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Abstract. Let T be a triangulated category with a proper class ξ of triangles. We intro-
duce the notions of left Frobenius pairs, left (n-)cotorsion pairs and left (weak) Auslander-
Buchweitz contexts with respect to ξ in T . We show how to construct left cotorsion pais
from left n-cotorsion pairs, and establish a one-to-one correspondence between left Frobe-
nius pairs and left (weak) Auslander-Buchweitz contexts. Some applications are given in
the Gorenstein homological theory of triangulated categories.
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1 Introduction

An important branch of relative homological algebra was developed by Auslander
and Buchweitz in their paper [4]. Based on this, the so-called “Auslander-Buchweitz
context” for abelian categories was defined by Hashimoto [12], and Auslander-
Buchweitz approximation theory is the prerequisite for computing relative dimen-
sions. On the other hand, cotorsion pairs, developed in [9–11], are important in the
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study of the algebraic and geometric structures of abelian categories. This notion
provides a good setting for investigating relative homological dimensions (see [1]).
Moreover, Huerta et al. [16] introduced the notion of n-cotorsion pairs in abelian
categories. They described several properties of n-cotorsion pairs and established
a relation between n-cotorsion pairs and (complete) cotorsion pairs. Becerril et
al. [6] introduced Frobenius pairs in abelian categories, and presented one-to-one
correspondences between left Frobenius pairs, Auslander-Buchweitz contexts and
relative cotorsion pairs in abelian categories.

Recently, triangulated categories entered into the subject in a relevant way. Let
T be a triangulated category with the class ∆ of triangles. In analogy with relative
homological algebra in abelian categories, Beligiannis developed in [7] a relative
version of homological algebra in triangulated categories, in which the notion of a
proper class of exact sequences is replaced by that of a proper class of triangles
ξ ⊆ ∆. Later on, by combining it with Gorenstein homological theory in abelian
categories, many authors developed relative homological theory, especially Goren-
stein homological theory, in triangulated categories (see [2, 3, 8, 17, 18, 21, 23]).
Recently, Ma and Zhao [17] introduced and developed the Auslander-Buchweitz
approximation theory with respect to a proper class ξ of triangles in triangulated
categories, which is an analog of the approximation theory in abelian categories [4].

Throughout, unless otherwise stated, we always assume that T is a triangulated
category with enough ξ-projective and ξ-injective objects. This paper is devoted to
developing relative homological theory along with the Auslander-Buchweitz approx-
imation theory in triangulated categories. Moreover, some applications are given in
the context of Gorenstein homological algebra in triangulated categories.

This paper is organized as follows. In Section 2, we give some terminologies and
some preliminary results. In Section 3, we recall the notion of left (n-)cotorsion pairs
in T with respect to ξ, and then by virtue of an equivalent characterization of n-
cotorsion pairs [13], we establish a relation between n-cotorsion pairs and cotorsion
pairs (Proposition 3.10). In Section 4, we introduce the notions of left Frobenius
pairs and left (weak) Auslander-Buchweitz contexts in T . For a subcategory X of
T , X∧ denotes the subcategory of T consisting of objects with finite X -resolution
dimension. Let (X , ω) be a left Frobenius pair in T . We show that X∧ is closed
under ξ-extensions, hokernels of ξ-proper epimorphisms, hocokernels of ξ-proper
monomorphisms and direct summands (Theorem 4.9 and Proposition 4.12). Then
we show how to obtain (left) cotorsion pairs from left Frobenius pairs (Theorem
4.14). Finally, we introduce the notion of left (weak) Auslander-Buchweitz context,
and establish a one-to-one correspondence between left weak Auslander-Buchweitz
contexts and left Frobenius pairs as follows (Theorem 4.22): Let n ≥ 1 be an integer,
and consider the classes

A := {(X , ω) | (X , ω) is a left Frobenius pair in T },
B := {(A,B) | (A,B) is a left weak Auslander-Buchweitz context},
C := {(U ,V) | (U ,V) is a cotorsion pair in T with U resolving, V ⊆ U∧},
D := {(U ,V) | (U ,V) is an n-cotorsion pair in T with U resolving, V ⊆ U∧}.

Then (1) there is a one-to-one correspondence between A and B given by
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Φ: A −→ B, (X , ω) 7−→ (X , ω∧),

Ψ: B −→ A, (A,B) 7−→ (A, A ∩ B);

(2) C ⊆ B; (3) C = D.

2 Preliminaries

Let T be an additive category and Σ: T → T be an additive functor. Define the
category Diag(T ,Σ) as follows:

• An object of Diag(T ,Σ) is a diagram in T of the form X
u−→ Y

v−→ Z
w−→ ΣX.

• A morphism in Diag(T ,Σ) between Xi
ui−→ Yi

vi−→ Zi
wi−→ ΣXi, i = 1, 2, is a

triple (α, β, γ) of morphisms in T such that the following diagram commutes:

X1
u1 //

α

��

Y1
v1 //

β

��

Z1
w1 //

γ

��

ΣX1

Σα

��
X2

u2 // Y2
v2 // Z2

w2 // ΣX2

A triangulated category is a triple (T ,Σ,∆), where T is an additive category
and Σ: T → T is an autoequivalence of T (called the suspension functor), and ∆
is a full subcategory of Diag(T ,Σ) which is closed under isomorphisms and satisfies
the axioms (T1)–(T4) in [7, Section 2.1] (also see [20]), where (T4) is called the
octahedral axiom. The elements in ∆ are called triangles.

The following well-known result is an efficient tool.

Remark 2.1. [7, Proposition 2.1] Let T be an additive category, Σ: T → T an
autoequivalence of T , and ∆ a full subcategory of Diag(T ,Σ) which is closed under
isomorphisms. Suppose that the triple (T ,Σ,∆) satisfies all axioms of a triangulated
category except possibly the octahedral axiom. Then the following statements are
equivalent:

(1) Octahedral axiom. For any two morphisms u : X → Y and v : Y → Z, there
exists a commutative diagram

X
u // Y

u′ //

v

��

Z ′
u′′ //

α

��

ΣX

X
vu // Z

w //

v′

��

Y ′
w′ //

β

��

ΣX

Σu

��
Z ′′

v′′

��

Z ′′
v′′ //

γ

��

ΣY

ΣY
Σu′ // ΣZ ′

in which the first two rows and the middle two columns are triangles in ∆.
(2) Base change. For any triangle X

u−→ Y
v−→ Z

w−→ ΣX in ∆ and any morphism
α : Z ′ → Z, there exists the following commutative diagram:
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X ′

β′

��

X ′

β
��

X
u′ // Y ′

v′ //

α′

��

Z ′
w′ //

α
��

ΣX

X
u // Y

v //

γ′

��

Z
w //

γ
��

ΣX

Σu′
��

ΣX ′ ΣX ′
−Σβ′ // ΣY ′

in which the middle two rows and the middle two columns are triangles in ∆.
(3) Cobase change. For any triangle X

u−→ Y
v−→ Z

w−→ ΣX in ∆ and any morphism
β : X → X ′, there exists the following commutative diagram:

Σ−1Z ′

−Σ−1γ
��

Σ−1Z ′

−Σ−1γ′

��
Σ−1Z

−Σ−1w // X
u //

β
��

Y
v //

β′

��

Z

Σ−1Z
−Σ−1w′ // X ′

u′ //

α
��

Y ′
v′ //

α′

��

Z

−w
��

Z ′ Z ′
γ // ΣX

in which the middle two rows and the middle two columns are triangles in ∆.

In all that follows, let T = (T ,Σ,∆) be a triangulated category, and Ab be the
category of abelian groups. Recall that a triangle X → Y → Z → ΣX is called
split if it is isomorphic to the triangle

X
(1
0) // X ⊕ Z

(0, 1) // Z
0 // ΣX.

We use ∆0 to denote the full subcategory of ∆ consisting of all split triangles.

Definition 2.2. [7] Let ξ be a class of triangles in T .

