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Abstract Let Λ and Γ be artin algebras and ΛUΓ a faithfully balanced selforthogonal bimodule. In this

paper, we first introduce the notion of k-Gorenstein modules with respect to ΛUΓ and then characterize

it in terms of the U -resolution dimension of some special injective modules and the property of the

functors Exti(Exti(−, U), U) preserving monomorphisms, which develops a classical result of Auslander.

As an application, we study the properties of dual modules relative to Gorenstein bimodules. In

addition, we give some properties of ΛUΓ with finite left or right injective dimension.
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1 Introduction
Let Λ be a ring. We use mod Λ (resp. mod Λop) to denote the category of finitely generated
left Λ-modules (resp. right Λ-modules).

Let Λ and Γ be rings. A bimodule ΛTΓ is said to be faithfully balanced if the natural maps
Λ → End(TΓ) and Γ → End(ΛT )op are isomorphisms; and it is said to be selforthogonal if
Exti

Λ(ΛT, ΛT ) = 0 and Exti
Γ(TΓ, TΓ) = 0 for any i ≥ 1.

Let U and A be in mod Λ (resp. mod Γop) and i be a non-negetive integer. We say that the
grade of A with respect to U , written gradeUA, is greater than or equal to i if Extj

Λ(A, U) = 0
(resp. Extj

Γ(A, U) = 0) for any 0 ≤ j < i. We say that the strong grade of A with respect to U ,
written s.gradeUA, is greater than or equal to i if gradeUB ≥ i for all submodules B of A (see
[1]). We give the definition of (k-)Gorenstein modules in terms of the strong grade of modules
as follows.
Definition 1.1 For a non-negative integer k, a module U ∈ mod Λ with Γ = End(ΛU) is
called k-Gorenstein if s.gradeUExti

Γ(N, U) ≥ i for any N ∈mod Γop and 1 ≤ i ≤ k. U is
called Gorenstein if it is k-Gorenstein for all k ≥ 1. Similarly, we may define the notions
of k-Gorenstein modules and Gorenstein modules in mod Γop. A bimodule ΛUΓ is called a
(k-)Gorenstein bimodule if both ΛU and UΓ are (k-)Gorenstein.
Definition 1.2 [2] Let U be in mod Λ (resp. mod Γop) and k a non-negetive integer. A
module M in mod Λ (resp. mod Γop) is said to have U-dominant dimension greater than or
equal to k, written U-dom.dim(ΛM) (resp. U-dom.dim(MΓ)) ≥ k, if each of the first k terms
in a minimal injective resolution of M is cogenerated by ΛU (resp. UΓ), that is, each of these
terms can be embedded into a direct product of copies of ΛU (resp. UΓ).

It is clear that any module in mod Λ (resp. mod Γop) is 0-Gorenstein. Let Λ and Γ be
artin algebras and ΛUΓ a faithfully balanced selforthogonal bimodule with ΛU ∈mod Λ and
UΓ ∈mod Γop. If U -dom.dim(ΛU) ≥ k, then each of the first k terms in a minimal injective
resolution of ΛU is finitely cogenerated, and so each of these terms can be embedded into a
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finite direct product of copies of ΛU . It follows from Lemma 2.6 below that ΛU is k-Gorenstein.
It was shown in [3] that U -dom.dim(ΛU) = U -dom.dim(UΓ). So, at this moment, UΓ is also
k-Gorenstein. Recall from [4] that a module M in mod Λ (resp. mod Γop) is called a QF-3
module if G(M) has a cogenerator which is a direct summand of every other cogenerator, where
G(M) is the subcategory of mod Λ (resp. mod Γop) consisting of all submodules of the modules
generated by M . It was shown in [4, Proposition 2.2] that a finitely cogenerated Λ-module
(resp. Γop-module) M is a QF-3 module if and only if M cogenerates its injective envelope. So
we have that ΛU (resp. UΓ) is 1-Gorenstein if it is a QF-3 module.

A left and right noetherian ring Λ is called k-Gorenstein if, for any 1 ≤ i ≤ k, the i-th
term in a minimal injective resolution of ΛΛ has flat dimension at most i − 1. This notion
was introduced by Auslander and Reiten in [5] as a non-commutative version of commutative
Gorenstein rings. By Definition 1.1 and [6, Auslander’s Theorem 3.7], Λ is a k-Gorenstein ring
if it is k-Gorenstein as a Λ-module. Auslander further proved that the notion of k-Gorenstein
rings is left-right symmetric (see [6, Auslander’s Theorem 3.7]). Wakamatsu in [7, Theorem 7.5]
generalized this result and established the left-right symmetry of the notion of k-Gorenstein
modules.

In this paper, we will give some further characterizations of k-Gorenstein modules in terms
of the U -resolution dimension of some special injective modules and the property of the func-
tors Exti(Exti(−, U), U) preserving monomorphisms, which develops the result of Auslander
mentioned above. Our characterizations will lead to a better comprehension about the the-
ory of selforthogonal bimodules and cotilting theory (Note: the class of cotilting bimodules is
such a kind of faithfully balanced selforthogonal bimodules with finite left and right injective
dimensions [8]).

Throughout this paper, both Λ and Γ are artin algebras (unless stated otherwise), ΛUΓ is a
faithfully balanced selforthogonal bimodule with ΛU ∈mod Λ and UΓ ∈mod Γop.

The following is an outline of this paper. In Section 2 we list some lemmas which will be
used later. In Section 3 we characterize k-Gorenstein modules with respect to ΛUΓ in terms of
the U -resolution dimension (see Section 2 for the definition) of some special injective modules
and the property of the functors Exti(Exti(−, U), U) preserving monomorphisms. In fact, we
will prove the following theorem, which extends [6, Auslander’s Theorem 3.7]:
Theorem The following statements are equivalent :

(1) ΛU is k-Gorenstein;
(2) U -resol.dimΛ(Ei) ≤ i, where Ei is the (i + 1)-st term in a minimal injective of U as a

left Λ-module, for any 0 ≤ i ≤ k − 1;
(3) Exti

Γ(Exti
Λ(−, U), U): mod Λ → mod Λ preserves monomorphisms for any 0 ≤ i ≤ k−1;

(1)op UΓ is k-Gorenstein;
(2)op U -resol.dimΓ(E′

i) ≤ i, where E′
i is the (i + 1)-st term in a minimal injective of U as a

right Γ-module, for any 0 ≤ i ≤ k − 1;
(3)op Exti

Λ(Exti
Γ(−, U), U): mod Γop → mod Γop preserves monomorphisms for any 0 ≤

i ≤ k − 1.

