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Abstract

Let T be a triangulated category with a proper class ξ of triangles. We introduce the
notions of left Frobenius pairs, left (n-)cotorsion pairs and left (weak) Auslander-Buchweitz
contexts with respect to ξ in T . We show how to construct left cotorsion pais from left n-
cotorsion pairs, and establish a one-to-one correspondence between left Frobenius pairs and
left (weak) Auslander-Buchweitz contexts. Some applications are given in the Gorenstein
homological theory of triangulated categories.

1 Introduction

An important branch of relative homological algebra was developed by Auslander and Buch-

weitz in their paper [4]. Based on this, Hashimoto [12] defined the so-called “Auslander-

Buchweitz context” for abelian categories, and Auslander-Buchweitz approximation theory is

the prerequisite for computing relative dimensions. On the other hand, cotorsion pairs, devel-

oped in [9–11], are important in the study of the algebraic and geometric structures of abelian

categories. This notion provides a good setting for investigating relative homological dimen-

sions (see [1]). Moreover, Huerta, Mendoza and Pérez [16] introduced the notion of n-cotorsion

pairs in abelian categories. They described several properties of n-cotorsion pairs and estab-

lished a relation with (complete) cotorsion pairs. Becerril, Mendoza, Pérez and Santiago [6]

introduced Frobenius pairs in abelian categories, and presented one-to-one correspondences be-

tween left Frobenius pairs, Auslander-Buchweitz contexts and relative cotorsion pairs in abelian

categories.

Recently, triangulated categories entered into the subject in a relevant way. Let T be a

triangulated category with the class ∆ of triangles. In analogy to relative homological algebra

in abelian categories, Beligiannis developed in [7] a relative version of homological algebra in

triangulated categories, in which the notion of a proper class of exact sequences is replaced by

that of a proper class of triangles ξ ⊆ ∆. Later on, by combining it with Gorenstein homological

theory in abelian categories, many authors developed relative homological theory, especially

Gorenstein homological theory, in triangulated categories (see [2, 3, 8, 17, 18, 21, 23]). Recently,

Ma and Zhao [17] introduced and developed the Auslander-Buchweitz approximation theory
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with respect to a proper class ξ of triangles in triangulated categories, which is an analog of the

approximation theory in abelian categories [4].

Throughout this paper, unless otherwise stated, we always assume that T is a triangulated

category with enough ξ-projective and ξ-injective objects. We are devoted to developing relative

homological theory along with the Auslander-Buchweitz approximation theory in triangulated

categories. Moreover, some applications are given in the context of Gorenstein homological

algebra in triangulated categories. This paper is organized as follows.

In Section 2, we give some terminologies and some preliminary results.

In Section 3, we recall the notion of left (n-)cotorsion pairs in T with respect to ξ, and

then by virtue of an equivalent characterization of n-cotorsion pairs [13], we establish a relation

between n-cotorsion pairs and cotorsion pairs (Proposition 3.10).

In Section 4, we introduce the notions of left Frobenius pairs and left (weak) Auslander-

Buchweitz contexts in T . For a subcategory X of T , X∧ denotes the subcategory of T consisting

of objects with finite X -resolution dimension. Let (X , ω) be a left Frobenius pair in T . We show

that X∧ is closed under ξ-extensions, hokernels of ξ-proper epimorphisms, hocokernels of ξ-

proper monomorphisms and direct summands (Theorem 4.9 and Proposition 4.12). Then we

show how to obtain (left) cotorsion pairs from left Frobenius pairs (Theorem 4.14). Finally,

we introduce the notion of left (weak) Auslander-Buchweitz context, and establish a one-to-one

correspondence between left weak Auslander-Buchweitz contexts and left Frobenius pairs as

follows.

Theorem 1.1. (Theorem 4.22) Let n ≥ 1 be an integer. Consider the following classes:

A :={A pair (X , ω) in T : (X , ω) is a left Frobenius pair in T },

B :={A pair (A,B) in T : (A,B) is a left weak Auslander-Buchweitz context},

C :={A pair (U ,V) in T : (U ,V) is a cotorsion pair in T with U resolving and V ⊆ U∧},

D :={A pair (U ,V) in T : (U ,V) is an n-cotorsion pair in T with U resolving and V ⊆ U∧}.

Then

(1) there is a one-to-one correspondence between A and B given by

Φ :A −→ B via (X , ω) −→ (X , ω∧),

Ψ :B −→ A via (A,B) −→ (A, A ∩ B).

(2) C ⊆ B.

(3) C = D.

2 Preliminaries

Let T be an additive category and Σ : T → T be an additive functor. One defines the

category Diag(T ,Σ) as follows:

• An object of Diag(T ,Σ) is a diagram in T of the form X
u // Y

v // Z
w // ΣX .

• A morphism in Diag(T ,Σ) between Xi
ui // Yi

vi // Zi
wi // ΣXi , i = 1, 2, is a triple (α, β, γ)

of morphisms in T such that the following diagram

X1
u1 //

α
��

Y1
v1 //

β��

Z1
w1 //

γ
��

ΣX1

Σα��
X2

u2 // Y2
v2 // Z2

w2 // ΣX2
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commutes.

A triangulated category is a triple (T ,Σ,∆), where T is an additive category and Σ : T → T
is an autoequivalence of T (called the suspension functor), and ∆ is a full subcategory of

Diag(T ,Σ) which is closed under isomorphisms and satisfies the axioms (T1)-(T4) in [7, Section

2.1] (also see [20]), where (T4) is called the Octahedral axiom. The elements in ∆ are called

triangles.

The following well-know result is an efficient tool.

Remark 2.1. ([7, Proposition 2.1]) Let T be an additive category and Σ : T → T be an autoe-

quivalence of T , and ∆ be a full subcategory of Diag(T ,Σ) which is closed under isomorphisms.

Suppose that the triple (T ,Σ,∆) satisfies all axioms of a triangulated category except possibly

of the Octahedral axiom. Then the following statements are equivalent.

(1) Octahedral axiom. For any two morphisms u : X // Y and v : Y // Z, there exists

a commutative diagram

X
u // Y

u′
//

v
��

Z ′ u′′
//

α
��

ΣX

X
vu // Z

w //

v′

��

Y ′ w′
//

β
��

ΣX

Σu
��

Z ′′

v′′

��

Z ′′ v′′ //

γ

��

ΣY

ΣY
Σu′
// ΣZ ′,

in which the first two rows and the middle two columns are triangles in ∆.

(2) Base change. For any triangle X
u // Y

v // Z
w // ΣX in ∆ and any morphism α : Z ′ // Z,

there exists the following commutative diagram

X ′

β′

��

X ′

β
��

X
u′
// Y ′ v′ //

α′

��

Z ′ w′
//

α
��

ΣX

X
u // Y

v //

γ′

��

Z
w //

γ
��

ΣX

Σu′

��
ΣX ′ ΣX ′ −Σβ′

// ΣY ′,

in which the middle two rows and the middle two columns are triangles in ∆.

(3) Cobase change. For any triangle X
u // Y

v // Z
w // ΣX in ∆ and any morphism
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β : X // X ′, there exists the following commutative diagram

Σ−1Z ′

−Σ−1γ
��

Σ−1Z ′

−Σ−1γ′

��
Σ−1Z

−Σ−1w // X
u //

β
��

Y
v //

β′

��

Z

Σ−1Z
−Σ−1w′

// X ′ u′
//

α
��

Y ′ v′ //

α′

��

Z

−w

��
Z ′ Z ′ γ // ΣX,

in which the middle two rows and the middle two columns are triangles in ∆.

Throughout this paper, T = (T ,Σ,∆) is a triangulated category, and Ab is the category of

abelian groups.

Recall that a triangle

X // Y // Z // ΣX

is called split if it is isomorphic to the triangle

X
(10) // X ⊕ Z

(0, 1) // Z
0 // ΣX.

We use ∆0 to denote the full subcategory of ∆ consisting of all split triangles.

Definition 2.2. ([7]) Let ξ be a class of triangles in T .

(1) ξ is said to be closed under base change (resp. cobase change) if for any triangle

X
u // Y

v // Z
w // ΣX

in ξ and any morphism α : Z ′ // Z (resp. β : X // X ′ ) as in Remark 2.1(2) (resp.

Remark 2.1(3)), the triangle

X
u′
// Y ′ v′ // Z ′ w′

// ΣX (resp. X ′ u′
// Y ′ v′ // Z

w′
// ΣX ′ )

is in ξ.

