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Abstract

We investigate the behavior of the extension dimension of subcategories of abelian categories under
recollements. Let Λ′,Λ,Λ′′ be artin algebras such that (mod Λ′,mod Λ,mod Λ′′) is a recollement, and
let D′ and D′′ be subcategories of mod Λ′ and mod Λ′′ respectively. For any n,m ≥ 0, under some
conditions, we get dim Ωk(D) ≤ dim Ωn(D′) + dim Ωm(D′′) + 1, where k = max{m,n} and D is the
subcategory of mod Λ glued by D′ and D′′; moreover, we give a sufficient condition such that the
converse inequality holds true. As applications, some results for Igusa-Todorov subcategories and
syzygy finite subcategories are obtained.

1 Introduction

Given a triangulated category T , Rouquier introduced in [25, 26] the dimension of T under the idea

of Bondal and van den Bergh in [7]. This dimension and the infimum of the Orlov spectrum of T
coincide, see [4, 20]. This dimension plays an important role in representation theory. For example, it

can be used to compute the representation dimension of artin algebras ([25, 19]). As an analogue of the

dimension of triangulated categories, the extension dimension dimAD of a subcategory D of an abelian

category A was introduced by Beligiannis in [5], also see [10]. Let Λ be an artin algebra. Note that

the representation dimension of Λ is at most two (that is, Λ is of finite representation type) if and only

if dim mod Λ(:= dimmod Λ mod Λ) = 0 ([5]). So, like the representation dimension of Λ, the extension

dimension dim mod Λ is also an invariant that measures how far Λ is from of finite representation type.

It was shown that the extension dimension is useful in studying the representation type of algebras and

finitistic dimension conjecture ([33]).

Recollements of triangulated and abelian categories were introduced in [6, 11] in connection with

derived categories of sheaves on topological spaces with the idea that one triangulated category may be

“glued together” from two others. Recollements provide a useful reduction technique for some homo-

logical properties such as the finiteness of global dimension and finitistic dimension [9, 13, 21, 29], the

Gorensteinness [1, 12, 17, 24] and the representation type and representation dimension of artin algebras

as well as the extension dimension of abelian categories [21, 33], and so on. Following the above philoso-

phy, we will study the behavior of the extension dimension of certain subcategories of an abelian category

under recollements.
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For an artin algebra Λ, we use mod Λ to denote the category of finitely generated left Λ-modules. Let

Λ′, Λ and Λ′′ be artin algebras such that there is a recollement of module categories:

mod Λ′ i∗ // mod Λ
i∗oo

i!oo
j∗ // mod Λ′′
j!oo

j∗oo
.

Our main results are as follows.

Theorem 1.1. (Theorem 3.8) Let (mod Λ′,mod Λ,mod Λ′′) be a recollement, and let D′ and D′′ be

subcategories of mod Λ′ and mod Λ′′ respectively. Assume that i! is exact. For any n,m ≥ 0, if one of

the following conditions holds:

(1) m = 0,

(2) m ≥ 1 and i!j! preserves projective objects,

then

dimmod Λ Ωk(D) ≤ dimmod Λ′ Ω
n(D′) + dimmod Λ′′ Ω

m(D′′) + 1,

where k = max{m,n} and D = {D ∈ mod Λ | i!(D) ∈ D′ and j∗(D) ∈ D′′}.

Moreover, we have the following

Theorem 1.2. (Theorem 3.12) Let (mod Λ′,mod Λ,mod Λ′′) be a recollement, and let D be a subcategory

of mod Λ with i∗i
!(D) ⊆ D and j∗j

∗(D) ⊆ D. If i! is exact, then

max{dimmod Λ′ Ω
n(i!(D)),dimmod Λ′′ Ω

n(j∗(D))} ≤ dimmod Λ Ωn(D)

for some n ≥ 0.

Then we apply these results to Igusa-Todorov subcategories and syzygy finite subcategories. Some

known results are obtained as corollaries. Finally, we give some examples to illustrate the obtained

results.

Throughout this paper, all abelian categories have enough projective and injective objects and all

subcategories are full, additive and closed under isomorphisms. All algebras are artin algebras. Finally,

we recall the notion of upper triangular matrix artin algebras. Let Λ′,Λ′′ be artin algebras and Λ′MΛ′′

an (Λ′,Λ′′)-bimodule such that Λ′M and MΛ′′ are finitely generated, and let Λ =
(

Λ′ M
0 Λ′′

)
be a triangular

matrix algebra. Then Λ is an artin algebra ([3, Proposition III.2.1]). A module in mod Λ can be uniquely

written as a triple
(
X
Y

)
f

with X ∈ mod Λ′, Y ∈ mod Λ′′ and f ∈ HomΛ′(M ⊗Λ′′ Y,X) ([3, p.76]).

2 Preliminaries

Let A be an abelian category, and let D be a class of objects in A. We use addD to denote the subcategory

of A consisting of direct summands of finite direct sums of objects in D.

Let U1, U2, · · · ,Un be classes of objects in A. Define

U1 � U2 := add{A ∈ A | there exists an exact sequence

0 // U1
// A // U2

// 0 in A with U1 ∈ U1 and U2 ∈ U2}.
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Inductively, define

U1 � U2 � · · · � Un := add{A ∈ A | there exists an exact sequence 0 // U // A // V // 0

in A with U ∈ U1 and V ∈ U2 � · · · � Un}.