As mentioned above, Wakamatsu in [7, Theorem 7.5] got the equivalence of (1) and (1)op

for noetherian rings. However, the proof here is rather different from that in [7]. Moreover, to
prove such an equivalence (Proposition 3.5), we get some other results (for example, Lemmas 3.2
and 3.3), which are of independent interest themselves. As corollaries of the Theorem above,
we get a new characterization of k-Gorenstein algebras, and we in addition have that, for a
faithfully balanced selforthogonal bimodule ΛUΛ, its left injective dimension and right injective
dimension are identical provided ΛU (or UΛ) is Gorenstein. We, in Section 4, study the dual
theory relative to Gorenstein modules (Theorems 4.1 and 4.4). In the final section we give some
properties of ΛUΓ with finite left or right injective dimension. Some known results in [9] and
[10] are obtained as corollaries.
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2 Preliminaries

In this section we give some lemmas, which are useful in the rest of this paper.
Suppose that A ∈mod Λ (resp. mod Γop). We call HomΛ(ΛA, ΛUΓ) (resp. HomΓ(AΓ, ΛUΓ))

the dual module of A with respect to U , and denote either of these modules by A∗. For a
homomorphism f between Λ-modules (resp. Γop-modules), we put f∗ = Hom(f, ΛUΓ). Let
σA : A → A∗∗ via σA(x)(f) = f(x) for any x ∈ A and f ∈ A∗ be the canonical evaluation
homomorphism. A is called U -reflexive if σA is an isomorphism. Under the assumption of ΛUΓ

being faithfully balanced, it is easy to see that any projective module in mod Λ (resp. mod
Λop) is U -reflexive.

For a Λ-module (resp. Λop-module) X, we use l.fdΛ(X) (resp. r.fdΛ(X)) to denote the
left (resp. right) flat dimension of X, and use l.idΛ(X) (resp. r.idΛ(X)) to denote its left
(resp. right) injective dimension. For a Λ-module (resp. Γop-module) Y , we denote either of
HomΛ(ΛUΓ, ΛY ) and HomΓ(ΛUΓ, YΓ) by ∗Y .

Lemma 2.1 Let Λ and Γ be left and right noetherian rings and n a non-negative inte-
ger. If ΛE (resp. EΓ) is injective, then l.fdΓ(∗E) (resp. r.fdΛ(∗E)) ≤ n if and only if
HomΛ(Extn+1

Γ (A, U), E) (resp. HomΓ(Extn+1
Λ (A, U), E)) = 0 for any A ∈mod Γop (resp. mod

Λ).

Proof It is trivial by [11, Chapter VI, Proposition 5.3].
We use addΛU (resp. addUΓ) to denote the subcategory of mod Λ (resp. mod Γop) consisting

of all modules isomorphic to direct summands of finite sums of copies of ΛU (resp. UΓ).
Let A ∈mod Λ. If there is an exact sequence · · · → Un → · · · → U1 → U0 → A → 0 in
mod Λ with Ui ∈addΛU for any i ≥ 0, then we define the U -resolution dimension of A, denoted
by U -resol.dimΛ(A), as inf{n| there is an exact sequence 0 → Un → · · · → U1 → U0 → A → 0
in mod Λ with Ui ∈addΛU for any 0 ≤ i ≤ n}. We set U -resol.dimΛ(A) infinity if no such an
integer exists. Similarly, for a module B in mod Γop, we may define U -resol.dimΓ(B).

Lemma 2.2 Let Λ and Γ be left and right noetherian rings and n a non-negative integer. For
a module X in mod Γop, if gradeUX ≥ n and gradeUExtn

Γ(X, U) ≥ n+1, then Extn
Γ(X, U) = 0.

Proof The proof of [3, Lemma 2.6] remains valid here, so we omit it.

Lemma 2.3 ([3, Lemma 2.7]) Let E ∈ mod Λ (resp. mod Γop) be injective. Then l.fdΓ(∗E)
(resp. r.fdΛ(∗E)) ≤ n if and only if U -resol.dimΛ(E) (resp. U -resol.dimΓ(E)) ≤ n.

Lemma 2.4 ([3, Proposition 3.2]) The following statements are equivalent :
(1) U -dom.dim(ΛU) ≥ 1;
(2) (−)∗∗ : mod Λ → mod Λ preserves monomorphisms;

(3) 0 → (ΛU)∗∗
f∗∗
0−→ E∗∗

0 is exact;
(1) op U -dom.dim(UΓ) ≥ 1;
(2) op (−)∗∗ : mod Γop → mod Γop preserves monomorphisms;

(3) op 0 → (UΓ)∗∗
(f ′

0)
∗∗

−→ (E′
0)∗∗ is exact.

Lemma 2.5 ([1, Lemma 2.7]) Let Λ and Γ be left and right noetherian rings. The following
statements are equivalent :

(1) M∗ is U -reflexive for any M ∈ mod Λ;
(2) [Ext2Λ(M, U)]∗ = 0 for any M ∈ mod Λ;
(1) op N∗ is U -reflexive for any N ∈ mod Γop;
(2) op [Ext2Γ(N, U)]∗ = 0 for any N ∈ mod Γop.