(2) ξ is said to be closed under suspension if for any triangle

X
u // Y

v // Z
w // ΣX

in ξ and for any integer i, the triangle

ΣiX
(−1)iΣiu // ΣiY

(−1)iΣiv // ΣiZ
(−1)iΣiw// Σi+1X

is in ξ.

(3) ξ is called saturated if in the situation of base change as in Remark 2.1(2), whenever the

third vertical and the second horizontal triangles are in ξ, then the triangle

X
u // Y

v // Z
w // ΣX

is in ξ.
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Definition 2.3. ([7, Definition 2.2]) A class ξ of triangles in T is called proper if the following

conditions are satisfied.

(1) ξ is closed under isomorphisms, finite coproducts and ∆0 ⊆ ξ.

(2) ξ is closed under suspensions and is saturated.

(3) ξ is closed under base and cobase change.

Example 2.4. ([7, Example 2.3])

(1) Let T be a triangulated category. There are two trivial proper classes of triangles: ∆0 and

∆.

(2) Let F : T → T ′ be an exact functor of triangulated categories and let ξ′ be a proper class

of triangles in T ′. Let ξ be the class of triangles δ in T such that F (δ) ∈ ξ′. Then ξ is a

proper class of triangles in T .

(3) Let T be a triangulated category, A be an abelian category, and F : T → A be a

(co)homological functor. Define ξF as follows: a triangle X → Y → Z → ΣX is in ξF if

and only if for any integer i, the induced sequence 0 → F i(X) → F i(Y ) → F i(Z) → 0 is

exact in A, where F i = FΣi. Then ξF is a proper class of triangles in T .

(4) Let T be a triangulated category, and X be a subcategory of T with ΣX = X . Define

ξX (resp. ξopX ) as follows: a triangle A → B → C → ΣA is in ξX if and only if for any

X ∈ X , the induced sequence 0 → HomT (X,A) → HomT (X,B) → HomT (X,C) → 0

(resp. 0 → HomT (C,X) → HomT (B,X) → HomT (A,X) → 0) is exact in Ab. Then ξX

(resp. ξopX ) is a proper class of triangles in T .

Throughout this paper, we always assume that ξ is a proper class of triangles in T .

Definition 2.5. ([7, Definition 2.4]) Let

X
u // Y

v // Z
w // ΣX

be a triangle in ξ. Then the morphism u (resp. v) is called ξ-proper monic (resp. ξ-proper epic),

and u (resp. v) is called the hokernel of v (resp. the hocokernel of u).

For any triangle

X // Y // Z // ΣX

in ξ. We say that X is closed under ξ-extensions if X, Z ∈ X , it holds that Y ∈ X . We

say that X is closed under hokernels of ξ-proper epimorphisms (resp. hocokernels of ξ-proper

monomorphisms) if Y , Z ∈ X (resp. X, Y ∈ X ), it holds that X ∈ X (resp. Z ∈ X ).

Definition 2.6. ([7, Definition 4.1]) An object P (resp. I) in T is called ξ-projective (resp.

ξ-injective) if for any triangle

X // Y // Z // ΣX

in ξ, the induced complex

0 // HomT (P,X) // HomT (P, Y ) // HomT (P,Z) // 0

(resp. 0 // HomT (Z, I) // HomT (Y, I) // HomT (X, I) // 0)

is exact in Ab. We use P(ξ) (resp. I(ξ)) to denote the full subcategory of T consisting of

ξ-projective (resp. ξ-injective) objects.
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We say that T has enough ξ-projective objects if for any object M ∈ T there exists a triangle

K // P //M // ΣK

in ξ with P ∈ P(ξ). Dually, we say that T has enough ξ-injective objects if for any object M ∈ T
there exists a triangle

M // I // K // ΣM

in ξ with I ∈ I(ξ).

From now on, we always assume that T is a triangulated category with enough ξ-projective

and ξ-injective objects.

Definition 2.7. ([2, Section 3]) Let T be a triangulated category.

(1) A ξ-exact complex is a complex

· · · // Xn+1
dn+1// Xn

dn // Xn−1
// · · · (2.1)

in T such that for any n ∈ Z, there exists a triangle

Kn+1
gn // Xn

fn // Kn
hn // ΣKn+1 (2.2)

in ξ and the differential dn is defined as dn = gn−1fn.

(2) A triangle

X // Y // Z // ΣX

in ξ is called HomT (−,P(ξ))-exact if for any object P ∈ P(ξ), the induced complex

0 // HomT (Z,P ) // HomT (Y, P ) // HomT (X,P ) // 0

is exact in Ab.

(3) A ξ-exact complex as (2.1) is called HomT (−,P(ξ))-exact if the triangle (2.2) is HomT (−,P(ξ))-

exact for any n ∈ Z.

Asadollahi and Salarian [2] introduced the notion of ξ-Gorenstein projective objects.

Definition 2.8. ([2, Definition 3.6]) Let T be a triangulated category and X an object in T .

A complete ξ-projective resolution is a HomT (−,P(ξ))-exact ξ-exact complex

· · · // P1
// P0

// P−1
// · · ·

in T with all Pi ξ-projective objects. The objects Kn as in (2.2) are called ξ-Gorenstein projec-

tive objects. We use GP(ξ) to denote the full subcategory of T consisting of all ξ-Gorenstein

projective objects. Dually, ξ-Gorenstein injective objects and GI(ξ) are defined.

Let M be an object in T . Beligiannis [7] defined the ξ-extension groups ξxtnξ (−,M) to be

the nth right ξ-derived functor of the functor HomT (−,M), that is,

ξxtnξ (−,M) := Rn
ξ HomT (−,M).

Remark 2.9. Let

X // Y // Z // ΣX

be a triangle in ξ. For any object M,N ∈ T , by [7, Corollary 4.12], there exist long exact

sequences of “ξxt” functors

6



0 // ξxt0ξ(Z,M) // ξxt0ξ(Y,M) // ξxt0ξ(X,M) //

ξxt1ξ(Z,M) // ξxt1ξ(Y,M) // ξxt1ξ(X,M) // · · ·

and

0 // ξxt0ξ(N,X) // ξxt0ξ(N,Y ) // ξxt0ξ(N,Z) //

ξxt1ξ(N,X) // ξxt1ξ(N,Y ) // ξxt1ξ(N,Z) // · · · .

Following Remark 2.9, we usually use the strategy of “dimension shifting” which is an im-

portant tool in relative homological theory of triangulated categories. We write

X⊥n := {M ∈ T | ξxtnξ (X,M) = 0 for all X ∈ X}

X⊥ := {M ∈ T | ξxtnξ (X,M) = 0 for all X ∈ X and all n ≥ 1} =
⋂
n≥1

X⊥n .

Dually, ⊥nX and ⊥X are defined.

The notion of a contravariantly (or covariangly) finite subcategory of the category of finitely

generated modules, which is also called a precovering (or preenveloping) class, was first intro-

duced over artin algebras by Auslander and Smalø [5]. They play an important role in homo-

logical algebra and representation theory of algebra. Here we recall the corresponding notions

in the setting relative to a proper class of triangles.

Definition 2.10. ([17, Definition 3.8]) Let X be a subcategory of T and M be an object in

T . A right X -approximation of M is a ξ-proper epimorphism X //M such that the induced

complex

HomT (X̃,X) // HomT (X̃,M) // 0

is exact in Ab for any X̃ ∈ X . In this case, there is a triangle

K // X //M // ΣK

in ξ. Dually, a left X -approximation of M is defined.

The subcategory X is said to be contravariantly finite if any object T ∈ T admits a right

X -approximation, and dually, X is said to be covariantly finite if any object T ∈ T admits a

left X -approximation (cf. [15, Definition 3.9]). The subcategory X is called functorially finite

if it is both contravariantly finite and covariantly finite.

Definition 2.11. ([17, Definition 2.11]) Let (X , ω) be a pair of subcategories in T with ω ⊆ X .

(1) ω is called a ξ-cogenerator of X if for any object X in X , there exists a triangle

X //W // X ′ // ΣX

in ξ with W ∈ ω and X ′ ∈ X .

(2) ω is called X -injective if ω ⊆ X⊥.

Definition 2.12. ([17, Definition 2.12]) Let T be a triangulated category and X a subcategory

of T . Then X is called a resolving subcategory of T if the following conditions are satisfied.

(1) P(ξ) ⊆ X .
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(2) X is closed under ξ-extensions.

(3) X is closed under hokernels of ξ-proper epimorphisms.

Dually, a coresolving subcategory is defined.