For a class U of A, set 〈U〉0 := 0, 〈U〉1 := addU , 〈U〉n := 〈U〉1 � 〈U〉n−1 for any n ≥ 2, and 〈U〉∞ :=⋃
n≥0〈U〉n ([5]). For subcategories U , V and W of A, by [10, Proposition 2.2], we have

(U � V) �W = U � (V �W).

Definition 2.1. ([5, 10, 33]) For a subcategory D of A, the extension dimension dimAD of D is defined

as

dimAD := inf{n ≥ 0 | D ⊆ 〈T 〉n+1 with T ∈ A}.

When there is no ambiguity, we write dimD := dimAD for short.

Let A be an abelian category, and let M ∈ A and m ≥ 0. We use ΩmA (M) to denote the m-th syzygy

of M ; in particular, Ω0
A(M) = M . Let D be a subcategory of A. We use ΩmA (D) to denote the full

subcategory of A consisting of those objects in A that are either projective or direct summands of m-th

syzygies of objects in D. Dually, the m-th cosyzygy Ω−mA (M) of M and the subcategory Ω−mA (D) are

defined.

Lemma 2.2. Let A be an abelian category and let X,T ∈ A. If X ∈ 〈T 〉n, then for any n ≥ 1 and i ≥ 0,

we have

(1) ΩiA(X) ∈ 〈ΩiA(T )〉n.

(2) Ω−iA (X) ∈ 〈Ω−iA (T )〉n.

Immediately, we get the following result.

Lemma 2.3. Let A be an abelian category and D a subcategory of A. Then for any m ≥ n ≥ 0, we have

dim ΩmA (D) ≤ dim ΩnA(D).

Lemma 2.4. Let A be an abelian category and n ≥ 1, and let

0 // A // B // C // 0

be an exact sequence in A. If there exist T1, T2 ∈ A such that A ∈ 〈T1〉n and B ∈ addT2, then C ∈
〈T2 ⊕ Ω−1

A (T1)〉n+1.

Proof. By [33, Lemma 3.2], we have the following exact sequence

0 // B // C ⊕ I // Ω−1
A (A) // 0

in A with I injective. Then, by Lemma 2.2 and [33, Proposition 2.2(1) and Corollary 2.3(1)], we have

C ∈ 〈T2〉1 � 〈Ω−1
A (T1)〉n ⊆ 〈T2 ⊕ Ω−1

A (T1)〉n+1.
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We need the following easy and useful fact.

Lemma 2.5. Let A and B be abelian categories and n ≥ 0, and let F : A → B be an exact functor. If F

preserves projective objects, then ΩnB(F (X)) = F (ΩnA(X)) for any X ∈ A.

Proof. For any X ∈ A, consider the following exact sequence

0 // ΩnA(X) // Pn−1
// Pn−2

// · · · // P0
// X // 0

in A with all Pi projective. Applying the functor F to it yields an exact sequence

0 // F (ΩnA(X)) // F (Pn−1) // F (Pn−2) // · · · // F (P0) // F (X) // 0

in B with all F (Pi) projective by assumption. Thus ΩnB(F (X)) = F (ΩnA(X)).

The following definition is cited from [11].

Definition 2.6. A recollement, denoted by (A,B, C), of abelian categories is a diagram

A i∗ // B
i∗oo

i!oo
j∗ // C
j!oo

j∗oo

of abelian categories and additive functors such that

(1) (i∗, i∗), (i∗, i
!), (j!, j

∗) and (j∗, j∗) are adjoint pairs.

(2) i∗, j! and j∗ are fully faithful.

(3) Im i∗ = Ker j∗.

In the rest of this section, we assume that (A,B, C) is a recollement of abelian categories as in Definition

2.6. We list some properties of such recollements (see [11, 16], [18]–[23] and [33]), which will be used in

the sequel.

Lemma 2.7. We have

(1) i∗j! = 0 = i!j∗.

(2) The functors i∗, j
∗ are exact, and the functors i∗, j! are right exact, and the functors i!, j∗ are left

exact.

(3) All natural transformations i∗i∗ // 1A , 1A // i!i∗ , 1C // j∗j! , and j∗j∗ // 1C are natural

isomorphisms. Moreover, all functors i∗, i! and j∗ are dense.

(4) For any object X ∈ B, if i∗ is exact, there is the following exact sequence

0 // j!j∗(X) // X // i∗i∗(X) // 0

in B; and if i! is exact, then there is the following exact sequence

0 // i∗i!(X) // X // j∗j∗(X) // 0

in B.
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(5) If i∗ is exact, then i!j! = 0 and j! is exact; and if i! is exact, then i∗j∗ = 0 and j∗ is exact.

(6) The functors i∗ and j! preserve projective objects. If i! is exact, then i∗ and j∗ preserve projective

objects.

We get the following observation.

Lemma 2.8. We have the following assertions.

(1) If i! is exact, then there is an exact sequence of natural transformations

0 // i∗i!j! // j! // j∗ // 0 .

(2) If i∗ is exact, then there is an exact sequence of natural transformations

0 // j! // j∗ // i∗i∗j∗ // 0 .

Proof. (1) By [11, Proposition 4.4], there is an exact sequence of natural transformations

0 // i∗i!j! // j! // j∗ // i∗i∗j∗ // 0 .

Since i! is exact, we have i∗j∗ = 0 by Lemma 2.7, and thus the assertion follows.

(2) It is a dual of (1).

