇒ (1). By assumption, there exists α ∈ HomR(E

0,M) such that
σ
(
α+ ImHomR(f

1,M)
)
= αf0 = 1M . So M is isomorphic to a direct sum-

mand of E0, and hence it is weak injective. �
As an application of Proposition 4.4, we have the following

Corollary 4.5. The following statements are equivalent.
(1) RR is weak injective.
(2) σ : ExtWI

0 (RR,N) → HomR(RR,N) is an epimorphism for any
N ∈ RM.

(3) σ : ExtWI
0 (RR, RR) → HomR(RR, RR) is an epimorphism.

(4) Every right R-module has a monic weak flat preenvelope.
(5) Every left R-module has an epic weak injective cover.
(6) Every right R-module is a submodule of a weak flat right R-module.

Proof. (1) ⇔ (2) ⇔ (3) follow from Proposition 4.4.
(1) ⇔ (4) follows from [8, Proposition 2.17].
(1) ⇒ (5). Let M be in RM. Then M has a weak injective cover

g : E → M by Theorem 3.1. On the other hand, there exists an exact se-
quence F → M → 0 in RM with F free. Notice that F is weak injective by
(1) and [8, Proposition 2.3], so g is an epimorphism.

(5) ⇒ (1). Since there exists an epic weak injective cover f : E → RR by
(5), RR is isomorphic to a direct summand of E. Thus RR is weak injective
by [8, Proposition 2.3].

(4) ⇒ (6) is trivial.
(6) ⇒ (4). By [8, Theorem 2.15], every right R-module has a weak flat

preenvelope. Thus the assertion holds by (6). �
Proposition 4.6. The following statements are equivalent for any

M ∈ RM.
(1) rightWI-dimM � 1.
(2) σ : ExtWI

0 (M,N) → HomR(M,N) is a monomorphism for any
N ∈ RM.

Proof. (1) ⇒ (2). By assumption, M has a right WI-resolution 0 →
M → E0 → E1 → 0. Then we get an exact sequence 0 → HomR(E

1, N) →
HomR(E

0,N) → HomR(M,N) for any N ∈ RM. So σ is a monomorphism.
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(2) ⇒ (1). Let 0 → M → E → L → 0 be an exact sequence in RM with
M → E a weak injective preenvelope of M . It suffices to show that L is
weak injective. By [6, Theorem 8.2.3], we have the following commutative
diagram with exact rows:

ExtWI
0 (L,L) ��

σ1

��

ExtWI
0 (E,L)

σ2

��

�� ExtWI
0 (M,L) ��

σ3

��

0

0 �� HomR(L,L) �� HomR(E,L) �� HomR(M,L).

Notice that σ2 is an epimorphism by Proposition 4.4 and that σ3 is a
monomorphism by assumption, so σ1 is an epimorphism by the snake lemma.
Thus L is weak injective by Proposition 4.4. �

By Proposition 4.6, we get directly the following

Corollary 4.7. The following statements are equivalent.
(1) rightWI-dim(RR) � 1.
(2) σ : ExtWI

0 (RR,N) → HomR(RR,N) is a monomorphism for any
N ∈ RM.

Theorem 4.8. The following statements are equivalent.
(1) gl rightWI-dimR M � 1.
(2) σ : ExtWI

0 (M,N) → HomR(M,N) is a monomorphism for any M,N
∈ RM.

(3) l.sp.gldim(R) < ∞ and σ : ExtWI
0 (RR,N) → HomR(RR,N) is a

monomorphism for any N ∈ RM.
(4) Every module in RM has a monic weak injective cover.
(5) Every module in MR has an epic weak flat preenvelope.
(6) Every submodule of any module in WF is weak flat.
(7) Every quotient of any module in WI is weak injective.
(8) The kernel of any weak injective precover of a module in RM is weak

injective.
(9) The cokernel of any weak injective preenvelope of a module in RM is

weak injective.
(10) The cokernel of any weak flat preenvelope of a module in MR is weak

flat.