Definition 2.13. ([17, Definition 3.1]) Let X be a subcategory of T and T an object in T . The

X -resolution dimension of T , denoted by X -res.dimT , is defined by

X - res.dimT := inf{n ≥ 0 | there exists a ξ-exact complex

0 // Xn
// · · · // X1

// X0
// T // 0 in T with all Xi ∈ X}.

If no such integer n exists, then we set X - res.dimT = ∞.

The X -resolution dimension of T is defined by

X - res.dim T := sup{X - res.dimT | T ∈ T }.

Dually, the X -coresolution dimensions X - cores.dimT and X - cores. dim T are defined.

When X = P(ξ), we write ξ- pdT := X - res.dimT , and when X = I(ξ), we write ξ- idT :=

X - cores.dimT . In case for X = GP(ξ), X - res.dimT coincides with ξ-G pdT defined in [2] as

ξ-Gorenstein projective dimensions.

We use X∧ (resp. X∨) to denote the subcategory of T consisting of objects having finite X -

resolution (resp. X -coresolution) dimension, and use X∧
n (resp. X∨

n ) to denote the subcategory

of T consisting of objects having X -resolution dimension (resp. X -coresolution) at most n.

3 Left n-cotorsion pairs

We first introduce the notion of left (resp. right) cotorsion pair in triangulated categories

with respect to a proper class of triangles.

Definition 3.1. Let U and V be subcategories of T . We say that (U ,V) is a left cotorsion pair

in T if the following conditions are satisfied.

(L1) U is closed under direct summands.

(L2) ξxt1ξ(U ,V) = 0.

(L3) Every object T ∈ T admits a triangle

V // U // T // ΣV

in ξ with U ∈ U and V ∈ V.
Dually, we say that (U ,V) is a right cotorsion pair in T if the following conditions are satisfied.

(R1) V is closed under direct summands.

(R2) ξxt1ξ(U ,V) = 0.

(R3) Every object T ∈ T admits a triangle

T // V ′ // U ′ // ΣT

in ξ with U ′ ∈ U and V ′ ∈ V.

Remark 3.2. Let U and V be subcategories of T .

(1) If (U ,V) is a left cotorsion pair in T , then U = ⊥1V. Moreover, we have that P(ξ) ⊆ U , U
is closed under ξ-extensions, and U is a contravariantly finite subcategory of T .
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(2) If (U ,V) is a right cotorsion pair in T , then V = U⊥1 . Moreover, we have that I(ξ) ⊆ V,
V is closed under ξ-extensions, and V is a convariantly finite subcategory of T .

We say that (U ,V) is a cotorsion pair in T if (U ,V) is both a left and right cotorsion pair in

T , which is essentially a ξ-complete cotorsion theory in sense of Asadollahi and Salarian [3].

In what follows, we always assume that n is a positive integer. In [13], Zhou introduced the

notion of n-cotorsion pairs in extriangulated categories (see [19]). Notice that a triangulated

category with respect to a proper class of triangles is an extriangulated category (see [14, Remark

3.3]). Now we rewrite the notion of n-cotorsion pairs with respect to a proper class of triangles

in triangulated categories.

Definition 3.3. (cf. [13, Definition 3.1]) Let U and V be subcategories of T . We say that (U ,V)
is a left n-cotorsion pair in T if the following conditions are satisfied.

(LN1) U is closed under direct summands.

(LN2) ξxtiξ(U ,V) = 0 for every 1 ≤ i ≤ n.

(LN3) Every object T ∈ T admits a triangle

K // U // T // ΣK

in ξ with U ∈ U and K ∈ V∧
n−1.

Dually, we say that (U ,V) is a right n-cotorsion pair in T if the following conditions are satisfied.

(RN1) V is closed under direct summands.

(RN2) ξxtiξ(U ,V) = 0 for every 1 ≤ i ≤ n.

(RN3) Every object T ∈ T admits a triangle

T // V ′ // K ′ // ΣT

in ξ with V ′ ∈ V and K ′ ∈ U∨
n−1.

We say that (U ,V) is an n-cotorsion pair in T if (U ,V) is both a left and right n-cotorsion pair

in T .

We remark that left (resp. right) 1-cotorsion pairs are exactly left (resp. right) cotorsion

pairs in T .

Proposition 3.4. Let U and V be subcategories of T satisfying ξxtiξ(U ,V) = 0 for every 1 ≤
i ≤ n. If Y ∈ V∧

k with 0 ≤ k ≤ n−1, then ξxtiξ(U , Y ) = 0 for every 1 ≤ i ≤ n−k. In particular,

ξxt1ξ(U ,V∧
n−1) = 0.

Proof. The case n = 1 is clear. Now suppose n ≥ 2. We will proceed by induction on k. The

k = 0 is also clear, so we suppose 1 ≤ k ≤ n − 1. Let U ∈ U and Y ∈ V∧
k . First, for the case

k = 1, there is a triangle

V1
// V0

// Y // ΣV1

in ξ with V1, V0 ∈ V. Applying the functor HomT (U,−) to the above triangle yields the following

exact sequence

· · · // ξxtiξ(U, V0) // ξxtiξ(U, Y ) // ξxti+1
ξ (U, V1) // · · · .

For every 1 ≤ i ≤ n− 1, since ξxtiξ(U, V0) = 0 = ξxti+1
ξ (U, V1), we have ξxtiξ(U, Y ) = 0.
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Now suppose 2 ≤ k ≤ n− 1. Consider the following triangle

Y ′ // V ′
0

// Y // ΣY ′

in ξ with Y ′ ∈ V∧
k−1 and V ′

0 ∈ V. Applying the functor HomT (U,−) to the above triangle yields

the following exact sequence

· · · // ξxtiξ(U, V
′
0)

// ξxtiξ(U, Y ) // ξxti+1
ξ (U, Y ′) // · · · .

Since ξxtiξ(U, V
′
0) = 0 for every 1 ≤ i ≤ n−k by assumption, and since ξxtiξ(U, Y

′) = 0 for every

2 ≤ i ≤ n−k+1 by the induction hypothesis, we have ξxtiξ(U, Y ) = 0 for every 1 ≤ i ≤ n−k.

Immediately, we have

Corollary 3.5. (cf. [13, Lemma 3.3]) Let V be a subcategory of T . Then
n⋂

i=1

⊥iV ⊆ ⊥1V∧
n−1.

The following result gives an equivalent characterization of left n-cotorsion pairs.

Lemma 3.6. (cf. [13, Lemma 3.4]) Let U and V be subcategories of T . Then the following

statements are equivalent.

(1) (U ,V) is a left n-cotorsion pair in T .

(2) U =
n⋂

i=1

⊥iV and for any object T ∈ T , there is a triangle

K // U // T // ΣK

in ξ with U ∈ U and K ∈ V∧
n−1.

Moreover, if one of the above conditions holds true, then (U ,V∧
n−1) is a left cotorsion pair in T .

In the rest of this section, we give some properties related to (left) n-cotorsion pairs.

Proposition 3.7. Let (U ,V) be an n-cotorsion pair in T . Then the following statements are

equivalent.

(1) U ⊆ V.
(2) T = V∧

n .

(3) ξxt1ξ(U∨
n−1,U) = 0.

Proof. (1) =⇒ (2) It is clear.

(2) =⇒ (1) Let U ∈ U ⊆ T . By assumption, there is a triangle

K // V0
// U // ΣK

in ξ with K ∈ V∧
n−1 and V0 ∈ V. By Lemma 3.6, the above triangle is split, so U is a direct

summand of V0, and hence U ∈ V. Thus U ⊆ V.
(1) ⇐⇒ (3) It follows from the dual of Lemma 3.6.

Note that V∧ = V if V is coresolving, and U∨ = U if U is resolving. By Proposition 3.7, we

have the following result.

Corollary 3.8. Let (U ,V) be an n-cotorsion pair in T with U resolving. Then the following

statements are equivalent.

(1) U ⊆ V.
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(2) T = V.
(3) ξxt1ξ(U ,U) = 0.

Applying Lemma 3.6, we also have the following result.

Proposition 3.9. Let (U ,V) be a left n-cotorsion pair in T with ξxtn+1
ξ (U ,V) = 0. Then U is

resolving.

Proof. By Lemma 3.6, (U ,V∧
n−1) is a left cotorsion pair in T . By Remark 3.2, we have that U

is closed under ξ-extensions and P(ξ) ⊆ U . Now, let

U // U ′ // U ′′ // ΣU

be a triangle in ξ with U ′, U ′′ ∈ U . For any V ∈ V, applying the functor HomT (−, V ) to the

above triangle yields the following exact sequence

· · · // ξxtiξ(U
′, V ) // ξxtiξ(U, V ) // ξxti+1

ξ (U ′′, V ) // · · · .

