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Abstract. Let A be an abelian category, C an additive, full and self-orthogonal sub-
category of A closed under direct summands, rG(C ) the right Gorenstein subcategory of
A relative to C , and ⊥C the left orthogonal class of C . For an object A in A , we prove that
if A is in the right 1-orthogonal class of rG(C ), then the C -projective and rG(C )-projective
dimensions of A are identical; if the rG(C )-projective dimension of A is finite, then the
rG(C )-projective and ⊥C -projective dimensions of A are identical. We also prove that the
supremum of the C -projective dimensions of objects with finite C -projective dimension and
that of the rG(C )-projective dimensions of objects with finite rG(C )-projective dimension
coincide. Then we apply these results to the category of modules.
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1 Introduction

In homological theory, homological dimensions are fundamental invariants and every
homological dimension of objects is defined relative to a certain subcategory. For
example, projective and injective dimensions of modules are defined relative to
the categories of projective and injective modules, respectively, and Gorenstein
projective and injective dimensions of modules are defined relative to the categories
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of Gorenstein projective and injective modules, respectively; see, e.g., [6–8, 11–13,
24, 26, 27]. Because projective modules are Gorenstein projective, the Gorenstein
projective dimension of a module is at most its projective dimension. A natural
question is when they are identical. Holm studied this question in [6, 7].

Let A be an abelian category and let C be an additive and full subcategory
of A . As a common generalization of Gorenstein projective and injective modules,
Sather-Wagstaff, Sharif and White [16] introduced the Gorenstein subcategory G(C )
of A relative to C . Huang studied in [12] when the C -projective dimension and the
G(C )-projective dimension of an object in A are identical. From the definition of the
Gorenstein subcategory G(C ), it is known that C should be simultaneously a gener-
ator and a cogenerator for G(C ), and both functors HomA (C ,−) and HomA (−,C )
should possess certain exactness. These assumptions seem to be strong to some ex-
tent. In [18], by modifying the definition of Gorenstein subcategories, the so-called
right Gorenstein subcategory rG(C ) and left Gorenstein subcategory lG(C ) were
introduced such that for a self-orthogonal subcategory C of A , an object A ∈ A is
in G(C ) if and only if it is in rG(C )∩ lG(C ). According to the ideas above, we will
study when the C -projective dimension and the rG(C )-projective dimension of an
object in A are identical. Our main result and its dual extend [12, Corollary 3.12
and Theorem 3.14] and their duals [12, Corollary 4.12 and Theorem 4.14], respec-
tively, and the strong assumptions on C are not needed for the one-sided Gorenstein
categories rG(C ) and lG(C ).

The paper is organized as follows. In Section 2, we give some terminology and
notations. Let A be an abelian category, C an additive, full and self-orthogonal
subcategory of A closed under direct summands, and ⊥C the left orthogonal class of
C . In Section 3, for an object A in A we prove that if A is in the right 1-orthogonal
class of rG(C ), then the C -projective and rG(C )-projective dimensions of A are
identical; if the rG(C )-projective dimension of A is finite, then the rG(C )-projective
and ⊥C -projective dimensions of A are identical (Theorem 3.3). Moreover, we
prove that the supremum of the C -projective dimensions of objects with finite C -
projective dimension and that of the rG(C )-projective dimensions of objects with
finite rG(C )-projective dimension coincide (Theorem 3.10). The dual versions of
these results are also given. In Section 4, we apply the results obtained to the
category of modules. Let R,S be rings and RCS a semidualizing bimodule. For a
left R-module A, we prove that if either the C-projective dimension of A is finite
or A ∈ RC

⊥1 and the injective dimension of A is finite, then the C-projective and
C-Gorenstein projective dimensions of A are identical (Corollary 4.4). It generalizes
[6, Proposition 2.27] and [7, Theorem 2.2]. As a consequence, if R ∈ RC

⊥1 and the
left self-injective dimension of R is finite (in particular, if R is left self-injective),
then the category of C-projective modules is projectively resolving; further, if the
projective dimension of a left R-module A is finite, then the projective, C-projective
and C-Gorenstein projective dimensions of A are identical (Proposition 4.6).