(1) ξ is said to be closed under base change (resp., cobase change) providing that

for any triangle X
u−→ Y

v−→ Z
w−→ ΣX in ξ and any morphism α : Z ′ → Z

(resp., β : X → X ′) as in Remark 2.1(2) (resp., Remark 2.1(3)), the triangle

X
u′−→ Y ′

v′−→ Z ′
w′−→ ΣX (resp., X ′

u′−→ Y ′
v′−→ Z

w′−→ ΣX ′) is in ξ.
(2) ξ is said to be closed under suspension providing that for any integer i and

for any triangle X
u−→ Y

v−→ Z
w−→ ΣX in ξ, the triangle

ΣiX
(−1)iΣiu // ΣiY

(−1)iΣiv // ΣiZ
(−1)iΣiw // Σi+1X

is in ξ.
(3) ξ is called saturated if in the situation of base change as in Remark 2.1(2),

whenever the third vertical and the second horizontal triangles are in ξ, the
triangle X

u−→ Y
v−→ Z

w−→ ΣX is in ξ.
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Definition 2.3. [7, Definition 2.2] A class ξ of triangles in T is called proper if
the following conditions are satisfied:

(1) ξ is closed under isomorphisms, finite coproducts and ∆0 ⊆ ξ.
(2) ξ is closed under suspensions and is saturated.
(3) ξ is closed under base and cobase change.

Example 2.4. [7, Example 2.3] (1) Let T be a triangulated category. There are
two trivial proper classes of triangles: ∆0 and ∆.

(2) Let F : T → T ′ be an exact functor of triangulated categories and let ξ′ be
a proper class of triangles in T ′. Let ξ be the class of triangles δ in T such that
F (δ) ∈ ξ′. Then ξ is a proper class of triangles in T .

(3) Let T be a triangulated category, A an abelian category, and F : T → A a
(co)homological functor. Define ξF as follows: a triangle X → Y → Z → ΣX is in
ξF if and only if the induced sequence 0 → F i(X) → F i(Y ) → F i(Z) → 0 for any
integer i is exact in A, where F i=FΣi. Then ξF is a proper class of triangles in T .

(4) Let T be a triangulated category and X a subcategory of T with ΣX = X .
Define ξX (resp., ξop

X ) as follows: a triangle A→ B → C → ΣA is in ξX if and only
if the induced sequence 0 → HomT (X,A) → HomT (X,B) → HomT (X,C) → 0
(resp., 0 → HomT (C,X) → HomT (B,X) → HomT (A,X) → 0) for any X ∈ X is
exact in Ab. Then ξX (resp., ξop

X ) is a proper class of triangles in T .

In what follows we always assume that ξ is a proper class of triangles in T .

Definition 2.5. [7, Definition 2.4] Let X
u−→ Y

v−→ Z
w−→ ΣX be a triangle in ξ.

Then the morphism u (resp., v) is called ξ-proper monic (resp., ξ-proper epic), and
u (resp., v) is called the hokernel of v (resp., the hocokernel of u).

For any triangle X → Y → Z → ΣX in ξ, we say that X is closed under
ξ-extensions if X,Z ∈ X implies Y ∈ X ; X is closed under hokernels of ξ-proper
epimorphisms (resp., hocokernels of ξ-proper monomorphisms) if Y, Z ∈ X (resp.,
X,Y ∈ X ) implies X ∈ X (resp., Z ∈ X ).

Definition 2.6. [7, Definition 4.1] An object P (resp., I) in T is called ξ-projective
(resp., ξ-injective) if for any triangle X → Y → Z → ΣX in ξ, the induced complex

0 // HomT (P,X) // HomT (P, Y ) // HomT (P,Z) // 0

(resp., 0 // HomT (Z, I) // HomT (Y, I) // HomT (X, I) // 0)

is exact in Ab. We use P(ξ) (resp., I(ξ)) to denote the full subcategory of T
consisting of ξ-projective (resp., ξ-injective) objects.

We say that T has enough ξ-projective objects if for any object M ∈ T there
exists a triangle K → P → M → ΣK in ξ with P ∈ P(ξ). Dually, we say that
T has enough ξ-injective objects if for any object M ∈ T there exists a triangle
M → I → K → ΣM in ξ with I ∈ I(ξ).

From now on, we always assume that T is a triangulated category with enough
ξ-projective and ξ-injective objects.
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Definition 2.7. [2, Section 3] Let T be a triangulated category.
(1) A ξ-exact complex is a complex

· · · // Xn+1

dn+1 // Xn
dn // Xn−1

// · · · (2.1)

in T such that for any n ∈ Z there exists a triangle

Kn+1
gn // Xn

fn // Kn
hn // ΣKn+1 (2.2)

in ξ and the differential dn is defined as dn = gn−1fn.
(2) A triangle X → Y → Z → ΣX in ξ is called HomT (−,P(ξ))-exact if the

induced complex 0 → HomT (Z,P ) → HomT (Y, P ) → HomT (X,P ) → 0 for any
object P ∈ P(ξ) is exact in Ab.

(3) A ξ-exact complex as (2.1) is called HomT (−,P(ξ))-exact if the triangle
(2.2) is HomT (−,P(ξ))-exact for any n ∈ Z.

Asadollahi and Salarian [2] introduced the notion of ξ-Gorenstein projective
objects.

Definition 2.8. [2, Definition 3.6] Let T be a triangulated category and X an
object in T . A complete ξ-projective resolution is a HomT (−,P(ξ))-exact ξ-exact
complex · · · → P1 → P0 → P−1 → · · · in T with all Pi ξ-projective objects. The
objects Kn as in (2.2) are called ξ-Gorenstein projective objects. We use GP(ξ) to
denote the full subcategory of T consisting of all ξ-Gorenstein projective objects.
Dually, ξ-Gorenstein injective objects and GI(ξ) are defined.

Suppose that M is an object in T . Beligiannis [7] defined the ξ-extension groups
ξxtnξ (−,M) to be the nth right ξ-derived functor of the functor HomT (−,M), that
is, ξxtnξ (−,M) := Rnξ HomT (−,M).

Remark 2.9. Let X → Y → Z → ΣX be a triangle in ξ. For any objects M,N ∈ T ,
by [7, Corollary 4.12] there exist long exact sequences of “ξxt” functors

0 // ξxt0
ξ(Z,M) // ξxt0

ξ(Y,M) // ξxt0
ξ(X,M)

// ξxt1
ξ(Z,M) // ξxt1

ξ(Y,M) // ξxt1
ξ(X,M) // · · · ,

0 // ξxt0
ξ(N,X) // ξxt0

ξ(N,Y ) // ξxt0
ξ(N,Z)

// ξxt1
ξ(N,X) // ξxt1

ξ(N,Y ) // ξxt1
ξ(N,Z) // · · · .

Following Remark 2.9, we usually use the strategy of “dimension shifting”, which
is an important tool in relative homological theory of triangulated categories. Set

X⊥n := {M ∈ T | ξxtnξ (X,M) = 0 for all X ∈ X},
X⊥ := {M ∈ T | ξxtnξ (X,M) = 0 for all X ∈ X and all n ≥ 1} =

⋂
n≥1

X⊥n .

Dually, ⊥nX and ⊥X are defined.
The notion of a contravariantly (or covariantly) finite subcategory of the cat-

egory of finitely generated modules, which is also called a precovering (or preen-
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veloping) class, was first introduced over artin algebras by Auslander and Smalø
[5]. It plays an important role in homological algebra and representation theory of
algebra. Here we recall the corresponding notions in the setting relative to a proper
class of triangles.

Definition 2.10. [17, Definition 3.8] Let X be a subcategory of T and M be an
object in T . A right X -approximation of M is a ξ-proper epimorphism X → M
such that the induced complex HomT (X̃,X) → HomT (X̃,M) → 0 is exact in Ab
for any X̃ ∈ X . In this case, there is a triangle K → X → M → ΣK in ξ. Dually,
a left X -approximation of M is defined.

The subcategory X is said to be contravariantly finite if any object T ∈ T admits
a right X -approximation, and dually X is said to be covariantly finite if any object
T ∈ T admits a left X -approximation (cf. [15, Definition 3.9]). The subcategory X
is called functorially finite if it is both contravariantly finite and covariantly finite.

Definition 2.11. [17, Definition 2.11] Let (X , ω) be a pair of subcategories in T
with ω ⊆ X .

(1) ω is called a ξ-cogenerator of X if for any object X in X , there exists a triangle
X →W → X ′ → ΣX in ξ with W ∈ ω and X ′ ∈ X .

(2) ω is called X -injective if ω ⊆ X⊥.

Definition 2.12. [17, Definition 2.12] Let T be a triangulated category and X a
subcategory of T . Then X is called a resolving subcategory of T if the following
conditions are satisfied:

(1) P(ξ) ⊆ X .
(2) X is closed under ξ-extensions.
(3) X is closed under hokernels of ξ-proper epimorphisms.

Dually, a coresolving subcategory is defined.