As a consequence of Lemmas 2.7 and 2.8, we get the following

Remark 2.9. Let

0 // C ′′ // C ′ // C // 0

be an exact sequence in C. Assume that i! is exact. By Lemma 2.7, we have that j∗ is exact. So

0 // j∗(C ′′) // j∗(C ′) // j∗(C) // 0

is exact in B. By Lemma 2.8, we have the following exact sequence

0 // i∗i!j!(C ′) // j!(C ′) // j∗(C ′) // 0

in B. One can get the following pullback diagram

0

��

0

��
i∗i

!j!(C
′)

��

i∗i
!j!(C

′)

��
0 // K //

��

j!(C
′) //

��

j∗(C) // 0

0 // j∗(C ′′) //

��

j∗(C
′) //

��

j∗(C) // 0

0 0.
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The following result generalizes [8, Lemma 4.2], which is useful in the sequel.

Lemma 2.10. For any n ≥ 1, assume that i! is exact and i!j! preserves projective objects. Then, for any

X ∈ B, there exists an exact sequence

0 // i∗i!j!(Pn−1) // ΩnB(j∗j
∗(X)) // j∗(ΩnC(j

∗(X))) // 0

in B, where Pn−1, a projective object in C, lies in the exact sequence

0 // ΩnC(j
∗(X)) // Pn−1

// Ωn−1
C (j∗(X)) // 0 .

Proof. Notice that j∗(X) ∈ C, consider the following exact sequence

0 // Ω1
C(j
∗(X)) // P0

// j∗(X) // 0

in C with P0 a projective object. By Remark 2.9, we get the following pullback diagram

0

��

0

��
i∗i

!j!(P0)

��

i∗i
!j!(P0)

��
0 // K1

//

��

j!(P0) //

��

j∗j
∗(X) // 0

0 // j∗(Ω1
C(j
∗(X))) //

��

j∗(P0) //

��

j∗j
∗(X) // 0

0 0.

Since j! preserves projective objects by Lemma 2.7, j!(P0) is a projective object in B. So Ω1
B(j∗j

∗(X)) =

K1 and the assertion for n = 1 follows.

Now applying Remark 2.9 to the exact sequence

0 // Ω2
C(j
∗(X)) // P1

// Ω1
C(j
∗(X)) // 0

in C with P1 projective yields the following pullback diagram

0

��

0

��
i∗i

!j!(P1)

��

i∗i
!j!(P1)

��
0 // K2

//

��

j!(P1) //

��

j∗(Ω
1
C(j
∗(X))) // 0

0 // j∗(Ω2
C(j
∗(X))) //

��

j∗(P1) //

��

j∗(Ω
1
C(j
∗(X))) // 0

0 0.
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We also get the following pullback diagram

0

��

0

��
K2

��

K2

��
0 // i∗i!j!(P0) // i∗i!j!(P0)⊕ j!(P1) //

��

j!(P1) //

��

0

0 // i∗i!j!(P0) // K1
//

��

j∗(Ω
1
C(j
∗(X))) //

��

0

0 0.

Notice that i∗ and i!j! preserve projective objects by Lemma 2.7 and assumption, so Ω2
B(j∗j

∗(X)) = K2.

Repeating this process, we can get the desired exact sequence

0 // i∗i!j!(Pn−1) // ΩnB(j∗j
∗(X)) // j∗(Ωn(j∗(X))) // 0

in B, where Pn−1, a projective object, lies in the exact sequence

0 // ΩnC(j
∗(X)) // Pn−1

// Ωn−1
C (j∗(X)) // 0 .

3 Main results

Let Λ be an artin algebra, and D a subcategory of mod Λ.

(1) D is said to be of finite representation type, if there is some N ∈ mod Λ such that addD = addN ;

that is, the number of non-isomorphic indecomposable Λ-modules appeared in D is finite. In

particular, if D = mod Λ, it is said that Λ is of finite representation type (see [2]).

(2) D is said to be m-syzygy finite if the subcategory Ωm(D) := Ωmmod Λ(D) is of finite representation

type. In particular, if D = mod Λ, it is said that Λ is an m-syzygy finite algebra (see [27]).

Remark 3.1. A subcategory D ⊆ mod Λ is n-syzygy finite if and only if dim Ωn(D) = 0. In particular,

Λ is of finite representation type if and only if dim mod Λ = 0 ([33, Corollary 3.8]).

Definition 3.2. ([28, Definition 3.1]) Let D be a subcategory of mod Λ. Then D is said to be (n-)Igusa-

Todorov provided that there exist V ∈ mod Λ and n ≥ 0, such that for any M ∈ Ωn(D), there is an exact

sequence

0 −→ V1 −→ V0 −→M −→ 0

in mod Λ with V1, V0 ∈ addV . The module V is then called an (n-)D-Igusa-Todorov module.

In particular, if D = mod Λ, it is said that Λ is an (n-)Igusa-Todorov algebra and the module V is

then called an (n-)-Igusa-Todorov module (see [27] and [14, Lemma 3.6]).
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The following result generalizes [33, Theorem 3.14], which gives an equivalent characterization of

(n-)Igusa-Todorov subcategories and means that dim Ωn(mod Λ) is an invariant for measuring how far a

subcategory of mod Λ is from being Igusa-Todorov.

Proposition 3.3. Let D be a subcategory of mod Λ. Then for any n ≥ 0, the following statements are

equivalent.

(1) D is n-Igusa-Todorov.

(2) dim Ωn(D) ≤ 1.