Proof. (1) ⇔ (2) ⇒ (3) is clear by Propositions 4.6 and 4.1.
(3) ⇒ (1) follows from Corollary 4.7 and Propositions 4.1 and 4.2.
(1) ⇔ (4) ⇔ (5) ⇔ (6) ⇔ (7) hold by [8, Propositions 2.18 and 3.3].
(7) ⇒ (9) ⇒ (1) are trivial.
(4) ⇒ (8). Let M be in RM and f : E → M a weak injective precover

of M with K = Ker f . Because there exists a monic weak injective cover
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f ′ : E′ → M of M by (4), we have K ⊕ E′ ∼= E by [6, Lemma 8.6.3]. Thus

K is weak injective by [8, Proposition 2.3].

(8) ⇒ (1). Let M be a quotient of a weak injective left R-module. Note

that M has a weak injective cover f : E → M . So f is an epimorphism.

Since Ker f is weak injective by (8), M is weak injective by Proposition

2.6(1). Thus any quotient of a weak injective left R-module is weak injective,

and (1) follows.

(5) ⇒ (10). Let g : M → F be a weak flat preenvelope of a module M

in MR and L = Coker g. Since there exists an epic weak flat preenvelope

g′ : M → F ′ by (5), we have L⊕F ′ ∼= F by the dual of [6, Lemma 8.6.3]. It

follows from [8, Proposition 2.3] that L is weak flat, as desired.

(10) ⇒ (1). By Lemma 2.8 and Proposition 4.1, it suffices to show that

any submodule of a weak flat right R-module is weak flat. Let M be a

submodule of a weak flat right R-module. Note that M has a weak flat

preenvelope f : M → F . It follows that f is a monomorphism. By (10),

Coker f is weak flat. So M is weak flat by Proposition 2.6(2). �

Proposition 4.9. The following are equivalent for any M ∈ RM and

n � 2.

(1) rightWI-dimM � n.
(2) ExtWI

n+k(M,N) = 0 for any N ∈ RM and k � −1.

(3) ExtWI
n−1(M,N) = 0 for any N ∈ RM.

Proof. (1) ⇒ (2). Let 0 → M → E0 → E1 → · · · → En → 0 be a right

WI-resolution of M in RM. For any N ∈ RM, we have the following exact

sequence:

0 → HomR(E
n, N) → HomR(E

n−1, N) → HomR(E
n−2, N).

Thus ExtWI
n−1(M,N) = ExtWI

n (M,N) = 0. It is clear that ExtWI
n+k(M,N) = 0

for any k � 1. Thus (2) follows.

(2) ⇒ (3) is trivial.

(3) ⇒ (1). Assume that 0 → M
f0

→ E0 f1

→ E1 f2

→ · · · is a right WI-
resolution of M in RM. Set Ln = Coker fn−1. It suffices to show that Ln is

weak injective. Let π : En−1 → Ln be the canonical projection, λ : Ln → En

be a WI-preenvelope and fn = λπ. Clearly, we have the following exact
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commutative diagram:

0 �� M �� E0 �� · · · �� En−2
fn−1

�� En−1

π ���
��

��

fn

�� En �� · · · .

Ln

���
��

��
�

λ

�������

0

��������
0

By (3), we have ExtWI
n−1(M,Ln) = 0. So we get the following exact sequence:

HomR(E
n, Ln)

HomR(fn,Ln)→ HomR(E
n−1, Ln)

HomR(fn−1,Ln)→ HomR(E
n−2, Ln).

Since HomR(f
n−1, Ln)(π) = πfn−1 = 0,

π ∈ KerHomR(f
n−1, Ln) = ImHomR(f

n, Ln).

So there exists t ∈ HomR(E
n, Ln) such that π = HomR(f

n, Ln)(t) = tfn

= tλπ, and hence tλ = 1 since π is epic. Thus Ln is weak injective. �
By Theorem 3.1, we have that every module N in RM admits a minimal

left WI-resolution, that is, there exists a complex · · · → E2 → E1 → E0 →
N → 0 of N in RM such that E0 → N , E1 → Ker(E0 → N) and Ei+1 →
Ker(Ei → Ei−1) for i � 1, are WI-covers.

