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Abstract We investigate the behavior of the extension dimension of subcategories of abelian cat-

egories under recollements. Let Λ′, Λ, Λ′′ be artin algebras such that (mod Λ′, modΛ, mod Λ′′) is a

recollement, and let D′ and D′′ be subcategories of mod Λ′ and mod Λ′′ respectively. For any n, m ≥ 0,

under some conditions, we get dim Ωk(D) ≤ dim Ωn(D′) + dimΩm(D′′) + 1, where k = max{m, n} and

D is the subcategory of mod Λ glued by D′ and D′′; moreover, we give a sufficient condition such that

the converse inequality holds true. As applications, some results for Igusa–Todorov subcategories and

syzygy finite subcategories are obtained.

Keywords Recollements, extension dimension, Igusa–Todorov subcategories, syzygy finite subcate-
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1 Introduction

Given a triangulated category T , Rouquier introduced in [25, 26] the dimension of T under
the idea of Bondal and van den Bergh in [7]. This dimension and the infimum of the Orlov
spectrum of T coincide, see [4, 20]. This dimension plays an important role in representation
theory. For example, it can be used to compute the representation dimension of Artin algebras
([19, 25]). As an analogue of the dimension of triangulated categories, the extension dimension
dimA D of a subcategory D of an abelian category A was introduced by Beligiannis in [5], also
see [10]. Let Λ be an Artin algebra. Note that the representation dimension of Λ is at most two
(that is, Λ is of finite representation type) if and only if dim modΛ(:= dimmod Λ mod Λ) = 0
([5]). So, like the representation dimension of Λ, the extension dimension dim mod Λ is also
an invariant that measures how far Λ is from of finite representation type. It was shown that
the extension dimension is useful in studying the representation type of algebras and finitistic
dimension conjecture ([33]).
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Recollements of triangulated and abelian categories were introduced in [6, 11] in connection
with derived categories of sheaves on topological spaces with the idea that one triangulated
category may be “glued together” from two others. Recollements provide a useful reduction
technique for some homological properties such as the finiteness of global dimension and fini-
tistic dimension [9, 13, 21, 29], the Gorensteinness [1, 12, 17, 24] and the representation type
and representation dimension of Artin algebras as well as the extension dimension of abelian
categories [21, 33], and so on. Following the above philosophy, we will study the behavior of
the extension dimension of certain subcategories of an abelian category under recollements.

For an Artin algebra Λ, we use mod Λ to denote the category of finitely generated left
Λ-modules. Let Λ′, Λ and Λ′′ be Artin algebras such that there is a recollement of module
categories:

mod Λ′ i∗ �� mod Λ
i∗��

i!��
j∗ �� mod Λ′′
j!��

j∗��
.

Our main results are as follows.

Theorem 1.1 (Theorem 3.8) Let (modΛ′, mod Λ, mod Λ′′) be a recollement, and let D′ and
D′′ be subcategories of mod Λ′ and mod Λ′′ respectively. Assume that i! is exact. For any
n, m ≥ 0, if one of the following conditions holds:

(1) m = 0,

(2) m ≥ 1 and i!j! preserves projective objects,
then

dimmod Λ Ωk(D) ≤ dimmodΛ′ Ωn(D′) + dimmodΛ′′ Ωm(D′′) + 1,

where

k = max{m, n} and D = {D ∈ modΛ | i!(D) ∈ D′ and j∗(D) ∈ D′′}.

Moreover, we have the following

Theorem 1.2 (Theorem 3.12) Let (mod Λ′, modΛ, mod Λ′′) be a recollement, and let D be a
subcategory of mod Λ with i∗i!(D) ⊆ D and j∗j∗(D) ⊆ D. If i! is exact, then

max{dimmod Λ′ Ωn(i!(D)), dimmod Λ′′ Ωn(j∗(D))} ≤ dimmod Λ Ωn(D)

for some n ≥ 0.

Then we apply these results to Igusa–Todorov subcategories and syzygy finite subcategories.
Some known results are obtained as corollaries. Finally, we give some examples to illustrate
the obtained results.

Throughout this paper, all abelian categories have enough projective and injective objects
and all subcategories are full, additive and closed under isomorphisms. All algebras are Artin
algebras. Finally, we recall the notion of upper triangular matrix Artin algebras. Let Λ′, Λ′′ be
Artin algebras and Λ′MΛ′′ an (Λ′, Λ′′)-bimodule such that Λ′M and MΛ′′ are finitely generated,
and let Λ =

(
Λ′ M
0 Λ′′

)
be a triangular matrix algebra. Then Λ is an Artin algebra ([3, Proposition

III.2.1]). A module in mod Λ can be uniquely written as a triple
(
X
Y

)
f

with X ∈ mod Λ′,
Y ∈ mod Λ′′ and f ∈ HomΛ′(M ⊗Λ′′ Y, X) ([3, p.76]).
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2 Preliminaries

Let A be an abelian category, and let D be a class of objects in A. We use addD to denote the
subcategory of A consisting of direct summands of finite direct sums of objects in D.

Let U1, U2, · · · ,Un be classes of objects in A. Define

U1 � U2 := add{A ∈ A | there exists an exact sequence

0 �� U1
�� A �� U2

�� 0 in A with U1 ∈ U1 and U2 ∈ U2}.

Inductively, define

U1 � U2 � · · · � Un := add{A ∈ A | there exists an exact sequence 0 �� U �� A �� V �� 0

in A with U ∈ U1 and V ∈ U2 � · · · � Un}.

For a class U of A, set 〈U〉0 := 0, 〈U〉1 := add U , 〈U〉n := 〈U〉1 � 〈U〉n−1 for any n ≥ 2, and
〈U〉∞ :=

⋃
n≥0〈U〉n ([5]). For subcategories U , V and W of A, by [10, Proposition 2.2], we have

(U � V) �W = U � (V �W).

