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Abstract Given an additive category C and an integer n ≥ 2. The higher differential additive

category consists of objects X in C equipped with an endomorphism εX satisfying εn
X = 0. Let R be a

finite-dimensional basic algebra over an algebraically closed field and T the augmenting functor from

the category of finitely generated left R-modules to that of finitely generated left R/(tn)-modules. It

is proved that a finitely generated left R-module M is τ -rigid (respectively, (support) τ -tilting, almost

complete τ -tilting) if and only if so is T (M) as a left R[t]/(tn)-module. Moreover, R is τm-selfinjective

if and only if so is R[t]/(tn).
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1 Introduction

Let R be an arbitrary associative ring with unit. A module equipped with an R-linear endo-
morphism of square zero is called a differential R-module. Since their appearance in Cartan
and Eilenberg’s treatise [10], differential modules has played an important role in solving some
problems from commutative algebra and algebraic topology [5]. Indeed, differential R-modules
are exactly modules over the ring of dual numbers, that is, the ring R[ε] := R[t]/(t2) (the
factor ring of the polynomial ring R[t] in one variable t modulo the ideal generated by t2).
For a positive integer n ≥ 2, Xu, Yang and Yao [32] introduced a higher analog of differential
modules, called n-th differential modules. More precisely, an n-th differential module is such
an R-module with an R-linear endomorphism of n-th power zero. Recently, Tang and Huang
[28] extended the theory of n-th differential modules to additive categories and related some
homological behavior of R and those of the ring R[t]/(tn). With the help of the theory of higher
differential objects in additive categories, this paper is concerned with investigating the transfer
of some homological properties between R and R[t]/(tn). The paper is organized as follows.
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In Section 2, some terminology and notations are given. We also collect some useful general
facts in higher differential additive categories, which will be frequently used in the sequel.

Let C be an additive category and T : C → C[ε]n the augmenting functor. In Section 3, we
establish the relation between the (pre)covers (respectively, (pre)envelopes) in C and C[ε]n, and
prove that for a subcategory X of C, X is precovering (respectively, preenveloping) in C if and
only if T (X ) is precovering (respectively, preenveloping) in C[ε]n (Theorem 3.3).

We devote the rest part of the paper to expose some applications of the obtained results. Let
R be a left noetherian ring and Rω a Wakamatsu tilting module with S = End(Rω). In Section
4, we prove that an R[t]/(tn)-module M is GT (ω)-projective if and only if M is Gω-projective
as an R-module; and that an S[t]/(tn)-module N is in the Auslander class AT (ω)(S[t]/(tn)) if
and only if N is in the Auslander class Aω(S) (Theorem 4.7). Moreover, we prove that for an
artin algebra R, R/(tn) is CM-finite (respectively, CM-free) implies that so is R (Proposition
4.9); and for a finite dimensional algebra R over an algebraically closed field, if R[t]/(tn) is
representation finite, then so is R (Proposition 4.12). We give examples to illustrate that
neither the converses of these two propositions hold true in general.

In Section 5, we focus on the τ -tilting theory of higher differential module categories. Let
R be a finite-dimensional basic algebra over an algebraically closed field. We prove that a
finitely generated left R-module M is τ -rigid (respectively, (support) τ -tilting, almost complete
τ -tilting) if and only if so is T (M) as a left R[t]/(tn)-module (Theorem 5.5). Then we apply it
to study the transfer of the Bongartz complement and two-term (pre)silting complexes between
R and R/(tn).

Section 6 deals with an application to m-precluster tilting subcategories of module cate-
gories. Actually, we show that an Artin algebra R is τm-selfinjective if and only if so is R[t]/(tn)
(Theorem 6.4).

2 Preliminaries

Throughout this paper, R is an associative ring with unit. We use ModR (respectively, mod R)
to denote the class of (respectively, finitely generated) left R-modules. For a module M ∈
ModR, we use pdR M to denote the projective dimension of M .

Now we start by recalling from [28] some definitions and notations. Let C be an additive
category and n ≥ 2. An n-th differential object of C is a pair (X, εX), where X ∈ ob C and
εX ∈ EndC(X) satisfying εn

X = 0. We define the higher differential additive category C[ε]n as
follows: The objects of C[ε]n are n-th differential objects, and the set of morphisms from (X, εX)
to (Y, εY ) consists of morphisms f : X → Y of C satisfying the equality fεX = εY f .

Next we introduce two functors between C and C[ε]n.
(1) The forgetful functor F : C[ε]n → C is defined on the objects (X, εX) of C[ε]n by

F (X, εX) = X and on the morphisms f in C[ε]n by F (f) = f .
(2) We define the augmenting functor T : C → C[ε]n, which takes an object X of C to the

object T (X) = (X⊕n, εX⊕n) of C[ε]n with X⊕n = X ⊕ X ⊕ · · · ⊕ X
︸ ︷︷ ︸

n

and
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εX⊕n :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0
...

...
. . . . . .

...

0 0 · · · 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

n×n,

and takes a morphism f in C to the morphism
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

f 0 · · · 0

0 f · · · 0
...

...
. . .

...

0 0 · · · f

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

n×n

in C[ε]n.
We state some preliminary results on C[ε]n as follows.

Fact 2.1 Let C be an additive category, and let M, N ∈ ob C and (X, εX) ∈ ob C[ε]n.
(1) If R is a ring and C = ModR, then (ModR)[ε]n ∼= Mod(R[t]/(tn)).
(2) Both (F, T ) and (T, F ) are adjoint pairs.
(3) f ∈ HomC[ε]n(T (M), T (N)) if and only if

f =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a1 0 0 · · · 0

a2 a1 0 · · · 0

a3 a2 a1 · · · 0
...

...
...

. . .
...

an an−1 an−2 · · · a1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

with ai ∈ HomC(M, N).

(4) If f ∈ HomC[ε]n(T (M), (X, εX)), then f = (f ′, εXf ′, . . . , εn−1
X f ′) with f ′ ∈ HomC(M, X).

(5) If g ∈ HomC[ε]n((X, εX), T (M)), then g = (g′εn−1
X , . . . , g′εX , g′)T with g′ ∈ HomC(X, M).