Proof. (1)⇒ (2) Assume that D is n-Igusa-Todorov. Let X ∈ Ωn(D). Then there exists V ∈ mod Λ such

that the following sequence

0 // V1
// V0

// X // 0

in mod Λ with V1, V0 ∈ addV is exact. By Lemma 2.4, we have

X ∈ 〈V ⊕ Ω−1(V )〉2.

Thus dim Ωn(D) ≤ 1.

(2) ⇒ (1) Assume that dim Ωn(D) ≤ 1 and X ∈ D. Then there exists V ∈ mod Λ such that the

following sequence

0 −→ V1 −→ Ωn(X) −→ V2 −→ 0,

in mod Λ with V1, V2 ∈ 〈V 〉1 is exact. By [33, Lemma 3.2], we obtain the following exact sequence

0 −→ Ω1(V2) −→ V1 ⊕ P −→ Ωn(X) −→ 0

in mod Λ with P projective. Notice that both Ω1(V2) and V1 ⊕ P are in add(Ω1(V ) ⊕ V ⊕ Λ), so D is

n-Igusa-Todorov.

As an immediate consequence, we get the following

Corollary 3.4. ([28, Proposition 3.4]) Let D be a subcategory of mod Λ. If D is n-Igusa-Todorov, then

Ωi(D) is also n-Igusa-Todorov for any i ≥ 1. In particular, D is m-Igusa-Todorov for m ≥ n in that case.

Proof. It follows from Lemma 2.3 and Proposition 3.3.

Remark 3.5. ([27, Remark 2.4]) If Λ is an n-Igusa-Todorov algebra, then Λ is also an m-Igusa-Todorov

algebra for any m ≥ n.

The following result generalizes [33, Proposition 3.15].

Proposition 3.6. Let D be a subcategory of mod Λ and m,n ≥ 0. If dim Ωn(D) ≤ m, then dim Ωn−i(D) ≤
m+ i for any 0 ≤ i ≤ n. In particular, if D is n-Igusa-Todorov, then dimD ≤ n+ 1.
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Proof. Let X ∈ D. If n = 0 (also i = 0), then dimD ≤ m. Now suppose n ≥ 1. Consider the following

exact sequence

0 // Ωn(X) // Pn−1
// · · · // Pn−i

  

// Pn−i−1 · · · // P0
// X // 0

Ωn−i(X)

;;

in mod Λ with all Pl projective. Using Lemma 2.4 repeatedly, we have Ωn−i(X) ∈ 〈T 〉m+i+1 for some

T ∈ mod Λ. Thus dim Ωn−i(D) ≤ m+ i. The last assertion follows from Proposition 3.3.

We have the following

Remark 3.7. Let D be a subcategory of mod Λ.

(1) If dimD = n, then dim Ωi(D) ≥ n − i for any 0 ≤ i ≤ n by Proposition 3.6. In particular, if

dim mod Λ = n, then dim Ωi(mod Λ) ≥ n− i for any 0 ≤ i ≤ n.

(2) If D is n-syzygy finite, then dim Ωn−1(D) ≤ 1, and so D is (n − 1)-Igusa-Todorov by Proposition

3.3. In addition, we have dimD ≤ n by Proposition 3.6. In particular, if Λ is n-syzygy finite, then

dim Ωn−1(mod Λ) ≤ 1, it follows from Proposition 3.3 that Λ is a (n − 1)-Igusa-Todorov algebra

([27, Proposition 2.5]). In addition, we have dim mod Λ ≤ n.

From now on, assume that Λ′, Λ and Λ′′ are artin algebras and

mod Λ′ i∗ // mod Λ
i∗oo

i!oo
j∗ // mod Λ′′
j!oo

j∗oo

is a recollement.

Theorem 3.8. Let D′ and D′′ be subcategories of mod Λ′ and mod Λ′′ respectively. Assume that i! is

exact. For any n,m ≥ 0, if one of the following conditions holds:

(1) m = 0,

(2) m ≥ 1 and i!j! preserves projective modules,

then

dim Ωk(D) ≤ dim Ωn(D′) + dim Ωm(D′′) + 1,

where k = max{m,n} and D = {D ∈ mod Λ | i!(D) ∈ D′ and j∗(D) ∈ D′′}.

Proof. Let X ∈ D. Then i!(X) ∈ D′ and j∗(X) ∈ D′′. Suppose dim Ωn(D′) = p and dim Ωm(D′′) = q.

Then there exist V ′ ∈ mod Λ′ and V ′′ ∈ mod Λ′′ such that Ωn(i!(X)) ∈ 〈V ′〉p+1 and Ωm(j∗(X)) ∈
〈V ′′〉q+1.

Since i! is exact, there exists the following exact sequence

0 // i∗i!(X) // X // j∗j∗(X) // 0
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in mod Λ by Lemma 2.7. Set k := max{m,n}. By the horseshoe lemma, there exists an exact sequence

0 // Ωk(i∗i
!(X)) // Ωk(X) // Ωk(j∗j

∗(X)) // 0 (3.1)

in mod Λ.

(1) If m = 0, then j∗(X) ∈ 〈V ′′〉q+1. Since j∗ is exact by Lemma 2.7, we have

j∗j
∗(X) ∈ j∗〈V ′′〉q+1 ⊆ 〈j∗(V ′′)〉q+1

by [33, Lemma 2.4]. It follows from Lemma 2.2 that Ωk(j∗j
∗(X)) ∈ 〈Ωk(j∗(V

′′))〉q+1.