From now on, assume that

0 → ΛU → E0 → E1 · · · → Ei → · · ·
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is a minimal injective resolution of ΛU , and

0 → UΓ → E′
0 → E′

1 · · · → E′
i → · · ·

is a minimal injective resolution of UΓ.
Lemma 2.6 ([12, Corollary 3.7]) (1) U -resol.dimΛ(Ei) ≤ i for any 0 ≤ i ≤ k − 1 if and only
if s.gradeUExti

Γ(N, U) ≥ i for any N ∈mod Γop and 1 ≤ i ≤ k;
(2) U -resol.dimΓ(E′

i) ≤ i for any 0 ≤ i ≤ k − 1 if and only if s.gradeUExti
Λ(M, U) ≥ i for

any M ∈mod Λ and 1 ≤ i ≤ k.
Lemma 2.7 ΛU is 1-Gorenstein if and only if UΓ is 1-Gorenstein.
Proof By [3, Corollary 2.5], ∗E0 is left Γ-flat if and only if ∗E′

0 is right Λ-flat. By Lemma 2.3,
we then have that E0 is in addΛU if and only if E′

0 is in addUΓ. So, it follows from Lemma 2.6
that s.gradeUExt1Γ(N, U) ≥ 1 for any N ∈mod Γop if and only if s.gradeUExt1Λ(M, U) ≥ 1 for
any M ∈mod Λ. Hence we conclude that ΛU is 1-Gorenstein if and only if UΓ is 1-Gorenstein.

3 Characterizations of k-Gorenstein Modules
In this section, we characterize k-Gorenstein modules in terms of the U -resolution dimension of
some special injective modules and the property of the functors Exti(Exti(−, U), U) preserving
monomorphisms, and also establish the left-right symmetry of the notion of k-Gorenstein mod-
ules by using different methods from that in [7]. In order to get our main theorem, we need
some lemmas.
Lemma 3.1 If ΛU is k-Gorenstein, then Exti

Λ(Exti
Γ(−, U), U) : mod Γop →mod Γop preserves

monomorphisms for any 0 ≤ i ≤ k − 1.
Proof We proceed by induction on k. The case for k = 1 follows from Lemma 2.6 and
Lemma 2.4.

Now suppose k ≥ 2 and 0 → X → Y → Z → 0 is an exact sequence in mod Γop. Then we
have in mod Λ the following commutative diagram with the row exact:

Extk−1
Γ (Z, U) α−→ Extk−1

Γ (Y, U)
β−→ Extk−1

Γ (X, U)
γ−→ Extk

Γ(Z, U),

↘ ↗ ↘ ↗ ↘ ↗
A B C

where A = Imα, B = Imβ and C = Imγ, and each triangle in the above diagram is an epic-
monic resolution. Since ΛU is k-Gorenstein, s.gradeUExti

Γ(N, U) ≥ i for any N ∈mod Γop and
1 ≤ i ≤ k. So gradeUA ≥ k − 1, gradeUB ≥ k − 1, gradeUC ≥ k and we have the exact
sequences:

0 = Extk−1
Λ (C, U) −→ Extk−1

Λ (Extk−1
Γ (X, U), U) −→ Extk−1

Λ (B, U),

0 = Extk−2
Λ (A, U) −→ Extk−1

Λ (B, U) −→ Extk−1
Λ (Extk−1

Γ (Y, U), U)

and we then get a composition of monomorphisms:

Extk−1
Λ (Extk−1

Γ (X, U), U) ↪→ Extk−1
Λ (B, U) ↪→ Extk−1

Λ (Extk−1
Γ (Y, U), U),

which is also a monomorphism.
Let M be in mod Λ (resp. mod Γop) and P1

f−→ P0 → M → 0 a projective resolution of M

in mod Λ (resp. mod Γop). Then we have an exact sequence 0 → M∗ → P ∗
0

f∗
−→ P ∗

1 → X → 0,
where X = Cokerf∗. For a positive integer k, recall from [13] that M is called U -k-torsionfree
if Exti

Γ(X, U) = 0 (resp. Exti
Λ(X, U) = 0) for any 1 ≤ i ≤ k. M is called U -k-syzygy if there

is an exact sequence 0 → M → X0 → X1 → · · · → Xk−1 with all Xi in addΛU (resp. addUΓ).
Putting ΛUΓ = ΛΛΛ, then, in this case, the notions of U -k-torsionfree modules and U -k-syzygy
modules are just that of k-torsionfree modules and k-syzygy modules, respectively (see [14] for
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the definitions of k-torsionfree modules and k-syzygy modules). We use T k
U (mod Λ) (resp.

T k
U (mod Γop)) and Ωk

U (mod Λ) (resp. Ωk
U (mod Γop)) to denote the full subcategory of mod Λ

(resp. mod Γop) consisting of U -k-torsionfree modules and U -k-syzygy modules, respectively.
In [13] it was pointed out that T k

U (mod Λ) ⊆ Ωk
U (mod Λ) and T k

U (mod Γop) ⊆ Ωk
U (mod Γop).

The following two lemmas are of independent interest themselves:
Lemma 3.2 Let Λ and Γ be left and right noetherian rings. If gradeUExti+1

Λ (M, U) ≥ i for
any M ∈mod Λ and 1 ≤ i ≤ k − 1, then each k-syzygy module in mod Λ is in Ωk

U (mod Λ).
Proof Suppose that gradeUExti+1

Λ (M, U) ≥ i for any M ∈mod Λ and 1 ≤ i ≤ k − 1. Then
by [1, Theorem 3.1], Ωk

U (mod Λ) = T k
U (mod Λ). So it suffices to show that each k-syzygy

module in mod Λ is in T k
U (mod Λ). The following proof is similar to that of (1) ⇒ (2) in [1,

Theorem 3.1]. For the sake of completeness, we give the proof here.
We proceed by induction on k.
Notice that Λ is U -reflexive, it follows easily that each 1-syzygy module in mod Λ is in

Ω1
U (mod Λ)(= T 1

U (mod Λ)).
Assume that k = 2 and M is a 2-syzygy module in mod Λ. Then there is an exact sequence

0 → M → P1
f→ P0 in mod Λ with P0 and P1 projective. By [1, Lemma 2.4], M ∼= (Cokerf∗)∗.

It follows from Lemma 2.5 and [13, Lemma 4] that M is U -reflexive and U -2-torsionfree. The
case for k = 2 follows.