Definition 2.13. [17, Definition 3.1] Let X be a subcategory of T and T be an
object in T . The X -resolution dimension of T is defined as

X -res.dimT := inf{n ≥ 0 | there exists a ξ-exact complex

0 // Xn
// · · · // X1

// X0
// T // 0 in T with all Xi ∈ X}.

If no such integer n exists, then set X -res.dimT =∞. The X -resolution dimension
of T is defined by X -res.dim T := sup{X -res.dimT | T ∈ T }.

The X -coresolution dimensions X -cores.dimT and X -cores.dim T are defined
dually.

When X = P(ξ), we write ξ-pdT := X -res.dimT , and when X = I(ξ), we
write ξ-idT := X -cores.dimT . In the case X = GP(ξ), X -res.dimT coincides with
ξ-GpdT defined in [2] as ξ-Gorenstein projective dimensions.

We use X∧ (resp., X∨) to denote the subcategory of T consisting of objects
having finite X -resolution (resp., X -coresolution) dimension, and use X∧n (resp.,
X∨n ) to denote the subcategory of T consisting of objects having X -resolution (resp.,
X -coresolution) dimension at most n.
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3 Left n-Cotorsion Pairs

We first introduce the notion of left (resp., right) cotorsion pair in triangulated
categories with respect to a proper class of triangles.

Definition 3.1. Let U and V be subcategories of T . We say that (U ,V) is a left
cotorsion pair in T if the following conditions are satisfied:

(L1) U is closed under direct summands.
(L2) ξxt1

ξ(U ,V) = 0.
(L3) Every object T ∈ T admits a triangle V → U → T → ΣV in ξ with U ∈ U

and V ∈ V.

Dually, we say that (U ,V) is a right cotorsion pair in T if the following conditions
are satisfied:

(R1) V is closed under direct summands.
(R2) ξxt1

ξ(U ,V) = 0.
(R3) Every object T ∈ T admits a triangle T → V ′ → U ′ → ΣT in ξ with U ′ ∈ U

and V ′ ∈ V.

Remark 3.2. Let U and V be subcategories of T .
(1) If (U ,V) is a left cotorsion pair in T , then U = ⊥1V. Moreover, P(ξ) ⊆ U ,

U is closed under ξ-extensions, and U is a contravariantly finite subcategory of T .
(2) If (U ,V) is a right cotorsion pair in T , then V = U⊥1 . Moreover, I(ξ) ⊆ V,

V is closed under ξ-extensions, and V is a covariantly finite subcategory of T .

We say that (U ,V) is a cotorsion pair in T if (U ,V) is both a left and right
cotorsion pair in T , which is essentially a ξ-complete cotorsion theory in the sense
of Asadollahi and Salarian [3].

In what follows, we always assume that n is a positive integer. In [13], Zhou
introduced the notion of n-cotorsion pairs in extriangulated categories (see [19]).
Notice that a triangulated category with respect to a proper class of triangles is an
extriangulated category (see [14, Remark 3.3]). Now we rewrite the notion of n-
cotorsion pairs with respect to a proper class of triangles in triangulated categories.

Definition 3.3. (cf. [13, Definition 3.1]) Let U and V be subcategories of T . We
say that (U ,V) is a left n-cotorsion pair in T if the following conditions are satisfied:

(LN1) U is closed under direct summands.
(LN2) ξxt iξ(U ,V) = 0 for every 1 ≤ i ≤ n.
(LN3) Every object T ∈ T admits a triangle K → U → T → ΣK in ξ with U ∈ U

and K ∈ V∧n−1.

Dually, we say that (U ,V) is a right n-cotorsion pair in T if the following conditions
are satisfied:

(RN1) V is closed under direct summands.
(RN2) ξxt iξ(U ,V) = 0 for every 1 ≤ i ≤ n.
(RN3) Every object T ∈ T admits a triangle T → V ′ → K ′ → ΣT in ξ with V ′ ∈ V

and K ′ ∈ U∨n−1.

We say that (U ,V) is an n-cotorsion pair in T if (U ,V) is both a left and right
n-cotorsion pair in T .



Left Frobenius Pairs, Cotorsion Pairs 293

We remark that left (resp., right) 1-cotorsion pairs are exactly left (resp., right)
cotorsion pairs in T .

Proposition 3.4. Let U and V be subcategories of T satisfying ξxt iξ(U ,V) = 0

for every 1 ≤ i ≤ n. If Y ∈ V∧k with 0 ≤ k ≤ n − 1, then ξxt iξ(U , Y ) = 0 for every

1 ≤ i ≤ n− k. In particular, ξxt1
ξ(U ,V∧n−1) = 0.

Proof. The case n = 1 is clear. Now suppose n ≥ 2. We will proceed by induction
on k. The case k = 0 is also clear, so we suppose 1 ≤ k ≤ n − 1. Let U ∈ U
and Y ∈ V∧k . For the case k = 1, there is a triangle V1 → V0 → Y → ΣV1 in ξ
with V1, V0 ∈ V. Applying the functor HomT (U,−) to the above triangle yields the
exact sequence · · · → ξxt iξ(U, V0) → ξxt iξ(U, Y ) → ξxt i+1

ξ (U, V1) → · · · . For every

1 ≤ i ≤ n− 1, since ξxt iξ(U, V0) = 0 = ξxt i+1
ξ (U, V1), we have ξxt iξ(U, Y ) = 0.

Suppose 2 ≤ k ≤ n − 1. Consider a triangle Y ′ → V ′0 → Y → ΣY ′ in ξ with
Y ′ ∈ V∧k−1 and V ′0 ∈ V. Applying the functor HomT (U,−) to the above triangle

yields the exact sequence · · · → ξxt iξ(U, V
′
0) → ξxt iξ(U, Y ) → ξxt i+1

ξ (U, Y ′) → · · · .
Since ξxt iξ(U, V

′
0) = 0 for any 1 ≤ i ≤ n−k by assumption and since ξxt iξ(U, Y

′) = 0

for every 2 ≤ i ≤ n− k+ 1 by the induction hypothesis, we have ξxt iξ(U, Y ) = 0 for
every 1 ≤ i ≤ n− k. �

Corollary 3.5. (cf. [13, Lemma 3.3]) Let V be a subcategory of T . Then we have⋂n
i=1
⊥iV ⊆ ⊥1V∧n−1.

The following result gives an equivalent characterization of left n-cotorsion pairs.

Lemma 3.6. (cf. [13, Lemma 3.4]) Let U and V be subcategories of T . Then the
following statements are equivalent:

(1) (U ,V) is a left n-cotorsion pair in T .
(2) U=

⋂n
i=1
⊥iV, and for any object T ∈T there is a triangle K→U→T→ΣK

in ξ with U ∈ U and K ∈ V∧n−1.
If one of the above conditions holds true, (U ,V∧n−1) is a left cotorsion pair in T .

In the rest of this section, we give some properties related to (left) n-cotorsion
pairs.

Proposition 3.7. Let (U ,V) be an n-cotorsion pair in T . Then the following
statements are equivalent: (1) U ⊆ V. (2) T = V∧n . (3) ξxt1

ξ(U∨n−1,U) = 0.

Proof. (1)⇒(2) This is clear.
(2)⇒(1) Let U ∈ U ⊆ T . By assumption, there is a triangleK → V0 → U → ΣK

in ξ with K ∈ V∧n−1 and V0 ∈ V. By Lemma 3.6, the above triangle is split, so U is
a direct summand of V0, and hence U ∈ V. Thus, U ⊆ V.

(1)⇔(3) This follows from the dual of Lemma 3.6. �

Note that V∧ = V if V is coresolving, and U∨ = U if U is resolving.

Corollary 3.8. Let (U ,V) be an n-cotorsion pair in T with U resolving. Then the
following statements are equivalent: (1) U ⊆ V. (2) T = V. (3) ξxt1

ξ(U ,U) = 0.

Applying Lemma 3.6, we also have the following result.
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Proposition 3.9. Let (U ,V) be a left n-cotorsion pair in T with ξxtn+1
ξ (U ,V) = 0.

Then U is resolving.

Proof. By Lemma 3.6, (U ,V∧n−1) is a left cotorsion pair in T . By Remark 3.2, U is
closed under ξ-extensions and P(ξ) ⊆ U . Let U → U ′ → U ′′ → ΣU be a triangle in ξ
with U ′, U ′′ ∈ U . For any V ∈ V, applying the functor HomT (−, V ) to this triangle
yields the exact sequence · · · → ξxt iξ(U

′, V )→ ξxt iξ(U, V )→ ξxt i+1
ξ (U ′′, V )→ · · · .