Proposition 4.10. The following are equivalent for any N ∈ RM and
n � 2.

(1) leftWI-dimN � n− 2.
(2) ExtWI

n+k(M,N) = 0 for any M ∈ RM and k � −1.

(3) ExtWI
n−1(M,N) = 0 for any M ∈ RM.

Proof. (1) ⇒ (2) ⇒ (3) are trivial.
(3) ⇒ (1). Let N be in RM and let

· · · → En
fn→ En−1

fn−1→ En−2
fn−2→ En−3 → · · · → E1 → E0 → N → 0

be a minimal left WI-resolution of N in RM. Set K = Ker fn−1, L =
En−1/K. Let i : K → En−1 be the inclusion and π : En−1 → L the nat-
ural epimorphism. Then there exists p : En → K which is a WI-cover of
K such that fn = ip, and there exists a homomorphism α : L → En−2 such
that fn−1 = απ. Put H = En−2/ Imα and let β : En−2 → H be the natural
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epimorphism. Then there exists q : H → En−3 such that fn−2 = qβ. Thus
we have the following commutative diagram:

En
p

���
��

��

fn
�� En−1

π

���
��

��
�

fn−1

�� En−2
β

���
���

��

fn−2

�� En−3.

K

���
�

�
�

i ��������
L

���
��

��
��

α ��������
H

���
��

��
��

q ��������

0

��������
0 0 0

By assumption, ExtWI
n−1(K,N) = 0. Then we get the following exact se-

quence:

HomR(K,En)
HomR(K,fn)→ HomR(K,En−1)

HomR(K,fn−1)→ HomR(K,En−2).

Since HomR(K, fn−1)(i) = fn−1i = 0,

i ∈ KerHomR(K, fn−1) = ImHomR(K, fn).

Then there exists t ∈ HomR(K,En) such that i = HomR(K, fn)(t) = fnt.
Note that fn = ip, and so i = ipt. So pt = 1 since i is monic, and hence
K is weak injective and p is an epimorphism. It follows that L and H are
weak injective by Proposition 2.6(1).

Next we will show that the complex 0 → En−2
fn−2→ En−3

fn−3→ · · · → E1
f1→

E0 → N → 0 is a left WI-resolution of N in RM. To do this, set K ′ =
Ker fn−3 and let ε : K ′ → En−3 be the inclusion. Then there exists φ :
En−2 → K ′ which is a WI-cover of K ′ such that fn−2 = εφ. So we have the
following commutative diagram:

0

���
���

���
�

K ′
ε

���
��

��
�

En−2

φ ��������

β

����
���

��

fn−2

�� En−3

fn−3

�� En−4.

H

���
��

��
��

�
β′

��� � � �

ψ

���
�
�
�
�
�

q ���������

0
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Since fn−2 = qβ = εφ and β is epic, Im q = Im fn−2 � Ker fn−3 = K ′. Then
there exists ψ : H → K ′ such that q = εψ. So εφ = fn−2 = qβ = εψβ, and
hence φ = ψβ since ε is monic. Notice that φ : En−2 → K ′ is a WI-cover
of K ′, so there exists β′ : H → En−2 such that ψ = φβ′. It follows that φ =
ψβ = φβ′β and that β′β is an isomorphism since φ is a cover. Consequently,
β : En−2 → H is a monomorphism. But clearly Imα = Kerβ = 0, so fn−1 =
απ = 0. Let E be a weak injective left R-module. From the exactness of the
following sequence

HomR(E,En−1)
HomR(E,fn−1)−→ HomR(E,En−2)

HomR(E,fn−2)−→ HomR(E,En−3),

we get that KerHomR(E, fn−2) = ImHomR(E, fn−1). It implies that

KerHomR(E, fn−2) = 0

since fn−1 = 0. Thus 0 → En−2
fn−2→ En−3

fn−3→ · · · → E1
f1→ E0 → N → 0 is

a left WI-resolution of N , and the assertion follows. �

By Propositions 4.9 and 4.10, we immediately have the following

Theorem 4.11. The following are equivalent for any n � 2.
(1) gl rightWI-dimR M � n.
(2) gl leftWI-dimR M � n− 2.
(3) ExtWI

n+k(M,N) = 0 for any M,N ∈ RM and k � −1.