Now suppose that k ≥ 3 and M is a k-syzygy module in mod Λ. Then there is an exact
sequence:

Pk+1
fk+1−→ Pk

fk−→ Pk−1
fk−1−→ · · · f2−→ P1

f1−→ P0 → X → 0

in mod Λ such that M = Cokerfk+1, where Pi is projective for any 0 ≤ i ≤ k + 1. By the
induction assumption, M ∈ T k−1

U (mod Λ). We will show that M ∈ T k
U (mod Λ). Notice

that k ≥ 3, so M is U -reflexive and hence it suffices to show that Exti
Γ(M∗, U) = 0 for any

1 ≤ i ≤ k − 2 by [1, Lemma 2.9].
Put N =Cokerf∗

k−1. Then, by [1, Lemma 2.4], M ∼= N∗ and M∗ ∼= N∗∗. We claim that
Exti

Γ(N, U) = 0 for any 1 ≤ i ≤ k−2. If k = 3, then Cokerfk−1 is a submodule of P0. But P0 is
U -reflexive, so Cokerfk−1 is U -torsionless. By [15, Lemma 2.1], Ext1Γ(N, U) ∼=KerσCokerfk−1 =
0. If k = 4, then Cokerfk−1 is a 2-syzygy module in mod Λ and so Cokerfk−1 is U -reflexive
by the above argument. Thus by [15, Lemma 2.1], Ext1Γ(N, U) ∼=KerσCokerfk−1 = 0 and
Ext2Γ(N, U) ∼=CokerσCokerfk−1 = 0, and the case for k = 4 follows. If k ≥ 5, then Cokerfk−1 is a
(k − 2)-syzygy module in mod Λ and so Cokerfk−1 ∈ T k−2

U (mod Λ) by the induction assump-
tion. It is clear that Cokerfk−1 is U -reflexive. Then by using an argument similar to that in the
proof of the case for k = 4, we have that Ext1Γ(N, U) = 0 =Ext2Γ(N, U) = 0. On the other hand,
by [1, Lemma 2.9], we have that Exti

Γ((Cokerfk−1)∗, U) = 0 for any 1 ≤ i ≤ k − 4. It follows

from the exact sequence 0 → (Cokerfk−1)∗ → P ∗
k−2

f∗
k−1−→ P ∗

k−1 → N → 0 that Exti
Γ(N, U) = 0

for any 3 ≤ i ≤ k − 2. So Exti
Γ(N, U) = 0 for any 1 ≤ i ≤ k − 2.

By [15, Lemma 2.1], we have an exact sequence:

0 → Ext1Λ(Cokerfk−1, U) → N
σN−→ N∗∗ → Ext2Λ(Cokerfk−1, U) → 0.

Then KerσN
∼= Ext1Λ(Cokerfk−1, U) ∼= Extk−1

Λ (X, U) and CokerσN
∼= Ext2Λ(Cokerfk−1, U) ∼=

Extk
Λ(X, U). So we get the following exact sequences:

0 → Extk−1
Λ (X, U) → N

π−→ ImσN → 0, (1)

0 → ImσN
μ−→ N∗∗ → Extk

Λ(X, U) → 0, (2)

where σN = μπ. Since Exti
Γ(N, U) = 0 for any 1 ≤ i ≤ k− 2 and gradeUExtk−1

Λ (X, U) ≥ k− 2,
from the exact sequence (1) we have Exti

Γ(ImσN , U) = 0 for any 1 ≤ i ≤ k−2. Moreover, since
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gradeUExtk
Λ(X, U) ≥ k − 1, from the exact sequence (2) we get that Exti

Γ(N∗∗, U) = 0 for any
1 ≤ i ≤ k − 2, which yields Exti

Γ(M∗, U) = 0 for any 1 ≤ i ≤ k − 2. We are done.
Lemma 3.3 Let Λ and Γ be left and right noetherian rings. For a positive integer k, the
following statements are equivalent :

(1) gradeUExti+1
Λ (M, U) ≥ i for any M ∈ mod Λ and 1 ≤ i ≤ k − 1;

(2) Exti−1
Γ (Exti+1

Λ (M, U), U) = 0 for any M ∈ mod Λ and 1 ≤ i ≤ k − 1;
(1) op gradeUExti+1

Γ (N, U) ≥ i for any N ∈ mod Γop and 1 ≤ i ≤ k − 1;
(2) op Exti−1

Λ (Exti+1
Γ (N, U), U) = 0 for any N ∈ mod Γop and 1 ≤ i ≤ k − 1.

Proof The implications that (1) ⇒ (2) and (1)op ⇒ (2)op are trivial.
(2) ⇒ (1) We proceed by induction on k. It is trivial when k = 1 or k = 2. Now suppose

k ≥ 3. By the induction assumption, for any M ∈ mod Λ, we have gradeUExti+1
Λ (M, U) ≥

i for any 1 ≤ i ≤ k − 2 and gradeUExtk
Λ(M, U) ≥ k − 2. In addition, by (2), we have

Extk−2
Γ (Extk

Λ(M, U), U) = 0. So gradeUExtk
Λ(M, U) ≥ k − 1.

(1)op ⇒ (1) We also proceed by induction on k. The case k = 1 is trivial. The case k = 2
follows from Lemma 2.5. Now suppose k ≥ 3.

Let M ∈ mod Λ and

· · · → Pi → · · · → P1 → P0 → M → 0

a projective resolution of M in mod Λ. Put Mi =Coker(Pi → Pi−1) (where M1 = M) and
Xi =Coker(P ∗

i−1 → P ∗
i ) for any i ≥ 1. By the induction assumption, we have gradeUExti+1

Λ (M,
U) ≥ i for any 1 ≤ i ≤ k − 2 and gradeUExtk

Λ(M, U) ≥ k − 2. So it suffices to prove
Extk−2

Γ (Extk
Λ(M, U), U) = 0.

By [1, Theorem 3.1], Ωi
U (mod Λ) = T i

U (mod Λ) for any 1 ≤ i ≤ k − 1. For any t ≥ k, since
Mt ∈ Ωk−1

U (mod Λ) by Lemma 3.2, Mt ∈ T k−1
U (mod Λ). It follows that Extj

Γ(Xt, U) = 0 for
any 1 ≤ j ≤ k − 1 and t ≥ k.