Proof The assertions (1), (2) and (3) follow from [28, p. 130], [28, Proposition 3.1] and [28,
Proposition 3.4] respectively. The assertions (4) and (5) are obvious. �

The following definition is cited from [9].

Definition 2.2 Let C be an additive category. A kernel-cokernel pair (i, p) in C is a pair of
composable morphisms A

i→ B
p→ C such that i is a kernel of p and p is a cokernel of i. We

shall call i an admissible monic and p an admissible epic.
An exact category (C, E ) is an additive category C with a class E of kernel-cokernel pairs

which is closed under isomorphisms and satisfies the following axioms:
[E0] For all objects C ∈ C, the identity morphism 1C is an admissible monic.
[E0op] For all objects C ∈ C, the identity morphism 1C is an admissible epic.
[E1] The class of admissible monics is closed under compositions.
[E1op] The class of admissible epics is closed under compositions.
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[E2] The push-out of an admissible monic along an arbitrary morphism exists and yields
an admissible monic.

[E2op] The pull-back of an admissible epic along an arbitrary morphism exists and yields
an admissible epic.

Elements of E are called short exact sequences.

Remark 2.3 (cf. [23, p. 39]) Equivalently, an additive category C with a class E of composable
morphisms A → B → C is called exact if it satisfies the following axioms.

(1) An admissible monic (respectively, epic) is a kernel (respectively, cokernel) of any corre-
sponding admissible epic (respectively, monic).

(2) Axioms [E0], [E0op], [E1], [E1op], [E2] and [E2op] hold.

According to [9, 22], an additive category C is called idempotent complete if every idempotent
endomorphism e = e2 of an object X ∈ ob C splits, that is, there exists a factorization

X
π−→ Y

ι−→ X

of e with πι = 1Y .
Let (C, E ) be an exact category, and let EF be the class of pairs of composable morphisms in

C[ε]n that become short exact sequences in C via the forgetful functor F . The following result
characterizes projective (respectively, injective) objects of C[ε]n in terms of that of C.

Lemma 2.4 ([28, Proposition 3.6]) Let (C, E ) be an idempotent complete exact category. Then
we have

(1) P is a projective object of (C[ε]n, EF ) if and only if P ∼= T (Q) for some projective object
Q of C.

(2) I is an injective object of (C[ε]n, EF ) if and only if I ∼= T (E) for some injective object
E of C.

Let X be a class of objects in an additive category C and M ∈ ob C. Recall that an X -
precover of M is a morphism f : X → M in C with X ∈ X such that any morphism g : X ′ → M

in C with X ′ ∈ X factors through f . An X -precover f : X → M of M is an X -cover if every
endomorphism g : X → X in C with fg = f is an automorphism. We call the class X precovering
in C if any M ∈ ob C has an X -precover. Dually, the notions of preenvelopes and preenveloping
classes are defined (cf. [14]).

3 Precovering and Preenveloping Classes

From now on, we fix an exact category (C, E ). This section investigates how to construct
precovering and preenveloping classes in C[ε]n via the augmenting functor T .

A sequence (of finite or infinite length):

· · · → Xm
fm−→ · · · → X1

f1−→ X0
f0−→ M → 0

in C is called an X -resolution of M if all Xi are in X and

0 → Ker fi → Xi → Im fi → 0

is a short exact sequence for any i ≥ 0 (note: Im f0 = M); furthermore, such an X -resolution is
called proper if it remains exact after applying the functor HomC(X,−) for any X ∈ X . Dually,
the notions of an X -coresolution and an X -coproper coresolution of M are defined.
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Proposition 3.1 Let X be a subcategory of (C, E ) and (M, εM ) ∈ ob C[ε]n.
(1) If

0 → L
λ−→ X

π−→ M → 0 (3.1)

is a short exact sequence in C such that π is an X -precover of M , then there is a short exact
sequence

0 → (L ⊕ X⊕(n−1), ε)
g−→ T (X)

f−→ (M, εM ) → 0 (3.2)

in (C[ε]n, EF ) such that f is a T (X )-precover of (M, εM ), where f = (π, εMπ, . . . , εn−1
M π) and

g =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λ h 0 · · · 0

0 −1 h · · · 0

0 0 −1 · · · 0
...

...
. . . . . .

...

0 0 · · · 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

n×n

with h ∈ EndC(X).

(2) If

0 → M
λ′−→ X

π′−→ L → 0 (3.3)

is a short exact sequence in C such that λ′ is an X -preenvelope of M , then there is a short exact
sequence

0 → (M, εM )
f ′
−→ T (X)

g′
−→ (L ⊕ X⊕(n−1), ε) → 0 (3.4)

in (C[ε]n, EF ) such that f ′ is a T (X )-preenvelope of (M, εM ), where f ′ = (λ′εn−1
M , . . . , λ′εM , λ′)T

and

g′ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

π′ 0 0 · · · 0

−1 h′ 0 · · · 0

0 −1 h′ · · · 0
...

...
. . . . . .

...

0 0 0 · · · h′

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

n×n

with h′ ∈ EndC(X).

Proof (1) Since π is admissible epic, [9, Proposition 2.9] implies that T (π) is admissible epic.
Then

f = (π, εMπ, . . . , εn−1
M π) = p′MT (π)

is also admissible epic by [28, Lemma 3.5], where p′M = (1, εM , . . . , εn−1
M ). As π is an X -precover

of M , there is a morphism h ∈ EndC(X) such that πh = εMπ. Thus fg = 0.
Now we prove that (3.2) is a short exact sequence. Let

t = (t1, t2, . . . , tn)T : C → X⊕n

be a morphism in C such that ft = 0. Then

πt1 + εMπt2 + · · · + εn−1
M πtn = 0,

and hence
πt1 + πht2 + · · · + πhn−1tn = 0.
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Since λ is the kernel of π, there exists a unique morphism s1 : C → L such that

λs1 = t1 + ht2 + · · · + hn−1tn.

Set
si := −hn−itn − hn−i−1tn−1 − · · · − hti+1 − ti (2 ≤ i ≤ n − 1) and sn := −tn.

Clearly s = (s1, s2, . . . , sn)T : C → L ⊕ X⊕(n−1) satisfies gs = t. We conclude that g is the
kernel of f .