(4) ExtWI
n−1(M,N) = 0 for any M,N ∈ RM.

The following result is a generalization of [6, Lemma 8.4.34].

Theorem 4.12. The following statements are equivalent for any
M ∈ RM and n � 0.

(1) rightWI-dimM � n.
(2) For any left WI-resolution · · · → En → En−1 → · · · → E0 → N → 0

of each N in RM, HomR(M,En) → HomR(M,Kn) → 0 is exact, where Kn

is the nth WI-syzygy of N .

Proof. We proceed by induction on n. Let n = 0. If M is weak in-
jective, then it is clear that HomR(M,E0) → HomR(M,K0) → 0 is exact.
Conversely, putting N = M , we have that HomR(M,E0) → HomR(M,M)
is surjective. So M is isomorphic to a direct summand of E0, and hence M
is weak injective.

Let n � 1. Then, by [9, Theorem 3.2.1], there exists an exact sequence
0 → M → E → L → 0 in RM with E weak injective and Ext1R(L,G) = 0
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for any weak injective left R-module G. Thus we have the following exact
commutative diagrams:

HomR(E,En)

��

�� HomR(E,Kn)

��

�� 0

HomR(M,En)

��

�� HomR(M,Kn)

0

and

0

��

0

��

0

��

0 �� HomR(L,Kn) ��

��

HomR(L,En−1)

��

�� HomR(L,Kn−1)

��

0 �� HomR(E,Kn)

��

�� HomR(E,En−1)

��

�� HomR(E,Kn−1)

��

�� 0

0 �� HomR(M,Kn) �� HomR(M,En−1)

��

�� HomR(M,Kn−1)

0

where Kn−1 = Im(En−1 → En−2). Then rightWI-dimM � n if and only
if rightWI-dimL � n− 1 by Proposition 4.1(1) and [8, Proposition 3.3], if
and only if HomR(L,En−1) → HomR(L,Kn−1) → 0 is exact by the induction
hypothesis, if and only if HomR(E,Kn) → HomR(M,Kn) is surjective by the
snake lemma, and if and only if HomR(M,En) → HomR(M,Kn) is surjective
by the first diagram. �

In the following, we give some applications of Theorem 4.12.

Corollary 4.13. The following statements are equivalent for any
n � 0.

(1) rightWI-dim(RR) � n.
(2) Every left WI-resolution · · · → En → En−1 → · · · → E0 → N → 0 of

each N in RM is exact at Ei for i � n− 1, where E−1 = N .
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Proof. (1) ⇒ (2). If n = 0, then RR is weak injective. By Corol-
lary 4.5, we have that every weak injective precover is surjective, and so
· · · → E1 → E0 → N → 0 is exact. Now suppose n � 1. By Theorem 4.12,
HomR(RR,En) → HomR(RR,Kn) → 0 is exact. So En → Kn is surjective,
and hence En → En−1 → En−2 is exact. Note that rightWI-dim(RR) � k
for k � n+ 1. So Ek → Ek−1 → Ek−2 is exact, as desired.

(2) ⇒ (1) is obvious by Theorem 4.12.

Recall that a left R-module M is called pure-injective if the functor
HomR(−,M) preserves the exactness of any pure exact sequence in RM
(cf. [6,9]).

Proposition 4.14. The following statements are equivalent for any
n � 1.

(1) gl rightWI-dimR M � n.
(2) For every left WI-resolution · · · → En → En−1 → · · · → E1 → E0 →

N → 0 of each N in RM, HomR(M,En) → HomR(M,Kn) → 0 is exact for
any pure-injective left R-module M , where Kn is the nth WI-syzygy of N .