On the other hand, by [16, Lemma 2], we have an exact sequence:

0 → Extk
Λ(M, U) → Xk → P ∗

k+1 → Xk+1 → 0.

Put K =Im(Xk → P ∗
k+1). From the exactness of 0 → K → P ∗

k+1 → Xk+1 → 0 we know
that Extj

Γ(K, U) = 0 for any 1 ≤ j ≤ k − 2 and Extk
Γ(Xk+1, U) ∼= Extk−1

Γ (K, U). Moreover,
from the exactness of 0 → Extk

Λ(M, U) → Xk → K → 0 we know that Extk−1
Γ (K, U) ∼=

Extk−2
Γ (Extk

Λ(M, U), U). So Extk−2
Γ (Extk

Λ(M, U), U) ∼= Extk
Γ(Xk+1, U). By (1)op, we then have

that gradeUExtk−2
Γ (Extk

Λ(M, U), U) =gradeUExtk
Γ(Xk+1, U) ≥ k−1. It follows from Lemma 2.2

that Extk−2
Λ (Extk

Λ(M, U), U) = 0.
By symmetry, we have the implications of (2)op ⇒ (1)op and (1) ⇒ (1)op. We are done.
The following result not only generalizes [14, Proposition 2.26], but also means that the

statements in this proposition are left-right symmetric.
Corollary 3.4 Let Λ be a left and right noetherian ring. For a positive integer k, the following
statements are equivalent :

(1) gradeΛExti+1
Λ (M, Λ) ≥ i for any M ∈ mod Λ and 1 ≤ i ≤ k − 1;

(2) Exti−1
Λ (Exti+1

Λ (M, Λ), Λ) = 0 for any M ∈ mod Λ and 1 ≤ i ≤ k − 1;
(3) Ωi

Λ(mod Λ) = T i
Λ(mod Λ) for any 1 ≤ i ≤ k;

(1) op gradeΛExti+1
Λ (N, Λ) ≥ i for any N ∈ mod Λop and 1 ≤ i ≤ k − 1;

(2) op Exti−1
Λ (Exti+1

Λ (N, Λ), Λ) = 0 for any N ∈ mod Λop and 1 ≤ i ≤ k − 1;
(3) op Ωi

Λ(mod Λop) = T i
Λ(mod Λop) for any 1 ≤ i ≤ k.

Proof By Lemma 3.3 we have (1) ⇔ (2) ⇔ (1)op ⇔ (2)op, and by [14, Proposition 2.26] we
have (1) ⇔ (3) and (1)op ⇔ (3)op.

The following proposition, obtained by Wakamatsu in [7, Theorem 7.5] for noetherian rings,
shows the left-right symmetry of the notion of k-Gorenstein modules. However, the proof here
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is rather different from that in [7].
Proposition 3.5 For a positive integer k, the following statements are equivalent :

(1) s.gradeUExti
Λ(M, U) ≥ i for any M ∈mod Λ and 1 ≤ i ≤ k;

(2) s.gradeUExti
Γ(N, U) ≥ i for any N ∈mod Γop and 1 ≤ i ≤ k.

Proof By symmetry, we need to prove only that (2) implies (1).
We proceed by induction on k. The case k = 1 follows from Lemma 2.7. Now suppose that

k ≥ 2 and s.gradeUExti
Γ(N, U) ≥ i for any N ∈mod Γop and 1 ≤ i ≤ k. By Lemma 3.3 and [1,

Theorem 3.1], we have that T i
U (mod Λ) = Ωi

U (mod Λ) for any 1 ≤ i ≤ k. By the induction
assumption, for any M ∈mod Λ, we have that s.gradeUExti

Λ(M, U) ≥ i for any 1 ≤ i ≤ k − 1
and s.gradeUExtk

Λ(M, U) ≥ k − 1.
Assume that

· · · fk−→ Pk−1
fk−1−→ · · · −→ P1

f1−→ P0 −→ M −→ 0

is a (minimal) projective resolution of M in mod Λ. For any t ≥ k, since Cokerft is (k − 1)-
syzygy, by Lemma 3.2 we have that Cokerft ∈ Ωk−1

U (mod Λ) and Cokerft ∈ T k−1
U (mod Λ),

that is, Cokerft is U -(k − 1)-torsionfree, which implies that Extj
Γ(Cokerf∗

t , U) = 0 for any
1 ≤ j ≤ k − 1 and t ≥ k.

Let X be a submodule of Extk
Λ(M, U). Then gradeUX ≥ k − 1. On the other hand, by [15,

Lemma 2.1] there is an exact sequence 0 → Extk
Λ(M, U) → Cokerf∗

k

σCokerf∗
k−→ (Cokerf∗

k )∗∗ →
Extk+1

Λ (M, U) → 0 and then there is a composition of monomorphisms: X ↪→ Extk
Λ(M, U) ↪→

Cokerf∗
k . Put Y = Coker(X ↪→ Cokerf∗

k ). Notice that Extj
Γ(Cokerf∗

k , U) = 0 for any 1 ≤
j ≤ k − 1, we then have an embedding Extk−1

Γ (X, U) ↪→Extk
Γ(Y, U). By assumption, s.gradeU

Extk
Γ(Y, U) ≥ k. So gradeUExtk−1

Γ (X, U) ≥ k and hence Extk−1
Γ (X, U) = 0 by Lemma 2.2. It

follows that gradeUX ≥ k and s.gradeUExtk
Λ(M, U) ≥ k. We are done.

Lemma 3.6 If Exti
Γ(Exti

Λ(−, U), U): mod Λ →mod Λ preserves monomorphisms for any
0 ≤ i ≤ k − 1, then ΛU is k-Gorenstein.

Proof We proceed by induction on k.
Assume that (−)∗∗ : mod Λ → mod Λ preserves monomorphisms, then, by Lemma 2.4, U -

dom.dim(ΛU) ≥ 1 and E0 is cogenerated by ΛU . But E0 is finitely cogenerated, so E0 ∈addΛU .
By Lemma 2.6, we then have that s.gradeUExt1Γ(N, U) ≥ 1 for any N ∈mod Γop and ΛU is
1-Gorenstein. The case for k = 1 is proved.