2 Preliminaries

In this paper, A is an abelian category and all subcategories of A are additive, full
and closed under isomorphisms. Let X be a subcategory of A . We write



Homological Dimensions Relative to Special Subcategories 133

⊥X = {A ∈ A | Ext≥1A (A,X) = 0 for any X ∈X },
X ⊥ = {A ∈ A | Ext≥1A (X,A) = 0 for any X ∈X },
⊥1X = {A ∈ A | Ext1A (A,X) = 0 for any X ∈X },
X ⊥1 = {A ∈ A | Ext1A (X,A) = 0 for any X ∈X }.

For subcategories X ,Y of A , we write X ⊥Y if Ext≥1A (X,Y ) = 0 for any X ∈X
and Y ∈ Y ; we say that X is self-orthogonal if X ⊥X .

For an object A ∈ A , the X -projective dimension of A, denoted by X -pdA, is
defined as

inf{n | there exists an exact sequence

0→ Xn → · · · → X1 → X0 → A→ 0 in A with all Xi in X },

and we set X -pdA infinite if no such integer exists. Dually, the X -injective dimen-
sion of A is defined, which is denoted by X -idA. For a ring R and a left R-module
A, we use pdRA and idRA to denote the projective and injective dimensions of A,
respectively.

A sequence E in A is said to be HomA (X ,−)-exact (resp., HomA (−,X )-exact)
if it is exact after we apply the functor HomA (X,−) (resp., HomA (−, X)) for any
X ∈X . Following [16], we write

res X̃ = {A ∈ A | there exists a HomA (X ,−)-exact exact sequence

· · · → Xi → · · · → X1 → X0 → A→ 0 in A with all Xi in X }.

Dually, cores X̃ is defined.

Definition 2.1. [16, Definition 4.1] Let C be a subcategory of A . The Gorenstein
subcategory G(C ) of A (relative to C ) is defined as

{G ∈ A | there exists a HomA (C ,−)-exact and HomA (−,C )-exact

exact sequence · · · → C1 → C0 → C0 → C1 → · · ·
in A with all Ci, C

i in C such that G ∼= Im(C0 → C0)}.

The Gorenstein subcategory unifies the following notions: modules of Goren-
stein dimension zero [1], Gorenstein projective modules, Gorenstein injective mod-
ules [3], V -Gorenstein projective modules, V -Gorenstein injective modules [4], W -
Gorenstein modules [5], and so on; see [11] for details.

Let C be a subcategory of A . Following [11, Lemma 5.7], if C⊥C , then the
Gorenstein subcategory

G(C ) = (⊥C ∩ cores C̃ ) ∩ (C⊥ ∩ res C̃ ).

Motivated by this fact, we introduced the following definition in [18].

Definition 2.2. rG(C ) := ⊥C ∩ cores C̃ (resp., lG(C ) := C⊥ ∩ res C̃ ) is called the
right (resp., left) Gorenstein subcategory of A (relative to C ).
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By the explanation above and this definition, we observe that if C⊥C , then we
have G(C ) = rG(C ) ∩ lG(C ).

3 Main results

In this section, we fix C a self-orthogonal subcategory of A closed under direct
summands. We begin with the following easy observation.

Lemma 3.1. We have rG(C )⊥C -pd<∞, where C -pd<∞ is the subcategory of A
consisting of objects having finite C -projective dimension.

Proposition 3.2. Let A ∈ A with rG(C )-pdA < ∞. Then the following state-
ments are equivalent for any n ≥ 0:

(1) rG(C )-pdA ≤ n.

(2) Ext≥n+1
A (A,C) = 0 for any C ∈ C .

(3) Extn+1
A (A,H) = 0 for any H ∈ A with C -pdH <∞.

(4) Ext≥n+1
A (A,H) = 0 for any H ∈ A with C -pdH <∞.