Notice that ξxt iξ(U ,V) = 0 for every 1 ≤ i ≤ n+1 by assumption, so ξxt iξ(U, V ) = 0

for every 1 ≤ i ≤ n. Thus U ∈
⋂n
i=1
⊥iV = U by Lemma 3.6, and hence U is closed

under hokernels of ξ-proper epimorphisms. Therefore, U is resolving. �

The following result establishes a relation between n-cotorsion pairs and cotor-
sion pairs.

Proposition 3.10. Let U and V be subcategories in T . Then the following state-
ments are equivalent:

(1) (U ,V) is an n-cotorsion pair with ξxtn+1
ξ (U ,V) = 0 in T .

(2) (U ,V) is an n-cotorsion pair in T and U is resolving.
(3) (U ,V) is an n-cotorsion pair in T and V is coresolving.
(4) (U ,V) is a cotorsion pair in T and U is resolving.

Moreover, if one of the above conditions holds true, ξxt iξ(U ,V) = 0 for every i ≥ 1.

Proof. (1)⇒(2) This follows from Proposition 3.9.
(2)⇒(1) It suffices to show ξxtn+1

ξ (U ,V) = 0. Let U ∈ U and V ∈ V. Since T
has enough ξ-projective objects, there is a triangle U ′ → P → U → ΣU ′ in ξ with
P ∈ P(ξ). Since U is resolving, we have U ′ ∈ U . Applying the functor HomT (−, V )
to the above triangle yields the following exact sequence:

· · · // ξxt iξ(U
′, V ) // ξxt i+1

ξ (U, V ) // ξxt i+1
ξ (P, V ) // · · · .

Since ξxt iξ(U ,V) = 0 for any 1 ≤ i ≤ n, we have ξxtn+1
ξ (U ,V) = 0.

(1)⇔(3) This is a dual of (1)⇔(2).
(2)⇒(4) or (3)⇒(4) By Lemma 3.6, (U ,V∧n−1) is a left cotorsion pair in T . Since

V is coresolving, V = V∧n−1. So (U ,V) is a left cotorsion pair in T . Dually, (U ,V) is
a right cotorsion pair in T . Thus, (U ,V) is a cotorsion pair in T , and U is resolving.

(4)⇒(2) By using an argument similar to that of the implication (2)⇒(1), we
get ξxt iξ(U ,V) = 0 for every 1 ≤ i ≤ n.

Moreover, by an argument similar to that of the implication (2)⇒(1), we get
ξxt iξ(U ,V) = 0 for every i ≥ n+ 1. Then ξxt iξ(U ,V) = 0 for every i ≥ 1. �

Corollary 3.11. Let (U ,V) be a cotorsion pair in T . Then the following state-
ments are equivalent: (1) ξxt2

ξ(U ,V) = 0. (2) U is resolving. (3) V is coresolving.

Moreover, if one of the above conditions holds true, ξxt iξ(U ,V) = 0 for every i ≥ 1.

Lemma 3.12. Let U and V be subcategories of T such that ξxt iξ(U ,V) = 0 for

every 1 ≤ i ≤ n. Then U∧k ⊆ ⊥k+1V for any 0 ≤ k ≤ n− 1.

Proof. We will proceed by induction on k. The case k = 0 is clear. Let X ∈ U∧k
and V ∈ V. For the case k = 1, there is a triangle U1 → U0 → X → ΣU1 in ξ
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with U1, U0 ∈ U . Applying the functor HomT (−, V ) to the above triangle yields
the exact sequence · · · → ξxt1

ξ(U1, V ) → ξxt2
ξ(X,V ) → ξxt2

ξ(U0, V ) → · · · . Since

ξxt1
ξ(U1, V ) = 0 = ξxt2

ξ(U0, V ) by assumption, ξxt2
ξ(X,V ) = 0 and X ∈ ⊥2V.

Suppose k ≥ 2. Consider a triangle K → U ′0 → X → ΣK in ξ with U ′0 ∈ U
and K ∈ U∧k−1. Applying the functor HomT (−, V ) to the above triangle yields

the exact sequence · · · → ξxtkξ (K,V ) → ξxtk+1
ξ (X,V ) → ξxtk+1

ξ (U ′0, V ) → · · · .
Since ξxtkξ (K,V ) = 0 by the induction hypothesis, and since ξxtk+1

ξ (U ′0, V ) = 0 by

assumption, we have ξxtk+1
ξ (X,V ) = 0 and X ∈ ⊥k+1V. Thus, U∧k ⊆ ⊥k+1V for any

0 ≤ k ≤ n− 1. �

As a consequence, we get the following proposition.

Proposition 3.13. Let (U ,V) be a left n-cotorsion pair in T . Then the following
statements are equivalent: (1) U = ⊥1V. (2) U∧k = ⊥k+1V for any 0 ≤ k ≤ n− 1.

Proof. (2)⇒(1) This is trivial by setting k = 0 in (2).
(1)⇒(2) The case k = 0 is clear. Suppose k ≥ 1. By Lemma 3.12, U∧k ⊆ ⊥k+1V.

Conversely, assume Y ∈ ⊥k+1V. Consider a triangle K1 → U0 → Y → ΣK1 in ξ
with U0 ∈ U and K1 ∈ V∧n−1. Repeating this process, we get the ξ-exact complex
0 → Kk → Uk−1 → · · · → U1 → U0 → Y → 0 with Ui ∈ U for 0 ≤ i ≤ k − 1.
Applying the functor HomT (−, V ) to it, we have ξxt1

ξ(Kk, V ) ∼= ξxtk+1
ξ (Y, V ) = 0

by dimension shifting. This implies Kk ∈ ⊥1V = U by assumption. Hence, Y ∈ U∧k
and ⊥k+1V ⊆ U∧k . Thus, U∧k = ⊥k+1V. �

Corollary 3.14. Let (U ,V) be a left n-cotorsion pair in T . If U = ⊥1V, then for
any 0 ≤ k ≤ n − 1 the following conditions are equivalent: (1) U-res.dim T ≤ k.
(2) T = ⊥k+1V.

As an application of Proposition 3.10, along with Proposition 3.13 and its dual,
the following result describes the subcategories U∧ and V∨ if (U ,V) is a cotorsion
pair with U resolving.

Corollary 3.15. Let (U ,V) be a cotorsion pair with U resolving. Then for any
m,n ≥ 0, we have U⊥m+1 = V∨m and ⊥n+1V = U∧n .

4 Left Frobenius Pairs and Weak Auslander-Buchweitz Contexts

We begin with the following easy observation.

Proposition 4.1. Let (X , ω) be a pair of subcategories in T such that ω is X -
injective. Then we have the following:

(1) X ⊆ ⊥(ω∧).
(2) If ω is a ξ-cogenerator for X and ω is closed under direct summands in T ,

then ω = X ∩ ω∧ = X ∩ X⊥.

Proof. (1) This follows from [17, Lemma 3.9].
(2) By (1), we have ω ⊆ X ∩ ω∧ ⊆ X ∩ X⊥, so it suffices to show X ∩ X⊥ ⊆ ω.

Now let X ∈ X ∩ X⊥. Since ω is a ξ-cogenerator in X , there exists a triangle
X → W → X ′ → ΣX in ξ with W ∈ ω and X ′ ∈ X . Since ξxt1

ξ(X
′, X) = 0 by
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assumption, the above triangle is split. So X is a direct summand of W and X ∈ ω.
Thus, we get the desired assertion. �

The following result gives the so-called Auslander-Buchweitz approximation tri-
angles, which play a crucial role in what follows.

Proposition 4.2. [17, Proposition 3.10] Let (X , ω) be a pair of subcategories in
T such that X is closed under ξ-extensions and ω is a ξ-cogenerator in X . Then for
any C ∈ X∧n , there exist triangles YC → XC → C → ΣYC , C → Y C → XC → ΣC
in ξ with YC ∈ ω∧n−1, Y C ∈ ω∧n and XC , X

C ∈ X . In particular, if ω is X -injective,
then XC → C is a right X -approximation of C.

Corollary 4.3. Let (X , ω) be a pair of subcategories in T such that X is closed
under ξ-extensions and direct summands, and that ω is a ξ-cogenerator of X . Then
{C ∈ T | X -res.dimC ≤ 1} ∩ ⊥1ω ⊆ X .