Now suppose k ≥ 2 and

· · · gk−→ Qk−1
gk−1−→ · · · −→ Q1

g1−→ Q0 −→ N −→ 0

is a (minimal) projective resolution of a module N in mod Γop. By the induction hypothesis, ΛU
is (k − 1)-Gorenstein and s.gradeUExti

Γ(B, U) ≥ i for any B ∈mod Γop and 1 ≤ i ≤ k − 1 (and
certainly, s.gradeUExti+1

Γ (B, U) ≥ i for any B ∈mod Γop and 1 ≤ i ≤ k−1). So T i
U (mod Γop) =

Ωi
U (mod Γop) for any 1 ≤ i ≤ k by the dual statements of [1, Theorem 3.1]. By using a similar

argument to that for (2) ⇒ (1) in Proposition 3.5, we have that Extj
Λ(Cokerg∗k, U) = 0 for any

1 ≤ j ≤ k − 1.
Let X be a submodule of Extk

Γ(N, U). Then gradeUX ≥ k − 1. By using a similar ar-
gument to that for (2) ⇒ (1) in Proposition 3.5, we have a monomorphism X ↪→ Cokerg∗k.

By assumption, 0 → Extk−1
Γ (Extk−1

Λ (X, U), U) → Extk−1
Γ (Extk−1

Λ (Cokerg∗k, U), U)(= 0) is ex-
act, so Extk−1

Γ (Extk−1
Λ (X, U), U) = 0. On the other hand, by Proposition 3.5, we have that

s.gradeUExtk−1
Λ (X, U) ≥ k − 1. So we conclude that gradeUExtk−1

Λ (X, U) ≥ k and hence
Extk−1

Λ (X, U) = 0 by Lemma 2.2. It follows that gradeUX ≥ k and s.gradeUExtk
Γ(N, U) ≥ k.

We are done.
We are now in a position to state the main result in this paper.
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Theorem 3.7 The following statements are equivalent :
(1) ΛU is k-Gorenstein;
(2) U -resol.dimΛ(Ei) ≤ i for any 0 ≤ i ≤ k − 1;
(3) Exti

Γ(Exti
Λ(−, U), U): mod Λ → mod Λ preserves monomorphisms for any 0 ≤ i ≤ k−1;

(1) op UΓ is k-Gorenstein;
(2) op U -resol.dimΓ(E

′
i) ≤ i for any 0 ≤ i ≤ k − 1;

(3) op Exti
Λ(Exti

Γ(−, U), U) : mod Γop → mod Γop preserves monomorphisms for any 0 ≤
i ≤ k − 1.
Proof (2) ⇔ (1) ⇔ (1)op See Lemma 2.6 and Proposition 3.5.

(1) ⇒ (3)op By Lemma 3.1.
(3) ⇒ (1) By Lemma 3.6.
Symmetrically we have that (2)op ⇔ (1)op, (1)op ⇒ (3) and (3)op ⇒ (1)op. The proof is

finished.
Put ΛUΓ = ΛΛΛ. By Theorem 3.7, we then immediately have the following corollary, which

extends [6, Auslander’s Theorem 3.7]:
Corollary 3.8 The following statements are equivalent :

(1) s.gradeΛExti
Λ(M, Λ) ≥ i for any M ∈mod Λ and 1 ≤ i ≤ k;

(2) The left flat dimension of the i-th term in a minimal injective resolution of ΛΛ is at
most i − 1 for any 1 ≤ i ≤ k;

(3) Exti
Λ(Exti

Λ(−, Λ), Λ): mod Λ → mod Λ preserves monomorphisms for any 0 ≤ i ≤ k−1;
(1) op s.gradeΛExti

Λ(N, Λ) ≥ i for any N ∈mod Λop and 1 ≤ i ≤ k;
(2) op The right flat dimension of the i-th term in a minimal injective resolution of ΛΛ is

at most i − 1 for any 1 ≤ i ≤ k;
(3) op Exti

Λ(Exti
Λ(−, Λ), Λ): mod Λop → mod Λop preserves monomorphisms for any 0 ≤

i ≤ k − 1.
ΛUΓ is called a cotilting bimodule if ΛU and UΓ are cotilting, that is, l.idΛ(U) and r.idΓ(U)

are finite[8]. If ΛUΓ is a cotilting bimodule, then l.idΛ(U) =r.idΓ(U) (see [17, Lemma 1.7).
However, in general, we don’t know whether l.idΛ(U) < ∞ implies that r.idΓ(U) < ∞. In fact,
Auslander and Reiten in [18, p. 150] posed an important question which remains open: For an
artin algebra Λ, does l.idΛ(Λ) < ∞ imply r.idΛ(Λ) < ∞? Putting ΛUΓ = ΛUΛ, as applications
of the results obtained above we have the following corollaries:
Corollary 3.9 For a positive integer k, if r.idΛ(U) = k and UΛ is (k − 1)-Gorenstein, then
l.idΛ(U) = k.
Proof The case for k = 1 follows from [16, Corollary 1]. Now assume that r.idΛ(U) = k(≥ 2)
and UΛ is (k − 1)-Gorenstein. Then, by Lemma 2.6, we have s.gradeUExtk−1

Λ (M, U) ≥ k − 1
for any M ∈mod Λ. It follows from [16, Theorem] that l.idΛ(U) ≤ 2k − 2. So l.idΛ(U) = k by
[17, Lemma 1.7].
Corollary 3.10 l.idΛ(U)=r.idΛ(U) if ΛU (or UΛ) is Gorenstein.
Proof By Theorem 3.7, Corollary 3.9 and its dual result.
Corollary 3.11 ([5, Corollary 5.5]) Let Λ be a k-Gorenstein algebra for all k. Then l.idΛ(Λ) =
r.idΛ(Λ).

4 Dual Theory
In this section we study the dual theory relative to Gorenstein bimodules.

For a non-negative integer g, we use Gg(mod Λ) (resp. Gg(mod Γop)) to denote the subcate-
gory of mod Λ (resp. mod Γop) consisting of the modules M with gradeUM = g, and Hg(mod Λ)
(resp. Hg(mod Γop)) to denote the subcategory of Gg(mod Λ) (resp. Gg(mod Γop)) consisting
of the modules M with Exti

Λ(M, U) = 0 (resp. Exti
Γ(M, U) = 0) for any i = gradeUM(= g).