Proof. The implications (4)⇒(2) and (4)⇒(3) are trivial, and the implications
(1)⇒(2)⇒(4) follow from dimension shifting.

(3)⇒(1) Let rG(C )-pdA = m (< ∞). By [18, Theorem 3.11], there exists an
exact sequence

0 −→ Cm −→ Cm−1 −→ · · · −→ C1 −→ G0 −→ A −→ 0

in A with all Ci ∈ C and G0 ∈ rG(C ). We need to prove m ≤ n. Otherwise,
suppose m > n. Set Hn+1 = Im(Cn+1 → Cn), Hn = Coker(Cn+1 → Cn) (note that
C0 = G0). Then C -pdHn+1 ≤ m− n− 1 <∞. Since C is self-orthogonal, we have
C ⊆ rG(C ) ⊆ ⊥Hn+1 by Lemma 3.1. So Ext1A (Hn, Hn+1) ∼= Extn+1

A (A,Hn+1) = 0
by (3). Hence, the exact sequence

0 −→ Hn+1 −→ Cn −→ Hn −→ 0

splits. Thus Hn is isomorphic to a direct summand of Cn, and therefore Hn ∈ rG(C )
by [18, Proposition 3.3(1)]. It implies rG(C )-pdA ≤ n, which is a contradiction. �

Because C ⊆ rG(C ) ⊆ ⊥C , we have ⊥C -pdA ≤ rG(C )-pdA ≤ C -pdA for any
A ∈ A . It is natural to ask when these two inequalities are equalities. The following
result gives some partial answer to this question, which extends [12, Corollary 3.12
and Theorem 3.14]. It provides some relatively simple methods for computing the
rG(C )-projective dimension of objects under certain conditions.

Theorem 3.3. For an object A ∈ A , the following statements hold:

(1) If A ∈ rG(C )⊥1 , then rG(C )-pdA = C -pdA.

(2) If rG(C )-pdA <∞, then rG(C )-pdA = ⊥C -pdA.

Proof. (1) Notice that rG(C )-pdA ≤ C -pdA, so the case rG(C )-pdA = ∞
clearly implies the equality C -pdA = rG(C )-pdA. Now let A ∈ rG(C )⊥1 and
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rG(C )-pdA = n (< ∞). By [18, Theorem 3.10], there exists an exact sequence
0 → H → G → A → 0 in A with C -pdH ≤ n − 1 and G ∈ rG(C ). By Lemma
3.1, we have H ∈ rG(C )⊥. Then G ∈ rG(C )⊥1 . Because G ∈ rG(C ), there exists
an exact sequence 0 → G → C → G′ → 0 in A with C ∈ C and G′ ∈ rG(C ).
This exact sequence splits since G ∈ rG(C )⊥1 , and so G is isomorphic to a direct
summand of C. Because C is closed under direct summands, we have G ∈ C and
C -pdA ≤ n.

(2) Notice that ⊥C -pdA ≤ rG(C )-pdA, so the case ⊥C -pdA = ∞ clearly
implies the equality rG(C )-pdA = ⊥C -pdA. Let ⊥C -pdA = n (<∞). Then there
exists an exact sequence

0 −→ Xn −→ · · · −→ X1 −→ X0 −→ A −→ 0

in A with all Xi in ⊥C . So Ext≥n+1
A (A,C) = 0 for any C ∈ C . It follows from

Proposition 3.2 that rG(C )-pdA ≤ n. �

Dual to Theorem 3.3, we have the following result, which extends [12, Corollary
4.12 and Theorem 4.14].

Theorem 3.4. For an object B ∈ A , the following statements hold:
(1) If B ∈ ⊥1 lG(C ), then lG(C )-idB = C -idB.
(2) If lG(C )-idB <∞, then lG(C )-idB = C⊥-idB.

In the following, we give an application of Theorem 3.3. Before proceeding, we
note the lemma below.

Lemma 3.5.
(1) rG(C )⊥ is closed under extensions and cokernels of monomorphisms.
(2) Let 0→ A→M → N → 0 be an exact sequence in A with M,N in rG(C )⊥.