(3) l.sp.gldim(R) < ∞ and every left WI-resolution · · · → En → En−1 →
· · · → E1 → E0 → N → 0 of each N in RM is exact at Ei for any i � n− 1,
where E−1 = N .

(4) l.sp.gldim(R) < ∞ and the nth WI-syzygy of each N in RM has an
epic weak injective cover.

Proof. (1) ⇒ (2). Let M be a pure-injective left R-module. Then
rightWI-dimM � n by (1). So the assertion follows directly from Theorem
4.12.

(2) ⇒ (1). For any M ∈ MR, M
+ is pure-injective by [6, Proposition

5.3.7]. So rightWI-dimM+ � n by (2) and Theorem 4.12. It follows from
Proposition 4.1(1) that widR(M

+) � n. Let F be the class of super finitely
presented left R-modules. Then

wfdR(M) � n ⇔ TorRn+1(M,F ) = 0 for all F ∈ F by [8, Proposition 3.4]

⇔ [TorRn+1(M,F )]+ = 0 for all F ∈ F

⇔ Extn+1
R (F,M+) = 0 for all F ∈ F

⇔ widR(M
+) � n by [8, Proposition 3.3].

So wfdR(M) � n, and hence l.sp.gldim(R) � n by Lemma 2.8. Consequently,
gl rightWI-dimR M � n by Proposition 4.1(2).

(1) ⇒ (3). By (1) and Proposition 4.1(2), we have l.sp.gldim(R) < ∞.
It is clear that right WI-dim(RR) � n by (1). Thus the assertion holds by
Corollary 4.13.
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(3) ⇒ (4). By (3), we have that Ek → Ek−1 → Ek−2 is exact for any
k � n. So the assertion follows immediately from Theorem 3.1.

(4) ⇒ (1). Let · · · → En → En−1 → · · · → E0 → N → 0 be a left WI-
resolution of N in RM and Kn the nth WI-syzygy of N . Then En → Kn

is surjective by assumption. It follows from Theorem 4.12 that right
WI-dim(RR) � n. So wid(RR) � n by Proposition 4.1(1), and hence
l.sp.gldim(R) � n by Proposition 4.2 since l.sp.gldim(R) < ∞. Therefore,
gl rightWI-dimR M � n by Proposition 4.1(2). �

5. Right derived functors of ⊗ and right WI-dimension of
modules

In this section, we show that −⊗R − is right balanced on MR × RM by
WF ×WI, and characterize the right WI-dimension of modules in terms
of right derived functors of ⊗.

Since every module in MR has a WF -preenvelope by [8, Theorem 2.15],
every module M in MR has a right WF -resolution, that is, there exists
a HomR(−,WF) exact complex 0 → M → F 0 → F 1 → · · · (not necessarily
exact) with each F i weak flat. On the other hand, every module N in RM
has a WI-preenvelope by Theorem 3.4. So N has a right WI-resolution,
that is, there exists a HomR(−,WI) exact complex 0 → N → E0 → E1

→ · · · with each Ei weak injective. Clearly, this complex is exact.

Proposition 5.1. −⊗R − is right balanced on MR × RM by
WF ×WI .

Proof. Assume that M ∈ MR and 0 → M → F 0 → F 1 → · · · is a right
WF -resolution of M in MR. Let E be a weak injective left R-module. Then
E+ is a weak flat right R-module by [8, Theorem 2.10]. So we get the exact
sequence:

· · · → HomR

(
F 1, E+

)
→ HomR

(
F 0, E+

)
→ HomR(M,E+) → 0,

which gives the exact sequence:

· · · →
(
F 1 ⊗R E

)+ →
(
F 0 ⊗R E

)+ → (M ⊗R E)+ → 0.