Note that Ωk(i!(X)) ∈ 〈Ṽ ′〉p+1 for some Ṽ ′ ∈ mod Λ′ by Lemma 2.3. Since i∗ is exact and preserves

projective modules by Lemma 2.7, we have

Ωk(i∗i
!(X)) = i∗(Ω

k(i!(X))) (by Lemma 2.5)

∈ i∗(〈Ṽ ′〉p+1) ⊆ 〈i∗(Ṽ ′)〉p+1. (by [33, Lemma 2.4])

Following the exact sequence (3.1), we have

Ωk(X) ∈ 〈i∗(Ṽ ′)〉p+1 � 〈Ωk(j∗(V
′′))〉q+1 ⊆ 〈i∗(Ṽ ′)⊕ Ωk(j∗(V

′′))〉p+q+2

by [33, Proposition 2.2(1) and Corollary 2.3(1)]. Thus dim Ωk(D) ≤ p+ q + 1.

(2) Now let m ≥ 1. Suppose p ≥ 1 and q ≥ 0. By Lemma 2.3, we have dim Ωk(D′) ≤ p and

dim Ωk(D′′) ≤ q. Without loss of generality, we still assume Ωk(i!(X)) ∈ 〈V ′〉p+1 and Ωk(j∗(X)) ∈
〈V ′′〉q+1 for some V ′ ∈ mod Λ′ and V ′′ ∈ mod Λ′′. Consider the following exact sequence

0 // V ′1 // Ωk(i!(X)) // V ′2 // 0

in mod Λ′ with V ′1 ∈ addV ′ and V ′2 ∈ 〈V ′〉p. By [31, Lemma 3.3], there is the following exact sequence

0 // Ω1(V ′2) // P ′ ⊕ V ′1 // Ωk(i!(X)) // 0

in mod Λ′ with P ′ projective. Applying the exact functor i∗ to it yields the following exact sequence

0 // i∗(Ω1(V ′2)) // i∗(P ′ ⊕ V ′1) // i∗(Ωk(i!(X))) // 0,

where Ω1(V ′2) ∈ 〈Ω1(V ′)〉p by Lemma 2.2. Then by [33, Lemma 2.4], we have

i∗(Ω
1(V ′2)) ∈ i∗(〈Ω1(V ′)〉p) ⊆ 〈i∗(Ω1(V ′))〉p.

Since i∗ is exact and preserves projective modules by Lemma 2.7, we have that i∗(P
′) is projective in

mod Λ and Ωk(i∗i
!(X)) = i∗(Ω

k(i!(X))) by Lemma 2.5, so Ωk(i∗i
!(X)) ∈ 〈i∗(Ω1(V ′))〉p.

By Lemma 2.10, there exists the following exact sequence

0 // i∗i!j!(Pk−1) // Ωk(j∗j
∗(X)) // j∗(Ωk(j∗(X))) // 0

in mod Λ with Pk−1 projective. By [31, Lemma 3.3], there exists the following exact sequence

0 // Ω1(j∗(Ω
k(j∗(X)))) // P ⊕ i∗i!j!(Pk−1) // Ωk(j∗j

∗(X)) // 0
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in mod Λ with P projective. Since j∗ is exact by Lemma 2.7, we have

j∗(Ω
k(j∗(X))) ∈ j∗(〈V ′′〉q+1) ⊆ 〈j∗(V ′′)〉q+1

by [33, Lemma 2.4]. It follows from Lemma 2.2 that

Ω1(j∗(Ω
k(j∗(X)))) ∈ 〈Ω1(j∗(V

′′))〉q+1.

Notice that i∗ and i!j! preserve projective modules by Lemma 2.7 and assumption, so i∗i
!j!(Pk−1) is a

projective Λ-module. Consider the following commutative diagram

0

��

0

��

0

��
0 // i∗(Ω1(V ′2)) //

��

V1

��

// Ω1(j∗(Ω
k(j∗(X))))

��

// 0

0 // i∗(P ′ ⊕ V ′1) //

��

i∗(P
′ ⊕ V ′1)⊕ P ⊕ i∗i!j!(Pk−1) //

��

P ⊕ i∗i!j!(Pk−1) //

��

0

0 // Ωk(i∗i
!(X)) //

��

Ωk(X) //

��

Ωk(j∗j
∗(X)) //

��

0.

0 0 0

(3.2)

Then

V1 ∈ 〈i∗(Ω(V ′))〉p � 〈Ω(j∗(V
′′))〉q+1

⊆ 〈i∗(Ω(V ′))⊕ Ω(j∗(V
′′))〉p+q+1

by [33, Proposition 2.2(1) and Corollary 2.3(1)]. Applying Lemma 2.4 to the middle column in the

diagram (3.2) yields

Ωk(X) ∈ 〈V 〉p+q+2,

where V := i∗(V
′)⊕ Λ⊕ Ω−1(i∗(Ω(V ′))⊕ Ω(j∗(V

′′))). Thus

dim Ωk(D) ≤ p+ q + 1.

If p = 0, then V ′2 = 0, and the desired assertion also follows.

Combining with Theorem 3.8 with Proposition 3.3, we have

Corollary 3.9. Let D′ and D′′ be subcategories of mod Λ′ and mod Λ′′ respectively. Assume that i! is

exact and i!j! preserves projective modules. If D′ is n-Igusa-Todorov and D′′ is m-Igusa-Todorov, then

dim Ωk(D) ≤ 3,

where k = max{m,n} and D := {D ∈ mod Λ | i!(D) ∈ D′ and j∗(D) ∈ D′′}.
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The following result provides a sufficient condition for a subcategory D ⊆ mod Λ being n-Igusa-

Todorov.