Definition 2.1 ([5, 10, 33]) For a subcategory D of A, the extension dimension dimA D of D
is defined as

dimA D := inf{n ≥ 0 | D ⊆ 〈T 〉n+1 with T ∈ A}.

When there is no ambiguity, we write dimD := dimA D for short.

Let A be an abelian category, and let M ∈ A and m ≥ 0. We use Ωm
A(M) to denote the

m-th syzygy of M ; in particular, Ω0
A(M) = M . Let D be a subcategory of A. We use Ωm

A(D)
to denote the full subcategory of A consisting of those objects in A that are either projective
or direct summands of m-th syzygies of objects in D. Dually, the m-th cosyzygy Ω−m

A (M) of
M and the subcategory Ω−m

A (D) are defined.

Lemma 2.2 Let A be an abelian category and let X, T ∈ A. If X ∈ 〈T 〉n, then for any n ≥ 1
and i ≥ 0, we have

(1) Ωi
A(X) ∈ 〈Ωi

A(T )〉n.
(2) Ω−i

A (X) ∈ 〈Ω−i
A (T )〉n.

Immediately, we get the following result.

Lemma 2.3 Let A be an abelian category and D a subcategory of A. Then for any m ≥ n ≥ 0,
we have

dim Ωm
A(D) ≤ dim Ωn

A(D).

Lemma 2.4 Let A be an abelian category and n ≥ 1, and let

0 �� A �� B �� C �� 0

be an exact sequence in A. If there exist T1, T2 ∈ A such that A ∈ 〈T1〉n and B ∈ add T2, then
C ∈ 〈T2 ⊕ Ω−1

A (T1)〉n+1.

Proof By [33, Lemma 3.2], we have the following exact sequence

0 �� B �� C ⊕ I �� Ω−1
A (A) �� 0
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in A with I injective. Then, by Lemma 2.2 and [33, Proposition 2.2(1) and Corollary 2.3(1)],
we have

C ∈ 〈T2〉1 � 〈Ω−1
A (T1)〉n ⊆ 〈T2 ⊕ Ω−1

A (T1)〉n+1. �

We need the following easy and useful fact.

Lemma 2.5 Let A and B be abelian categories and n ≥ 0, and let F : A → B be an exact
functor. If F preserves projective objects, then

Ωn
B(F (X)) = F (Ωn

A(X))

for any X ∈ A.

Proof For any X ∈ A, consider the following exact sequence

0 �� Ωn
A(X) �� Pn−1

�� Pn−2
�� · · · �� P0

�� X �� 0

in A with all Pi projective. Applying the functor F to it yields an exact sequence

0 �� F (Ωn
A(X)) �� F (Pn−1) �� F (Pn−2) �� · · · �� F (P0) �� F (X) �� 0

in B with all F (Pi) projective by assumption. Thus

Ωn
B(F (X)) = F (Ωn

A(X)). �

The following definition is cited from [11].

Definition 2.6 A recollement, denoted by (A,B, C), of abelian categories is a diagram

A i∗ �� B
i∗��

i!��
j∗ �� C
j!��

j∗��

(1) (i∗, i∗), (i∗, i!), (j!, j∗) and (j∗, j∗) are adjoint pairs.
(2) i∗, j! and j∗ are fully faithful.
(3) Im i∗ = Ker j∗.

In the rest of this section, we assume that (A,B, C) is a recollement of abelian categories
as in Definition 2.6. We list some properties of such recollements (see [11, 16, 18–23] and [33]),
which will be used in the sequel.

Lemma 2.7 We have
(1) i∗j! = 0 = i!j∗.
(2) The functors i∗, j∗ are exact, and the functors i∗, j! are right exact, and the functors

i!, j∗ are left exact.
(3) All natural transformations

i∗i∗ �� 1A , 1A �� i!i∗ , 1C �� j∗j! and j∗j∗ �� 1C

are natural isomorphisms. Moreover, all functors i∗, i! and j∗ are dense.
(4) For any object X ∈ B, if i∗ is exact, then there is the following exact sequence

0 �� j!j∗(X) �� X �� i∗i∗(X) �� 0

in B; and if i! is exact, then there is the following exact sequence

0 �� i∗i!(X) �� X �� j∗j∗(X) �� 0
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in B.
(5) If i∗ is exact, then i!j! = 0 and j! is exact; and if i! is exact, then i∗j∗ = 0 and j∗ is

exact.
(6) The functors i∗ and j! preserve projective objects. If i! is exact, then i∗ and j∗ preserve

projective objects.

We get the following observation.

Lemma 2.8 We have the following assertions.
(1) If i! is exact, then there is an exact sequence of natural transformations

0 �� i∗i!j! �� j! �� j∗ �� 0 .

(2) If i∗ is exact, then there is an exact sequence of natural transformations

0 �� j! �� j∗ �� i∗i∗j∗ �� 0 .

Proof (1) By [11, Proposition 4.4], there is an exact sequence of natural transformations

0 �� i∗i!j! �� j! �� j∗ �� i∗i∗j∗ �� 0 .