Now we show that f is the cokernel of g. Let

u = (u1, u2, . . . , un) : X⊕n → C

be a morphism in C such that ug = 0. Then

(u1λ, u1h − u2, . . . , un−1h − un) = 0.

Since π is the cokernel of λ, there exists a unique morphism p : M → C such that pπ = u1.
Notice that πh = εMπ, so πhi = εi

Mπ and

pεi
Mπ = pπhi = u1h

i = u2h
i−1 = · · · = uih = ui+1

for any 1 ≤ i ≤ n− 1. It follows that pf = u and f is the cokernel of g. Therefore we conclude
that (3.2) is a short exact sequence by Remark 2.3. Consequently we get an endomorphism
ε ∈ EndC(L ⊕ X⊕n−1) satisfying gε = εX⊕ng. Then εn = 0 since εn

X⊕n = 0.
Now let β ∈ HomC[ε]n(T (X ′), (M, εM )). Then β = (β′, εMβ′, . . . , εn−1

M β′) with β′ ∈
HomC(X ′, M) by Fact 2.1 (4). Since π : X → M is an X -precover of M , there exists a morphism
γ : X ′ → X such that πγ = β′. Thus fT (γ) = β and f is a T (X )-precover of (M, εM ).

(2) It is dual to (1). �
As a consequence, we get the following

Corollary 3.2 Let X be an additive subcategory of C and (M, εM ) ∈ ob C[ε]n.
(1) If

· · · → Xm
fm−→ · · · → X1

f1−→ X0
f0−→ M → 0

is a proper X -resolution in C, then there exists a proper T (X )-resolution

· · · → X ′
m

f ′
m−→ · · · → X ′

1

f ′
1−→ X ′

0

f ′
0−→ (M, εM ) → 0

in C[ε]n with X ′
i = T (Xi ⊕ X

(n−1)
i−1 ⊕ · · · ⊕ X

(n−1)i

0 ).
(2) If

0 → M
g0−→ X0

g1−→ · · · gm−→ Xm → · · ·
is a coproper X -coresolution in C, then there exists a coproper T (X )-coresolution

0 → (M, εM )
g′
0−→ X ′

0

g′
1−→ · · · g′

m−→ X ′
m → · · ·

in C[ε]n with X ′
i = T (Xi ⊕ X

(n−1)
i−1 ⊕ · · · ⊕ X

(n−1)i

0 ).

Proof (1) Set Mi+1 := Ker fi for any i ≥ 0. By Proposition 3.1 (1), there exists a short exact
sequence

0 → (M1 ⊕ X
⊕(n−1)
0 , ε) → T (X0) → (M, εM ) → 0 (3.5)



Higher Differential Additive Categories 1331

in C[ε]n such that HomC[ε]n(T (X), (3.5)) is exact for any X ∈ ob C. Note that

0 → M2 → X1 ⊕ X
⊕(n−1)
0 → M1 ⊕ X

⊕(n−1)
0 → 0 (3.6)

is a short exact sequence in C such that HomC(X, (3.6)) is exact for any X ∈ ob C. Then by
Proposition 3.1 (1) again, we have a short exact sequence

0 → (M2 ⊕ (X1 ⊕ X
⊕(n−1)
0 )⊕(n−1), ε′) → T (X1 ⊕ X

⊕(n−1)
0 ) → (M1 ⊕ X

⊕(n−1)
0 , ε) → 0 (3.7)

in C[ε]n such that HomC[ε]n(T (X), (3.7)) is exact for any X ∈ ob C. Continuing in this way, we
obtain the desired sequence.

(2) It is dual to (1). �
The following result will be used frequently in the sequel.

Theorem 3.3 Let X be a subcategory of C and M ∈ ob C. Then the following statements
hold.

(1) f : X → M is an X -(pre)cover of M if and only if T (f) : T (X) → T (M) is a T (X )-
(pre)cover of T (M).

(2) g : M → X is an X -(pre)envelope of M if and only if T (g) : T (M) → T (X) is a
T (X )-(pre)envelope of T (M).

(3) X is precovering in C if and only if T (X ) is precovering in C[ε]n.
(4) X is preenveloping in C if and only if T (X ) is preenveloping in C[ε]n.

Proof We will only prove (1) and (3). Dually, we get (2) and (4).
(1) We first prove the necessity. We use ε : FT → 1C (respectively, η : 1C[ε]n → TF )

to denote the counit (respectively, unit) of the adjoint pair (F, T ). Given a morphism f ′ ∈
HomC[ε]n(T (X ′), T (M)) with X ′ ∈ X , we get the following commutative diagram

T (X ′)
ηT (X′)��

f ′

��

TFT (X ′)

TF (f ′)
��

T (M)
ηT (M)�� TFT (M).

Notice that FT (X ′) is a finite direct sum of X ′, so there exists h : FT (X ′) → X such that
fh = εMF (f ′). Thus we have

T (f)T (h)ηT (X′) = T (fh)ηT (X′) = T (εM )TF (f ′)ηT (X′) = T (εM )ηT (M)f
′ = f ′.

It follows that T (f) : T (X) → T (M) is a T (X )-precover of T (M). Moreover, suppose that f is
an X -cover of M . Now given an endomorphism

h′ :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c1 0 0 · · · 0

c2 c1 0 · · · 0

c3 c2 c1 · · · 0
...

...
...

. . .
...

cn cn−1 cn−2 · · · c1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∈ EndC[ε]n(T (X)),

if T (f)h′ = T (f), then fc1 = f . Thus c1 must be an isomorphism since f is an X -cover of M .
It follows that h′ is also an isomorphism and T (f) : T (X) → T (M) is a T (X )-cover of T (M).
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Next we prove the sufficiency. Let f ′ : X ′ → M be a morphism in C. Since T (f) : T (X) →
T (M) is a T (X )-(pre)cover of T (M), by Fact 2.1 (3) there exists a morphism

h :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h1 0 0 · · · 0

h2 h1 0 · · · 0

h3 h2 h1 · · · 0
...

...
...

. . .
...

hn hn−1 hn−2 · · · h1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∈ HomC[ε]n(T (X ′), T (X))

such that T (f)h = T (f ′). Namely,
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

f 0 0 · · · 0

0 f 0 · · · 0

0 0 f · · · 0
...