If A ∈ C⊥1 , then A ∈ rG(C )⊥.

Proof. (1) Obvious.

(2) Let G ∈ rG(C ). Then Ext≥2A (G,A) = 0. Because G ∈ rG(C ), there exists
an exact sequence 0 → G → C → G′ → 0 in A with C ∈ C and G′ ∈ rG(C ).

Then Ext≥2A (G′, A) = 0 by the above argument. If A ∈ C⊥1 , then we have a
monomorphism Ext1A (G,A) � Ext2A (G′, A) (= 0). Therefore, Ext1A (G,A) = 0
and A ∈ rG(C )⊥. �

Now we give the following consequence of Theorem 3.3.

Corollary 3.6. For an object A ∈ A , if one of the following conditions is satisfied,
then rG(C )-pdA = C -pdA :

(1) C -pdA <∞.
(2) A ∈ C⊥ and idA <∞.

Proof. If C -pdA < ∞, then A ∈ rG(C )⊥ by Proposition 3.2. On the other hand,
note that C ∪ {all injectives in A } ⊆ rG(C )⊥. So, if A ∈ C⊥ and idA < ∞, then
A ∈ rG(C )⊥ by Lemma 3.5 and dimension shifting. Thus, C -pdA = rG(C )-pdA
in both cases by Theorem 3.3(1). �
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Dually, we have the following consequence of Theorem 3.4.

Corollary 3.7. For an object B ∈ A , if one of the following conditions is satisfied,
then lG(C )-idB = C -idB :

(1) C -idB <∞.

(2) B ∈ ⊥C and pdB <∞.

Let R be a ring and M a left R-module. We use ProdM to denote the class
consisting of all left R-modules isomorphic to direct summands of direct products
of copies of M .

Example 3.8. (1) For an object A ∈ ⊥rG(C ), we have C -pdA > rG(C )-pdA in
general. For example, let R be a ring which is not left self-injective and let

0→ R
f0

−→ E0(R)
f1

−→ E1(R)
f2

−→ · · · fi

−→ Ei(R)
fi+1

−→ · · ·

be a minimal injective resolution of RR, that is, it is an exact sequence and Ei(R)
is the injective envelope of Im f i for any i ≥ 0. Put C = Prod

(∏
i≥0 E

i(R)
)
. Then

C⊥C and RR ∈ ⊥rG(C ). Since R is not left self-injective, we see that RR /∈ C and
C -pdR > 0. On the other hand, it is clear that RR ∈ rG(C ) and rG(C )-pdR = 0.

(2) For an object A ∈ A , whether pdA, the projective dimension of A, is finite
or infinite, we may have pdA 6= C -pdA and pdA 6= rG(C )-pdA in general. For
example, let R be a left and right Artinian ring with idRop R = n, where n is a
positive integer or infinity, and let A be an injective cogenerator for the category of
left R-modules. Put C = ProdA. Then C⊥C and C -pdA = rG(C )-pdA = 0. But
pdRA = n by [10, Lemma 17.2.4(1)].

We need the following lemma.

Lemma 3.9. Let 0→ A→ B → G→ 0 be an exact sequence in A . If G ∈ rG(C ),
then rG(C )-pdA ≤ rG(C )-pdB.

Proof. Let rG(C )-pdB = n (<∞). Then we see that there exists an exact sequence
0→ K → G0 → B → 0 in A with G0 ∈ rG(C ) and rG(C )-pdK ≤ n− 1. Consider
the following pull-back diagram:

0

��

0

��
K

��

K

��
0 // G′0

��

// G0

��

// G // 0

0 // A

��

// B //

��

G // 0

0 0
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By [18, Proposition 3.3(2)] and by the middle row in this diagram, we can obtain
G′0 ∈ rG(C ). Therefore, the exactness of the leftmost column in the above diagram
yields rG(C )-pdA ≤ n. �

We write

C -FPD = sup{C -pdA | A ∈ A with C -pdA <∞},
C -FrGPD = sup{rG(C )-pdA | A ∈ A with rG(C )-pdA <∞}.