Since i! is exact, we have i∗j∗ = 0 by Lemma 2.7, and thus the assertion follows.
(2) It is a dual of (1). �
As a consequence of Lemmas 2.7 and 2.8, we get the following

Remark 2.9 Let

0 �� C ′′ �� C ′ �� C �� 0

be an exact sequence in C. Assume that i! is exact. By Lemma 2.7, we have that j∗ is exact.
So

0 �� j∗(C ′′) �� j∗(C ′) �� j∗(C) �� 0

is exact in B. By Lemma 2.8, we have the following exact sequence

0 �� i∗i!j!(C ′) �� j!(C ′) �� j∗(C ′) �� 0

in B. One can get the following pullback diagram

0

���
�
� 0

��
i∗i!j!(C ′) �� ��

���
�
�

i∗i!j!(C ′)

��
0 ������ K ������

���
�
� j!(C ′) �����

��

j∗(C) ����

�
�
�

�
�
� 0

0 �� j∗(C ′′) ��

���
�
�

j∗(C ′) ��

��

j∗(C) �� 0

0 0.

The following result generalizes [8, Lemma 4.2], which is useful in the sequel.
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Lemma 2.10 For any n ≥ 1, assume that i! is exact and i!j! preserves projective objects.
Then, for any X ∈ B, there exists an exact sequence

0 �� i∗i!j!(Pn−1) �� Ωn
B(j∗j∗(X)) �� j∗(Ωn

C(j∗(X))) �� 0

in B, where Pn−1, a projective object in C, lies in the exact sequence

0 �� Ωn
C(j∗(X)) �� Pn−1

�� Ωn−1
C (j∗(X)) �� 0 .

Proof Notice that j∗(X) ∈ C. Consider the following exact sequence

0 �� Ω1
C(j∗(X)) �� P0

�� j∗(X) �� 0

in C with P0 a projective object. By Remark 2.9, we get the following pullback diagram

0

���
�
� 0

��
i∗i!j!(P0) ��� ���

���
�
�

i∗i!j!(P0)

��
0 ������ K1

�������

���
�
� j!(P0) �����

��

j∗j∗(X) ����

�
�
�

�
�
� 0

0 �� j∗(Ω1
C(j∗(X))) ��

���
�
�

j∗(P0) ��

��

j∗j∗(X) �� 0

0 0.

Since j! preserves projective objects by Lemma 2.7, j!(P0) is a projective object in B. So
Ω1

B(j∗j∗(X)) = K1 and the assertion for n = 1 follows.
Now applying Remark 2.9 to the exact sequence

0 �� Ω2
C(j∗(X)) �� P1

�� Ω1
C(j∗(X)) �� 0

in C with P1 projective yields the following pullback diagram

0

���
�
� 0

��
i∗i!j!(P1) ��� ���

���
�
�

i∗i!j!(P1)

��
0 ������ K2

�������

���
�
� j!(P1) �����

��

j∗(Ω1
C(j∗(X))) ��

�
�
�

�
�
�

0

0 �� j∗(Ω2
C(j∗(X))) ��

���
�
�

j∗(P1) ��

��

j∗(Ω1
C(j∗(X))) �� 0

0 0.
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We also get the following pullback diagram

0

���
�
� 0

��
K2

�������� ��������

���
�
� K2

��
0 ���� i∗i!j!(P0) ����

�
�
�

�
�
�

i∗i!j!(P0) ⊕ j!(P1) ������

���
�
�

j!(P1) ������

��

0

0 �� i∗i!j!(P0) �� K1
��

���
�
� j∗(Ω1

C(j∗(X))) ��

��

0

0 0.

Notice that i∗ and i!j! preserve projective objects by Lemma 2.7 and assumption, so Ω2
B(j∗j∗

(X)) = K2. Repeating this process, we can get the desired exact sequence

0 �� i∗i!j!(Pn−1) �� Ωn
B(j∗j∗(X)) �� j∗(Ωn(j∗(X))) �� 0

in B, where Pn−1, a projective object, lies in the exact sequence

0 �� Ωn
C(j∗(X)) �� Pn−1

�� Ωn−1
C (j∗(X)) �� 0 . �

3 Main Results

Let Λ be an Artin algebra, and D a subcategory of modΛ.
(1) D is said to be of finite representation type, if there is some N ∈ mod Λ such that

addD = add N ; that is, the number of non-isomorphic indecomposable Λ-modules appeared in
D is finite. In particular, if D = mod Λ, it is said that Λ is of finite representation type (see [2]).

(2) D is said to be m-syzygy finite if the subcategory Ωm(D) := Ωm
mod Λ(D) is of finite

representation type. In particular, if D = modΛ, it is said that Λ is an m-syzygy finite algebra
(see [27]).

Remark 3.1 A subcategory D ⊆ mod Λ is n-syzygy finite if and only if dim Ωn(D) = 0. In
particular, Λ is of finite representation type if and only if dim mod Λ = 0 ([33, Corollary 3.8]).

Definition 3.2 ([28, Definition 3.1]) Let D be a subcategory of mod Λ. Then D is said to
be (n-)Igusa–Todorov provided that there exist V ∈ mod Λ and n ≥ 0, such that for any M ∈
Ωn(D), there is an exact sequence

0 −→ V1 −→ V0 −→ M −→ 0

in mod Λ with V1, V0 ∈ add V . The module V is then called an (n-)D-Igusa–Todorov module.
In particular, if D = mod Λ, it is said that Λ is an (n-)Igusa–Todorov algebra and the

module V is then called an (n-)Igusa–Todorov module (see [27] and [14, Lemma 3.6]).

The following result generalizes [33, Theorem 3.14], which gives an equivalent characteriza-
tion of (n-)Igusa–Todorov subcategories and means that dim Ωn(D) is an invariant for measuring
how far a subcategory of mod Λ is from being Igusa–Todorov.
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Proposition 3.3 Let D be a subcategory of mod Λ. Then for any n ≥ 0, the following
statements are equivalent.

(1) D is n-Igusa–Todorov.
(2) dim Ωn(D) ≤ 1.