...
...

. . .
...

0 0 0 · · · f

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h1 0 0 · · · 0

h2 h1 0 · · · 0

h3 h2 h1 · · · 0
...

...
...

. . .
...

hn hn−1 hn−2 · · · h1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

f ′ 0 0 · · · 0

0 f ′ 0 · · · 0

0 0 f ′ · · · 0
...

...
...

. . .
...

0 0 0 · · · f ′

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

One can get that fh1 = f ′. It means that f : X → M is an X -precover of M . Finally, it is not
hard to prove that f : X → M is an X -cover of M provided that T (f) : T (X) → T (M) is a
T (X )-cover of T (M).

(3) The necessity follows from the proof of Proposition 3.1 (1).

In the following, we prove the sufficiency. Let M ∈ ob C. By assumption, there exists a
T (X )-precover f : T (X) → T (M) of T (M). We may assume that f has the following form

f =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

f1 0 0 · · · 0

f2 f1 0 · · · 0

f3 f2 f1 · · · 0
...

...
...

. . .
...

fn fn−1 fn−2 · · · f1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

with fi ∈ HomC(X, M).

We will show that f1 : X → M is an X -precover of M . Given a morphism g : X ′ → M with
X ′ ∈ X , since f : T (X) → T (M) is a T (X )-precover, there exists a morphism h : T (X ′) → T (X)
such that fh = T (g). Note that h must have the following form

h =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h1 0 0 · · · 0

h2 h1 0 · · · 0

h3 h2 h1 · · · 0
...

...
...

. . .
...

hn hn−1 hn−2 · · · h1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

with hi ∈ HomC(X ′, X).

It implies f1h1 = g. So X is precovering in C. �
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4 Wakamatsu Tilting Subcategories

In this section, assume that the given exact category (C, E ) has enough projectives. We will
apply the established results in the previous section to study Wakamatsu tilting subcategories
through the functor T .

Let W be a subcategory of C. We use Add(W) (respectively, add(W)) to denote the
subcategory of C consisting of objects isomorphic to direct summands of (respectively, finite)
direct sums of objects in W .

We write ⊥W := {X ∈ C | Ext≥1
C (X, W ) = 0 for any W ∈ W} and XW := {X0 ∈ ⊥W |

there exist short exact sequences

0 → X0 → W 0 → X1 → 0, 0 → X1 → W 1 → X2 → 0, · · ·
in C with all W i ∈ W and Xi ∈ ⊥W}.
Definition 4.1 ([15, Definition 3.1]) Let W be an additive subcategory of C. We say that W
is a Wakamatsu tilting subcategory of C if it satisfies the following conditions.

(1) W is self-orthogonal, that is, W ⊆ ⊥W.
(2) XW contains all projectives in C.

Remark 4.2 (1) It is trivial that the subcategory of C consisting of all projectives is Waka-
matsu tilting in C.

(2) Let R be a left Noetherian ring and C = mod R. Recall from [15] that a module
ω ∈ mod R is called Wakamatsu tilting (or semidualizing) if add(ω) is a Wakamatsu tilting
subcategory of C. This definition coincides with the usual one (cf. [4, 18, 26, 31]).

(3) Let R be a left Noetherian ring and ω a Wakamatsu tilting module. If C = ModR and
W = Add(ω), then XW is exactly the class of all Gω-projective modules (see [24, Definition
2.5]).

(4) Let R be a left Noetherian ring and ω a Wakamatsu tilting module with S = EndR(ω).
According to [18], the Auslander class Aω(S) with respect to ω consists of all left S-modules
N satisfying the following conditions: (a) TorS

≥1(ω, N) = 0 = Ext≥1
R (ω, ω ⊗S N), and (b)

N ∼= HomR(ω, ω ⊗S N). If C = ModR and W = {HomR(ω, I) | I is injective}, then XW is
exactly the Auslander class Aω(S) (see [29, Theorem 3.11 (1)]).

Proposition 4.3 Let C be idempotent complete and W an additive and self-orthogonal sub-
category of C. Then the following statements hold for any (M, εM ) ∈ C[ε]n.

(1) M ∈ ⊥W if and only if (M, εM ) ∈ ⊥T (W).
(2) M ∈ XW if and only if (M, εM ) ∈XT (W).

Proof (1) Let

· · · → T (Pm) → T (Pm−1) → · · · → T (P1) → T (P0) → (M, εM ) → 0

be a projective resolution of (M, εM ) in C[ε]n. Then by Lemma 2.4,

· · · → FT (Pm) → FT (Pm−1) → · · · → FT (P1) → FT (P0) → M → 0

is a projective resolution of M . For any W ∈ W and i ≥ 1, by Fact 2.1 (2) we have

HomC[ε]n(T (Pi), T (W )) ∼= HomC(FT (Pi), W ).
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This isomorphism gives the assertion.
(2) By (1), we have that M ∈ ⊥W if and only if (M, εM ) ∈ ⊥T (W). If M ∈ XW , then

(M, εM ) ∈ XT (W) by Corollary 3.2 (2). Conversely, if (M, εM ) ∈ XT (W), then there exist short
exact sequences

0 → (M, εM ) → T (W 0) → X1 → 0, 0 → X1 → T (W 1) → X2 → 0, · · ·
in C[ε]n with all T (W i) ∈ T (W) and Xi ∈ ⊥T (W). So by (1), we get short exact sequences

0 → M → FT (W 0) → F (X1) → 0, 0 → F (X1) → FT (W 1) → F (X2) → 0, · · ·
in C with all FT (W i) ∈ W and F (Xi) ∈ ⊥W . It follows that M ∈XW . �

This induces the following easy consequence.

Corollary 4.4 Let C be idempotent complete and W an additive and self-orthogonal subcate-
gory of C. Then W is a Wakamatsu tilting subcategory of C if and only if T (W) is a Wakamatsu
tilting subcategory of C[ε]n.

Proof It follows from Proposition 4.3 and [15, Proposition 3.2]. �
The following definition is cited from [6].

Definition 4.5 Let R be a ring and m ≥ 0. A left R-module ω is called m-tilting if and only
if the following conditions are satisfied.