Theorem 4.1 Let Λ and Γ be left and right noetherian rings and ΛUΓ a Gorenstein bimodule.
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(1) If r.idΓ(U) = g, then, for any 0 = M ∈ Gg(mod Λ), M ∼= Extg
Γ(Extg

Λ(M, U), U);
(2) If r.idΓ(U) =l.idΛ(U) = g, then there is a duality between Gg(mod Λ) and Gg(mod Γop)

given by M → Extg
Λ(M, U).

Proof (1) Let M be a non-zero module in Gg(mod Λ) and

· · · → Pi
fi−→ · · · f2−→ P1

f1−→ P0 → M → 0

a projective resolution of M in mod Λ. If g = 0, it is easy to see from [15, Lemma 2.1] that
M ∼= M∗∗. Now suppose g ≥ 1. Then we get an exact sequence:

0 → P ∗
0

f∗
1−→ P ∗

1

f∗
2−→ · · · f∗

g−1−→ P ∗
g−1 → (Imfg)∗ → Extg

Λ(M, U) → 0.

Since ΛUΓ is a Gorenstein bimodule, s.gradeUExtg
Λ(M, U) ≥ g. For any i ≥ 1, put Ki =

Cokerf∗
i . We then have an exact sequence:

P ∗∗
1

f∗∗
1−→ P ∗∗

0 → Ext1Γ(K1, U)(∼= Extg−1
Γ (Kg−1, U)) → 0.

On the other hand, we have an exact sequence 0 → (Imfg)∗ → P ∗
g

f∗
g+1−→ P ∗

g+1 → Kg+1 → 0.
Since r.idΓ(U) = g, for any i ≥ g − 1 we have Exti

Γ((Imfg)∗, U) ∼= Exti+2
Γ (Kg+1, U) = 0.

Moreover, the exact sequence 0 → Kg−1 → (Imfg)∗ → Extg
Λ(M, U) → 0 yields an exact

sequence:

Extg−1
Γ ((Imfg)∗, U) → Extg−1

Γ (Kg−1, U) → Extg
Γ(Extg

Λ(M, U), U) → Extg
Γ((Imfg)∗, U).

So Extg
Γ(Extg

Λ(M, U), U) ∼= Extg−1
Γ (Kg−1, U) ∼= Ext1Γ(K1, U) and we get the following commu-

tative diagram with exact rows:

P1

σP1

��

f1 �� P0

σP0

��

�� M

h

��

�� 0

P ∗∗
1

f∗∗
1 �� P ∗∗

0
�� Extg

Γ(Extg
Λ(M, U), U) �� 0,

where σP1 and σP0 are isomorphisms. Hence h is also an isomorphism and Extg
Γ(Extg

Λ(M, U),
U) ∼= M( = 0). By assumption, ΛUΓ is a Gorenstein bimodule, so gradeUExtg

Λ(M, U) ≥ g and
hence gradeUExtg

Λ(M, U) = g.
(2) It follows from (1) and its dual result.
The following two corollaries are immediate consequences of Theorem 4.1:

Corollary 4.2 ([8, Proposition 3.1]) Let Λ and Γ be left and right noetherian rings. If UΓ is
injective, then M ∼= M∗∗ for any M in mod Λ.
Corollary 4.3 Under the assumptions of Theorem 4.1(2), there is a duality between
Hg(mod Λ) and Hg(mod Γop) given by M → Extg

Λ(M, U) (where M ∈ Hg(mod Λ)).
The following result is a generalization of [10, Theorem 6], which gives some characteriza-

tions of the modules in Hg(mod Λ).
Theorem 4.4 Let ΛUΓ be a Gorenstein bimodule with r.idΓ(U) =l.idΛ(U) = g. Then, for
any 0 = M ∈ mod Λ, the following statements are equivalent :

(1) M ∈ Hg(mod Λ);
(2) M ∼= Extg

Γ(Extg
Λ(M, U), U);

(3) M ∼= Extg
Γ(N, U) for some N ∈ mod Γop;

(4) HomΛ(M,
⊕g−1

i=0 Ei) = 0.
Proof (1) ⇒ (2) follows from Corollary 4.3, and (2) ⇒ (3) is trivial.

(3) ⇒ (4) Since ΛUΓ is a Gorenstein bimodule, U -resol.dimΛ(Ei) ≤ i for any 0 ≤ i ≤ g − 1
by Lemma 2.6. Then we get our conclusion by Lemma 2.3 and Lemma 2.1.
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(4) ⇒ (1) Since l.idΛ(U) = g, Exti
Λ(M, U) = 0 for any i ≥ g + 1. On the other hand, we

know that M∗ = 0 because HomΛ(M, E0) = 0. In addition, we have an exact sequence:

0 → Ki−1 → Ei−1 → Ki → 0,

for any 1 ≤ i ≤ g − 1, where Ki−1 = Ker(Ei−1 → Ei). From HomΛ(M, Ei) = 0 we know
that HomΛ(M, Ki) = 0. But HomΛ(M, Ki) → Exti

Λ(M, U)(∼= Ext1Λ(M, Ki−1)) → 0 is exact,
so Exti

Λ(M, U) = 0 for any 1 ≤ i ≤ g − 1 and gradeUM ≥ g. We claim that gradeUM = g.
Otherwise, if gradeUM > g, we then have that Extg

Λ(M, U) = 0 and Exti
Λ(M, U) = 0 for any

i ≥ 1. It follows from [15, Corollary 2.5] that M = 0, which is a contradiction.
Let A be an abelian category and B a full subcategory of A . An object X ∈ A is called an

embedding cogenerator for B if every object in B admits an injection to some direct product
of copies of X in A [15]. For any M in mod Λ we use E(M) to denote the injective envelope
of M .

Corollary 4.5 Under the assumptions of Theorem 4.4, Eg is an injective embedding cogen-
erator for Hg(mod Λ).