Proof (1) ⇒ (2) Assume that D is n-Igusa–Todorov. Let X ∈ Ωn(D). Then there exists
V ∈ mod Λ such that the following sequence

0 �� V1
�� V0

�� X �� 0

in mod Λ with V1, V0 ∈ add V is exact. By Lemma 2.4, we have

X ∈ 〈V ⊕ Ω−1(V )〉2.

Thus dim Ωn(D) ≤ 1.
(2) ⇒ (1) Assume that dim Ωn(D) ≤ 1 and X ∈ D. Then there exists V ∈ mod Λ such that

the following sequence
0 −→ V1 −→ Ωn(X) −→ V2 −→ 0,

in mod Λ with V1, V2 ∈ 〈V 〉1 is exact. By [33, Lemma 3.2], we obtain the following exact
sequence

0 −→ Ω1(V2) −→ V1 ⊕ P −→ Ωn(X) −→ 0

in mod Λ with P projective. Notice that both Ω1(V2) and V1 ⊕ P are in add(Ω1(V ) ⊕ V ⊕ Λ),
so D is n-Igusa–Todorov. �

As an immediate consequence, we get the following

Corollary 3.4 ([28, Proposition 3.4]) Let D be a subcategory of mod Λ. If D is n-Igusa–
Todorov, then Ωi(D) is also n-Igusa–Todorov for any i ≥ 1. In particular, D is m-Igusa–Todorov
for m ≥ n in that case.

Proof It follows from Lemma 2.3 and Proposition 3.3. �

Remark 3.5 ([27, Remark 2.4]) If Λ is an n-Igusa–Todorov algebra, then Λ is also an m-
Igusa–Todorov algebra for any m ≥ n.

The following result generalizes [33, Proposition 3.15].

Proposition 3.6 Let D be a subcategory of mod Λ and m, n ≥ 0. If dim Ωn(D) ≤ m, then
dim Ωn−i(D) ≤ m + i for any 0 ≤ i ≤ n. In particular, if D is n-Igusa–Todorov, then dimD ≤
n + 1.

Proof Let X ∈ D. If n = 0 (also i = 0), then dimD ≤ m. Now suppose n ≥ 1. Consider the
following exact sequence

0 �� Ωn(X) �� Pn−1
�� · · · �� Pn−i

���
��

��
��

�
�� Pn−i−1 · · · �� P0

�� X �� 0

Ωn−i(X)

�����������

in mod Λ with all Pl projective. Using Lemma 2.4 repeatedly, we have Ωn−i(X) ∈ 〈T 〉m+i+1

for some T ∈ mod Λ. Thus dim Ωn−i(D) ≤ m + i. The last assertion follows from Proposition
3.3. �
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We have the following

Remark 3.7 Let D be a subcategory of modΛ.
(1) If dimD = n, then dim Ωi(D) ≥ n−i for any 0 ≤ i ≤ n by Proposition 3.6. In particular,

if dim modΛ = n, then dim Ωi(mod Λ) ≥ n − i for any 0 ≤ i ≤ n.
(2) If D is n-syzygy finite, then dim Ωn−1(D) ≤ 1, and so D is (n − 1)-Igusa–Todorov

by Proposition 3.3. In addition, we have dimD ≤ n by Proposition 3.6. In particular, if Λ
is n-syzygy finite, then dim Ωn−1(modΛ) ≤ 1, it follows from Proposition 3.3 that Λ is an
(n − 1)-Igusa–Todorov algebra ([27, Proposition 2.5]). In addition, we have dim mod Λ ≤ n.

From now on, assume that Λ′, Λ and Λ′′ are Artin algebras and

mod Λ′ i∗ �� mod Λ
i∗��

i!��
j∗ �� mod Λ′′
j!��

j∗��

is a recollement.

Theorem 3.8 Let D′ and D′′ be subcategories of mod Λ′ and mod Λ′′ respectively. Assume
that i! is exact. For any n, m ≥ 0, if one of the following conditions holds:

(1) m = 0,
(2) m ≥ 1 and i!j! preserves projective modules,

then
dim Ωk(D) ≤ dim Ωn(D′) + dim Ωm(D′′) + 1,

where k = max{m, n} and D = {D ∈ mod Λ | i!(D) ∈ D′ and j∗(D) ∈ D′′}.
Proof Let X ∈ D. Then i!(X) ∈ D′ and j∗(X) ∈ D′′. Suppose dim Ωn(D′) = p and
dim Ωm(D′′) = q. Then there exist V ′ ∈ modΛ′ and V ′′ ∈ mod Λ′′ such that Ωn(i!(X)) ∈
〈V ′〉p+1 and Ωm(j∗(X)) ∈ 〈V ′′〉q+1.

Since i! is exact, there exists the following exact sequence

0 �� i∗i!(X) �� X �� j∗j∗(X) �� 0

in mod Λ by Lemma 2.7. Set k := max{m, n}. By the horseshoe lemma, there exists an exact
sequence

0 �� Ωk(i∗i!(X)) �� Ωk(X) �� Ωk(j∗j∗(X)) �� 0 (3.1)

in mod Λ.
(1) If m = 0, then j∗(X) ∈ 〈V ′′〉q+1. Since j∗ is exact by Lemma 2.7, we have

j∗j∗(X) ∈ j∗〈V ′′〉q+1 ⊆ 〈j∗(V ′′)〉q+1

by [33, Lemma 2.4]. It follows from Lemma 2.2 that Ωk(j∗j∗(X)) ∈ 〈Ωk(j∗(V ′′))〉q+1.
Note that Ωk(i!(X)) ∈ 〈Ṽ ′〉p+1 for some Ṽ ′ ∈ mod Λ′ by Lemma 2.3. Since i∗ is exact and

preserves projective modules by Lemma 2.7, we have

Ωk(i∗i!(X)) = i∗(Ωk(i!(X))) (by Lemma 2.5)