(1) pdR ω ≤ m.
(2) ω ∈⊥ω(λ) for every cardinal λ.
(3) There exists an Add(ω)-coresolution

0 → R → ω0 → · · · → ωm → 0

in ModR.

By applying Proposition 4.3, we also get the following result.

Proposition 4.6 Let R be a ring and m ≥ 0. Then ω is an m-tilting R-module if and only
if T (ω) is an m-tilting R[t]/(tn)-module.

Proof Observe that T (Add(ω)) = Add(T (ω)). It is easy to see that pdR ω ≤ m if and only
if pdR[t]/(tn) T (ω) ≤ m. Moreover, for every cardinal λ, the fact that ω ∈ ⊥ω(λ) if and only
if T (ω) ∈ ⊥T (ω)(λ) follows from the proof of Proposition 4.3 (1). If R admits an Add(ω)-
coresolution

0 → R → ω0 → · · · → ωm → 0

in ModR, then applying the exact functor T to it yields an Add(T (ω))-coresolution

0 → T (R) → T (ω0) → · · · → T (ωm) → 0

of T (R) in ModR[t]/(tn). Conversely, if T (R) admits an Add(T (ω))-coresolution

0 → T (R) → T (ω0) → · · · → T (ωm) → 0

in ModR[t]/(tn), then it follows from [30, Lemma 4.6] that there exists an Add(ω)-coresolution

0 → R → ω′
0 → · · · → ω′

m → 0

of R in ModR. The proof is finished. �
The main result in this section is the following theorem.
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Theorem 4.7 Let R be a left Noetherian ring and ω a Wakamatsu tilting module with S =
End(Rω). Then the following statements hold.

(1) If M ∈ ModR[t]/(tn), then M is GT (ω)-projective if and only if M is Gω-projective as
an R-module.

(2) If N ∈ ModS[t]/(tn), then N ∈ AT (ω)(S[t]/(tn)) if and only if N ∈ Aω(S).

Proof Note that R is left Noetherian if and only if so is R[t]/(tn) by [28, Corollary 3.8 (1)].
Also note that End(R[t]/(tn)T (ω)) ∼= S[t]/(tn) and T (HomR(ω, I)) ∼= HomT (R)(T (ω), T (I)) for
any injective left R-module I. Then in view of Remark 4.2, Proposition 4.3 and Corollary 4.4,
we get the assertions. �

Taking W to be the subcategory of C consisting of all projectives, objects in XW are called
Gorenstein projective (see [15, Definition 3.7]). In our setting, Theorem 4.7 (1) can be regarded
as a generalisation of [32, Theorem 3.10 (1)].

Let R be an Artin algebra. A module M ∈ mod R is called semi-Gorenstein-projective
provided that Ext≥1

R (M, R) = 0. Moreover, R is said to be left weakly Gorenstein if any semi-
Gorenstein-projective module is Gorenstein-projective (see [27]).

Corollary 4.8 Let R be an Artin algebra and M ∈ mod R[t]/(tn). Then the following state-
ments hold.

(1) M is semi-Gorenstein-projective R-module if and only if M is semi-Gorenstein-projective
R[t]/(tn)-module.

(2) R is left weakly Gorenstein if and only if R[t]/(tn) is left weakly Gorenstein.

Proof (1) It follows from Proposition 4.3 (1).
(2) It follows from (1) and Theorem 4.7 (1). �
Let R be an Artin algebra. Recall from [7, 8] that R is called Cohen–Macaulay finite (CM-

finite, for short) provided there are only finitely many pairwise non-isomorphic indecomposable
finitely generated Gorenstein projective R-modules. Recall from [11] that R is called CM-free
if all its finitely generated Gorenstein projective modules are projective.

Proposition 4.9 Let R be an Artin algebra. If R[t]/(tn) is CM-finite (respectively, CM-free),
then so is R.

Proof Let R[t]/(tn) be CM-finite and {G1, G2, . . . , Gm} the set of all pairwise non-isomorphic
indecomposable finitely generated Gorenstein projective R[t]/(tn)-modules. For each i, since
Gi is finitely generated as an R-module, Gi can be decomposed as a direct sum of finitely many
indecomposable R-modules, that is, Gi =

⊕ij

j=1 Gj
i . Because Gi is a Gorenstein projective

R[t]/(tn)-module, it follows that Gi is a Gorenstein projective R-module by Theorem 4.7 (1).
Thus each Gj

i is a Gorenstein projective R-module as well.
Now let G be an indecomposable Gorenstein projective R-module. Then T (G) is an inde-

composable Gorenstein projective R[t]/(tn)-module by Theorem 4.7 (1). So T (G) is isomorphic
to some Gi as an R[t]/(tn)-module, which implies that T (G) is also isomorphic to Gi as an
R-module. Thus G is isomorphic to some Gj

i . It follows that R is CM-finite.
Assume that R[t]/(tn) is CM-free. If G is a finitely generated Gorenstein projective R-

module, then T (G) is a Gorenstein projective R[t]/(tn)-module by Theorem 4.7 (1). By as-
sumption, there exists a projective module P such that T (G) ∼= T (P ). Thus G is projective as
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an R-module, and therefore R is CM-free. �

In the following, we study the transfer of representation type between R and R/(tn).

Definition 4.10 ([12]) If R is a ring and G is an R-module. We say G is a generic module if
it is indecomposable, of infinite length over R, but of finite length when regarded in the natural
way as a module over its endomorphism ring.

We need the following observation.

Lemma 4.11 If R is an Artin algebra and G ∈ ModR, then G is a generic R-module if and
only if T (G) is a generic R[t]/(tn)-module.

Proof By [28, Proposition 3.4], we have that G is indecomposable if and only if so is T (G).
Note that R is an Artin algebra if and only if so is R[t]/(tn) by the proof of [28, Theorem
3.13], and note that a module over an Artin algebra has finite length if and only if it is finitely
generated. Thus G is of infinite length over R if only if T (G) is of infinite length over R[t]/(tn).
On the other hand, by Theorem 3.3 (2), we have that R admits an add(G)-preenvelope if and
only if T (R) admits an add(T (G))-preenvelope. Now the assertion follows from [3, Proposition
1.2]. �

Proposition 4.12 Let R be a finite dimensional algebra over an algebraically closed field. If
R[t]/(tn) is representation finite, then so is R.