Notice that ξxtiξ(U ,V) = 0 for every 1 ≤ i ≤ n + 1 by assumption, so ξxtiξ(U, V ) = 0 for every

1 ≤ i ≤ n. Thus U ∈
n⋂

i=1

⊥iV = U by Lemma 3.6, and hence U is closed under hokernels of

ξ-proper epimorphisms. Therefore, U is resolving.

The following result establishes a relation between n-cotorsion pairs and cotorsion pairs.

Proposition 3.10. Let U and V be subcategories in T . Then the following statements are

equivalent.

(1) (U ,V) is an n-cotorsion pair with ξxtn+1
ξ (U ,V) = 0 in T .

(2) (U ,V) is an n-cotorsion pair in T and U is resolving.

(3) (U ,V) is an n-cotorsion pair in T and V is coresolving.

(4) (U ,V) is a cotorsion pair in T and U is resolving.

Moreover, if one of the above conditions holds true, then ξxtiξ(U ,V) = 0 for every i ≥ 1.

Proof. (1) =⇒ (2) It follows from Proposition 3.9.

(2) =⇒ (1) It suffices to show ξxtn+1
ξ (U ,V) = 0. Let U ∈ U and V ∈ V. Since T has enough

ξ-projective objects, there exists the following triangle

U ′ // P // U // ΣU ′

in ξ with P ∈ P(ξ). Since U is resolving, we have U ′ ∈ U . Applying the functor HomT (−, V )

to the above triangle yields the following exact sequence

· · · // ξxtiξ(U
′, V ) // ξxti+1

ξ (U, V ) // ξxti+1
ξ (P, V ) // · · · .

Since ξxtiξ(U ,V) = 0 for any 1 ≤ i ≤ n, we have ξxtn+1
ξ (U ,V) = 0.

(1) ⇐⇒ (3) It is a dual of (1) ⇐⇒ (2).

(2) =⇒ (4) or (3) =⇒ (4) By Lemma 3.6, (U ,V∧
n−1) is a left cotorsion pair in T . Since V is

coresolving, V = V∧
n−1. So (U ,V) is a left cotorsion pair in T . Dually, (U ,V) is a right cotorsion

pair in T . Thus (U ,V) is a cotorsion pair in T , and U is resolving.

(4) =⇒ (2) By using an argument similar to that of the implication (2) =⇒ (1), we get

ξxtiξ(U ,V) = 0 for every 1 ≤ i ≤ n.

Moreover, by using an argument similar to that of the implication (2) =⇒ (1), we get

ξxtiξ(U ,V) = 0 for every i ≥ n+ 1, and then ξxtiξ(U ,V) = 0 for every i ≥ 1.

11



By Proposition 3.10, we immediately have the following result.

Corollary 3.11. Let (U ,V) be a cotorsion pair in T . Then the following statements are equiv-

alent.

(1) ξxt2ξ(U ,V) = 0.

(2) U is resolving.

(3) V is coresolving.

Moreover, if one of the above conditions holds true, then ξxtiξ(U ,V) = 0 for every i ≥ 1.

We need the following lemma.

Lemma 3.12. Let U and V be subcategories of T such that ξxtiξ(U ,V) = 0 for every 1 ≤ i ≤ n.

Then U∧
k ⊆ ⊥k+1V for any 0 ≤ k ≤ n− 1.

Proof. We will proceed by induction on k. The case k = 0 is clear. Let X ∈ U∧
k and V ∈ V. For

the case k = 1, there is a triangle

U1
// U0

// X // ΣU1

in ξ with U1, U0 ∈ U . Applying the functor HomT (−, V ) to the above triangle yields the following

exact sequence

· · · // ξxt1ξ(U1, V ) // ξxt2ξ(X,V ) // ξxt2ξ(U0, V ) // · · · .

Since ξxt1ξ(U1, V ) = 0 = ξxt2ξ(U0, V ) by assumption, we have ξxt2ξ(X,V ) = 0 and X ∈ ⊥2V.
Now suppose k ≥ 2. Consider the following triangle

K // U ′
0

// X // ΣK

in ξ with U ′
0 ∈ U and K ∈ U∧

k−1. Applying the functor HomT (−, V ) to the above triangle yields

the following exact sequence

· · · // ξxtkξ (K,V ) // ξxtk+1
ξ (X,V ) // ξxtk+1

ξ (U ′
0, V ) // · · · .

Since ξxtkξ (K,V ) = 0 by the induction hypothesis, and since ξxtk+1
ξ (U ′

0, V ) = 0 by assumption,

we have ξxtk+1
ξ (X,V ) = 0 and X ∈ ⊥k+1V. Thus U∧

k ⊆ ⊥k+1V for any 0 ≤ k ≤ n− 1.

As a consequence, we get the following proposition.

Proposition 3.13. Let (U ,V) be a left n-cotorsion pair in T . Then the following statements

are equivalent.

(1) U = ⊥1V.
(2) U∧

k = ⊥k+1V for any 0 ≤ k ≤ n− 1.

Proof. (2) =⇒ (1) It is trivial by setting k = 0 in (2).

(1) =⇒ (2) The case k = 0 is clear. Now suppose k ≥ 1. By Lemma 3.12, we have

U∧
k ⊆ ⊥k+1V. Conversely, let Y ∈ ⊥k+1V. Consider the following triangle

K1
// U0

// Y // ΣK1

12



in ξ with U0 ∈ U and K1 ∈ V∧
n−1. Repeating this process, we get the following ξ-exact complex

0 // Kk
// Uk−1

// · · · // U1
// U0

// Y // 0

with Ui ∈ U for 0 ≤ i ≤ k − 1. Applying the functor HomT (−, V ) to it, we have ξxt1ξ(Kk, V ) ∼=
ξxtk+1

ξ (Y, V ) = 0 by dimension shifting. It implies Kk ∈ ⊥1V = U by assumption. Hence Y ∈ U∧
k

and ⊥k+1V ⊆ U∧
k . Thus U∧

k = ⊥k+1V.

Immediately, we have the following corollary.

Corollary 3.14. Let (U ,V) be a left n-cotorsion pair in T . If U = ⊥1V, then for any 0 ≤ k ≤
n− 1, the following statements are equivalent.

(1) U- res.dim T ≤ k.

(2) T = ⊥k+1V.

As an application of Proposition 3.10, along with Proposition 3.13 and its dual, the following

result describes the subcategories U∧ and V∨ if (U ,V) is a cotorsion pair with U resolving.

Corollary 3.15. Let (U ,V) be a cotorsion pair with U resolving. Then for any m, n ≥ 0, we

have U⊥m+1 = V∨
m and ⊥n+1V = U∧

n .

4 Left Frobenius pairs and weak Auslander-Buchweitz contexts

We begin with the following easy observation.

Proposition 4.1. Let (X , ω) be a pair of subcategories in T such that ω is X -injective. We

have

(1) X ⊆ ⊥(ω∧).

(2) If ω is a ξ-cogenerator for X and ω is closed under direct summands in T , then

ω = X ∩ ω∧ = X ∩ X⊥.

Proof. (1) It follows from [17, Lemma 3.9].

(2) By (1), we have ω ⊆ X ∩ ω∧ ⊆ X ∩ X⊥, so it suffices to show X ∩ X⊥ ⊆ ω. Now let

X ∈ X ∩ X⊥. Since ω is a ξ-cogenerator in X , there exists the following triangle

X //W // X ′ // ΣX

in ξ with W ∈ ω and X ′ ∈ X . Since ξxt1ξ(X
′, X) = 0 by assumption, the above triangle is split.

So X is a direct summand of W and X ∈ ω. Thus we get the desired assertion.

The following result gives the so-called Auslander-Buchweitz approximation triangles. It

plays a crucial role in the sequel.

Proposition 4.2. ([17, Proposition 3.10]) Let (X , ω) be a pair of subcategories in T such that

X is closed under ξ-extensions and ω is a ξ-cogenerator in X . Then for any C ∈ X∧
n , there exist

the following triangles

YC // XC
// C // ΣYC ,

C // Y C // XC // ΣC

in ξ with YC ∈ ω∧
n−1, Y C ∈ ω∧

n and XC , XC ∈ X . In particular, if ω is X -injective, then

XC → C is a right X -approximation of C.
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Applying Proposition 4.2, we get the following two corollaries.