∈ i∗(〈Ṽ ′〉p+1) ⊆ 〈i∗(Ṽ ′)〉p+1. (by [33, Lemma 2.4])

Following the exact sequence (3.1), we have

Ωk(X) ∈ 〈i∗(Ṽ ′)〉p+1 � 〈Ωk(j∗(V ′′))〉q+1 ⊆ 〈i∗(Ṽ ′) ⊕ Ωk(j∗(V ′′))〉p+q+2
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by [33, Proposition 2.2(1) and Corollary 2.3(1)]. Thus dim Ωk(D) ≤ p + q + 1.
(2) Now let m ≥ 1. Suppose p ≥ 1 and q ≥ 0. By Lemma 2.3, we have dim Ωk(D′) ≤ p

and dim Ωk(D′′) ≤ q. Without loss of generality, we still assume Ωk(i!(X)) ∈ 〈V ′〉p+1 and
Ωk(j∗(X)) ∈ 〈V ′′〉q+1 for some V ′ ∈ mod Λ′ and V ′′ ∈ mod Λ′′. Consider the following exact
sequence

0 �� V ′
1

�� Ωk(i!(X)) �� V ′
2

�� 0

in mod Λ′ with V ′
1 ∈ add V ′ and V ′

2 ∈ 〈V ′〉p. By [31, Lemma 3.3], there is the following exact
sequence

0 �� Ω1(V ′
2) �� P ′ ⊕ V ′

1
�� Ωk(i!(X)) �� 0

in mod Λ′ with P ′ projective. Applying the exact functor i∗ to it yields the following exact
sequence

0 �� i∗(Ω1(V ′
2)) �� i∗(P ′ ⊕ V ′

1) �� i∗(Ωk(i!(X))) �� 0,

where Ω1(V ′
2) ∈ 〈Ω1(V ′)〉p by Lemma 2.2. Then by [33, Lemma 2.4], we have

i∗(Ω1(V ′
2)) ∈ i∗(〈Ω1(V ′)〉p) ⊆ 〈i∗(Ω1(V ′))〉p.

Since i∗ is exact and preserves projective modules by Lemma 2.7, we have that i∗(P ′) is pro-
jective in mod Λ and Ωk(i∗i!(X)) = i∗(Ωk(i!(X))) by Lemma 2.5.

By Lemma 2.10, there exists the following exact sequence

0 �� i∗i!j!(Pk−1) �� Ωk(j∗j∗(X)) �� j∗(Ωk(j∗(X))) �� 0

in mod Λ with Pk−1 projective. By [31, Lemma 3.3], there exists the following exact sequence

0 �� Ω1(j∗(Ωk(j∗(X)))) �� P ⊕ i∗i!j!(Pk−1) �� Ωk(j∗j∗(X)) �� 0

in mod Λ with P projective. Since j∗ is exact by Lemma 2.7, we have

j∗(Ωk(j∗(X))) ∈ j∗(〈V ′′〉q+1) ⊆ 〈j∗(V ′′)〉q+1

by [33, Lemma 2.4]. It follows from Lemma 2.2 that

Ω1(j∗(Ωk(j∗(X)))) ∈ 〈Ω1(j∗(V ′′))〉q+1.

Notice that i∗ and i!j! preserve projective modules by Lemma 2.7 and assumption, so i∗i!j!(Pk−1)
is a projective Λ-module. Consider the following commutative diagram

0

��

0

���
�
� 0

��
0 ���� i∗(Ω1(V ′

2)) ����������

��

V1

���
�
�

���������� Ω1(j∗(Ωk(j∗(X))))

��

���� 0

0 ���� i∗(P ′ ⊕ V ′
1) ����

��

i∗(P ′ ⊕ V ′
1) ⊕ P ⊕ i∗i!j!(Pk−1) �����

���
�
�

P ⊕ i∗i!j!(Pk−1) �����

��

0

0 �� Ωk(i∗i!(X)) ��

��

Ωk(X) ��

���
�
�

Ωk(j∗j∗(X)) ��

��

0.

0 0 0

(3.2)
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Then

V1 ∈ 〈i∗(Ω(V ′))〉p � 〈Ω(j∗(V ′′))〉q+1

⊆ 〈i∗(Ω(V ′)) ⊕ Ω(j∗(V ′′))〉p+q+1

by [33, Proposition 2.2(1) and Corollary 2.3(1)]. Applying Lemma 2.4 to the middle column in
the diagram (3.2) yields

Ωk(X) ∈ 〈V 〉p+q+2,

where V := i∗(V ′) ⊕ Λ ⊕ Ω−1(i∗(Ω(V ′)) ⊕ Ω(j∗(V ′′))). Thus

dim Ωk(D) ≤ p + q + 1.

If p = 0, then V ′
2 = 0, and the desired assertion also follows. �

Combining with Theorem 3.8 with Proposition 3.3, we have

Corollary 3.9 Let D′ and D′′ be subcategories of mod Λ′ and mod Λ′′ respectively. Assume
that i! is exact and i!j! preserves projective modules. If D′ is n-Igusa–Todorov and D′′ is m-
Igusa–Todorov, then

dim Ωk(D) ≤ 3,

where k = max{m, n} and D := {D ∈ mod Λ | i!(D) ∈ D′ and j∗(D) ∈ D′′}.
The following result provides a sufficient condition for a subcategory D ⊆ mod Λ being

n-Igusa–Todorov.