The following result unifies some known results about absolute and Gorenstein big
(resp., small) finitistic dimensions (see Proposition 4.7).

Theorem 3.10. C -FPD = C -FrGPD.

Proof. By Corollary 3.6(1), we have C -FPD ≤ C -FrGPD. Let A ∈ A with
rG(C )-pdA = n <∞. By [18, Theorem 3.10], there exists an exact sequence

0 −→ A −→ H ′ −→ G′ −→ 0

in A with G′ ∈ rG(C ) and C -pdH ′ ≤ n. If C -pdH ′ ≤ n− 1, then

rG(C )-pdA ≤ rG(C )-pdH ′ ≤ C -pdH ′ ≤ n− 1

by Lemma 3.9, which is a contradiction. So C -pdH ′ = n and C -FPD ≥ n, which
implies C -FrGPD ≤ C -FPD. �

Now we write

C -FID = sup{C -idB | B ∈ A with C -idB <∞},
C -FlGID = sup{lG(C )-idB | B ∈ A with lG(C )-idB <∞}.

The following result is the dual version of Theorem 3.10.

Theorem 3.11. C -FID = C -FlGID.

4 Applications to Module Categories

In all that follows all rings are associative rings with identity. For a ring R, ModR
is the category of left R-modules and modR is the category of finitely generated
left R-modules.

Definition 4.1. [9, Definition 2.1] Let R and S be rings. An (R,S)-bimodule RCS
is called semidualizing if the following conditions are satisfied:

(a1) RC admits a degreewise finite R-projective resolution; that is, there exists an
exact sequence · · · → P1 → P0 → RC → 0 in modR with all Pi projective.

(a2) CS admits a degreewise finite Sop-projective resolution; that is, there exists an
exact sequence · · · → Q1 → Q0 → CS → 0 in modSop with all Qi projective.

(b1) The homothety map RRR
Rγ−→ HomSop(C,C) is an isomorphism.

(b2) The homothety map SSS
γS−→ HomR(C,C) is an isomorphism.
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(c1) Ext≥1R (C,C) = 0.

(c2) Ext≥1Sop(C,C) = 0.

Wakamatsu [20] introduced and studied the so-called generalized tilting modules,
which are usually called Wakamatsu tilting modules; see [2, Chapter IV, Section 3]
and [14, Section 2]. Note that an (R,S)-bimodule RCS is semidualizing if and only
if RC (resp., CS) is Wakamatsu tilting with S = End(RC) (resp., R = End(CS)),
and if and only if both RC and CS are Wakamatsu tilting with S = End(RC) and
R = End(CS) (see [22, Corollary 3.2]). For examples of semidualizing bimodules,
we refer the reader to [9, Example 2.1] and [21, Section 3]. In particular, RRR is a
semidualizing (R,R)-bimodule.

From now on, R, S are arbitrary rings and we fix a semidualizing bimodule RCS .
By AddR C we denote the subcategory of ModR consisting of direct summands of
direct sums of copies of C, and write

PC(R) = {C ⊗S P | P is projective in ModS},
IC(S) = {HomR(C, I) | I is injective in ModR}.

The modules in PC(R) and IC(S) are called C-projective and C-injective, respec-
tively. When RCS = RRR, C-projective and C-injective modules are exactly pro-
jective and injective modules, respectively.

Definition 4.2. [8, Definition 2.7], [13, Definition 2.5] A module M ∈ ModR is
called C-Gorenstein projective if M ∈ ⊥PC(R) and there exists a HomR(−,PC(R))-
exact exact sequence

0 −→M −→ G0 −→ G1 −→ · · · −→ Gi −→ · · ·

in ModR with all Gi in PC(R). Dually, the notion of C-Gorenstein injective mod-
ules in ModS is defined.