Corollary 4.3. Let (X , ω) be a pair of subcategories in T such that X is closed under ξ-

extensions and direct summands, and let ω be a ξ-cogenerator of X . Then

{C ∈ T | X - res. dimC ≤ 1} ∩ ⊥1ω ⊆ X .

Proof. Let X - res.dimC ≤ 1. By Proposition 4.2, we have the following triangle

K // X // C // ΣK

in ξ with X ∈ X and K ∈ ω. Notice that ξxt1ξ(C,K) = 0 by assumption, so the above triangle

is split, and thus C is a direct summand of X, which implies C ∈ X .

Corollary 4.4. Let (X , ω) be a pair of subcategories in T such that X is closed under ξ-

extensions and ω is closed under direct summands in T . If ω is X -injective and a ξ-cogenerator

for X , then

ω∧ = X⊥ ∩ X∧.

Proof. By Proposition 4.1, we have ω∧ ⊆ X⊥. Clearly, ω∧ ⊆ X∧. Thus ω∧ ⊆ X⊥ ∩ X∧.

Conversely, let C ∈ X⊥ ∩ X∧. Then, by Proposition 4.2, there exists a triangle

Y // X // C // ΣY

in ξ with X ∈ X and Y ∈ ω∧ ⊆ X⊥. Since C ∈ X⊥, we have X ∈ X⊥. Then X ∈ X ∩ X⊥. It

follows from Proposition 4.1 that X ∈ ω. So C ∈ ω∧, and thus X⊥ ∩ X∧ ⊆ ω∧.

For a pair (X , ω) of subcategories in T , if ω ⊆ X , then ω∧ ⊆ X∧. We establish a more

specific relation between them under some conditions.

Proposition 4.5. Let X and Y be subcategories of T such that X and Y are closed under direct

summands and Y ⊆ X∧. Assume that

(a) X is closed under ξ-extensions and hokernels of ξ-proper epimorphisms, and

(b) Y is closed under ξ-extensions and hocokernels of ξ-proper monomorphisms.

If ω := X ∩ Y is X -injective and a ξ-cogenerator for X , then

Y = ω∧ = X∧ ∩ X⊥ = X∧ ∩ X⊥1 .

Proof. By Corollary 4.4, we know ω∧ = X⊥ ∩ X∧.

Since Y is closed under hocokernels of ξ-proper monomorphisms, we have Y∧ = Y. It follows

that ω∧ ⊆ Y since ω ⊆ Y. Now let Y ∈ Y. Since Y ⊆ X∧ by assumption, by Proposition 4.2,

there is a triangle

K // X // Y // ΣK

in ξ with X ∈ X and K ∈ ω∧ ⊆ Y. Since Y is closed under ξ-extensions, we have X ∈ Y. So

X ∈ X ∩ Y = ω, and hence Y ∈ ω∧ and Y ⊆ ω∧. Thus Y = ω∧.

Clearly, X∧ ∩ X⊥ ⊆ X∧ ∩ X⊥1 . Now let Z ∈ X∧ ∩ X⊥1 . By Proposition 4.2, there is a

triangle

Z //W // X // ΣZ

in ξ with X ∈ X and W ∈ ω∧. Since Z ∈ X⊥1 , the above triangle is split. So Z is a direct

summand of W . Notice that ω∧(= Y) is closed under direct summands, we have Z ∈ ω∧ =

X∧ ∩ X⊥. Thus we get the third equality.
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4.1 Left Frobenius pairs

Inspired by the definition of left Frobenius pairs in abelian categories [6], we introduce the

notion of left Frobenius pairs with respect to ξ in triangulated categories as follows.

Definition 4.6. A pair of subcategories (X , ω) in T is called a left Frobenius pair if

(LF1) X and ω are closed under direct summands.

(LF2) X is closed under ξ-extensions and hokernels of ξ-proper epimorphisms.

(LF3) ω is X -injective and a ξ-cogenerator of X .

We have the following example.

Example 4.7.

(1) We have the following facts.

(1.1) GP(ξ) is closed under direct summands (see [2, Proposition 3.13]).

(1.2) GP(ξ) is closed under ξ-extensions and hokernels of ξ-proper epimorphisms. In

particular, GP(ξ) is a resolving subcategory of T (see [18, Corollary 4.4] or [17,

Theorem 5.3]).

(1.3) P(ξ) is GP(ξ)-injective and is a ξ-cogenerator of GP(ξ) since P(ξ) ⊆ GP(ξ)∩GP(ξ)⊥

(see [2, Lemma 3.7 and Proposition 3.19]).

So (GP(ξ),P(ξ)) is a left Frobenius pair in T .

(2) Let (X , ω) be a left Frobenius pair in T such that X - res.dim T = n. By Proposition 4.2,

(X , ω) is a left n-cotorsion pair in T . In particular, if sup{ξ-G pdT | T ∈ T } = n, then

(GP(ξ),P(ξ)) is a left n-cotorsion pair in T .

Let (X , ω) be a left Frobenius pair in T . In the following, we will study the homological

behavior of X∧, involving ω∧.

Lemma 4.8. Let (X , ω) be a left Frobenius pair in T , and let

X // Y // Z // ΣX (4.1)

be a triangle in ξ.

(1) If Z ∈ X , then X ∈ X∧ if and only if Y ∈ X∧.

(2) If Y ∈ X , then X ∈ X∧ if and only if Z ∈ X∧.

Proof. (1) Assume that Y ∈ X∧ and X - res. dimY = m. We proceed by induction on m. The

case for m = 0 is clear. Now suppose m ≥ 1. Consider the following triangle

K // X0
// Y // ΣK

in ξ with X0 ∈ X andK ∈ X∧
m−1. Applying base change to the triangle (4.1) along the morphism

X0 → Y yields the following commutative diagram

K

h
��

K

f
��

Σ−1Z // X ′ g //

��

X0
//

��

Z

Σ−1Z // X //

��

Y //

��

Z

ΣK ΣK.

(4.2)
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By [22, Proposition 2.4], one can see that the triangle

X ′ // X0
// Z // ΣX ′

is in ξ. Since gh = f is ξ-proper monic, h is ξ-proper monic by [22, Proposition 2.7]. So the

second vertical triangle is in ξ. It follows that X ′ ∈ X since X is closed under hokernels of

ξ-proper epimorphisms. Thus X ∈ X∧.

On the other hand, assume that X ∈ X∧ and X - res.dimX = n. The case for n = 0 is clear.

By Proposition 4.2, there exists the following triangle

K ′ // X ′
0

// X // ΣK ′ (4.3)

in ξ with X ′
0 ∈ X and K ′ ∈ ω∧. Applying HomT (Z,−) to the triangle (4.3) yields the following

exact sequence

· · · // ξxt1ξ(Z,K
′) // ξxt1ξ(Z,X

′
0)

// ξxt1ξ(Z,X) // ξxt2ξ(Z,K
′) // · · · .

Since

ξxt1ξ(Z,K
′) = 0 = ξxt2ξ(Z,K

′)

by Proposition 4.1, we have ξxt1ξ(Z,X
′
0)

∼= ξxt1ξ(Z,X). We get the following commutative

diagram

K ′

��

K ′

��
Σ−1Z // X ′

0
//

��

X ′′

��

// Z

Σ−1Z // X

��

// Y

��

// Z

ΣK ′ ΣK ′.

Notice that the triangle

X ′
0

// X ′′ // Z // ΣX ′
0

is in ξ, so the third vertical triangle is also in ξ by [22, Proposition 2.4]. Since X is closed under

ξ-extensions, we have X ′′ ∈ X and Y ∈ X∧.

(2) When X ∈ X∧, the assertion Z ∈ X∧ is clear. On the other hand, assume that Z ∈ X∧

and X - res.dimZ = m. We proceed by induction on m. The case m = 0 is clear. Now suppose

m ≥ 1. Consider the following triangle

K // X0
// Z // ΣK

in ξ with X0 ∈ X andK ∈ X∧
m−1. Applying base change to the triangle (4.1) along the morphism
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X0
// Z , we get the following commutative diagram

K

h
��

K

f
��

X // U
g //

��

X0
//

��

ΣX

X // Y //

��

Z //

��

ΣX

ΣK ΣK.

(4.4)

Since ξ is closed under base change, the second horizontal triangle is in ξ. Since gh = f is

ξ-proper monic, h is ξ-proper monic by [22, Proposition 2.7]. So the second vertical triangle is

in ξ. By (1), we have U ∈ X∧ and then X ∈ X∧.

The following result shows that X∧ satisfies the two-out-of-three property relative to ξ-proper

triangles.