Corollary 3.10 Let D′ and D′′ be subcategories of mod Λ′ and mod Λ′′ respectively. Assume
that i! is exact and i!j! preserves projective modules. If D′ is n-syzygy finite and D′′ is m-syzygy
finite, then D is a k-Igusa–Todorov subcategory, where k = max{m, n} and D = {D ∈ mod Λ |
i!(D) ∈ D′ and j∗(D) ∈ D′′}.
Proof It follows from Theorem 3.8, Remark 3.1 and Proposition 3.3. �

Taking D′ = modΛ′ and D′′ = mod Λ′′ in Theorem 3.8, it is easy to check that D = {D ∈
mod Λ | i!(D) ∈ D′ and j∗(D) ∈ D′′} = mod Λ. Then we have

Remark 3.11 Assume that i! is exact and n, m ≥ 0. Set k := max{m, n}. If one of the
following conditions holds:

(1) m = 0,
(2) m ≥ 1 and i!j! preserves projective objects,

then

dim Ωk(mod Λ) ≤ dim Ωn(modΛ′) + dim Ωm(modΛ′′) + 1.

In particular, we have
(a) (see [33, Theorem 5.5]) If n = 0 = m, then dim modΛ ≤ dim mod Λ′ + dim mod Λ′′ + 1.
(b) If Λ′ is n-Igusa–Todorov and Λ′′ is m-Igusa–Todorov, then dim Ωk(modΛ) ≤ 3.
(c) If Λ′ is n-syzygy finite and Λ′′ is m-syzygy finite, then Λ is k-Igusa–Todorov.

The following result shows that the converse inequality in Theorem 3.8 holds true under
certain conditions.
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Theorem 3.12 Let D be a subcategory of mod Λ with i∗i!(D) ⊆ D and j∗j∗(D) ⊆ D. If i! is
exact, then

max{dim Ωn(i!(D)), dimΩn(j∗(D))} ≤ dim Ωn(D)

for some n ≥ 0.

Proof Suppose dim Ωn(D) = p. Then for any X ∈ D, there exists V ∈ mod Λ such that
Ωn(X) ∈ 〈V 〉p+1.

Let X ′ ∈ i!(D). Consider the following exact sequence

0 �� Ωn(X ′) �� P ′
n−1

�� P ′
n−2

�� · · · �� P ′
0

�� X ′ �� 0

in mod Λ′ with all P ′
i projective. Since i∗ is exact and preserves projective modules by Lemma

2.7, we have Ωn(i∗(X ′)) = i∗(Ωn(X ′)) by Lemma 2.5. Notice that i∗(X ′) ∈ D, so i∗(Ωn(X ′)) ∈
〈V 〉p+1 by assumption. Since i! is exact again by assumption, we have

Ωn(X ′) ∼= i!i∗(Ωn(X ′)) ∈ i!(〈V 〉p+1) ⊆ 〈i!(V )〉p+1

by [33, Lemma 2.4]. Thus dim Ωn(i!(D)) ≤ p.
Let X ′′ ∈ j∗(D). Notice that j∗(X ′′) ∈ D, so Ωn(j∗(X ′′)) ∈ 〈V 〉p+1 by assumption. Since

j∗ is exact and preserves projective modules by Lemma 2.7, we have

Ωn(X ′′) ∼= Ωn(j∗j∗(X ′′)) = j∗(Ωn(j∗(X ′′))) (by Lemma 2.5)

∈ j∗(〈V 〉p+1) ⊆ 〈j∗(V )〉p+1. (by [33, Lemma 2.4])

Thus dim Ωn(j∗(D)) ≤ p. �
By Theorem 3.12, Proposition 3.3 and Remark 3.1, we have

Corollary 3.13 Let D be a subcategory of mod Λ with i∗i!(D) ⊆ D and j∗j∗(D) ⊆ D and
n ≥ 0. Assume that i! is exact. Then we have

(1) If D is n-Igusa–Todorov, then both i!(D) and j∗(D) are n-Igusa–Todorov.
(2) If D is n-syzygy finite, then both i!(D) and j∗(D) are n-syzygy finite.

Taking D = mod Λ in Theorem 3.12, it is clear that i∗i!(D) ⊆ D and j∗j∗(D) ⊆ D and that
i!(D) = mod Λ′ and j∗(D) = mod Λ′′. Then we have

Remark 3.14 If i! is exact, then

max{dim Ωn(mod Λ′), dim Ωn(modΛ′′)} ≤ dim Ωn(mod Λ)

for some n ≥ 0.
In particular, we have
(1) (see [33, Theorem 5.5]) If n = 0, then max{dim mod Λ′, dim mod Λ′′} ≤ dim mod Λ.
(2) If Λ is n-Igusa–Todorov, then both Λ′ and Λ′′ are n-Igusa–Todorov.
(3) If Λ is n-syzygy finite, then both Λ′ and Λ′′ are n-syzygy finite.

Let Λ =
(

Λ′ M
0 Λ′′

)
be a triangular matrix Artin algebra. By [21, Example 2.12], we know

that

mod Λ′ i∗ �� mod Λ
i∗��

i!��
j∗ �� mod Λ′′
j!��

j∗��

is a recollement of module categories, where

i∗
((

X

Y

)

f

)
= Coker f, i∗(X) =

(
X

0

)
, i!

((
X

Y

)

f

)
= X,
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j!(Y ) =
(

M ⊗Λ′′ Y

Y

)

1

, j∗
((

X

Y

)

f

)
= Y, j∗(Y ) =

(
0
Y

)
.

By [15, Lemma 3.2], i! admits a right adjoint, then i! is exact. If MΛ′′ is projective, then
j! is exact. If Λ′M is projective, notice that i!j!(Y ) = i!(

(
M⊗Λ′′Y

Y

)
1
) = M ⊗Λ′′ Y , then i!j!

preserves projective objects. By Remark 3.14, we get immediately the following corollary,
which generalizes some results in [8].