Corollary 3.10. Let D′ and D′′ be subcategories of mod Λ′ and mod Λ′′ respectively. Assume that i! is

exact and i!j! preserves projective modules. If D′ is n-syzygy finite and D′′ is m-syzygy finite, then D is a

k-Igusa-Todorov subcategory, where k = max{m,n} and D = {D ∈ mod Λ | i!(D) ∈ D′ and j∗(D) ∈ D′′}.

Proof. It follows from Theorem 3.8, Remark 3.1 and Proposition 3.3.

Taking D′ = mod Λ′ and D′′ = mod Λ′′ in Theorem 3.8, it is easy to check that D = {D ∈ mod Λ |
i!(D) ∈ D′ and j∗(D) ∈ D′′} = mod Λ. Then we have

Remark 3.11. Assume that i! is exact and n,m ≥ 0. Set k := max{m,n}. If one of the following

conditions holds:

(1) m = 0,

(2) m ≥ 1 and i!j! preserves projective objects,

then

dim Ωk(mod Λ) ≤ dim Ωn(mod Λ′) + dim Ωm(mod Λ′′) + 1.

In particular, we have

(a) (see [33, Theorem 5.5]) If n = 0 = m, then dim mod Λ ≤ dim mod Λ′ + dim mod Λ′′ + 1.

(b) If Λ′ is n-Igusa-Todorov and Λ′′ is m-Igusa-Todorov, then dim Ωk(mod Λ) ≤ 3.

(c) If Λ′ is n-syzygy finite and Λ′′ is m-syzygy finite, then Λ is k-Igusa-Todorov.

The following result shows that the converse inequality in Theorem 3.8 holds true under certain

conditions.

Theorem 3.12. Let D be a subcategory of mod Λ with i∗i
!(D) ⊆ D and j∗j

∗(D) ⊆ D. If i! is exact, then

max{dim Ωn(i!(D)),dim Ωn(j∗(D))} ≤ dim Ωn(D)

for some n ≥ 0.

Proof. Suppose dim Ωn(D) = p. Then for any X ∈ D, there exists V ∈ mod Λ such that Ωn(X) ∈ 〈V 〉p+1.

Let X ′ ∈ i!(D). Consider the following exact sequence

0 // Ωn(X ′) // P ′n−1
// P ′n−2

// · · · // P ′0 // X ′ // 0

in mod Λ′ with all P ′i projective. Since i∗ is exact and preserves projective modules by Lemma 2.7, we

have Ωn(i∗(X
′)) = i∗(Ω

n(X ′)) by Lemma 2.5. Notice that i∗(X
′) ∈ D, so i∗(Ω

n(X ′)) ∈ 〈V 〉p+1 by

assumption. Since i! is exact again by assumption, we have

Ωn(X ′) ∼= i!i∗(Ω
n(X ′)) ∈ i!(〈V 〉p+1) ⊆ 〈i!(V )〉p+1
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by [33, Lemma 2.4]. Thus dim Ωn(i!(D)) ≤ p.
Let X ′′ ∈ j∗(D). Notice that j∗(X

′′) ∈ D, so Ωn(j∗(X
′′)) ∈ 〈V 〉p+1 by assumption. Since j∗ is exact

and preserves projective modules by Lemma 2.7, we have

Ωn(X ′′) ∼= Ωn(j∗j∗(X
′′)) = j∗(Ωn(j∗(X

′′))) (by Lemma 2.5)

∈ j∗(〈V 〉p+1) ⊆ 〈j∗(V )〉p+1. (by [33,Lemma 2.4])

Thus dim Ωn(j∗(D)) ≤ p.

By Theorem 3.12, Proposition 3.3 and Remark 3.1, we have

Corollary 3.13. Let D be a subcategory of mod Λ with i∗i
!(D) ⊆ D and j∗j

∗(D) ⊆ D and n ≥ 0. Assume

that i! is exact. Then we have

(1) If D is n-Igusa-Todorov, then both i!(D) and j∗(D) are n-Igusa-Todorov.

(2) If D is n-syzygy finite, then both i!(D) and j∗(D) are n-syzygy finite.

Take D = mod Λ in Theorem 3.12. It is clear that i∗i
!(D) ⊆ D and j∗j

∗(D) ⊆ D and that i!(D) =

mod Λ′ and j∗(D) = mod Λ′′. Then we have

Remark 3.14. If i! is exact, then

max{dim Ωn(mod Λ′),dim Ωn(mod Λ′′)} ≤ dim Ωn(mod Λ)

for some n ≥ 0.

In particular, we have

(1) (see [33, Theorem 5.5]) If n = 0, then max{dim mod Λ′,dim mod Λ′′} ≤ dim mod Λ.

(2) If Λ is n-Igusa-Todorov, then both Λ′ and Λ′′ are n-Igusa-Todorov.

(3) If Λ is n-syzygy finite, then both Λ′ and Λ′′ are n-syzygy finite.