Theorem 4.9. Let (X , ω) be a left Frobenius pair in T . Then X∧ is closed under ξ-extensions,

hokernels of ξ-proper epimorphisms and hocokernels of ξ-proper monomorphisms.

Proof. Let

X // Y // Z // ΣX (4.5)

be a triangle in ξ.

Claim 1. X∧ is closed under ξ-extensions.

Let X, Z ∈ X∧ with X - res.dimX = m and X - res.dimZ = n. By Proposition 4.2, there

exist the following triangles

K // X0
// X // ΣK (4.6)

and

K ′ // X ′
0

// Z // ΣK ′

in ξ with X0, X ′
0 ∈ X and K ∈ ω∧

m−1, K
′ ∈ ω∧

n−1. Applying the functor HomT (X
′
0,−) to

the triangle (4.6) yields ξxt1ξ(X
′
0, X0) ∼= ξxt1ξ(X

′
0, X). Then we have the following commutative

diagram

X0

��

//

��

X ′′

��

//

��

X ′
0

��

// ΣX0

��

��
X // U ′ //

��

X ′
0

//

��

ΣX

X // Y // Z // ΣX,

where all triangles are in ξ and the bottom commutative diagram follows by base change. Since

X is closed under ξ-extensions, X ′′ ∈ X . Using that Σ is an automorphism and the 3×3 Lemma,

17



one can get the following commutative diagram except the right square on the bottom which

anticommutes

Σ−1X ′
0

//

��

X0
//

��

X ′′ //

��

X ′
0

��
Σ−1Z //

��

X //

��

Y //

��

Z

��
K ′ //

��

ΣK //

��

ΣK ′′ //

��

ΣK ′

��
X ′

0
// ΣX0

// ΣX ′′ // ΣX ′
0

in which all the rows and columns are in ∆. One can get the following triangles

K // K ′′ // K ′ // ΣK

and

K ′′ // X ′′ // Y // ΣK ′′ ,

which are in ξ by [18, Lemma 3.10]. By the induction hypothesis, we have K ′′ ∈ X∧. Notice

that X ′′ ∈ X , so Y ∈ X∧.

Claim 2. X∧ is closed under hokernels of ξ-proper epimorphisms.

Let Y, Z ∈ X∧ with X - res. dimZ = m. We proceed by induction on m. The case for m = 0

follows from Lemma 4.8. Now suppose m ≥ 1. Consider the following triangle

K // X0
// Z // ΣK

in ξ with X0 ∈ X and K ∈ X∧
m−1. Applying base change for the triangle (4.5) along the

morphism X0
// Z , we get the following commutative diagram

K

��

K

��
X // U //

��

X0
//

��

ΣX

X // Y //

��

Z //

��

ΣX

ΣK ΣK.

As a similar argument to that of the diagram (4.4), one can see that the second vertical and the

second horizontal triangles are in ξ. By Claim 1, we have U ∈ X∧. So X ∈ X∧ by Lemma 4.8.

Claim 3. X∧ is closed under hocokernels of ξ-proper monomorphisms.

Let X, Y ∈ X∧ with X - res. dimY = n. We proceed by induction on n. The case for n = 0

is clear. Now suppose n ≥ 1. Consider the following triangle

K // X0
// Y // ΣK
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in ξ with X0 ∈ X and K ∈ X∧
n−1. Applying base change for triangle (4.5) along the morphism

X0 → Y yields the following commutative diagram

K

��

K

��
Σ−1Z // U //

��

X0

��

// Z

Σ−1Z // X

��

// Y

��

// Z

ΣK ΣK.

As a similar argument to that of the diagram (4.2), one can see that the second vertical triangle

and the triangle

U // X0
// Z // ΣU

are in ξ. By Claim 1, we have U ∈ X∧, and thus Z ∈ X∧ by Lemma 4.8.

The following result is also a consequence of Proposition 4.2.

Proposition 4.10. Let (X , ω) be a left Frobenius pair in T . Then

X∧ ∩ ⊥ω = X = X∧ ∩ ⊥(ω∧).

Proof. Clearly, X ⊆ X∧ ∩ ⊥ω and X∧ ∩ ⊥(ω∧) ⊆ X∧ ∩ ⊥ω.

By [17, Lemma 3.9], we have ⊥ω ⊆ ⊥(ω∧), and hence X∧ ∩ ⊥ω ⊆ X∧ ∩ ⊥(ω∧).

Now, let M ∈ X∧ ∩ ⊥ω. By Proposition 4.2, there is a triangle

K // X //M // ΣK (4.7)

in ξ with X ∈ X and K ∈ ω∧. Then K ∈ ⊥ω, and so K ∈ ω∧ ∩ ⊥ω = ω by [17, Lemma

3.12]. Notice that ξxt1ξ(M,K) = 0, the triangle (4.7) is split, hence X ∼= K ⊕M . It follows that

M ∈ X from the fact that X is closed under direct summands. Thus X∧ ∩ ⊥ω ⊆ X .

The following result provides a standard criterion for computing the X -resolution dimension

of an object in T .

Proposition 4.11. Let (X , ω) be a left Frobenius pair in T . Then for any T ∈ T , the following

statements are equivalent.

(1) X -res.dimT ≤ n.

(2) If

0 // Kn
// Xn−1

// · · · // X1
// X0

// T // 0 (4.8)

is a ξ-exact complex in T with Xi ∈ X for any 0 ≤ i ≤ n− 1, then Kn ∈ X .

Proof. (2) =⇒ (1) It is obvious.

(1) =⇒ (2) By Lemma 4.8, we have Kn ∈ X∧. For any W ∈ ω, applying the functor

HomT (−,W ) to the ξ-exact complex (4.8), by dimension shifting, we have

ξxtiξ(Kn,W ) ∼= ξxtn+i
ξ (T,W ) = 0

for all i ≥ 1. Then Kn ∈ ⊥ω, and hence Kn ∈ X∧ ∩ ⊥ω = X by Proposition 4.10.
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Applying Proposition 4.11, we get the following result.

Proposition 4.12. Let (X , ω) be a left Frobenius pair in T . Then X∧ is closed under direct

summands.

Proof. Let M ∈ X∧ and M = M1 ⊕M2. Suppose X -res.dimM ≤ n. We proceed by induction

on n. The case n = 0 is trivial. Now suppose n ≥ 1, by Proposition 4.2, we have the following

ξ-exact complex

0 // Xn
// Xn−1

// · · · // X1
// X0

//M // 0

in T with all Xi objects in ω for 1 ≤ i ≤ n and X0 ∈ X .

Applying base change for the triangle

Σ−1M1
0 //M2

//M //M1

along the morphism X0
//M yields the following commutative diagram

K1

��

K1

��
Σ−1M1

//W1
//

��

X0
//

��

M1

Σ−1M1
0 //M2

//

��

M //

��

M1

ΣK1 ΣK1.

As a similar argument to that of the diagram (4.2), one can get that the second vertical triangle

and the triangle

W1
// X0

//M1
// ΣW1

are in ξ. Similarly, we get a triangle

U1
// X0

//M2
// ΣU1

in ξ.

Since ξxt1ξ(X0,K1) = 0 by Proposition 4.1,

HomT (X0,W1) // HomT (X0,M2) // 0

is epic. By [24, Lemma 2.2] and [18, Lemma 3.11], we have the following commutative diagram

except the middle square on the top which anticommutes

K2
//

��

W2
//

��

U1
//

��

ΣK2

��
X1

//

��

X1 ⊕X0
//

��

X0
0 //

��

ΣX1

��
K1

//

��

W1
//

��

M2
//

��

ΣK1

��
ΣK2

// ΣW2
// ΣU1

// Σ2K2
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in which the first horizontal and the second vertical triangles are in ξ. Similarly, we get a triangle

U2
// X1 ⊕X0

// U1
// ΣU2

in ξ. Repeating this process, we get the following two ξ-exact complexes

0 //Wn
//
⊕n−1

i=1 Xi
//
⊕n−2

i=1 Xi
// · · · // X0 ⊕X1

// X0
//M1

// 0,

0 // Un
//
⊕n−1

i=1 Xi
//
⊕n−2

i=1 Xi
// · · · // X0 ⊕X1

// X0
//M2

// 0.

Since ξ is closed under finite coproducts, we get a ξ-exact complex

0 //Wn ⊕ Un
//
⊕n−1

i=1 Xi ⊕
⊕n−1

i=1 Xi
//
⊕n−2

i=1 Xi ⊕
⊕n−2

i=1 Xi
//

· · · // X0 ⊕X1 ⊕X0 ⊕X1
// X0 ⊕X0

//M // 0.