Thus we get the exact sequence 0 → M ⊗RE → F 0⊗RE → F 1⊗RE → · · · .
On the other hand, let N be in RM and let 0 → N → E0 → E1 → · · · be

a right WI-resolution of N . Let F be a weak flat right R-module. Then F+

is a weak injective left R-module by [8, Remark 2.2]. Similar to the proof
above, we obtain that the sequence 0 → F ⊗R N → F ⊗R E0 → F ⊗R E1

→ · · · is exact, as desired. �
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We denote by TornW(−,−) the nth right derived functor of −⊗R − with
respect to WF ×WI. Then, for any M ∈ MR and N ∈ RM, TornW(M,N)
can be computed by using a right WF -resolution of M in MR or a right

WI-resolution of N in RM. Let 0 → N
g0

→ E0 g1

→ E1 → · · · be a right WI-
resolution of N in RM. Applying M ⊗R − to the sequence, we obtain the
deleted complex:

0 → M ⊗R E0 1M⊗Rg1

−→ M ⊗R E1 → M ⊗R E2 → · · · .

Then TornW(M,N) is exactly the nth homology of the above complex. There
exists a canonical homomorphism:

τ : M ⊗R N → Tor0W(M,N) = Ker
(
1M ⊗R g1

)
,

which is defined by τ
(
Σ(mi ⊗R ni)

)
= Σ

(
mi ⊗R g0(ni)

)
for Σ(mi ⊗R ni) ∈

M ⊗R N .

Proposition 5.2. The following statements are equivalent for any
N ∈ RM.

(1) N is weak injective.
(2) τ : M ⊗R N → Tor0W(M,N) is a monomorphism for any M ∈ MR.

Proof. (1) ⇒ (2) is clear by taking E0 = N .

(2) ⇒ (1). Let 0 → N
g0

→ E0 g1

→ E1 → · · · be a right WI-resolution of N
in RM. For any M ∈ MR, we have the following commutative diagram:

M ⊗R N
τ

����
���

���

1M⊗Rg0

�� M ⊗R E0
1M⊗Rg1

�� M ⊗R E1 �� · · · .

Tor0W(M,N)

i ����������

0

������������

By assumption, 1M ⊗R g0 : M ⊗R N → M ⊗R E0 is monic. It follows from
[6, Definition 5.3.6] that N is a pure submodule of E0. Thus N is weak
injective by [8, Proposition 2.9]. �

As a special case of Proposition 5.2, we have the following

Corollary 5.3. The following statements are equivalent.
(1) RR is weak injective.
(2) τ : M → Tor0W(M,RR) is a monomorphism for any M ∈ MR.
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Let 0 → M
h0

→ F 0 h1

→ F 1 → · · · be a right WF -resolution of M in MR.
Applying −⊗R N to the sequence, we obtain the deleted complex:

0 → F 0 ⊗R N
h1⊗R1N−→ F 1 ⊗R N → F 2 ⊗R N → · · · .

Then TornW(M,N) is exactly the nth homology of the above complex. There
exists a canonical homomorphism:

ν : M ⊗R N → Tor0W(M,N) = Ker(h1 ⊗R 1N ),

which is defined by ν
(
Σ(mi ⊗R ni)

)
= Σ

(
h0(mi)⊗R ni

)
for Σ(mi ⊗R ni) ∈

M ⊗R N .

Proposition 5.4. The following statements are equivalent for any
M ∈ MR.

(1) M is weak flat.
(2) ν : M ⊗R N → Tor0W(M,N) is a monomorphism for any N ∈ RM.

Proof. (1) ⇒ (2) is obvious by taking F 0 = M .
(2) ⇒ (1). Let 0 → M → F 0 → F 1 → · · · be a right WF -resolution of M

in MR. Similar to the proof of (2) ⇒ (1) in Proposition 5.2, we get that 0
→ M → F 0 is pure exact. Therefore, M is weak flat by [8, Proposition 2.9].
�

Proposition 5.5. The following statements are equivalent for any N
∈ RM.

(1) rightWI-dimN � 1.
(2) τ : M ⊗R N → Tor0W(M,N) is an epimorphism for any M ∈ MR.