We use GPC(R) (resp., GIC(S)) to denote the subcategory of ModR (resp.,
ModS) consisting of C-Gorenstein projective (resp., injective) modules. When

RCS = RRR, C-Gorenstein projective and injective modules are exactly Gorenstein
projective and injective modules, respectively.

• C-Gorenstein projective dimension. We have the following facts:

(i) PC(R) = AddR C [13, Proposition 2.4(1)];

(ii) GPC(R) = rG(PC(R)) [17, Lemma 4.7(1)];

(iii) PC(R)⊥PC(R) [19, Lemma 2.5(1)].

So, putting C = PC(R) (= AddR C) in Theorem 3.3, we have the following.

Corollary 4.3. For a module A ∈ ModR, we have the following statements:

(1) If A ∈ GPC(R)⊥1 , then GPC(R)-pdRA = PC(R)-pdRA.

(2) If GPC(R)-pdRA <∞, then GPC(R)-pdRA = ⊥PC(R)-pdRA.
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Since PC(R) = AddR C, we have PC(R)⊥ = RC
⊥ by [15, Proposition 7.21]. So,

putting C = PC(R) (= AddR C) in Corollary 3.6, we have the next result.

Corollary 4.4. For a module A ∈ ModR, if one of the following conditions is
satisfied, then GPC(R)-pdRA = PC(R)-pdRA :

(1) PC(R)-pdRA <∞.

(2) A ∈ RC
⊥ and idRA <∞.

Putting RCS = RRR in Corollary 4.4, we obtain the following corollary.

Corollary 4.5. [6, Proposition 2.27], [7, Theorem 2.2] For a module A ∈ ModR,
if one of the following conditions is satisfied, then GPR(R)-pdRA = pdRA :

(1) pdRA <∞.

(2) idRA <∞.

Recall from [6] that a subcategory of ModR is called projectively resolving if it
contains PR(R) and is closed under extensions and kernels of epimorphisms. Holm
and White stated in [9, Corollary 6.4] that PC(R) is projectively resolving if RCS is
faithful. But it is not true and the problem is that PC(R) does not contain PR(R) in
general (see [9, Example 4.7(1)]). The first assertion in the following result gives a
sufficient condition for PC(R) to be projectively resolving. We compare the second
assertion with Example 3.8(2).

Proposition 4.6. If R ∈ RC
⊥ and idRR < ∞ (in particular, if R is left self-

injective), then we have the following:

(1) PC(R) is projectively resolving.

(2) For any module A ∈ ModR with pdRA <∞, we have

GPC(R)-pdRA = PC(R)-pdRA = pdRA.

Proof. (1) By [13, Corollary 2.10] we have PR(R) ⊆ GPC(R). Since idRR <∞, we
have PC(R)-pdRR = GPC(R)-pdRR = 0 by Corollary 4.4(2). So R ∈ PC(R), and
hence PR(R) ⊆ PC(R). By [9, Proposition 5.2(b)] and the proof of [9, Corollary
6.4], PC(R) is closed under extensions and kernels of epimorphisms. Thus, we
conclude that PC(R) is projectively resolving.

(2) By (1) and [19, Proposition 4.8]. �

We define

C-FPD(R) = sup{PC(R)-pdRA | A ∈ ModR with PC(R)-pdRA <∞},
C-FGPD(R) = sup{GPC(R)-pdRA | A ∈ ModR with GPC(R)-pdRA <∞}.

When RCS = RRR, we write FPD(R) = C-FPD(R) and FGPD(R) = C-FGPD(R).
In addition, we write

fPD(R) = sup{pdRA | A ∈ modR with pdRA <∞}.

If R is a left noetherian ring, then by [25, Proposition 1.4] we have
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GPR(R) ∩modR

= {G ∈ modR | there exists an exact sequence 0→ P1 → P0 → P 0 → P 1 → · · ·
in modR with all Pi, P

i projective such that it remains exact after we apply

the functor HomR(−, P ) for any projective module P in modR and

G ∼= Im(P0 → P 0)}.