Proof. Suppose that X -res.dimC ≤ 1. By Proposition 4.2, we have a triangle
K → X → C → ΣK in ξ with X ∈ X and K ∈ ω. Notice that ξxt1

ξ(C,K) = 0 by
assumption, so the above triangle is split, and thus C is a direct summand of X,
which implies C ∈ X . �

Corollary 4.4. Let (X , ω) be a pair of subcategories in T such that X is closed
under ξ-extensions and ω is closed under direct summands in T . If ω is X -injective
and a ξ-cogenerator for X , then ω∧ = X⊥ ∩ X∧.

Proof. By Proposition 4.1 we get ω∧ ⊆ X⊥. Clearly, ω∧ ⊆ X∧. So ω∧ ⊆ X⊥∩X∧.
Conversely, let C ∈ X⊥ ∩ X∧. Then by Proposition 4.2 there exists a triangle

Y → X → C → ΣY in ξ with X ∈ X and Y ∈ ω∧ ⊆ X⊥. Since C ∈ X⊥, we
have X ∈ X⊥. Then X ∈ X ∩ X⊥. It follows from Proposition 4.1 that X ∈ ω. So
C ∈ ω∧, and thus X⊥ ∩ X∧ ⊆ ω∧. �

For a pair (X , ω) of subcategories in T , if ω ⊆ X , then ω∧ ⊆ X∧. We establish
a more specific relation between them under some conditions.

Proposition 4.5. Let X and Y be subcategories of T such that X and Y are
closed under direct summands and Y ⊆ X∧. Assume that

(a) X is closed under ξ-extensions and hokernels of ξ-proper epimorphisms, and
(b) Y is closed under ξ-extensions and hocokernels of ξ-proper monomorphisms.

Suppose that ω := X ∩ Y is X -injective and a ξ-cogenerator for X . Then we have
Y = ω∧ = X∧ ∩ X⊥ = X∧ ∩ X⊥1 .

Proof. By Corollary 4.4, we know that ω∧ = X⊥ ∩ X∧.
Since Y is closed under hocokernels of ξ-proper monomorphisms, we get Y∧ = Y.

It follows that ω∧ ⊆ Y since ω ⊆ Y. Now let Y ∈ Y. Since by assumption Y ⊆ X∧,
by Proposition 4.2 there is a triangle K → X → Y → ΣK in ξ with X ∈ X
and K ∈ ω∧ ⊆ Y. Since Y is closed under ξ-extensions, we have X ∈ Y. So
X ∈ X ∩ Y = ω, and hence Y ∈ ω∧ and Y ⊆ ω∧. Thus, Y = ω∧.

Clearly, X∧ ∩ X⊥ ⊆ X∧ ∩ X⊥1 . Now let Z ∈ X∧ ∩ X⊥1 . By Proposition 4.2
there is a triangle Z → W → X → ΣZ in ξ with X ∈ X and W ∈ ω∧. Since
Z ∈ X⊥1 , the above triangle is split. So Z is a direct summand of W . Noticing that
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ω∧ (= Y) is closed under direct summands, we have Z ∈ ω∧ = X∧ ∩X⊥. Thus, we
get the third equality. �

4.1. Left Frobenius pairs. Inspired by the definition of left Frobenius pairs in
abelian categories [6], we introduce the notion of left Frobenius pairs with respect
to ξ in triangulated categories as follows.

Definition 4.6. A pair of subcategories (X , ω) in T is called a left Frobenius pair
if the following conditions hold:
(LF1) X and ω are closed under direct summands.
(LF2) X is closed under ξ-extensions and hokernels of ξ-proper epimorphisms.
(LF3) ω is X -injective and a ξ-cogenerator of X .

Example 4.7. (1) We have the following facts. (i) GP(ξ) is closed under direct
summands (see [2, Proposition 3.13]). (ii) GP(ξ) is closed under ξ-extensions and
hokernels of ξ-proper epimorphisms. In particular, GP(ξ) is a resolving subcategory
of T (see [18, Corollary 4.4] or [17, Theorem 5.3]). (iii) P(ξ) is GP(ξ)-injective and
is a ξ-cogenerator of GP(ξ) since P(ξ) ⊆ GP(ξ) ∩ GP(ξ)⊥ (see [2, Lemma 3.7 and
Proposition 3.19]). Therefore, (GP(ξ),P(ξ)) is a left Frobenius pair in T .

(2) Let (X , ω) be a left Frobenius pair in T such that X -res.dim T = n. By
Proposition 4.2 we see that (X , ω) is a left n-cotorsion pair in T . In particular, if
sup{ξ-GpdT | T ∈ T } = n, then (GP(ξ),P(ξ)) is a left n-cotorsion pair in T .

Let (X , ω) be a left Frobenius pair in T . In the following, we will study the
homological behavior of X∧, involving ω∧.

Lemma 4.8. Let (X , ω) be a left Frobenius pair in T , and let

X // Y // Z // ΣX (4.1)

be a triangle in ξ.

(1) If Z ∈ X , then X ∈ X∧ if and only if Y ∈ X∧.

(2) If Y ∈ X , then X ∈ X∧ if and only if Z ∈ X∧.

Proof. (1) Let Y ∈ X∧ and X -res.dimY = m. We proceed by induction on m.
The case m = 0 is clear. Suppose m ≥ 1. Consider a triangle K → X0 → Y → ΣK
in ξ with X0 ∈ X and K ∈ X∧m−1. Applying base change to the triangle (4.1) along
the morphism X0 → Y yields the following commutative diagram:

K

h
��

K

f

��
Σ−1Z // X ′

g //

��

X0
//

��

Z

Σ−1Z // X //

��

Y //

��

Z

ΣK ΣK

(4.2)
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By [22, Proposition 2.4], one can see that the triangle X ′ → X0 → Z → ΣX ′ is in
ξ. Since gh = f is ξ-proper monic, h is ξ-proper monic by [22, Proposition 2.7]. So
the second vertical triangle is in ξ. It follows that X ′ ∈ X since X is closed under
hokernels of ξ-proper epimorphisms. Thus, X ∈ X∧.

On the other hand, assume that X ∈ X∧ and X -res.dimX = n. The case n = 0
is clear. By Proposition 4.2 there exists a triangle K ′ → X ′0 → X → ΣK ′ in ξ
with X ′0 ∈ X and K ′ ∈ ω∧. Applying HomT (Z,−) to this triangle yields the exact
sequence · · · → ξxt1

ξ(Z,K
′) → ξxt1

ξ(Z,X
′
0) → ξxt1

ξ(Z,X) → ξxt2
ξ(Z,K

′) → · · · .
Since ξxt1

ξ(Z,K
′) = 0 = ξxt2

ξ(Z,K
′) by Proposition 4.1, ξxt1

ξ(Z,X
′
0) ∼= ξxt1

ξ(Z,X).
We get the following commutative diagram:

K ′

��

K ′

��
Σ−1Z // X ′0 //

��

X ′′

��

// Z

Σ−1Z // X

��

// Y

��

// Z

ΣK ′ ΣK ′

Notice that the triangle X ′0 → X ′′ → Z → ΣX ′0 is in ξ, so the third vertical triangle
is also in ξ by [22, Proposition 2.4]. Since X is closed under ξ-extensions, we have
X ′′ ∈ X and Y ∈ X∧.

(2) When X ∈ X∧, the assertion Z ∈ X∧ is clear. Conversely, assume that
Z ∈ X∧ and X -res.dimZ = m. We proceed by induction on m. The case m = 0 is
clear. Suppose m ≥ 1. Consider a triangle K → X0 → Z → ΣK in ξ with X0 ∈ X
and K ∈ X∧m−1. Applying base change to the triangle (4.1) along the morphism
X0 → Z, we get the following commutative diagram:

K

h
��

K

f

��
X // U

g //

��

X0
//

��

ΣX

X // Y //

��

Z //

��

ΣX

ΣK ΣK

(4.3)

Since ξ is closed under base change, the second horizontal triangle is in ξ. Since
gh = f is ξ-proper monic, h is ξ-proper monic by [22, Proposition 2.7]. So the
second vertical triangle is in ξ. By (1), we have U ∈ X∧ and then X ∈ X∧. �

The following result shows that X∧ satisfies the two-out-of-three property relat-
ing to ξ-proper triangles.
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Theorem 4.9. Let (X , ω) be a left Frobenius pair in T . Then X∧ is closed un-
der ξ-extensions, hokernels of ξ-proper epimorphisms and hocokernels of ξ-proper
monomorphisms.