Proof. (1) ⇒ (2). Let 0 → N → E0 → E1 → 0 be a right WI-resolu-
tion of N in RM. For any M ∈ MR, M ⊗RN → M ⊗RE0 → M ⊗RE1 → 0
is exact. It follows that τ : M ⊗R N → Tor0W(M,N) is an epimorphism, as
desired.

(2) ⇒ (1). Let 0 → N → E → L → 0 be an exact sequence in RM with
N → E a weak injective preenvelope of N . It suffices to show that L is
weak injective. By [6, Theorem 8.2.5], we have the following commutative
diagram with exact rows:

M ⊗R N ��

τ1
��

M ⊗R E

τ2
��

�� M ⊗R L ��

τ3
��

0

0 �� Tor0W(M,N) �� Tor0W(M,E) �� Tor0W(M,L).
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Since τ2 is a monomorphism by Proposition 5.2 and τ1 is an epimorphism
by assumption, τ3 is a monomorphism by the snake lemma. It follows from
Proposition 5.2 that L is weak injective. �

Lemma 5.6. Let M1 → M2 → M3 → M4 be an exact sequence in RM.
If G⊗R M1 → G⊗R M2 → G⊗R M3 is exact for any G ∈ MR, then K =
Ker(M3 → M4) is a pure submodule of M3.

Proof. Let M1
f1→ M2

f2→ M3
f3→ M4 be an exact sequence in RM and

K = Ker f3. Then there exist an epimorphism π : M2 → K and a monomor-
phism i : K → M3 such that f2 = iπ. Let G be in MR. Then we have the
following commutative diagram:

G⊗R M1

1G⊗Rf1
�� G⊗R M2

1G⊗Rπ ����
���

���

1G⊗Rf2
�� G⊗R M3.

G⊗R K

����
���

���
���

1G⊗R i

����������

0

Let x ∈ Ker(1G ⊗R i). There exists y ∈ G⊗R M2 such that (1G ⊗R π)(y)
= x. Then y ∈ Ker(1G ⊗R f2). Note that Ker(1G ⊗R f2) = Im(1G ⊗R f1) =
Ker(1G⊗R π). So x = (1G⊗R π)(y) = 0, and hence 0 → G⊗RK → G⊗RM3

is exact. It follows that K is a pure submodule of M3. �
Now we are in a position to prove the following

Theorem 5.7. The following are equivalent for any N ∈ RM and n � 2.
(1) rightWI-dimN � n.

(2) Torn+k
W (M,N) = 0 for any M ∈ MR and k � −1.

(3) TornW(M,N) = Torn−1
W (M,N) = 0 for any M ∈ MR.

(4) Torn−1
W (M,N) = 0 for any M ∈ MR.

Proof. (1) ⇒ (2). Let 0 → N → E0 → · · · → En−1 → En → 0 be a
right WI-resolution of N in RM. Then the sequence M ⊗R En−2 →
M ⊗R En−1 → M ⊗R En → 0 is exact for any M ∈ MR. It follows that
Torn−1

W (M,N) = TornW(M,N) = 0. It is obvious that Torn+k
W (M,N) = 0 for

any k � 1, and the assertion follows.
(2) ⇒ (3) ⇒ (4) are trivial.
(4) ⇒ (1). Let 0 → N → E0 → E1 → · · · be a right WI-resolution of N

in RM and L = Ker(En → En+1). By assumption, Torn−1
W (M,N) = 0 for
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any M ∈ MR. Then we get the following exact sequence:

M ⊗R En−2 → M ⊗R En−1 → M ⊗R En.

So L is a pure submodule of En by Lemma 5.6, and hence L is weak injective
by [8, Proposition 2.9]. Therefore, 0 → N → E0 → E1 → · · · → En−1 → L
→ 0 is a right WI-resolution of N . The proof is finished. �

By Theorem 5.7, we immediately get the following

Corollary 5.8. The following are equivalent for any n � 2.
(1) gl rightWI-dimR M � n.

(2) Torn+k
W (M,N) = 0 for any M ∈ MR, N ∈ RM and k � −1.

(3) Torn−1
W (M,N) = 0 for any M ∈ MR and N ∈ RM.
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