By Proposition 4.11, Wn⊕Un ∈ X . Because X is closed under direct summands by assumption,

both Wn and Un are objects in X . Thus X -res.dimM1 ≤ n and X -res.dimM2 ≤ n.

Recall from [7, Section 4.3] that a subcategory X of T is called Σ-stable if ΣX = X , and

X is called a generating subcategory of T if X is Σ-stable and for all X ∈ X , the condition

HomT (X,C) = 0 implies C = 0. Dually, a subcategory Y is called a cogenerating subcategory of

T if Y is Σ-stable and for all Y ∈ Y, the condition HomT (C, Y ) = 0 implies C = 0.

We need the following fact.

Lemma 4.13. ([7, Corollary 4.15 and Proposition 4.17]) Let X be an object of T .

(1) If P(ξ) is a generating subcategory of T , then ξ-pdX ≤ n if and only if ξxtn+1
ξ (X,Y ) = 0

for any Y ∈ T .

(2) If I(ξ) is a cogenerating subcategory of T , then ξ- idX ≤ n if and only if ξxtn+1
ξ (Y,X) = 0

for any Y ∈ T .

The following result shows how to obtain cotorsion pairs from left Frobenius pairs in T .

Theorem 4.14. Let (X , ω) be a left Frobenius pair in T . Assume that I(ξ) is a cogenerating

subcategory of T . Then the following statements are equivalent.

(1) X∧ = T .

(2) (X , ω∧) is a cotorsion pair in T with ξ- idω < ∞.

(3) (X , ω∧) is a left cotorsion pair in T with ξ- idω < ∞.

(4) X = ⊥ω and ξ- idω < ∞.

Moreover, if one of the equivalent conditions holds, then X - res.dim T = ξ-idω.

Proof. (1) =⇒ (2) By Corollary 4.4, we have ω∧ = X⊥ ∩ X∧. Note that X∧ is closed under

direct summands by Proposition 4.12, so ω∧ is closed under direct summands. By Proposition

4.1, we have ξxt1ξ(X , ω∧) = 0. On the other hand, we can get two desired triangles as in the

Definition 3.1 by Proposition 4.2. Thus (X , ω∧) is a cotorsion pair in T .

Let W ∈ ω and T ∈ T with X - res.dimT ≤ n. Then we have the following ξ-exact complex

0 // Xn
// Xn−1

// · · · // X1
// X0

// T // 0

in T with Xi ∈ X for any 0 ≤ i ≤ n. Applying the functor HomT (−,W ), by dimension shifting,

we have

ξxtn+1
ξ (T,W ) ∼= ξxt1ξ(Xn,W ) = 0.
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So ξ- idW ≤ n by Lemma 4.13, and thus ξ- idω < ∞.

(2) =⇒ (3) It is obvious.

(3) =⇒ (4) Note that X = ⊥1(ω∧) by Remark 3.2. It is clear that ⊥(ω∧) ⊆ ⊥1(ω∧) = X . On

the other hand, we know that X ⊆ ⊥(ω∧) by Proposition 4.1. Thus ⊥1(ω∧) = ⊥(ω∧). Clearly,
⊥(ω∧) = ⊥ω. Thus X = ⊥1(ω∧) = ⊥ω.

(4) =⇒ (1) Suppose ξ- idω = n. For any T ∈ T , since T has enough ξ-projective objects,

there exists the following ξ-exact complex

0 // K // Pn−1
// · · · // P1

// P0
// T // 0

in T with Pi ∈ P(ξ) for any 0 ≤ i ≤ n− 1. For any W ∈ ω, applying the functor HomT (−,W ),

by dimension shifting, we have

ξxtiξ(K,W ) ∼= ξxtn+i
ξ (T,W ) = 0

for any i ≥ 1 since ξ- idW ≤ n. So K ∈ ⊥ω. Since X = ⊥ω by assumption, we have that K ∈ X .

Notice that all Pi are in X , so X - res. dimT ≤ n and T ∈ X∧, and therefore T = X∧.

Putting X = GP(ξ) and ω = P(ξ) in Theorem 4.14, we get the following result, in which

part of the implication (1) =⇒ (2) was proved in [21, Proposition 3.7].

Corollary 4.15. If I(ξ) is a cogenerating subcategory of T , then the following statements are

equivalent.

(1) sup{ξ-G pdT | T ∈ T } < ∞.

(2) (GP(ξ),P(ξ)∧) is a cotorsion pair in T and ξ- idP(ξ) < ∞.

(3) (GP(ξ),P(ξ)∧) is a left cotorsion pair in T and ξ- idP(ξ) < ∞.

(4) GP(ξ) = ⊥P(ξ) and ξ- idP(ξ) < ∞.

Moreover, if one of these equivalent conditions holds, then sup{ξ-G pdT | T ∈ T } = ξ- idP(ξ).

Furthermore, we have the following result.

Proposition 4.16. Assume that P(ξ) is a generating subcategory of T and I(ξ) is a cogenerating

subcategory of T .

(1) If (GP(ξ),P(ξ)) is a left n-cotorsion pair in T , then

sup{ξ-G pdT | T ∈ T } = ξ- idP(ξ) ≤ n.

Dually, if (I(ξ),GI(ξ)) is a right m-cotorsion pair in T , then

sup{ξ-G idT | T ∈ T } = ξ-pd I(ξ) ≤ m.

(2) If there are n, m ≥ 1 such that (GP(ξ),P(ξ)) is a left n-cotorsion pair and (I(ξ),GI(ξ))
is a right m-cotorsion pair in T , then we can choose n = m = ξ- idP(ξ) = ξ-pd I(ξ).

Proof. (1) Suppose (GP(ξ),P(ξ)) is a left n-cotorsion pair in T . Then every object in T has

ξ-Gorenstein projective dimension at most n, and hence sup{ξ-G pdT | T ∈ T } ≤ n. Then, by

Corollary 4.15, we have

sup{ξ-G pdT | T ∈ T } = ξ- idP(ξ) ≤ n.

Dually, we get the other assertion.
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(2) By (1), we have sup{ξ-G pdT | T ∈ T } = ξ- idP(ξ) ≤ n and sup{ξ-G idT | T ∈ T } =

ξ- pd I(ξ) ≤ m. It follows from [21, Theorem 4.6 and Corollary 4.7] that

sup{ξ-G pdT | T ∈ T } = sup{ξ-G idT | T ∈ T } = ξ- pd I(ξ) = ξ- idP(ξ).

The following result is a consequence of Proposition 4.16.

Corollary 4.17. Assume that P(ξ) is a generating subcategory of T and I(ξ) is a cogenerating

subcategory of T , and assume that (GP(ξ),P(ξ)) is a left n-cotorsion pair in T . Then we have

(1) T = GP(ξ)∧n = ⊥n(P(ξ)∧n−1).

(2) T = GI(ξ)∨n = (I(ξ)∨n−1)
⊥n.

Proof. We only need to prove (1), since (2) is a dual of (1).

Since (GP(ξ),P(ξ)) is a left n-cotorsion pair in T , we have that T = GP(ξ)∧n by Proposition

4.16(1), and that GP(ξ) = ⊥1(P(ξ)∧n−1) by Theorem 3.6. Notice that P(ξ)∧n−1 ⊆ (P(ξ)∧n−1)
∧
n , so

(GP(ξ), (P(ξ)∧n−1)
∧
n) is a left (n + 1)-cotorsion pair in T . Then T = ⊥n(P(ξ)∧n−1) by Corollary

3.14.

4.2 Left weak Auslander-Buchweitz contexts, corresponding with cotorsion
pairs and left Frobenius pairs

In [12], Hashimoto introduced and studied relative Auslander-Buchweitz contexts in abelian

categories. Motivated by it, we now introduce left (weak) Auslander-Buchweitz contexts with

respect to ξ in a triangulated category T , and establish a one-one correspondence between left

weak Auslander-Buchweitz contexts and left Frobenius pairs.

Definition 4.18. Let (A,B) be a pair of subcategories in T and ω = A∩B. We say that (A,B)
is a left weak Auslander-Buchweitz context (left weak AB context for short) in T if the following

conditions are satisfied.

(AB1) The pair (A, ω) is a left Frobenius pair in T .

(AB2) B is closed under direct summands, ξ-extensions and hocokernels of ξ-proper monomor-

phisms.

(AB3) B ⊆ A∧.

A left weak AB context (A,B) is called a left AB context if the following condition is satisfied.

(AB4) A∧ = T .

The following result shows how to obtain left (weak) AB contexts from left Frobenius pairs

in T .