Proof. Let

X // Y // Z // ΣX (4.4)

be a triangle in ξ.

Claim 1. X∧ is closed under ξ-extensions.
Let X,Z ∈ X∧ with X -res.dimX = m and X -res.dimZ = n. By Proposition

4.2, there exist the following triangles in ξ :

K // X0
// X // ΣK, (4.5)

K ′ // X ′0 // Z // ΣK ′

with X0, X
′
0 ∈ X and K ∈ ω∧m−1, K ′ ∈ ω∧n−1. Applying the functor HomT (X ′0,−)

to the triangle (4.5) yields ξxt1
ξ(X

′
0, X0) ∼= ξxt1

ξ(X
′
0, X). Then we have the following

commutative diagram:

X0

��

//

��

X ′′

��

//

��

X ′0

��

// ΣX0

��

��
X // U ′ //

��

X ′0 //

��

ΣX

X // Y // Z // ΣX

where all triangles are in ξ and the bottom commutative diagram follows by base
change. Since X is closed under ξ-extensions, X ′′ ∈ X . Since Σ is an automorphism,
by using the 3 × 3 lemma, one can get the following commutative diagram except
the right square at the bottom, which anticommutes:

Σ−1X ′0 //

��

X0
//

��

X ′′ //

��

X ′0

��
Σ−1Z //

��

X //

��

Y //

��

Z

��
K ′ //

��

ΣK //

��

ΣK ′′ //

��

ΣK ′

��
X ′0 // ΣX0

// ΣX ′′ // ΣX ′0

Here all the rows and columns are in ∆. One can get the following triangles:

K // K ′′ // K ′ // ΣK, K ′′ // X ′′ // Y // ΣK ′′,

which are in ξ by [18, Lemma 3.10]. By the induction hypothesis, we have K ′′ ∈ X∧.
Notice that X ′′ ∈ X , so Y ∈ X∧.
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Claim 2. X∧ is closed under hokernels of ξ-proper epimorphisms.
Let Y, Z ∈ X∧ with X -res.dimZ = m. We proceed by induction on m. The

case m = 0 follows from Lemma 4.8. Now suppose m ≥ 1. Consider the following
triangle in ξ : K → X0 → Z → ΣK with X0 ∈ X and K ∈ X∧m−1. Applying
base change to the triangle (4.4) along the morphism X0 → Z, we get the following
commutative diagram:

K

��

K

��
X // U //

��

X0
//

��

ΣX

X // Y //

��

Z //

��

ΣX

ΣK ΣK

By a similar argument to that of the diagram (4.3), one can see that the second
vertical and the second horizontal triangles are in ξ. By Claim 1, we have U ∈ X∧.
So X ∈ X∧ by Lemma 4.8.

Claim 3. X∧ is closed under hocokernels of ξ-proper monomorphisms.
Let X,Y ∈ X∧ with X -res.dimY = n. We proceed by induction on n. The

case n = 0 is clear. Suppose n ≥ 1. Consider a triangle K → X0 → Y → ΣK in ξ
with X0 ∈ X and K ∈ X∧n−1. Applying base change to the triangle (4.4) along the
morphism X0 → Y yields the following commutative diagram:

K

��

K

��
Σ−1Z // U //

��

X0

��

// Z

Σ−1Z // X

��

// Y

��

// Z

ΣK ΣK

By a similar argument to that of the diagram (4.2), one can see that the second
vertical triangle and the triangle U → X0 → Z → ΣU are in ξ. By Claim 1 we have
U ∈ X∧, and thus Z ∈ X∧ by Lemma 4.8. �

The following result is also a consequence of Proposition 4.2.

Proposition 4.10. Suppose that (X , ω) is a left Frobenius pair in T . Then we
have X∧ ∩ ⊥ω = X = X∧ ∩ ⊥(ω∧).

Proof. Clearly, X ⊆ X∧ ∩⊥ω and X∧ ∩⊥(ω∧) ⊆ X∧ ∩⊥ω. By [17, Lemma 3.9] we
have ⊥ω ⊆ ⊥(ω∧), and hence X∧ ∩ ⊥ω ⊆ X∧ ∩ ⊥(ω∧).
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Now, let M ∈ X∧ ∩ ⊥ω. By Proposition 4.2, there is a triangle

K // X // M // ΣK (4.6)

in ξ with X ∈ X and K ∈ ω∧. Then K ∈ ⊥ω, and so K ∈ ω∧ ∩ ⊥ω = ω by [17,
Lemma 3.12]. Noticing that ξxt1

ξ(M,K) = 0, we find that the triangle (4.6) is split,
and hence X ∼= K ⊕M . Since X is closed under direct summands, it follows that
M ∈ X . Thus, X∧ ∩ ⊥ω ⊆ X . �

The following result provides a standard criterion for computing the X -resolution
dimension of an object in T .

Proposition 4.11. Let (X , ω) be a left Frobenius pair in T . Then for any T ∈ T ,
the following statements are equivalent:

(1) X -res.dimT ≤ n.
(2) If 0 → Kn → Xn−1 → · · · → X1 → X0 → T → 0 is a ξ-exact complex in T

with Xi ∈ X for any 0 ≤ i ≤ n− 1, then Kn ∈ X .

Proof. (2)⇒(1) This is obvious.
(1)⇒(2) By Lemma 4.8 we see that Kn ∈ X∧. For any W ∈ ω, applying the

functor HomT (−,W ) to the ξ-exact complex in (2), by dimension shifting we can
find that ξxt iξ(Kn,W ) ∼= ξxtn+i

ξ (T,W ) = 0 for all i ≥ 1. Then Kn ∈ ⊥ω, and hence

Kn ∈ X∧ ∩ ⊥ω = X by Proposition 4.10. �

Applying Proposition 4.11, we get the following result.

Proposition 4.12. Let (X , ω) be a left Frobenius pair in T . Then X∧ is closed
under direct summands.

Proof. Let M ∈ X∧ and M = M1 ⊕M2. Suppose that X -res.dimM ≤ n. We
proceed by induction on n. The case n = 0 is trivial. Suppose n ≥ 1. By Proposition
4.2 we have the ξ-exact complex 0→ Xn → Xn−1 → · · · → X1 → X0 →M → 0 in
T with all Xi objects in ω for 1 ≤ i ≤ n and X0 ∈ X .

Applying base change to the triangle Σ−1M1
0−→ M2 → M → M1 along the

morphism X0 →M yields the following commutative diagram:

K1

��

K1

��
Σ−1M1

// W1
//

��

X0
//

��

M1

Σ−1M1
0 // M2

//

��

M //

��

M1

ΣK1 ΣK1

By a similar argument to that of the diagram (4.2), one can see that the second
vertical triangle and the triangle W1 → X0 → M1 → ΣW1 are in ξ. Similarly, we
get a triangle U1 → X0 →M2 → ΣU1 in ξ.
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Since ξxt1
ξ(X0,K1)=0 by Proposition 4.1, HomT (X0,W1)→HomT (X0,M2)→0

is epic. By [24, Lemma 2.2] and [18, Lemma 3.11], we have the following commu-
tative diagram except the middle square at the top, which anticommutes:

K2
//

��

W2
//

��

U1
//

��

ΣK2

��
X1

//

��

X1 ⊕X0
//

��

X0
0 //

��

ΣX1

��
K1

//

��

W1
//

��

M2
//

��

ΣK1

��
ΣK2

// ΣW2
// ΣU1

// Σ2K2

Here the first horizontal and the second vertical triangles are in ξ. Similarly, we get
a triangle U2 → X1 ⊕ X0 → U1 → ΣU2 in ξ. Repeating this process, we get the
following two ξ-exact complexes:

0 // Wn
//
n−1⊕
i=1

Xi
//
n−2⊕
i=1

Xi
// · · · // X0 ⊕X1

// X0
// M1

// 0,

0 // Un //
n−1⊕
i=1

Xi
//
n−2⊕
i=1

Xi
// · · · // X0 ⊕X1

// X0
// M2

// 0.

Since ξ is closed under finite coproducts, we get a ξ-exact complex

0 // Wn ⊕ Un //
n−1⊕
i=1

Xi ⊕
n−1⊕
i=1

Xi
//
n−2⊕
i=1

Xi ⊕
n−2⊕
i=1

Xi

// · · · // X0 ⊕X1 ⊕X0 ⊕X1
// X0 ⊕X0

// M // 0.