Proof Note that a finite dimensional algebra over an algebraically closed field is representation
finite if and only if it has no generic modules ([13, p. 157, Corollary]). If R is representation
infinite, then there exists a generic R-module G. Thus T (G) is a generic R[t]/(tn)-module by
Lemma 4.11. It follows that R[t]/(tn) is representation infinite. �

The following example illustrates that neither of the converses of Propositions 4.9 and 4.12
holds true in general.

Example 4.13 Let R be a finite-dimensional algebra over an algebraically closed field.

(1) If R is hereditary of type A2, then R[t]/(tn) with n > 5 is the algebra given by the
quiver

• α ��β
�� • γ

��

modulo the ideal generated by {βn, γn, αβ − γα}. It is well known that R is representation
finite, but R[t]/(tn) is not CM-finite by [25, Lemma 4.4], and hence not representation finite.

(2) If R is given by the quiver

•
α �����

β
���

��

• γ
���

��

• δ

�����
•
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modulo the ideal generated by {γα − δβ}, then R[t]/(t2) is the algebra given by the quiver

•ε ��

α �����

β
���

��

•

ε

		
γ
���

��

• δ

�����

ζ





• η��

modulo the ideal generated by {γα− δβ, ε2, ε2, ζ2, η2, αε− εα, γε− ηγ, βε− ζβ, δζ − ηδ}. Since
R has finite global dimension, R is CM-free. However, R[t]/(t2) is not CM-free by [19, Example
4.10].

5 Support τ -tilting Modules

In this section, R is a finite-dimensional basic algebra over an algebraically closed field k and
D := Homk(−, k). We use τR to denote the Auslander–Reiten translation and use projR to
denote the category of finitely generated projective left R-modules. For a module M in mod R,
we use TrR(M) to denote the Auslander transpose of M . In fact, R[t]/(tn) is also a finite-
dimensional basic algebra over k. We will study how the τ -tilting theory in modR can be lifted
to that in R[t]/(tn).

Firstly we need the following lemma.

Lemma 5.1 Let M ∈ mod R and S = R[t]/(tn). Then the following statements hold.

(1) τS(T (M)) ∼= T (τR(M)).

(2) τ−1
S (T (M)) ∼= T (τ−1

R (M)).

(3) HomS(T (M), τS(T (M))) ∼= HomR(Mn, τR(M)).

Proof (1) Note that T (M) = S ⊗R M . For any P ∈ proj R, we claim that there exists an
isomorphism

HomS(T (P ), S) ∼= HomR(P, R) ⊗R S.

Suppose P = Re for some idempotent e. Then

HomS(T (Re), S) ∼= HomS(Se, S) ∼= eS ∼= T (eR)

= HomR(Re, R) ⊗R S ∼= HomR(P, R) ⊗R S.

The claim is proved. Now let

P1
f1−→ P0

f0−→ M → 0

be a minimal projective presentation of M . Since T is an exact functor, it follows from Theorem
3.3 (1) that

T (P1)
T (f1)−→ T (P0)

T (f0)−→ T (M) → 0

is a minimal projective presentation of T (M). Then we get the following diagram with exact
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rows

HomS(T (P0), S)
HomS(T (f1),S) ��

α

��

HomS(T (P1), S)

β

��

�� TrS(T (M))

γ

��

�� 0

HomR(P0, R) ⊗R S
HomR(f1,R)⊗RS�� HomR(P1, R) ⊗R S �� TrR(M) ⊗R S �� 0.

By the claim above, both α and β are isomorphisms. Thus the induced map γ is also an
isomorphism. Therefore we have

τS(T (M)) ∼= D(TrR(M) ⊗R S)
∼= HomR(S, τR(M))
∼= S ⊗R HomR(R, τR(M))
∼= T (τR(M)).

(2) From the proof of (1), we have

TrS(T (M)) ∼= TrR(M) ⊗R S ∼= T (TrR(M)).

Thus we have

τ−1
S (T (M)) ∼= TrS(D(T (M)))

∼= TrS(T (D(M)))
∼= T TrR(D(M))
∼= T (τ−1

R (M)).

(3) By (1), we have

HomS(T (M), τS(T (M))) ∼= HomS(T (M), T (τR(M)))
∼= HomR(FT (M), τR(M))
∼= HomR(Mn, τR(M)). �

For a module M in mod R, |M | is the number of pairwise non-isomorphic direct summands
of M . The next two definitions are due to Adachi, Iyama and Reiten [2].

Definition 5.2 A module M ∈ mod R is called
(1) τ -rigid if HomR(M, τR(M)) = 0.
(2) τ -tilting (respectively, almost complete τ -tilting) if it is τ -rigid and |M | = |R| (respectively,

|M | = |R| − 1).
(3) support τ -tilting if there exists an idempotent e of R such that M is a τ -tilting (R/〈e〉)-

module.

Definition 5.3 Let (M, P ) be a pair with M ∈ mod R and P ∈ proj R.
(1) We call (M, P ) a τ -rigid pair if M is τ -rigid and HomR(P, M) = 0.
(2) We call (M, P ) a support τ -tilting (respectively, almost complete support τ -tilting) pair

if (M, P ) is a τ -rigid pair and |M | + |P | = |R| (respectively, |M | + |P | = |R| − 1).

The following result is crucial in proving Theorem 5.5.
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Proposition 5.4 Let (M, P ) be a pair with M ∈ modR and P ∈ proj R. Then the following
statements hold.

(1) (M, P ) is a τ -rigid pair if and only if (T (M), T (P )) is a τ -rigid pair.

(2) (M, P ) is a support τ -rigid (respectively, almost complete support τ -tilting) pair if and
only if (T (M), T (P )) is a support τ -rigid (respectively, almost complete support τ -tilting) pair.

Proof (1) If HomR(P, M) = 0, then

HomR[t]/(tn)(T (P ), T (M)) ∼= HomR(P, FT (M)) = HomR(P, Mn) = 0

by Fact 2.1 (2). Conversely, it is easy to check that HomR(P, M) = 0 when HomR[t]/(tn)(T (P ),
T (M)) = 0. So Lemma 5.1 (3) gives the result.