Let Λ =
(

Λ′ M
0 Λ′′

)
be a triangular matrix artin algebra. By [21, Example 2.12], we know that

mod Λ′ i∗ // mod Λ
i∗oo

i!oo
j∗ // mod Λ′′
j!oo

j∗oo

is a recollement of module categories, where

i∗(

(
X

Y

)
f

) = Coker f, i∗(X) =

(
X

0

)
, i!(

(
X

Y

)
f

) = X,

j!(Y ) =

(
M ⊗Λ′′ Y

Y

)
1

, j∗(

(
X

Y

)
f

) = Y, j∗(Y ) =

(
0

Y

)
.

By [15, Lemma 3.2], i! admits a right adjoint, then i! is exact. If MΛ′′ is projective, then j! is exact. If

Λ′M is projective, notice that i!j!(Y ) = i!(
(
M⊗Λ′′Y

Y

)
1
) = M ⊗Λ′′ Y , then i!j! preserves projective objects.

By Remark 3.14, we get immediately the following corollary, which generalizes some results in [8].

Corollary 3.15. Let Λ =
(

Λ′ M
0 Λ′′

)
. Then we have

(1) (cf. [8, Theorem 4.5]) If Λ is n-Igusa-Todorov, then both Λ′ and Λ′′ are n-Igusa-Todorov.

(2) (cf. [8, Theorem 4.3]) If Λ is n-syzygy finite, then both Λ′ and Λ′′ are n-syzygy finite.
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4 Examples

In this section, all algebras are finite dimensional algebras over an algebraically closed field. For a quiver

Q, we use ei to denote the idempotent corresponding to the vertex i.

Example 4.1. Let Λ be a finite dimensional algebra given by

4•
γ

~~

θ

~~
β~~

η

  
5•

α

��

δ   

2•

ξ~~

1•oo with ηξ = γδ, α3 = βδ = αδ = 0.

3•

By [27, Example 1], Λ is a 1-Igusa-Todorov algebra.

(a) Put e = e1 + e2 + e3, Λ′ := eΛe and Λ′′ := (1 − e)Λ(1 − e). It follows that Λ =
(

Λ′ M
0 Λ′′

)
with

M = (1 − e)Λe, where Λ′ is a finite dimensional algebra given by • •oo •oo and Λ′′ is a

finite dimensional algebra given by

•
γ

��

θ

��
β

��
•

α

��
with α3 = 0.

By Corollary 3.15, Λ′ and Λ′′ are 1-Igusa-Todorov algebras. In fact, Λ′ (it is of finite representation

type) and Λ′′ (it is a matrix algebra formed by two representation-finite algebras [27, Corollary

3.3]) are 0-Igusa-Todorov algebras.

(b) Put e := e3, Λ′ := eΛe and Λ′′ := (1− e)Λ(1− e). It follows that Λ =
(

Λ′ M
0 Λ′′

)
with M = (1− e)Λe,

where Λ′ is a finite dimensional algebra given by • and Λ′′ is a finite dimensional algebra given by

4•
γ

~~

θ

~~
β~~

η

  
5•

α

��
2• 1•oo with α3 = 0.

By Corollary 3.15, Λ′ and Λ′′ are 1-Igusa-Todorov algebras. In fact, Λ′ (it is of finite representation

type) is a 0-Igusa-Todorov algebra.

We claim that Λ′′ is a 1-Igusa-Todorov algebra. Let Λ̃′′ be a finite dimensional algebra given by

•
γ

��
β

��

η

��
•

α

��
• •oo with α3 = 0.

Then Λ̃′′ is a trivially twisted extension (see [30] for details) of two representation-finite algebras:

Λ1 : •
β

�� ��
•

α

��
• •oo with α3 = 0,

Λ2 : •
γ

��
• .
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By [27, Corollary 3.3], we have that Λ̃′′ is a 0-Igusa Todorov algebra. Let I be the ideal of Λ′′

generated by θ. Then Λ̃′′ is the quotient algebra of Λ by I. Since I rad Λ′′ = 0, it follows from [27,

Theorem 3.4] that Λ′′ is a 1-Igusa-Todorov algebra.

Example 4.2. Let Λ be a finite dimensional algebra given by

4•
θ

~~
γ

~~
η

  
5•

α

��

δ   

2•

ξ~~

1•oo with ηξ = γδ, α3 = αδ = 0.

3•

By [27, Example 2], Λ is a 2-Igusa-Todorov algebra. Put e := e1 + e2 + e3, Λ′ := eΛe and Λ′′ :=

(1− e)Λ(1− e). It follows that Λ =
(

Λ′ M
0 Λ′′

)
with M = (1− e)Λe, where Λ′ is a finite dimensional algebra

given by • •oo •oo and Λ′′ is a finite dimensional algebra given by

•
θ

��
γ

��
•

α

��
with α3 = 0.

By Corollary 3.15, Λ′ and Λ′′ are 2-Igusa-Todorov algebras. In fact, Λ′ (it is of finite representation type)

and Λ′′ (it is a matrix algebra formed by two representation-finite algebras) are 0-Igusa-Todorov algebras.

Example 4.3. Let Λ be a finite dimensional algebra given by

2•
θ

~~
γ

~~
1•

α

��

δ   

with α3 = αδ = 0.

3•

Put e := e1 + e3, Λ′ := eΛe and Λ′′ := (1− e)Λ(1− e). It follows that Λ =
(

Λ′ M
0 Λ′′

)
with M = (1− e)Λe,

where Λ′ is a finite dimensional algebra given by

•

α

�� // • with α3 = 0.

and Λ′′ is a finite dimensional algebra given by • .