By Proposition 4.11, Wn ⊕ Un ∈ X . Because X is closed under direct summands
by assumption, both Wn and Un are objects in X . Therefore, X -res.dimM1 ≤ n
and X -res.dimM2 ≤ n. �

Recall from [7, Section 4.3] that a subcategory X of T is called Σ-stable if
ΣX = X , and X is called a generating subcategory of T if X is Σ-stable and for
all X ∈ X the condition HomT (X,C) = 0 implies C = 0. Dually, a subcategory
Y is called a cogenerating subcategory of T if Y is Σ-stable and for all Y ∈ Y the
condition HomT (C, Y ) = 0 implies C = 0. We need the following fact.

Lemma 4.13. [7, Corollary 4.15 and Proposition 4.17] Let X be an object of T .
(1) If P(ξ) is a generating subcategory of T , then ξ-pdX ≤ n if and only if

ξxtn+1
ξ (X,Y ) = 0 for any Y ∈ T .

(2) If I(ξ) is a cogenerating subcategory of T , then ξ-idX ≤ n if and only if
ξxtn+1

ξ (Y,X) = 0 for any Y ∈ T .

The following result shows how to obtain cotorsion pairs from left Frobenius
pairs in T .

Theorem 4.14. Let (X , ω) be a left Frobenius pair in T . Assume that I(ξ) is a
cogenerating subcategory of T . Then the following statements are equivalent:



Left Frobenius Pairs, Cotorsion Pairs 303

(1) X∧ = T .
(2) (X , ω∧) is a cotorsion pair in T with ξ-idω <∞.
(3) (X , ω∧) is a left cotorsion pair in T with ξ-idω <∞.
(4) X = ⊥ω and ξ-idω <∞.

Moreover, if one of the equivalent conditions holds, then X -res.dim T = ξ-idω.

Proof. (1)⇒(2) By Corollary 4.4, we have ω∧ = X⊥ ∩ X∧. Note that X∧ is closed
under direct summands by Proposition 4.12, so ω∧ is closed under direct summands.
By Proposition 4.1, we have ξxt1

ξ(X , ω∧) = 0. On the other hand, by Proposition
4.2 we can get two desired triangles as in Definition 3.1. Thus, (X , ω∧) is a cotorsion
pair in T .

Let W ∈ ω and T ∈ T with X -res.dimT ≤ n. Then we have a ξ-exact complex
0→ Xn → Xn−1 → · · · → X1 → X0 → T → 0 in T with Xi ∈ X for any 0 ≤ i ≤ n.
Applying the functor HomT (−,W ), we have ξxtn+1

ξ (T,W ) ∼= ξxt1
ξ(Xn,W ) = 0 by

dimension shifting. So ξ-idW ≤ n by Lemma 4.13, and thus ξ-idω <∞.
(2)⇒(3) This is obvious.
(3)⇒(4) Note X =⊥1(ω∧) by Remark 3.2. It is clear that ⊥(ω∧)⊆⊥1(ω∧)=X .

On the other hand, we have X ⊆ ⊥(ω∧) by Proposition 4.1. Thus, ⊥1(ω∧) = ⊥(ω∧).
Clearly, ⊥(ω∧) = ⊥ω. So X = ⊥1(ω∧) = ⊥ω.

(4)⇒(1) Suppose ξ-idω = n. For any T ∈ T , since T has enough ξ-projective
objects, there exists a ξ-exact complex 0→ K → Pn−1 → · · · → P1 → P0 → T → 0
in T with Pi ∈ P(ξ) for any 0 ≤ i ≤ n − 1. For any W ∈ ω, applying the functor
HomT (−,W ), by dimension shifting we have ξxt iξ(K,W ) ∼= ξxtn+i

ξ (T,W ) = 0 for

any i ≥ 1 since ξ-idW ≤ n. So K ∈ ⊥ω. Since X = ⊥ω by assumption, K ∈ X .
Notice that all Pi are in X , so X -res.dimT ≤ n and T ∈ X∧, and thus T = X∧. �

Putting X = GP(ξ) and ω = P(ξ) in Theorem 4.14, we get the following result,
in which part of the implication (1)⇒(2) was proved in [21, Proposition 3.7].

Corollary 4.15. If I(ξ) is a cogenerating subcategory of T , then the following
statements are equivalent:

(1) sup{ξ-GpdT | T ∈ T } <∞.
(2) (GP(ξ),P(ξ)

∧
) is a cotorsion pair in T and ξ-idP(ξ) <∞.

(3) (GP(ξ),P(ξ)
∧

) is a left cotorsion pair in T and ξ-idP(ξ) <∞.
(4) GP(ξ) = ⊥P(ξ) and ξ-idP(ξ) <∞.

If one of these equivalent conditions holds, then sup{ξ-GpdT |T ∈ T } = ξ-idP(ξ).

Furthermore, we have the following result.

Proposition 4.16. Assume that P(ξ) is a generating subcategory of T and I(ξ)
is a cogenerating subcategory of T .

(1) If (GP(ξ),P(ξ)) is a left n-cotorsion pair in T , then

sup{ξ-GpdT | T ∈ T } = ξ-idP(ξ) ≤ n.

Dually, if (I(ξ),GI(ξ)) is a right m-cotorsion pair in T , then

sup{ξ-GidT | T ∈ T } = ξ-pd I(ξ) ≤ m.
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(2) If there are integers n,m ≥ 1 such that (GP(ξ),P(ξ)) is a left n-cotorsion
pair and (I(ξ),GI(ξ)) is a right m-cotorsion pair in T , then we can choose
n = m = ξ-idP(ξ) = ξ-pd I(ξ).

Proof. (1) Suppose that (GP(ξ),P(ξ)) is a left n-cotorsion pair in T . Accordingly,
every object in T has ξ-Gorenstein projective dimension at most n, and hence
sup{ξ-GpdT |T ∈T } ≤ n. By Corollary 4.15, sup{ξ-GpdT |T ∈T }= ξ-idP(ξ)≤n.
Dually, we get the other assertion.

(2) By (1), sup{ξ-GpdT | T ∈ T } = ξ-idP(ξ) ≤ n and sup{ξ-GidT | T ∈ T } =
ξ-pd I(ξ) ≤ m. Hence, it follows from [21, Theorem 4.6 and Corollary 4.7] that
sup{ξ-GpdT | T ∈ T } = sup{ξ-GidT | T ∈ T } = ξ-pd I(ξ) = ξ-idP(ξ). �

The following result is a consequence of Proposition 4.16.

Corollary 4.17. Let P(ξ) be a generating subcategory of T and I(ξ) a cogener-
ating subcategory of T . Assume that (GP(ξ),P(ξ)) is a left n-cotorsion pair in T .

(1) T = GP(ξ)
∧
n = ⊥n(P(ξ)

∧
n−1).

(2) T = GI(ξ)
∨
n = (I(ξ)

∨
n−1)⊥n .

Proof. We only need to prove (1), since (2) is a dual of (1).
Since (GP(ξ),P(ξ)) is a left n-cotorsion pair in T , we see that T = GP(ξ)

∧
n by

Proposition 4.16(1), and that GP(ξ) = ⊥1(P(ξ)
∧
n−1) by Theorem 3.6. Notice that

P(ξ)
∧
n−1 ⊆ (P(ξ)

∧
n−1)∧n , so (GP(ξ), (P(ξ)

∧
n−1)∧n) is a left (n+ 1)-cotorsion pair in T .

Then T = ⊥n(P(ξ)
∧
n−1) by Corollary 3.14. �

4.2. Left weak Auslander-Buchweitz contexts, corresponding with co-
torsion pairs and left Frobenius pairs. In [12], Hashimoto introduced and
studied relative Auslander-Buchweitz contexts in abelian categories. Motivated by
this, we now introduce left (weak) Auslander-Buchweitz contexts with respect to ξ
in a triangulated category T , and establish a one-to-one correspondence between
left weak Auslander-Buchweitz contexts and left Frobenius pairs.

Definition 4.18. Let (A,B) be a pair of subcategories in T and ω = A ∩ B. We
say that (A,B) is a left weak Auslander-Buchweitz context (left weak AB context
for short) in T if the following conditions are satisfied:

(AB1) The pair (A, ω) is a left Frobenius pair in T .
(AB2) B is closed under direct summands, ξ-extensions and hocokernels of ξ-proper

monomorphisms.
(AB3) B ⊆ A∧.
A left weak AB context (A,B) is called a left AB context if the following condition
is satisfied:

(AB4) A∧ = T .

The next result shows how to obtain left (weak) AB contexts from left Frobenius
pairs in T .