Proof Let M be in Hg(mod Λ). Notice that M is finitely cogenerated, so, by [19, Proposi-
tion 18.18], E(M) ∼= E(S1)

⊕ · · ·⊕E(St), where Si is isomorphic to a simple submodule of
M for any 1 ≤ i ≤ t. Since M ∈ Hg(mod Λ), each Si ∈ Hg(mod Λ) by Theorem 4.4.

Because r.idΓ(U) = g,
⊕g

i=0 Ei is an injective embedding cogenerator for mod Λ by [15,
Proposition 2.8]. So HomΛ(Si,

⊕g
i=0 Ei) = 0 and hence HomΛ(Si, Eg) = 0 by Theorem 4.4,

which implies that each Si can be embedded into Eg. Therefore M ↪→ E(M) ∼= ⊕t
i=0 E(Si) ↪→

E
(t)
g and Eg is an injective embedding cogenerator for Hg(mod Λ).

5 Finite Injective Dimension

In this section we discuss the properties of ΛUΓ with finite left or right injective dimension. We
first have the following:

Proposition 5.1 If l.idΛ(U) = k and Ek is in addΛU (equivalently, ∗Ek is flat), then ΛU is
injective.

Proof Assume that l.idΛ(U) = k = 0. Then there is a simple Λ-module S such that
Extk

Λ(S, U) = 0. It is easy to see that HomΛ(S, Ek) ∼=Extk
Λ(S, U), so HomΛ(S, Ek) = 0 and

hence there is an exact sequence 0 → S
f−→ Ek → Cokerf → 0, which yields an exact sequence

Extk
Λ(Ek, U) → Extk

Λ(S, U) → Extk+1
Λ (Cokerf, U). Since Ek ∈ addΛU , Extk

Λ(Ek, U) = 0. On
the other hand, l.idΛ(U) = k, so Extk+1

Λ (Cokerf, U) = 0. Hence Extk
Λ(S, U) = 0, which is a

contradiction.

Corollary 5.2 If l.idΛ(Λ) = k and the (k + 1)-st term (that is, the last term) in a minimal
injective resolution of ΛΛ is flat, then Λ is self-injective.

Corollary 5.3 If l.idΛ(U) = k < U -dom.dim(ΛU), then ΛU is injective.

Corollary 5.4 ([20, Proposition 8]) If l.idΛ(Λ) = k < Λ-dom.dim(ΛΛ), then Λ is self-
injective.

Proposition 5.5 If ΛUΓ is k-Gorenstein and r.idΓ(U) =l.idΛ(U) = k, then U -resol.dimΛ(Ek)
= U -resol.dimΓ(E′

k) = k and ΛUΓ is Gorenstein.

Proof Assume that ΛU is k-Gorenstein. By Lemma 2.6 and Lemma 2.3, l.fdΓ(∗Ei) ≤ i for any
0 ≤ i ≤ k − 1. Since r.idΓ(U) = k, there is a module X in mod Γop such that Extk

Γ(X, U) = 0.
Since

⊕k
i=0 Ei is an injective embedding cogenerator for mod Λ by [15, Proposition 2.8], it

then follows from [11, Chapter VI, Proposition 5.3] that 0 = HomΛ(Extk
Γ(X, U),

⊕k
i=0 Ei) ∼=

TorΓk (X, ∗(
⊕k

i=0 Ei)) ∼= ⊕k
i=0 TorΓk (X, ∗Ei) ∼= TorΓk (X, ∗Ek). So l.fdΓ(∗Ek) ≥ k. On the other

hand, by [12, Lemma 2.2], we have r.idΓ(U) =sup{l.fdΓ(∗E)|ΛE is injective}, so l.fdΓ(∗Ek) ≤ k
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and hence l.fdΓ(∗Ek) = k. By Lemma 2.3, U -resol.dimΛ(Ek) = k. It then follows from
Theorem 3.7 that ΛU is (k + 1)-Gorenstein. In addition, l.idΛ(U) = k by assumption, so
ΛU is Gorenstein. Similarly, we have that U -resol.dimΓ(E′

k) = k and UΓ is Gorenstein.
Recall that an artin algebra is called an Auslander algebra if it is k-Gorenstein for all k. By

Proposition 5.5, we immediately have the following
Corollary 5.6 ([9, Proposition 1.1]) If Λ is a k-Gorenstein algebra with right and left self-
injective dimensions k, then the flat dimension of the (k + 1)-st term in a minimal injective
resolution of ΛΛ (resp. ΛΛ) is equal to k and Λ is an Auslander algebra.

Compare Corollary 5.3 with the following
Proposition 5.7 If l.idΛ(U) = k ≤ U -dom.dim(ΛU), then

⊕k
i=0 Ei is an injective embedding

cogenerator for mod Λ if and only if r.idΓ(U) = k.
Proof The sufficiency follows from [15, Proposition 2.8]. Now we prove the necessity. Since
U -dom.dim(ΛU) ≥ k, Ei ∈addΛU for any 0 ≤ i ≤ k − 1. On the other hand, l.idΛ(U) = k
implies that Ei = 0 for any i ≥ k + 1. So U -resol.dimΛ(Ek) ≤ k. Then, by Lemma 2.3,
l.fdΓ(∗Ek) ≤ k and l.fdΓ(∗Ei) = 0 for any 0 ≤ i ≤ k − 1. It follows that l.fdΓ(∗(

⊕k
i=0 Ei)) ≤ k.

So, by Lemma 2.1, we have HomΛ(Extk+1
Γ (X, U),

⊕k
i=0 Ei) = 0 for any X ∈mod Γop. However,

⊕k
i=0 Ei is an injective embedding cogenerator for mod Λ, so Extk+1

Γ (X, U) = 0 and r.idΓ(U) ≤
k. Hence we conclude that r.idΓ(U) = k by [17, Lemma 1.7].

Finally we conjecture the following, which is a generalization of the Auslander and Reitens
question mentioned in Section 3: A Gorenstein bimodule ΛUΓ is cotilting, that is, l.idΛ(U) < ∞
and r.idΓ(U) < ∞.
Acknowledgements The author thanks the referee for useful comments.
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