Clearly, Λ′ and Λ′′ are of finite representation type, and so dim mod Λ′ = 0 = dim mod Λ′′ by Remark

3.1. By Theorem 3.8 (or [33, Theorem 5.5]), we have dim mod Λ ≤ 1. In fact, dim mod Λ = 1. We know

that Λ is a 0-Igusa-Todorov algebra from Proposition 3.3 (or [33, Theorem 3.14]). Note that Λ is viewed

as a 2-Igusa-Todorov algebra in [27, Example 3].
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Example 4.4. Let Λ be a finite dimensional algebra given by

1•
x3 33

x1

++
x2 // 2•

x3 33

x1

++
x2 // 3• with xixj = xjxi, 1 ≤ i, j ≤ 3.

Put e := e3, Λ′ := eΛe and Λ′′ := (1−e)Λ(1−e). It follows that Λ =
(

Λ′ M
0 Λ′′

)
with M = (1−e)Λe, where

Λ′ is a finite dimensional algebra given by • and Λ′′ is a finite dimensional algebra given by

•
44

**
// •.

Clearly, dim mod Λ′ = 0 and Λ′M is projective. Notice that Λ′′ is a 0-Igusa-Todorov algebra (it is

a matrix algebra formed by two representation-finite algebras) and is of representation infinite type, so

dim mod Λ′′ = 1. Notice that Λ′M is projective, by Theorem 3.8 and Remark 3.14 (see [33, Theorem

5.5]), we have 1 ≤ dim mod Λ ≤ 2. In fact, dim mod Λ = 2 by [32, Example 3.4].

Example 4.5. Let Λ be a finite dimensional algebra given by

3•

ξ

��

x6 33
x5 33

x4

++

x3

++

4•

η

��

x6 33
x5 33

x4

++

x3

++

5•
x6 33
x5 33

x4

++

x3

++

6•

1•
θ //
γ // 2•

α

QQ

with α3 = 0, xixj = xjxi, xiη = ξθ, 3 ≤ i, j ≤ 6.

Put e = e1 + e2, Λ′ := eΛe and Λ′′ := (1− e)Λ(1− e). It follows that Λ =
(

Λ′ M
0 Λ′′

)
with M = (1− e)Λe,

where Λ′ is a finite dimensional algebra given by

1•
θ //
γ // 2•

α

QQ with α3 = 0

and Λ′′ is a finite dimensional algebra given by

3•
x6 33
x5 33

x4

++

x3

++

4•
x6 33
x5 33

x4

++

x3

++

5•
x6 33
x5 33

x4

++

x3

++

6• with xixj = xjxi, 3 ≤ i, j ≤ 6.

Notice that Λ′M is projective. As in Example 4.2, Λ′ is a 0-Igusa-Todorov algebra, so dim mod Λ′ ≤ 1

(in fact, dim mod Λ′ = 1). By [32, Example 3.4], we have dim mod Λ′′ = 3. By Remark 3.7, we have

dim Ω1(mod Λ′′) ≥ 2. Notice that Λ′′ is 3-syzygy finite, so dim Ω1(mod Λ′′) ≤ 2 by Proposition 3.6, and

thus dim Ω1(mod Λ′′) = 2. Similarly, we have dim Ω1(mod Λ′′) = 1. On the other hand, Λ′ is 2-syzygy

finite (Λ′ is a monomial algebra), so dim mod Λ′ = 0. Then

(a) By Remarks 3.11 and 3.14 (or [33, Theorem 5.5]), 3 ≤ dim mod Λ ≤ 5. By Lemma 2.3 and Remark

3.7, we have 2 ≤ dim Ω1(mod Λ) ≤ 5, and 1 ≤ dim Ω2(mod Λ) ≤ 5.
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(b) By Remark 3.11 and Remark 3.14, we have 2 ≤ dim Ω1(mod Λ) ≤ 4, and 1 ≤ dim Ω2(mod Λ) ≤ 2.

The upper bound here is better than that in (a).

Example 4.6. Let Λ be a finite dimensional algebra given by

1•
x4 33
x3 33

x2

++

x1

++

2•
x4 33
x3 33

x2

++

x1

++

3•
x4 33
x3 33

x2

++

x1

++

4• δ // 5• with xixj = xjxi, δxi = δxj 1 ≤ i, j ≤ 4.

Put e = e5, Λ′ := eΛe and Λ′′ := (1− e)Λ(1− e). It follows that Λ =
(

Λ′ M
0 Λ′′

)
with M = (1− e)Λe, where

Λ′ is a finite dimensional algebra given by • and Λ′′ is a finite dimensional algebra given by

1•
x4 33
x3 33

x2

++

x1

++

2•
x4 33
x3 33

x2

++

x1

++

3•
x4 33
x3 33

x2

++

x1

++

4• with xixj = xjxi, 1 ≤ i, j ≤ 4.

Notice that Λ′M is projective and dim mod Λ′ = 0. By [32, Example 3.4], we have dim mod Λ′′ = 3. By

Example 4.5, we have dim Ω1(mod Λ′′) = 2. Then

(a) By Remarks 3.11 and 3.14 (or [33, Theorem 5.5]), we have 3 ≤ dim mod Λ ≤ 4. Then by Lemma

2.3 and Remark 3.7, we have 2 ≤ dim Ω1(mod Λ) ≤ 4.

(b) By Remarks 3.11 and 3.14, we have 2 ≤ dim Ω1(mod Λ) ≤ 3. The upper bound here is better than

that in (a).
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