Corollary 3.15 Let Λ =
(

Λ′ M
0 Λ′′

)
. Then we have

(1) (cf. [8, Theorem 4.5]) If Λ is n-Igusa–Todorov, then both Λ′ and Λ′′ are n-Igusa–Todorov.
(2) (cf. [8, Theorem 4.3]) If Λ is n-syzygy finite, then both Λ′ and Λ′′ are n-syzygy finite.

4 Examples

In this section, all algebras are finite dimensional algebras over an algebraically closed field.
For a quiver Q, we use ei to denote the idempotent corresponding to the vertex i.

Example 4.1 Let Λ be a finite dimensional algebra given by

4•
γ

����
��

��
��θ

����
��

��
��

β����
��

��
��

η

���
��

��
��

�

5•

α

��

δ ���
��

��
��

� 2•

ξ����
��

��
��

1•�� with ηξ = γδ, α3 = βδ = αδ = 0.

3•

By [27, Example 1], Λ is a 1-Igusa–Todorov algebra.
(a) Put e = e1 + e2 + e3, Λ′ := eΛe and Λ′′ := (1 − e)Λ(1 − e). It follows that Λ =

(
Λ′ M
0 Λ′′

)

with M = (1 − e)Λe, where Λ′ is a finite dimensional algebra given by • •�� •�� and
Λ′′ is a finite dimensional algebra given by

•
γ

		��
��

��
��θ

		��
��

��
��

β		��
��

��
��

•

α




with α3 = 0.

By Corollary 3.15, Λ′ and Λ′′ are 1-Igusa–Todorov algebras. In fact, Λ′ (it is of finite repre-
sentation type) and Λ′′ (it is a matrix algebra formed by two representation-finite algebras [27,
Corollary 3.3]) are 0-Igusa–Todorov algebras.

(b) Put e := e3, Λ′ := eΛe and Λ′′ := (1 − e)Λ(1 − e). It follows that Λ =
(

Λ′ M
0 Λ′′

)
with

M = (1−e)Λe, where Λ′ is a finite dimensional algebra given by • and Λ′′ is a finite dimensional
algebra given by

4•
γ

����
��

��
��θ

����
��

��
��

β����
��

��
��

η

��	
		

		
		

	

5•

α

��
2• 1•�� with α3 = 0.

By Corollary 3.15, Λ′ and Λ′′ are 1-Igusa–Todorov algebras. In fact, Λ′ (it is of finite represen-
tation type) is a 0-Igusa–Todorov algebra.
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We claim that Λ′′ is a 1-Igusa–Todorov algebra. Let Λ̃′′ be a finite dimensional algebra
given by

•
γ

		��
��

��
��

β		��
��

��
��

η

��















•

α




• •�� with α3 = 0.

Then Λ̃′′ is a trivially twisted extension (see [30] for details) of two representation-finite algebras:

Λ1 : •
β

����
��

��
��

�
��

��
��

�

•

α




• •�� with α3 = 0,

Λ2 : •
γ

		��
��

��
��

• .

By [27, Corollary 3.3], we have that Λ̃′′ is a 0-Igusa Todorov algebra. Let I be the ideal of
Λ′′ generated by θ. Then Λ̃′′ is the quotient algebra of Λ by I. Since I rad Λ′′ = 0, it follows
from [27, Theorem 3.4] that Λ′′ is a 1-Igusa–Todorov algebra.

Example 4.2 Let Λ be a finite dimensional algebra given by

4•
θ

����
��

��
��

γ
����

��
��

��
η

���
��

��
��

�

5•

α

��

δ ���
��

��
��

� 2•

ξ����
��

��
��

1•�� with ηξ = γδ, α3 = αδ = 0.

3•

By [27, Example 2], Λ is a 2-Igusa–Todorov algebra. Put e := e1 + e2 + e3, Λ′ := eΛe and
Λ′′ := (1 − e)Λ(1 − e). It follows that Λ =

(
Λ′ M
0 Λ′′

)
with M = (1 − e)Λe, where Λ′ is a finite

dimensional algebra given by • •�� •�� and Λ′′ is a finite dimensional algebra given
by

•
θ

		��
��

��
��

γ
		��

��
��

��

•

α




with α3 = 0.

By Corollary 3.15, Λ′ and Λ′′ are 2-Igusa–Todorov algebras. In fact, Λ′ (it is of finite represen-
tation type) and Λ′′ (it is a matrix algebra formed by two representation-finite algebras) are
0-Igusa–Todorov algebras.

Example 4.3 Let Λ be a finite dimensional algebra given by

2•
θ

����
��

��
��

γ
����

��
��

��

1•

α

��

δ ��	
		

		
		

	 with α3 = αδ = 0.

3•
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Put e := e1 + e3, Λ′ := eΛe and Λ′′ := (1 − e)Λ(1 − e). It follows that Λ =
(

Λ′ M
0 Λ′′

)
with

M = (1 − e)Λe, where Λ′ is a finite dimensional algebra given by

•

α



 �� • with α3 = 0.

and Λ′′ is a finite dimensional algebra given by • .

Clearly, Λ′ and Λ′′ are of finite representation type, and so dim mod Λ′ = 0 = dim mod Λ′′

by Remark 3.1. By Theorem 3.8 (or [33, Theorem 5.5]), we have dim mod Λ ≤ 1. In fact,
dim mod Λ = 1. We know that Λ is a 0-Igusa–Todorov algebra from Proposition 3.3 (or [33,
Theorem 3.14]). Note that Λ is viewed as a 2-Igusa–Todorov algebra in [27, Example 3].

Example 4.4 Let Λ be a finite dimensional algebra given by

1•
x3 ��

x1
��

x2 �� 2•
x3 ��

x1
��

x2 �� 3• with xixj = xjxi, 1 ≤ i, j ≤ 3.