The assertion (2) follows from (1) and [28, Proposition 3.4]. �
The main result in this section is stated as follows.

Theorem 5.5 Let M ∈ mod R. Then the following statements hold.

(1) M is a τ -rigid R-module if and only if T (M) is a τ -rigid R[t]/(tn)-module.

(2) M is a τ -tilting R-module if and only if T (M) is a τ -tilting R[t]/(tn)-module.

(3) M is an almost complete τ -tilting R-module if and only if T (M) is an almost complete
τ -tilting R[t]/(tn)-module.

(4) M is a support τ -tilting R-module if and only if T (M) is a support τ -tilting R[t]/(tn)-
module.

Proof Using [2, Proposition 2.3], we deduce that (M, P ) is a τ -rigid (respectively, support
τ -tilting, almost complete support τ -tilting) pair if and only if M is a τ -rigid (respectively, τ -
tilting, almost complete τ -tilting) (R/〈e〉)-module, where Re ∼= P with e an idempotent. Hence
we get (4) immediately by Proposition 5.4 (2). On the other hand, when we take P = 0, it is
true that (M, 0) is a τ -rigid (respectively, support τ -tilting, almost complete support τ -tilting)
pair if and only if M is a τ -rigid (respectively, τ -tilting, almost complete τ -tilting) R-module.
So the assertions (1)–(3) follow from Proposition 5.4 again. �

Given a τ -rigid module M , we use P (⊥τR(M)) to denote the direct sum of one copy of
each indecomposable Ext-projective module in ⊥τR(M) up to isomorphism, where ⊥τR(M) =
{X ∈ mod R | HomR(X, τR(M))} = 0, and use U to denote the direct sum of one copy of each
indecomposable Ext-projective module in ⊥τR(M) up to isomorphism that does not belong to
add(M). Then M ⊕ U is τ -tilting and U is called the Bongartz τ -complement of M (see [2]).
For a module M ∈ modR, we use Fac M to denote the category of factor modules of finite
direct sums of copies of M .

The following result describes that the functor T preserves and reflects the Bongartz τR-
complement of a τ -rigid module.

Corollary 5.6 Let M, U ∈ mod R. Then U is the Bongartz τR-complement of M if and only
if T (U) is the Bongartz τR[t]/(tn)-complement of T (M).

Proof It follows from Theorem 5.5 that M is a τ -rigid R-module if and only if T (M) is a
τ -rigid R[t]/(tn)-module.

We first prove the necessity. Since M ⊕U is τ -tilting by assumption, HomR(M ⊕U, τR(M ⊕
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U)) = 0 implies that U ∈ ⊥τR(M) and U is a τ -rigid R-module. Hence

HomR[t]/(tn)(T (U), τR[t]/(tn)(T (M))) ∼= HomR[t]/(tn)(T (U), T (τR(M)))
∼= HomR(U, FT (τR(M))) = 0.

Thus T (U) ∈ ⊥τR[t]/(tn)(T (M)) and Fac T (U) ⊆ ⊥τR[t]/(tn)(T (M)). Note that ⊥τR(M) ⊆
⊥τR(U) by [2, Proposition 2.9 and Lemma 2.11]. If there exists an R[t]/(tn)-module X such
that HomR[t]/(tn)(X, τR[t]/(tn)(T (M))) = 0, then

HomR[t]/(tn)(X, T (τR(M))) ∼= HomR(FX, τR(M)) = 0,

and so
HomR[t]/(tn)(X, τR[t]/(tn)(T (U))) ∼= HomR(FX, τR(U)) = 0.

It follows that
⊥τR[t]/(tn)(T (M)) ⊆ ⊥τR[t]/(tn)(T (U)).

Therefore, in view of [2, Proposition 2.9] again, we have

T (U) ∈ add(P (⊥τR[t]/(tn)(T (M)))).

Since
|T (M) ⊕ T (U)| = |M ⊕ U | = |R| = |R[t]/(tn)|,

T (U) comprises all the indecomposable Ext-projective modules in ⊥τR[t]/(tn)(T (M)) up to iso-
morphism not in add(T (M)). Consequently T (U) is the Bongartz τR[t]/(tn)-complement of
T (M).

Next we prove the sufficiency. Since T (M ⊕U) is τ -tilting by assumption, M ⊕U is τ -tilting
by Theorem 5.5 and HomR[t]/(tn)(T (M ⊕ U), τR[t]/(tn)(T (M ⊕ U)) = 0. It follows that

HomR(FT (U), τR(M)) ∼= HomR[t]/(tn)(T (U), τR[t]/(tn)(T (M))) = 0.

Thus HomR(U, τR(M)) = 0 and Fac U ⊆ ⊥τR(M). New let X ∈ mod R such that HomR(X,

τR(M)) = 0, then HomR[t]/(tn)(TX, T (τR(M))) = 0 by Fact 2.1 (3). Because ⊥τR[t]/(tn)(T (M))
⊆ ⊥τR[t]/(tn)(T (U)) by [2, Proposition 2.9] and assumption, we have

HomR(FT (X), τR(U)) ∼= HomR[t]/(tn)(T (X), T (τR(U)) = 0.

So HomR(X, τR(U)) = 0, which implies ⊥τR(M) ⊆ ⊥τR(U). It follows from [2, Proposition 2.9]
again that U ∈ add(P (⊥τR(M))). The fact that

|M ⊕ U | = |T (M) ⊕ T (U)| = |R[t]/(tn)| = |R|
gives the result. �

Definition 5.7 ([2, Definition 1.5]) Let P ∈ Kb(projR), where Kb(proj R) is the homotopy
category of bounded complexes of finitely generated projective left R-modules.

(1) We call P presilting if HomKb(proj R)(P, P [i]) = 0 for any i ≥ 1.
(2) We call P silting if it is presilting and satisfies thick(P ) = Kb(projR), where thick(P )

is the smallest full triangulated subcategory of Kb(projR) containing P and being closed under
direct summands.

Our next corollary concerns two-term (pre)silting complexes.
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Corollary 5.8 Let

P1
f−→ P0

g−→ M → 0

be a minimal projective presentation of M in mod R. Then P = (P1
f−→ P0) is (pre)silting if

and only if T (P ) = (T (P1)
T (f)−→ T (P0)) is (pre)silting.