In this case, this category is still denoted by GPR(R), and we write

fGPD(R) = sup{GPR(R)-pdRA | A ∈ modR with GPR(R)-pdRA <∞}.

In the following result, the assertion (2) is [6, Theorem 2.28], and the assertion
(3) was proved in [23, Lemma 4.4] when R is an artin algebra.

Proposition 4.7.

(1) C-FPD(R) = C-FGPD(R).

(2) FPD(R) = FGPD(R).

(3) If R is a left noetherian ring, then fPD(R) = fGPD(R).

Proof. If we put C = AddR C and A = ModR in Theorem 3.10, then the assertion
(1) follows. The assertion (2) is the special case of (1) for RCS = RRR. If we put
C = {finitely generated projective left R-modules} and A = modR in Theorem
3.10, then the assertion (3) follows. �

• C-Gorenstein injective dimension. The results in this part and their proofs
are completely dual to those for C-Gorenstein projective dimension above, so we
only list the results without proofs. We fix an injective cogenerator RE for ModR
and write (−)+ = HomR(−, E). Then we have the following facts:

(i) IC(S) = ProdS C
+ [13, Proposition 2.4(2)];

(ii) GIC(S) = lG(IC(S)) [17, Lemma 4.7(1)];

(iii) IC(S)⊥IC(S) [19, Lemma 2.5(2)].

So, putting C = IC(S) (= ProdS C
+) in Theorem 3.4, we have the following.

Corollary 4.8. For a module B ∈ ModS, the following statements hold:

(1) If B ∈ ⊥1GIC(S), then GIC(S)-idSB = IC(S)-idSB.

(2) If GIC(S)-idSB <∞, then GIC(S)-idSB = IC(S)⊥-idSB.

Now we define C>S = {B ∈ ModS | TorS≥1(C,B) = 0}.

Observation. ⊥IC(S) = ⊥(C+) = C>S .
Indeed, since IC(S) = ProdS C

+, we have ⊥IC(S) = ⊥(C+) by [15, Proposition
7.22]. By [15, Corollary 10.63], we have the natural isomorphism

ExtiS(B,C+) ∼= [TorSi (C,B)]+

for any B ∈ ModS and i ≥ 1. It follows that ExtiS(B,C+) = 0 if and only if
[TorSi (C,B)]+ = 0 if and only if TorSi (C,B) = 0 since RE is an injective cogenerator
for ModR. Thus, we have ⊥(C+) = C>S .

Putting C = IC(S) (= ProdS C
+) in Corollary 3.7, we have the following.
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Corollary 4.9. For a module B ∈ ModS, if one of the following conditions is
satisfied, then GIC(S)-idSB = IC(S)-idSB :

(1) IC(S)-idSB <∞.

(2) B ∈ C>S and pdS B <∞.

Putting RCS = SSS in Corollary 4.9, we get the next result, in which the
assertion (2) is [7, Theorem 2.1].

Corollary 4.10. For a module B ∈ ModS, if one of the following conditions is
satisfied, then GIS(S)-idSB = idS B :

(1) idS B <∞.

(2) pdS B <∞.

Recall from [6] that a subcategory of ModS is called injectively coresolving if it
contains IS(S) and is closed under extensions and cokernels of monomorphisms.

Proposition 4.11. If Q ∈ C>S and pdS Q <∞ for an injective cogenerator Q for
ModS, then the following statements hold:

(1) IC(S) is injectively coresolving.

(2) GIC(S)-idSB = IC(S)-idSB = idS B for every module B ∈ ModS with
idS B <∞.

We set

C-FID(S) = sup{IC(S)-idSB | B ∈ ModS with IC(S)-idSB <∞},
C-FGID(S) = sup{GIC(S)-idSB | B ∈ ModS with GIC(S)-idSB <∞}.

When RCS = SSS , we write FID(S) = C-FID(S) and FGID(S) = C-FGID(S).
The assertion (2) in the following result is [6, Theorem 2.29].

Proposition 4.12. (1) C-FID(S) = C-FGID(S) and (2) FID(S) = FGID(S).
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