Proposition 4.19. Let (X , ω) be a left Frobenius pair in T . Then (X , ω∧) is a left weak AB

context in T . Moreover, if X∧ = T , then (X , ω∧) is a left AB context in T .

Proof. By Proposition 4.1, we have X ∩ ω∧ = ω. Since (X , ω) is a left Frobenius pair in T , we

have ω∧ = X⊥∩X∧ by Corollary 4.4. Since X∧ is closed under direct summands by Proposition

4.12, and since X∧ is closed under ξ-extensions and hocokernels of ξ-proper monomorphisms by

Theorem 4.9, we have that ω∧ is closed under direct summands, ξ-extensions and hocokernels

of ξ-proper monomorphisms. Clearly, ω∧ ⊆ X∧. Thus (X , ω∧) is a left weak AB context in T .

The last assertion is clear.
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The following result shows how to obtain cotorsion pairs from left AB contexts in T .

Proposition 4.20. Let (A,B) be a left weak AB context in T and ω := A ∩ B. Then

ω = A ∩A⊥ and ω∧ = B.

In this case, we have the following equivalent statements.

(1) A∧ = T
(2) (A,B) is a cotorsion pair in T .

Moreover, if one of the above conditions holds, then A is resolving.

Proof. By assumption, we know that (A, ω) is a left Frobenius pair in T . Then by Proposition

4.1 and Corollary 4.4, we have ω = A ∩ ω∧ and ω∧ = A⊥ ∩ A∧. Thus

ω = A ∩A⊥ ∩ A∧ = A ∩A⊥.

Since ω ⊆ B and B is closed under hocokernels of ξ-proper monomorphisms, we have ω∧ ⊆ B.
Conversely, let X ∈ B ⊆ A∧. By Proposition 4.2, there is a triangle

K // A // X // ΣK

in ξ with A ∈ A and K ∈ ω∧ ⊆ B. It follows that A ∈ B since B is closed under ξ-extensions.

So A ∈ A ∩ B = ω, and hence X ∈ ω∧ and B ⊆ ω∧. Thus B = ω∧.

(1) =⇒ (2) By Proposition 4.1, we have A ⊆ ⊥(ω∧) and ξxt1ξ(A,B) = 0. Since T = A∧ by

assumption, for any T ∈ T , there exist triangles

B // A // T // ΣB

and

T // B′ // A′ // ΣT

in ξ with A,A′ ∈ A and B,B′ ∈ ω∧ = B by Proposition 4.2. Thus (A,B = ω∧) is a cotorsion

pair in T .

(2) =⇒ (1) It is clear.

The last assertion follows by the fact that A = ⊥1B ⊇ P(ξ) (see Remark 3.2).

The following result provides a way to obtain left Frobenius pairs and left (weak) AB contexts

from cotorsion pairs in T .

Proposition 4.21. Let (U ,V) be a cotorsion pair in T with U resolving. Then (U , ω) is a left

Frobenius pair in T , where ω := U ∩ V. Moreover, the following assertions hold true.

(1) If V ⊆ U∧, then (U ,V) is a left weak AB context in T .

(2) If U∧ = T , then (U ,V) is a left AB context in T .

Proof. By assumption, we have that U and V are closed under direct summands, and U is closed

under ξ-extensions and hokernels of ξ-proper epimorphisms. So ω := U ∩V is closed under direct

summands. It follows from Corollary 3.11 that V ⊆ U⊥ and ω ⊆ U ∩ U⊥, which implies that ω

is U-injective. Now, let U ∈ U . Consider the following triangle

U // V ′ // U ′ // ΣU
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in ξ with U ′ ∈ U and V ′ ∈ V. It follows that V ′ ∈ U ∩ V = ω from the fact that U is closed

under ξ-extensions, and so ω is a ξ-cogenerator in U . Thus (U , ω) is a left Frobenius pair in T .

(1) By Corollary 3.11, V is closed under ξ-extensions and hocokernels of ξ-proper monomor-

phisms. Since V ⊆ U∧ by assumption, (U ,V) is a left weak AB context in T .

(2) It is clear by (1).

Our main result is the following correspondence theorem.

Theorem 4.22. For an integer n ≥ 1, consider the following classes:

A :={A pair (X , ω) in T : (X , ω) is a left Frobenius pair in T },

B :={A pair (A,B) in T : (A,B) is a left weak AB context},

C :={A pair (U ,V) in T : (U ,V) is a cotorsion pair in T with U resolving and V ⊆ U∧},

D :={A pair (U ,V) in T : (U ,V) is an n-cotorsion pair in T with U resolving and V ⊆ U∧}.

Then we have

(1) There is a one-to-one correspondence between A and B given by

Φ :A −→ B via (X , ω) −→ (X , ω∧),

Ψ :B −→ A via (A,B) −→ (A, A ∩ B).

(2) C ⊆ B.

(3) C = D.

Proof. (1) Following Proposition 4.19, we know that Φ is well-defined. It suffices to prove

ΦΨ = 1B and ΨΦ = 1A.

Let (A,B) be a left weak AB context. Then

ΦΨ(A,B) = Φ(A,A ∩ B) = (A, (A ∩ B)∧).

By Proposition 4.20, we have B = (A ∩ B)∧. It follows that ΦΨ(A,B) = (A,B) and ΦΨ = 1B.

Conversely, let (X , ω) be a left Frobenius pair. Then

ΨΦ(X , ω) = Ψ(X , ω∧) = (X ,X ∩ ω∧).

Since X ∩ ω∧ = ω by Proposition 4.1, we have ΨΦ(X , ω) = (X , ω) and ΨΦ = 1A.

(2) It follows from Proposition 4.21.

(3) It follows from Proposition 3.10.

Furthermore, we get the following result.

Theorem 4.23. For an integer n ≥ 1, consider the following classes:

A :={A pair (X , ω) in T : (X , ω) is a left Frobenius pair with X∧ = T },

B :={A pair (A,B) in T : (A,B) is a left AB context},

C :={A pair (U ,V) in T : (U ,V) is a cotorsion pair in T with U resolving and U∧ = T },

D :={A pair (U ,V) in T : (U ,V) is an n-cotorsion pair in T with U resolving and U∧ = T }.

Then B = C = D and there is a one-to-one correspondence between A and B.
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Proof. By Theorem 4.22, it suffices to show B ⊆ C. Now the assertion follows from Proposition

4.20.

Example 4.24. (T , I(ξ)) is a trivial cotorsion pair in T . Obviously, T is resolving. So, by

Theorem 4.23, (T , I(ξ)) is a left AB context and is a left Frobenius pair in T .

Example 4.25. Assume that P(ξ) is a generating subcategory and I(ξ) is a cogenerating

subcategory of T . By [21, Theorem 4.6],

sup{ξ-G pdT | T ∈ T } = sup{ξ-G idT | T ∈ T }.

The common value of the quantities in the above equality is called the global ξ-Gorenstein

dimension of T . In sense of Asadollahi and Salarian, T is called a ξ-Gorenstein triangulated

category (see [3, Definition 4.6]).

Assume sup{ξ-G pdT | T ∈ T } < ∞. By [3, Theorem 4.13], (P(ξ)∧,GI(ξ)) is a cotorsion

pair in T . One have the following facts.

(1) P(ξ)∧ and GI(ξ) are closed under direct summands.

(2) By [17, Remark 3.5], P(ξ)∧(⊇ P(ξ)) is a resolving subcategory in T , that is, P(ξ)∧ is

closed under ξ-extensions and hokernels of ξ-proper epimorphisms.

(3) The assertion that GI(ξ) is a ξ-cogenerator of P(ξ)∧ is obvious. By Corollary 3.11, we

have that GI(ξ) is coresolving and ξxtiξ(P(ξ)∧,GI(ξ)) = 0 for every i ≥ 1, so GI(ξ) is

P(ξ)∧-injective.

So (P(ξ)∧,GI(ξ)) is a left Frobenius pair in T .

Notice that GI(ξ)∧ = GI(ξ), so (P(ξ)∧,GI(ξ)) is a left weak AB context in T by Theorem

4.22. One can see that C ⊊ B.

Example 4.26. Following Example 4.7(1), (GP(ξ),P(ξ)) is a left Frobenius pair in T . By

Theorem 4.22, we have that (GP(ξ),P(ξ)∧) is a left weak AB context in T . In addition, if

sup{ξ-G pdT | T ∈ T } < ∞, by Theorem 4.23, (GP(ξ),P(ξ)∧) is a left AB context and is a

cotorsion pair in T .
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