Proof By Theorem 3.3 (1) and assumption,

T (P1)
T (f)−→ T (P0)

T (g)−→ T (M) → 0

is a minimal projective presentation of T (M). We have that P = (P1
f→ P0) is presilting if

and only if Coker f is a τ -rigid R-module by [2, Lemma 3.4], and if and only if T (Coker f) is

a τ -rigid R[t]/(tn)-module by Theorem 5.5. So P = (P1
f−→ P0) is presilting if and only if

T (P ) = (T (P1)
T (f)−→ T (P0)) is presilting.

Next, we have that

A → B → C → A[1]

is a triangle in Kb(projR) if and only if

T (A) → T (B) → T (C) → T (A)[1]

is a triangle in Kb(projR[t]/(tn)). Thus it follows from [1, Lemma 2.15] that P = (P1
f−→ P0)

is silting if and only if T (P ) = (T (P1)
T (f)−→ T (P0)) is silting. �

Following [17], R is called a tilted algebra if R is an algebra of the form EndH(T ), where
H is a hereditary Artin algebra and T is a 1-tilting module in modH. Recall from [2] that a
module M ∈ mod R is sincere if every simple R-module appears as a composition factor in M .
This is equivalent to the fact that HomR(P, M) �= 0 for every indecomposable summand P of
R.

Proposition 5.9 If R[t]/(tn) is a tilted algebra, then so is R.

Proof Observe that an algebra R is tilted if and only if there exists a sincere module M ∈
mod R such that either HomR(X, M) = 0 or HomR(M, τR(X)) = 0 for any indecomposable
module X ∈ mod R ([21, Theorem]).

If R[t]/(tn) is a tilted algebra, then there exists a sincere module M ∈ mod R[t]/(tn) such
that either HomR[t]/(tn)(X, M) = 0 or HomR[t]/(tn)(M, τR[t]/(tn)(X)) = 0 for any indecompos-
able module X ∈ mod R[t]/(tn). For any indecomposable projective R-module P , we have

HomR(P, F (M)) ∼= HomR[t]/(tn)(T (P ), M) �= 0,

which implies that F (M) is a sincere R-module. Given an indecomposable R-module X. Since
HomR(X, F (M) ∼= HomR[t]/(tn)(T (X), M) and

HomR(F (M), τR(X)) ∼= HomR[t]/(tn)(M, T (τR(X)))
∼= HomR[t]/(tn)(M, τR[t]/(tn)(T (X))) (by Lemma 5.1),

it follows that R is a tilted algebra. �
However, the converse of Proposition 5.9 does not hold true in general.



1342 Tang X. and Huang Z. Y.

Example 5.10 Let R be semisimple. It is obvious that R is a tilted algebra and the global
dimension of R[t]/(tn) is infinite. If R[t]/(tn) is tilted, then the global dimension must be finite
by [16, Proposition 2.1], which is a contradiction. So R[t]/(tn) is not a tilted algebra.

6 m-precluster Tilting Subcategories

Throughout this section, R is an Artin algebra and m ≥ 1. A subcategory C of mod R is called
a generator (respectively, cogenerator) if R ∈ C (respectively, D(R) ∈ C), where D is the usual
duality between modR and modRop.

Definition 6.1 ([20]) (1) A subcategory C of mod R is called m-cluster tilting if C is precov-
ering and preenveloping and

C = {M ∈ mod R | Ext1≤i<m
R (M, C) = 0}

= {M ∈ mod R | Ext1≤i<m
R (C, M) = 0}.

(2) C is called an m-precluster tilting subcategory if it satisfies the following conditions.

(i) C is a generator–cogenerator for mod R.

(ii) τm(C) := τRΩm−1(C) ⊆ C and τ−1
m (C) := τ−1

R Ω−(m−1)(C) ⊆ C, where Ωm−1 and
Ω−(m−1) are the (m − 1)-th syzygy and cosyzygy functors respectively.

(iii) Ext1≤i<m
R (C, C) = 0.

(iv) C is a precovering and preenveloping subcategory of mod R.
If moreover C admits an additive generator M , then we say that M is an m-precluster tilting
module.

(3) R is called τm-selfinjective if R admits an m-precluster tilting module.

Proposition 6.2 Let C be an additive subcategory of mod R closed under direct summands.
Then C is m-precluster tilting in mod R if and only if T (C) is m-precluster tilting in mod R[t]/(tn).

Proof It is trivial that C is a generator–cogenerator for mod R if and only if T (C) is a generator–
cogenerator for mod R[t]/(tn). By Theorem 3.3 and Lemma 5.1, we have that τm(C) ⊆ C
(respectively, τ−1

m (C) ⊆ C) if and only if τm(T (C)) ⊆ T (C) (respectively, τ−1
m (T (C)) ⊆ C). Using

[32, Theorem 3.9], we get that Ext1≤i<m
R (C, C) = 0 if and only if Ext1≤i<m

R[t]/(tn)(T (C), T (C)) = 0.
Finally, it follows from Theorem 3.3 that C is precovering and preenveloping in modR if and
only if T (C) is precovering and preenveloping in modR[t]/(tn). Consequently, the assertion
holds true. �

However, Proposition 6.2 is not true for m-cluster tilting subcategories in general, as illus-
trated in the following example.

Example 6.3 Let R = k be an algebraically closed field and C = mod k. It is obvious that
C is m-cluster tilting. But T (C) = proj k[t]/(tn) is not m-cluster tilting, since k[t]/(tn) is not
semisimple.

Now we can state the following result.

Theorem 6.4 R is τm-selfinjective if and only if R[t]/(tn) is τm-selfinjective.

Proof The necessity follows from Proposition 6.2 directly.

In the following, we prove the sufficiency. In view of [20, Propositon 3.5], R is τm-selfinjective
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if and only if R ∈ Im and Ext1≤i<m
R (Im, Im) = 0 with Im = add{τ i

m(D(R))}∞i=0. Since

T (add{τ i
m(D(R))}∞i=0) = add{τ i

m(D(T (R)))}∞i=0

by Lemma 5.1, we have that R is τm-selfinjective by [32, Theorem 3.9 (1)]. �
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