Put e := e3, Λ′ := eΛe and Λ′′ := (1−e)Λ(1−e). It follows that Λ =
(

Λ′ M
0 Λ′′

)
with M = (1−e)Λe,

where Λ′ is a finite dimensional algebra given by • and Λ′′ is a finite dimensional algebra given
by

•
��

��
�� •.

Clearly, dim mod Λ′ = 0 and Λ′M is projective. Notice that Λ′′ is a 0-Igusa–Todorov algebra
(it is a matrix algebra formed by two representation-finite algebras) and is of representation
infinite type, so dim mod Λ′′ = 1. Notice that Λ′M is projective, by Theorem 3.8 and Remark
3.14 (see [33, Theorem 5.5]), we have 1 ≤ dim mod Λ ≤ 2. In fact, dim mod Λ = 2 by [32,
Example 3.4].

Example 4.5 Let Λ be a finite dimensional algebra given by

3•

ξ

��

x6 ��
x5 ��

x4
��

x3
��

4•

η

��

x6 ��
x5 ��

x4
��

x3
��

5•
x6 ��
x5 ��

x4
��

x3
��

6•

1•
θ ��
γ �� 2•

α

��

with α3 = 0, xixj = xjxi, xiη = ξθ, 3 ≤ i, j ≤ 6.
Put e = e1 + e2, Λ′ := eΛe and Λ′′ := (1 − e)Λ(1 − e). It follows that Λ =

(
Λ′ M
0 Λ′′

)
with

M = (1 − e)Λe, where Λ′ is a finite dimensional algebra given by

1•
θ ��
γ �� 2•

α

�� with α3 = 0
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and Λ′′ is a finite dimensional algebra given by

3•
x6 ��
x5 ��

x4
��

x3
��

4•
x6 ��
x5 ��

x4
��

x3
��

5•
x6 ��
x5 ��

x4
��

x3
��

6• with xixj = xjxi, 3 ≤ i, j ≤ 6.

Notice that Λ′M is projective. As in Example 4.2, Λ′ is a 0-Igusa–Todorov algebra, so dim mod
Λ′ ≤ 1 (in fact, dim modΛ′ = 1). By [32, Example 3.4], we have dim mod Λ′′ = 3. By Remark
3.7, we have dim Ω1(modΛ′′) ≥ 2. Notice that Λ′′ is 3-syzygy finite, so dim Ω1(mod Λ′′) ≤ 2 by
Proposition 3.6, and thus dim Ω1(mod Λ′′) = 2. Similarly, we have dim Ω1(modΛ′′) = 1. On
the other hand, Λ′ is 2-syzygy finite (Λ′ is a monomial algebra), so dim mod Λ′ = 0. Then

(a) By Remarks 3.11 and 3.14 (or [33, Theorem 5.5]), 3 ≤ dim mod Λ ≤ 5. By Lemma 2.3
and Remark 3.7, we have 2 ≤ dim Ω1(mod Λ) ≤ 5, and 1 ≤ dim Ω2(modΛ) ≤ 5.

(b) By Remark 3.11 and Remark 3.14, we have 2 ≤ dim Ω1(modΛ) ≤ 4, and 1 ≤dim Ω2(mod
Λ) ≤ 2. The upper bound here is better than that in (a).

Example 4.6 Let Λ be a finite dimensional algebra given by

1•
x4 ��
x3 ��

x2
��

x1
��

2•
x4 ��
x3 ��

x2
��

x1
��

3•
x4 ��
x3 ��

x2
��

x1
��

4• δ �� 5•

with xixj = xjxi, δxi = δxj , 1 ≤ i, j ≤ 4.

Put e = e5, Λ′ := eΛe and Λ′′ := (1−e)Λ(1−e). It follows that Λ =
(

Λ′ M
0 Λ′′

)
with M = (1−e)Λe,

where Λ′ is a finite dimensional algebra given by • and Λ′′ is a finite dimensional algebra given
by

1•
x4 ��
x3 ��

x2
��

x1
��

2•
x4 ��
x3 ��

x2
��

x1
��

3•
x4 ��
x3 ��

x2
��

x1
��

4• with xixj = xjxi, 1 ≤ i, j ≤ 4.

Notice that Λ′M is projective and dim mod Λ′ = 0. By [32, Example 3.4], we have dim mod Λ′′ =
3. By Example 4.5, we have dim Ω1(modΛ′′) = 2. Then

(a) By Remarks 3.11 and 3.14 (or [33, Theorem 5.5]), we have 3 ≤ dim mod Λ ≤ 4. Then
by Lemma 2.3 and Remark 3.7, we have 2 ≤ dim Ω1(mod Λ) ≤ 4.

(b) By Remarks 3.11 and 3.14, we have 2 ≤ dim Ω1(modΛ) ≤ 3. The upper bound here is
better than that in (a).

Conflict of Interest The authors declare no conflict of interest.

References
[1] Asadollahi, J., Bahiraei, P., Hafezi, R., et al.: On relative derived categories. Comm. Algebra, 44(12),

5454–5477 (2016)

[2] Auslander, M.: Representation dimension of Artin algebras, Queen Mary College Mathematical Notes,

University of London, 1971

[3] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras, Cambridge Studies in

Advanced Mathematics, 36, Cambridge University Press, Cambridge, 1995



1058 Ma X. et al.

[4] Ballard, M., Favero, D., Katzarkov, L.: Orlov spectra: bounds and gaps. Invent. Math., 189, 359–430

(2012)

[5] Beligiannis, A.: Some ghost lemmas, survey for “The representation dimension of Artin algebras”, Bielefeld

2008, http://www.mathematik.uni-bielefeld.de/~sek/2008/ghosts.pdf
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