Proposition 4.19. Let (X , ω) be a left Frobenius pair in T . Then (X , ω∧) is a left
weak AB context in T . Moreover, if X∧ = T , (X , ω∧) is a left AB context in T .
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Proof. By Proposition 4.1, we have X ∩ ω∧ = ω. Since (X , ω) is a left Frobenius
pair in T , we have ω∧ = X⊥∩X∧ by Corollary 4.4. Since X∧ is closed under direct
summands by Proposition 4.12, and since X∧ is closed under ξ-extensions and
hocokernels of ξ-proper monomorphisms by Theorem 4.9, we find that ω∧ is closed
under direct summands, ξ-extensions and hocokernels of ξ-proper monomorphisms.
Clearly, ω∧ ⊆ X∧. Thus, (X , ω∧) is a left weak AB context in T . The last assertion
is clear. �

The following result shows how to obtain cotorsion pairs from left AB contexts
in T .

Proposition 4.20. Let (A,B) be a left weak AB context in T and ω := A ∩ B.
Then ω = A ∩ A⊥ and ω∧ = B. In this case, we have the following equivalent
statements:

(1) A∧ = T .
(2) (A,B) is a cotorsion pair in T .

Moreover, if one of the above conditions holds, then A is resolving.

Proof. By assumption, we know that (A, ω) is a left Frobenius pair in T . Then by
Proposition 4.1 and Corollary 4.4, we have ω = A∩ ω∧ and ω∧ = A⊥ ∩A∧. Thus,
ω = A ∩A⊥ ∩ A∧ = A ∩A⊥.

Since ω ⊆ B and B is closed under hocokernels of ξ-proper monomorphisms, we
have ω∧ ⊆ B. Conversely, let X ∈ B ⊆ A∧. By Proposition 4.2, there is a triangle
K → A→ X → ΣK in ξ with A ∈ A and K ∈ ω∧ ⊆ B. It follows that A ∈ B since
B is closed under ξ-extensions. So A ∈ A∩B = ω, and hence X ∈ ω∧ and B ⊆ ω∧.
Thus, B = ω∧.

(1)⇒(2) By Proposition 4.1, we have A ⊆ ⊥(ω∧) and ξxt1
ξ(A,B) = 0. Since

T = A∧ by assumption, for any T ∈ T , there exist triangles

B // A // T // ΣB and T // B′ // A′ // ΣT

in ξ with A,A′ ∈ A and B,B′ ∈ ω∧ = B by Proposition 4.2. Thus, (A, B = ω∧) is
a cotorsion pair in T .

(2)⇒(1) This is clear.
The last assertion follows by the fact thatA = ⊥1B ⊇ P(ξ) (see Remark 3.2). �

The following result provides a way to obtain left Frobenius pairs and left (weak)
AB contexts from cotorsion pairs in T .

Proposition 4.21. Let (U ,V) be a cotorsion pair in T with U resolving. Then
(U , ω) is a left Frobenius pair in T , where ω := U ∩ V. Moreover, the following
assertions hold true:

(1) If V ⊆ U∧, then (U ,V) is a left weak AB context in T .
(2) If U∧ = T , then (U ,V) is a left AB context in T .

Proof. By assumption, we know that U and V are closed under direct summands,
and U is closed under ξ-extensions and hokernels of ξ-proper epimorphisms. So
ω := U ∩ V is closed under direct summands. It follows from Corollary 3.11 that
V ⊆ U⊥ and ω ⊆ U ∩ U⊥, which implies that ω is U-injective. Now, let U ∈ U .
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Consider the following triangle in ξ : U → V ′ → U ′ → ΣU with U ′ ∈ U and V ′ ∈ V.
It follows that V ′ ∈ U ∩ V = ω from the fact that U is closed under ξ-extensions,
and so ω is a ξ-cogenerator in U . Thus, (U , ω) is a left Frobenius pair in T .

(1) By Corollary 3.11, V is closed under ξ-extensions and hocokernels of ξ-proper
monomorphisms. Since V ⊆ U∧ by assumption, we infer that (U ,V) is a left weak
AB context in T .

(2) The result is clear by (1). �

Our main result is the following correspondence theorem.

Theorem 4.22. For an integer n ≥ 1, consider the following classes:

A := {(X , ω) | (X , ω) is a left Frobenius pair in T },
B := {(A,B) | (A,B) is a left weak AB context},
C := {(U ,V) | (U ,V) is a cotorsion pair in T with U resolving, V ⊆ U∧},
D := {(U ,V) | (U ,V) is an n-cotorsion pair in T with U resolving, V ⊆ U∧}.

Then we have the following:
(1) There is a one-to-one correspondence between A and B given by

Φ : A −→ B, (X , ω) 7−→ (X , ω∧),

Ψ : B −→ A, (A,B) 7−→ (A, A ∩ B).

(2) C ⊆ B.
(3) C = D.

Proof. (1) Following Proposition 4.19, we know that Φ is well-defined. It suffices
to prove ΦΨ = 1B and ΨΦ = 1A. Let (A,B) be a left weak AB context. Then we
have ΦΨ(A,B) = Φ(A,A ∩ B) = (A, (A ∩ B)∧). By Proposition 4.20, we see that
B = (A ∩ B)∧. It follows that ΦΨ(A,B) = (A,B) and ΦΨ = 1B. Conversely, let
(X , ω) be a left Frobenius pair. Then ΨΦ(X , ω) = Ψ(X , ω∧) = (X ,X ∩ ω∧). Since
X ∩ ω∧ = ω by Proposition 4.1, we have ΨΦ(X , ω) = (X , ω) and ΨΦ = 1A.

(2) This follows from Proposition 4.21.
(3) This follows from Proposition 3.10. �

Furthermore, we get the following result.

Theorem 4.23. For an integer n ≥ 1, consider the following classes:

A := {(X , ω) | (X , ω) is a left Frobenius pair with X∧ = T },
B := {(A,B) | (A,B) is a left AB context},
C := {(U ,V) | (U ,V) is a cotorsion pair in T with U resolving, U∧ = T },
D := {(U ,V) | (U ,V) is an n-cotorsion pair in T with U resolving, U∧ = T }.

Then B = C = D and there is a one-to-one correspondence between A and B.

Proof. By Theorem 4.22, it suffices to show B ⊆ C. Now the assertion follows from
Proposition 4.20. �
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Example 4.24. The pair (T , I(ξ)) is a trivial cotorsion pair in T . Obviously, T is
resolving. So, by Theorem 4.23, (T , I(ξ)) is a left AB context and is a left Frobenius
pair in T .

Example 4.25. Assume that P(ξ) is a generating subcategory and I(ξ) is a cogen-
erating subcategory of T . By [21, Theorem 4.6],

sup{ξ-GpdT | T ∈ T } = sup{ξ-GidT | T ∈ T }.

The common value of the quantities in the above equality is called the global
ξ-Gorenstein dimension of T . In the sense of Asadollahi and Salarian, T is called a
ξ-Gorenstein triangulated category (see [3, Definition 4.6]).

Assume that sup{ξ-GpdT | T ∈ T } <∞. By [3, Theorem 4.13], (P(ξ)∧,GI(ξ))
is a cotorsion pair in T . One have the following facts:

(1) P(ξ)∧ and GI(ξ) are closed under direct summands.

(2) By [17, Remark 3.5], P(ξ)∧ (⊇ P(ξ)) is a resolving subcategory in T , that is,
P(ξ)∧ is closed under ξ-extensions and hokernels of ξ-proper epimorphisms.

(3) The assertion that GI(ξ) is a ξ-cogenerator of P(ξ)∧ is obvious. By Corollary
3.11, we see that GI(ξ) is coresolving and ξxt iξ(P(ξ)∧,GI(ξ)) = 0 for every
i ≥ 1, so GI(ξ) is P(ξ)∧-injective.

Hence, (P(ξ)∧,GI(ξ)) is a left Frobenius pair in T .
Notice that GI(ξ)∧ = GI(ξ), so (P(ξ)∧,GI(ξ)) is a left weak AB context in T

by Theorem 4.22. One can see that C ( B.

Example 4.26. According to Example 4.7(1), (GP(ξ),P(ξ)) is a left Frobenius pair
in T . By Theorem 4.22 we know that (GP(ξ),P(ξ)∧) is a left weak AB context in T .
In addition, if sup{ξ-GpdT | T ∈ T } < ∞, then by Theorem 4.23, (GP(ξ),P(ξ)∧)
is a left AB context and is a cotorsion pair in T .
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